JP2010144197A - Metal powder, and method for producing the same - Google Patents

Metal powder, and method for producing the same Download PDF

Info

Publication number
JP2010144197A
JP2010144197A JP2008320286A JP2008320286A JP2010144197A JP 2010144197 A JP2010144197 A JP 2010144197A JP 2008320286 A JP2008320286 A JP 2008320286A JP 2008320286 A JP2008320286 A JP 2008320286A JP 2010144197 A JP2010144197 A JP 2010144197A
Authority
JP
Japan
Prior art keywords
slurry
silver
mass
particles
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008320286A
Other languages
Japanese (ja)
Inventor
Takuya Sasaki
卓也 佐々木
Yoshiharu Toyoshima
義治 豊島
Masashi Kato
政志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008320286A priority Critical patent/JP2010144197A/en
Publication of JP2010144197A publication Critical patent/JP2010144197A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide metal powder which is fine and has excellent dispersibility, and also has reduced coarse flocculated grains, and to provide a method for producing the same. <P>SOLUTION: The production method comprises: a stage where raw material slurry comprising metal grains and water is obtained by wet reduction reaction or a water atomizing process; and a stage where the slurry adjusted so that the concentration of the metal grains in the raw material slurry reaches 100 to 1,000 g/L is charged to a drier, and is dried under the conditions where the reduction rate of the moisture content in the slurry is controlled to 0.3 to <10,000 mass%/min. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属粉及び金属粉の製造方法に関し、特に微細で分散性に優れた金属粉に関する。   The present invention relates to a metal powder and a method for producing the metal powder, and more particularly to a fine metal powder excellent in dispersibility.

従来から金属粉は、各種導電性ペーストの原料として広く用いられてきた。導電性ペーストは、主に電子産業用途を中心に、簡便に導体を形成するために使用される。例えば、プリント配線板の導体回路形成、多層プリント配線板の層間導通導体の形成、各種電極形成、低温焼成セラミック基板等に用いられる。そして、導電性ペーストにて得られた電極や回路には大幅なファイン化が要求されており、配線の高密度化、高精度化が必要であることはいうまでもない。
たとえば、チップ部品、プラズマディスプレイパネル(PDP)等の電極や回路の形成には、銀粉が使用されているが、上記配線の高密度化、高精度化を目的として、微細で高分散性のものが求められている。
このようなファインライン化が進むPDP等の電極や回路の導電パターン形成に好適に使用できる銀粉を製造することを目的とした銀粉の製造方法が開示されている(特許文献1)。
Conventionally, metal powder has been widely used as a raw material for various conductive pastes. The conductive paste is used to easily form a conductor mainly in the electronics industry. For example, it is used for forming a conductive circuit of a printed wiring board, forming an interlayer conductive conductor of a multilayer printed wiring board, forming various electrodes, a low-temperature fired ceramic substrate, and the like. Needless to say, the electrodes and circuits obtained from the conductive paste are required to be finer, and it is necessary to increase the density and accuracy of the wiring.
For example, silver powder is used to form electrodes and circuits for chip parts, plasma display panels (PDPs), etc., but they are fine and highly dispersible for the purpose of increasing the density and accuracy of the above wiring. Is required.
A silver powder production method for producing silver powder that can be suitably used for forming conductive patterns of electrodes and circuits such as PDPs that are becoming finer is disclosed (Patent Document 1).

特開2008−1974号公報(特許請求の範囲、段落[0007]等)JP 2008-1974 (Claims, paragraph [0007], etc.)

最近の配線の高密度化、高精度化に伴って、微細で分散性に優れた金属粉が求められていることは上記のとおりである。
一方、それとは別に、金属粉中に含まれる好ましくない粗大凝集粒子が、用途によるものの、電極や回路の導電パターン形成の際の信頼性に多大な影響を及ぼす。したがって、そのような粗大凝集粒子の低減化がより望まれている。
しかしながら、この特許文献1の方法により得られる銀粉では、ハンドリング時の取扱い形態に起因して、乾燥に伴う凝集粒子の低減が徹底できず、分散性の面で劣るのみならず、粗大凝集粒子が多く含まれるものである。
As described above, fine and highly dispersible metal powders are being demanded with recent increases in the density and accuracy of wiring.
On the other hand, undesirably coarse agglomerated particles contained in the metal powder have a great influence on the reliability when forming conductive patterns of electrodes and circuits, depending on the application. Therefore, reduction of such coarse agglomerated particles is more desired.
However, in the silver powder obtained by the method of Patent Document 1, due to the handling mode at the time of handling, reduction of aggregated particles accompanying drying cannot be thoroughly performed, and not only in terms of dispersibility, but also coarse aggregated particles are Many are included.

本発明は上述した事情に鑑み、微細で分散性に優れるのみならず、粗大凝集粒子が少ない金属粉及びその製造方法を提供することを目的とする。   In view of the circumstances described above, an object of the present invention is to provide a metal powder that is not only fine and excellent in dispersibility, but also has few coarse aggregated particles, and a method for producing the metal powder.

上記課題を解決する本発明の金属粉の製造方法は、湿式還元反応又は水アトマイズ法により金属粒子及び水を含有する原料スラリーを得る工程と、該原料スラリーを前記金属粒子の濃度が100〜1000g/Lとなるように調整したスラリーを乾燥機に投入し前記スラリーの水分率の低下速度が0.3質量%/分以上10000質量%/分未満の条件で乾燥させる工程とを具備することを特徴とする。
そして、前記金属粉は、銀又は銅であってもよい。
The method for producing a metal powder of the present invention that solves the above problems includes a step of obtaining a raw material slurry containing metal particles and water by a wet reduction reaction or a water atomization method, and the concentration of the metal particles in the raw material slurry is 100 to 1000 g. A slurry adjusted so as to be / L, and drying in a condition where the rate of decrease in moisture content of the slurry is 0.3% by mass or more and less than 10,000% by mass / min. Features.
The metal powder may be silver or copper.

また、上記製造方法により製造された金属粉は、1000倍の走査型電子顕微鏡により10箇所観察した際に各視野で観察される10μm以上の粗大粒子の合計が3個未満であることが好ましい。   Moreover, it is preferable that the total of the coarse particle | grains 10 micrometers or more observed in each visual field when the metal powder manufactured by the said manufacturing method is observed 10 places with a 1000 times scanning electron microscope is less than three pieces.

本発明の金属粉の製造方法によれば、微細で分散性に優れるのみならず、粗大凝集粒子が少ない金属粉及びその製造方法を提供することができる。   According to the method for producing metal powder of the present invention, it is possible to provide a metal powder not only having fine and excellent dispersibility but also having few coarse aggregated particles and a method for producing the metal powder.

以下、本発明を実施形態に基づいて詳細に説明する。
本発明の金属粉の製造方法は、湿式還元反応又は水アトマイズ法により金属粒子及び水を含有する原料スラリーを得る工程と、該原料スラリーを金属粒子の濃度が100〜1000g/Lとなるように調整したスラリーを乾燥機に投入し、スラリーの水分率の低下速度が0.3質量%/分以上10000質量%/分未満の条件で乾燥させる工程とを具備するものである。具体的には、まず、湿式還元反応又は水アトマイズ法により金属粒子を含有する原料スラリーを得る。
Hereinafter, the present invention will be described in detail based on embodiments.
The method for producing a metal powder of the present invention includes a step of obtaining a raw material slurry containing metal particles and water by a wet reduction reaction or a water atomization method, and the concentration of the metal particles in the raw material slurry is 100 to 1000 g / L. The adjusted slurry is charged into a dryer, and the slurry is dried under the condition that the rate of decrease in the moisture content of the slurry is 0.3 mass% / min or more and less than 10,000 mass% / min. Specifically, first, a raw material slurry containing metal particles is obtained by a wet reduction reaction or a water atomization method.

金属としては、銀、銅、ニッケル、その他合金、これらの金属に異種金属を被覆したコート粉等が挙げられる。   Examples of the metal include silver, copper, nickel, other alloys, and coating powder obtained by coating these metals with different metals.

湿式還元反応とは、たとえば金属塩含有水溶液にアルカリを加えて、金属酸化物含有スラリーを生成した後、還元剤を加えて金属を還元析出させる方法が代表的である。その際、必要に応じて錯化剤、保護剤、あるいは分散剤等を適宜反応系に添加することができる。
具体的には、例えば、硝酸銀水溶液とアンモニア水とを混合して反応させ(反応系にゼラチン等を添加してもよい)、銀アンミン錯体水溶液を得て、この銀アンミン錯体水溶液に、ヒドラジン等の還元剤水溶液を添加して銀を還元析出させることにより、銀粒子を含有するスラリーを得ることができる。
The wet reduction reaction is typically a method in which, for example, an alkali is added to a metal salt-containing aqueous solution to form a metal oxide-containing slurry, and then a reducing agent is added to reduce and precipitate the metal. In that case, a complexing agent, a protective agent, a dispersing agent, etc. can be suitably added to a reaction system as needed.
Specifically, for example, a silver nitrate aqueous solution and ammonia water are mixed and reacted (gelatin or the like may be added to the reaction system) to obtain a silver ammine complex aqueous solution. A slurry containing silver particles can be obtained by adding a reducing agent aqueous solution and reducing and precipitating silver.

水アトマイズ法とは、金属を溶融した溶湯の流れに高圧の水ジェットを噴射して金属粒子を含有するスラリーを得る方法である。   The water atomization method is a method of obtaining a slurry containing metal particles by injecting a high-pressure water jet into a molten metal flow.

次いで湿式還元反応又は水アトマイズ法により得られた金属粒子を含有する原料スラリーを、金属粒子の濃度が100〜1000g/Lとなるように調整する。金属粒子の濃度が1000g/L以下であれば金属粒子間の距離がある程度保てるためか、後段の乾燥工程により微細で分散性に優れた金属粉を得ることができる。また、100g/L未満では生産性が極端に悪化してしまう。金属粒子の濃度は、水や、メタノール等の水溶性有機溶媒、これらの混合物を添加することにより、又は、濃縮することにより調整できる。湿式還元反応又は水アトマイズ法により得られた原料スラリーが、金属粒子の濃度が100〜1000g/Lであれば、勿論、そのまま用いてもよい。ここで、上述したように、本発明で用いるのは金属粒子を含有し、該金属粒子の濃度が1000g/L以下のスラリーであり、一般的に固形分濃度が2000g/L以上であるケーキとは金属粒子の濃度が全く異なるものである。なお、特許文献1に開示されるように、ケーキを用いた場合、後述する比較例でも明らかなとおり、本願発明が目的とする粗大凝集粒子が少ない金属粉を得ることはできない。   Subsequently, the raw material slurry containing the metal particles obtained by the wet reduction reaction or the water atomization method is adjusted so that the concentration of the metal particles is 100 to 1000 g / L. If the concentration of the metal particles is 1000 g / L or less, the distance between the metal particles can be maintained to some extent, or a fine metal powder having excellent dispersibility can be obtained by a subsequent drying step. Moreover, if it is less than 100 g / L, productivity will deteriorate extremely. The concentration of the metal particles can be adjusted by adding water, a water-soluble organic solvent such as methanol, a mixture thereof, or concentrating. Of course, the raw material slurry obtained by the wet reduction reaction or the water atomization method may be used as it is if the concentration of the metal particles is 100 to 1000 g / L. Here, as described above, the present invention uses a slurry containing metal particles, the metal particles having a concentration of 1000 g / L or less, and generally having a solid content concentration of 2000 g / L or more. Are completely different in the concentration of metal particles. As disclosed in Patent Document 1, when a cake is used, it is not possible to obtain a metal powder with a small amount of coarse aggregated particles, which is the object of the present invention, as is clear in comparative examples described later.

次に、金属粒子の濃度が100〜1000g/Lのスラリーを乾燥機に投入し、スラリーの水分率の低下速度が0.3質量%/分以上10000質量%/分未満の条件で乾燥させる。   Next, a slurry having a metal particle concentration of 100 to 1000 g / L is put into a dryer, and dried under the condition that the rate of decrease in the moisture content of the slurry is 0.3 mass% / min or more and less than 10000 mass% / min.

乾燥機は、粉体ではなく原料スラリーで供給できること及びスラリーの水分率の低下速度が0.3質量%/分以上10000質量%/分未満の条件で乾燥させることができるものであれば特に限定はないが、チャンバ内に熱風(気流)を導入して流れに乗せて金属粉を乾燥する所謂気流乾燥機が好ましい。気流乾燥機としては、スプレードライヤー、フラッシュジェットドライヤー(セイシン企業製)、マイクロミストドライヤー(藤崎電機製)等が例示できる。   The dryer is not particularly limited as long as it can be supplied as a raw material slurry instead of powder and can be dried under a condition that the rate of decrease in the moisture content of the slurry is not less than 0.3% by mass and less than 10,000% by mass / min. However, a so-called air dryer is preferred in which hot air (air flow) is introduced into the chamber and the metal powder is dried on the flow. Examples of the air dryer include a spray dryer, a flash jet dryer (manufactured by Seishin Enterprise), and a micro mist dryer (manufactured by Fujisaki Electric).

スラリーの水分率の低下速度とは、乾燥機への投入時のスラリーの水分率(質量%)から、乾燥機での乾燥が終了した直後の粉体の水分率(質量%)を引き算し、その値を乾燥時間で割った値(質量%/分)である。なお、乾燥時間は、スラリーの乾燥機への投入から乾燥機での乾燥が終了するまでの時間(分)であり、気流乾燥機であれば、チャンバの内容積[m]を熱風の風量[m/sec]で割った値[sec]である。このスラリーの水分率の低下速度が、0.3質量%/分以上10000質量%/分未満になる条件で乾燥することにより、微細で分散性に優れた金属粉を得ることができる。0.3質量%/分未満では、微細で分散性に優れた金属粉を得ることはできず、また、10000質量%/分以上では、過大なエネルギーを消費するにもかかわらずそれ以上の分散性の向上もない。なお、この水分率の低下速度は、2500質量%/分以上10000質量%/分未満であると、高い分散性と粗大凝集粒子低減が実現でき、好ましい。スラリーの水分率の低下速度は、スラリーに含まれる金属粒子の濃度、スラリーの溶媒、乾燥温度等を調整し、0.3質量%/分以上10000質量%/分未満になるようにすれば良い。 The rate of decrease of the moisture content of the slurry is obtained by subtracting the moisture content (mass%) of the powder immediately after drying in the dryer from the moisture percentage (mass%) of the slurry when it is charged into the dryer. It is a value (mass% / min) obtained by dividing the value by the drying time. The drying time is the time (minutes) from the introduction of the slurry into the dryer until the drying in the dryer is completed. In the case of an air flow dryer, the internal volume [m 3 ] of the chamber is set as the amount of hot air. It is a value [sec] divided by [m 3 / sec]. By drying the slurry at a moisture content reduction rate of 0.3% by mass or more and less than 10,000% by mass / min, a fine metal powder having excellent dispersibility can be obtained. If it is less than 0.3% by mass / min, it is not possible to obtain a fine metal powder having excellent dispersibility, and if it is 10,000% by mass / min or more, it will disperse further even though excessive energy is consumed. There is no improvement in sex. In addition, it is preferable that the rate of decrease in the moisture content is 2500% by mass or more and less than 10000% by mass / min because high dispersibility and reduction of coarse aggregated particles can be realized. The rate of decrease in the moisture content of the slurry may be adjusted to 0.3% by mass or more and less than 10,000% by mass / min by adjusting the concentration of metal particles contained in the slurry, the solvent of the slurry, the drying temperature, and the like. .

ここで、金属粉、特に湿式還元プロセスによる製造工程では、湿潤ケーキ等から乾燥する際に、通常乾燥凝集が発生するため、微細で分散性に優れた金属粉を得難い。この乾燥凝集は、金属粒子表面に付着した水分が蒸発する過程において、その表面張力により金属粒子同士が圧密されることにより粒子相互表面融着が促進されて発生すると考えられる。   Here, in the production process using a metal powder, particularly a wet reduction process, dry agglomeration usually occurs when drying from a wet cake or the like, so that it is difficult to obtain a metal powder that is fine and excellent in dispersibility. This dry aggregation is considered to occur due to the fact that the metal particles are consolidated by the surface tension in the process of evaporating the water adhering to the surface of the metal particles, thereby promoting the inter-particle surface fusion.

本発明においては、スラリー状で乾燥機に導入し、且つ、金属粒子表面の水分蒸発速度を所定値にする、すなわちスラリーの水分率の低下速度を0.3質量%/分以上10000質量%/分未満になる条件で乾燥することで、水の表面張力による乾燥凝集を回避して微細で分散性に優れた金属粉を得ることができる。   In the present invention, the slurry is introduced into a drier and the moisture evaporation rate on the surface of the metal particles is set to a predetermined value, that is, the rate of decrease in the moisture content of the slurry is 0.3% by mass / min to 10,000% by mass / min. By drying under a condition of less than a minute, fine and excellent dispersibility metal powder can be obtained by avoiding dry aggregation due to the surface tension of water.

上記本発明の金属粉の製造方法により得られた金属粉は、1000倍の走査型電子顕微鏡(視野:縦130μm×横90μm)により10箇所観察した際に各視野で観察される10μm以上の粗大粒子の合計が3個未満である。
このように粗大とみなされる粒子の度数が限りなく小さい金属粉を含む導電性ペーストを用いれば、高密度化、高精度化のみならず、信頼性の高い材料形成を実現することが可能である。
The metal powder obtained by the method for producing metal powder of the present invention has a coarseness of 10 μm or more observed in each visual field when observed at 10 positions with a 1000 × scanning electron microscope (visual field: vertical 130 μm × horizontal 90 μm). The total number of particles is less than 3.
By using a conductive paste containing a metal powder with an extremely small number of particles regarded as coarse as described above, it is possible to realize not only high density and high precision but also highly reliable material formation. .

上記本発明の金属粉の製造方法により得られた金属粉は、走査型電子顕微鏡により観察される一次粒子径が0.2〜0.8μm、BET法により測定される比表面積が0.9〜4(m/g)、レーザー回折散乱式粒度分布測定法による体積累積粒径D50と上記比表面積より算出されるBET径との比D50/BET径が2.0未満、D50が0.3〜0.9μmでDmax/D50<4.0というような特性を備えていることが、各種用途にかかわらず分散性に優れ、好ましい。ここで、レーザー回折散乱式粒度分布測定法による体積累積粒径D50とは、レーザー回折散乱式粒度分布測定法を用いて得られる体積累積50%における粒径のことであり、この体積累積粒径D50の値は、真に粉粒の一つ一つの径を直接観察したものではなく、凝集した粉粒を一個の粒子(凝集粒子)として捉えて、体積累積粒径を算出している。即ち、現実の金属粉の粉粒は、個々の粒子が完全に分離した、いわゆる単分散粉ではなく、複数個の粉粒が凝集した状態になっているのが通常と考えられるからである。しかしながら、粉粒の凝集状態が少なく、単分散に近いほど、体積累積粒径D50の値は小さなものとなるのが通常である。なお、本明細書における、レーザー回折散乱式粒度分布測定法は、金属粉0.1gをイオン交換水と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて測定したものである。また、BET径は、BET比表面積を用い下記式で算出した。なお、真比重は銀粉であれば10.49であり、銅粉であれば8.92である。
BET径=6÷BET比表面積÷真比重
The metal powder obtained by the method for producing a metal powder of the present invention has a primary particle diameter of 0.2 to 0.8 μm observed by a scanning electron microscope and a specific surface area of 0.9 to 0.9 measured by the BET method. 4 (m 2 / g), ratio D 50 / BET diameter of volume cumulative particle diameter D 50 by laser diffraction scattering particle size distribution measurement method to BET diameter calculated from the above specific surface area is less than 2.0, D 50 is it has the characteristics as referred to D max / D 50 <4.0 in 0.3~0.9μm is excellent in dispersibility irrespective of various applications, preferable. Here, the cumulative volume particle diameter D 50 by laser diffraction scattering particle size distribution measurement method is that the particle diameter at cumulative volume of 50% obtained by using a laser diffraction scattering particle size distribution measurement method, the cumulative volume particle The value of the diameter D 50 is not a value obtained by directly observing the diameter of each particle, but the aggregated particle is regarded as a single particle (aggregated particle) to calculate the volume cumulative particle size. . That is, the actual metal powder particles are not so-called monodisperse powders in which individual particles are completely separated, but are usually in a state where a plurality of powder particles are aggregated. However, little aggregation state of granular, closer to monodisperse, the value of the cumulative volume particle diameter D 50 is becoming small things usually. In the present specification, the laser diffraction / scattering particle size distribution measurement method is performed by mixing 0.1 g of metal powder with ion-exchanged water and dispersing the mixture with an ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Seisakusho) for 5 minutes. It is measured using a laser diffraction / scattering particle size distribution measuring apparatus Micro Trac HRA 9320-X100 (Leeds + Northrup). The BET diameter was calculated by the following formula using the BET specific surface area. The true specific gravity is 10.49 for silver powder and 8.92 for copper powder.
BET diameter = 6 ÷ BET specific surface area ÷ true specific gravity

また、該金属粉は、ペースト化した際のグラインドゲージ測定値が10μm以下であると好ましい。このグラインドゲージは、JIS K 5101−1991に準拠して測定することができる。具体的には、金属粉25gをペースト化したものを用い、一端の深さが100μmで他端の深さが0μmであるみぞを掘った板上を水平方向に深さ100μmから0μmに向って、ペーストをスクレーパーで溝に押し付けながら引き動かし、溝のペースト膜面に現れた線の開始位置を測定したものである。このような微細で分散性に優れた金属粉を用いることにより、配線の微細加工を達成することができる。   The metal powder preferably has a grind gauge measurement value of 10 μm or less when formed into a paste. This grind gauge can be measured according to JIS K 5101-1991. Specifically, a paste made of 25 g of metal powder is used, and the depth of 100 μm to 0 μm is measured in a horizontal direction on a plate dug a groove having a depth of 100 μm at one end and a depth of 0 μm at the other end. The paste was moved while being pressed against the groove with a scraper, and the starting position of the line appearing on the paste film surface of the groove was measured. By using such a fine metal powder having excellent dispersibility, fine processing of wiring can be achieved.

以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
(銀粒子を含有する原料銀スラリーの作成)
硝酸銀63.3gを純水3.1Lに溶解させ硝酸銀水溶液を調製し、濃度25質量%のアンモニア水235mLを添加して攪拌することにより、銀アンミン錯体水溶液を得た。次いで、20℃で、この銀アンミン錯体水溶液に濃度21g/Lのヒドロキノン水溶液3.4Lを混合することにより銀粒子を析出させて原料銀スラリーを得た。
Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples.
(Create raw silver slurry containing silver particles)
63.3 g of silver nitrate was dissolved in 3.1 L of pure water to prepare an aqueous silver nitrate solution, and 235 mL of ammonia water having a concentration of 25% by mass was added and stirred to obtain an aqueous silver ammine complex solution. Next, at 20 ° C., 3.4 L of a hydroquinone aqueous solution having a concentration of 21 g / L was mixed with this silver ammine complex aqueous solution to precipitate silver particles to obtain a raw silver slurry.

(銅粒子を含有する原料銅スラリーの作成)
硫酸銅(五塩水)4kg及びアミノ酢酸120gを水に溶解させて、液温60℃の8Lの銅塩水溶液を作製した。そして、この水溶液を攪拌しながら6.25kgの25wt%水酸化ナトリウム溶液を約5分間かけて定量的に添加し、液温60℃で60分間の攪拌を行い、液色が完全に黒色になるまで熟成させて酸化銅第二銅を生成した。その後、30分間放置しグルコース1.5kgを添加して、1時間熟成することで酸化第二銅を酸化第一銅に還元した。さらに、水和ヒドラジン1kgを5分間かけて定量的に添加して酸化第一銅を還元することで金属銅にして、原料銅スラリーを生成した。
(Creation of raw material copper slurry containing copper particles)
4 kg of copper sulfate (pentahydrate) and 120 g of aminoacetic acid were dissolved in water to prepare an 8 L aqueous solution of copper salt having a liquid temperature of 60 ° C. Then, while stirring this aqueous solution, 6.25 kg of 25 wt% sodium hydroxide solution is quantitatively added over about 5 minutes, stirring is performed for 60 minutes at a liquid temperature of 60 ° C., and the liquid color becomes completely black. And cupric oxide was produced. Then, it was left for 30 minutes, 1.5 kg of glucose was added, and cupric oxide was reduced to cuprous oxide by aging for 1 hour. Furthermore, 1 kg of hydrated hydrazine was quantitatively added over 5 minutes to reduce cuprous oxide to form metallic copper, thereby producing a raw material copper slurry.

(実施例1)
上記原料銀スラリーに銀粒子の濃度が100g/Lとなるように水を加え、スプレードライヤー(大川厚化工機株式会社製スプレードライヤーCOC−12)で乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:70℃、スラリー流量:80mL/分、乾燥時間:1秒としたところ、スラリーの水分率の低下速度は5460質量%/分であった。
Example 1
Water was added to the raw silver slurry so that the concentration of silver particles would be 100 g / L, and dried with a spray dryer (Spray Dryer COC-12 manufactured by Okawa Atsuka Koki Co., Ltd.) to obtain silver powder. The drying conditions were an inlet temperature: 120 ° C., an outlet temperature: 70 ° C., a slurry flow rate: 80 mL / min, and a drying time: 1 second. The rate of decrease in the moisture content of the slurry was 5460% by mass / min.

(実施例2)
上記原料銀スラリーに銀粒子の濃度が1000g/Lとなるように水を加え、スプレードライヤーCOC−12で乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:70℃、スラリー流量:80mL/分、乾燥時間:1秒としたところ、スラリーの水分率の低下速度は2820質量%/分であった。
(Example 2)
Water was added to the raw silver slurry so that the concentration of silver particles was 1000 g / L, and dried with a spray dryer COC-12 to obtain silver powder. The drying conditions were an inlet temperature: 120 ° C., an outlet temperature: 70 ° C., a slurry flow rate: 80 mL / min, and a drying time: 1 second. The rate of decrease in the water content of the slurry was 2820% by mass / min.

(実施例3)
上記原料銀スラリーに銀粒子の濃度が100g/Lとなるように水を加え、フラッシュジェットドライヤー(セイシン企業株式会社製フラッシュジェットドライヤーFJD−4)で乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:80℃、スラリー流量:150mL/分、乾燥時間:0.7秒としたところ、スラリーの水分率の低下速度は7799質量%/分であった。
(Example 3)
Water was added to the raw silver slurry so that the concentration of silver particles would be 100 g / L, and dried with a flash jet dryer (Flash Jet Dryer FJD-4 manufactured by Seishin Enterprise Co., Ltd.) to obtain silver powder. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 80 ° C., slurry flow rate: 150 mL / min, drying time: 0.7 seconds, and the rate of decrease in the moisture content of the slurry was 7799 mass% / min. .

(実施例4)
上記原料銀スラリーに銀粒子の濃度が1000g/Lとなるように水を加え、フラッシュジェットドライヤーFJD−4で乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:80℃、スラリー流量:150mL/分、乾燥時間:0.7秒としたところ、スラリーの水分率の低下速度は4029質量%/分であった。
Example 4
Water was added to the raw silver slurry so that the concentration of silver particles was 1000 g / L, followed by drying with a flash jet dryer FJD-4 to obtain silver powder. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 80 ° C., slurry flow rate: 150 mL / min, drying time: 0.7 seconds, and the rate of decrease in the moisture content of the slurry was 4029% by mass / min. .

(実施例5)
上記原料銀スラリーに銀粒子の濃度が100g/Lとなるように水を加え、マイクロミストドライヤー(藤崎電機株式会社製マイクロミストドライヤーMDL−050B)で乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:70℃、スラリー流量:40mL/分、乾燥時間:0.6秒としたところ、スラリーの水分率の低下速度は9100質量%/分であった。
(Example 5)
Water was added to the raw silver slurry so that the concentration of silver particles was 100 g / L, and dried with a micro mist dryer (Micro Mist Dryer MDL-050B manufactured by Fujisaki Electric Co., Ltd.) to obtain silver powder. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 70 ° C., slurry flow rate: 40 mL / min, drying time: 0.6 seconds, and the rate of decrease in the moisture content of the slurry was 9100% by mass / min. .

(実施例6)
上記原料銀スラリーに銀粒子の濃度が1000g/Lとなるように水を加え、マイクロミストドライヤーMDL−050Bで乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:70℃、スラリー流量:80mL/分、乾燥時間:0.6秒としたところ、スラリーの水分率の低下速度は4700質量%/分であった。
(Example 6)
Water was added to the raw silver slurry so that the concentration of silver particles would be 1000 g / L, and dried with a micro mist dryer MDL-050B to obtain silver powder. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 70 ° C., slurry flow rate: 80 mL / min, drying time: 0.6 seconds, and the rate of decrease in the moisture content of the slurry was 4700% by mass / min. .

(実施例7)
上記原料銅スラリーに、水:メタノール:銅粒子=45.5:45.5:9(質量比)となるように水及びメタノールを加え、スプレードライヤーCOC−12で乾燥して、銅粉を得た。乾燥条件は、入口温度:120℃、出口温度:70℃、スラリー流量:80mL/分、乾燥時間:1秒としたところ、スラリーの水分率の低下速度は5460質量%/分であった。
(Example 7)
Water and methanol are added to the raw material copper slurry so that water: methanol: copper particles = 45.5: 45.5: 9 (mass ratio), and dried with a spray dryer COC-12 to obtain copper powder. It was. The drying conditions were an inlet temperature: 120 ° C., an outlet temperature: 70 ° C., a slurry flow rate: 80 mL / min, and a drying time: 1 second. The rate of decrease in the moisture content of the slurry was 5460% by mass / min.

(実施例8)
上記原料銅スラリーに、水:メタノール:銅粒子=23.5:23.5:53(質量比)となるように水及びメタノールを加え、スプレードライヤーCOC−12で乾燥して、銅粉を得た。乾燥条件は、入口温度:120℃、出口温度:70℃、スラリー流量:80mL/分、乾燥時間:1秒としたところ、スラリーの水分率の低下速度は2820質量%/分であった。
(Example 8)
Water and methanol are added to the raw material copper slurry so that water: methanol: copper particles = 23.5: 23.5: 53 (mass ratio), and dried with a spray dryer COC-12 to obtain copper powder. It was. The drying conditions were an inlet temperature: 120 ° C., an outlet temperature: 70 ° C., a slurry flow rate: 80 mL / min, and a drying time: 1 second. The rate of decrease in the water content of the slurry was 2820% by mass / min.

(実施例9)
上記原料銅スラリーに、水:メタノール:銅粒子=45.5:45.5:9(質量比)となるように水及びメタノールを加え、フラッシュジェットドライヤーFJD−4で乾燥して、銅粉を得た。乾燥条件は、入口温度:120℃、出口温度:80℃、スラリー流量:150mL/分、乾燥時間:0.7秒としたところ、スラリーの水分率の低下速度は7799質量%/分であった。
Example 9
Water and methanol are added to the raw material copper slurry so that water: methanol: copper particles = 45.5: 45.5: 9 (mass ratio), and dried with a flash jet dryer FJD-4 to obtain copper powder. Obtained. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 80 ° C., slurry flow rate: 150 mL / min, drying time: 0.7 seconds, and the rate of decrease in the moisture content of the slurry was 7799 mass% / min. .

(実施例10)
上記原料銅スラリーに、水:メタノール:銅粒子=23.5:23.5:53(質量比)となるように水及びメタノールを加え、フラッシュジェットドライヤーFJD−4で乾燥して、銅粉を得た。乾燥条件は、入口温度:120℃、出口温度:80℃、スラリー流量:150mL/分、乾燥時間:0.7秒としたところ、スラリーの水分率の低下速度は4029質量%/分であった。
(Example 10)
Water and methanol are added to the raw material copper slurry so that water: methanol: copper particles = 23.5: 23.5: 53 (mass ratio), and dried with a flash jet dryer FJD-4 to obtain copper powder. Obtained. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 80 ° C., slurry flow rate: 150 mL / min, drying time: 0.7 seconds, and the rate of decrease in the moisture content of the slurry was 4029% by mass / min. .

(比較例1)
上記原料銀スラリーを、ろ過し水洗して水分率が10質量%の銀ケーキ(ケーキ中銀粒子濃度:4737g/L)を得た。この銀ケーキ10kgをバットに入れて乾燥して、銀粉を得た。乾燥条件は、温度:70℃、時間:6時間、風量:1m/分で乾燥したところ、水分率の低下速度は0.028質量%/分であった。
(Comparative Example 1)
The raw silver slurry was filtered and washed with water to obtain a silver cake having a moisture content of 10% by mass (concentration of silver particles in the cake: 4737 g / L). 10 kg of this silver cake was put in a vat and dried to obtain silver powder. The drying conditions were as follows: temperature: 70 ° C., time: 6 hours, and air volume: 1 m 3 / min. The rate of decrease in moisture content was 0.028% by mass / min.

(比較例2)
上記原料銀スラリーを、ろ過し水洗して銀スラリー(スラリー中銀粒子濃度:900g/L)を得た。この銀スラリー20kgを真空流動乾燥機(中央化工機株式会社製VH−25)に入れて乾燥して、銀粉を得た。乾燥条件は、設定温度:110℃、時間:7時間、振動:10秒/分で乾燥したところ、水分率の低下速度は0.12質量%/分であった。
(Comparative Example 2)
The raw silver slurry was filtered and washed with water to obtain a silver slurry (concentration of silver particles in the slurry: 900 g / L). 20 kg of this silver slurry was put into a vacuum fluidized dryer (VH-25 manufactured by Chuo Kako Co., Ltd.) and dried to obtain silver powder. The drying conditions were as follows: set temperature: 110 ° C., time: 7 hours, vibration: 10 seconds / min. The rate of decrease in moisture content was 0.12% by mass / min.

(比較例3)
上記原料銀スラリーを、ろ過し水洗して水分率が7質量%の銀ケーキ(ケーキ中銀粒子濃度:5700g/L)を得た。この銀ケーキ10kgをフラッシュジェットドライヤーFJD−4に入れて乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:80℃、原料ケーキ供給速度:1500g/分、乾燥時間:0.7秒で乾燥したところ、水分率の低下速度は600質量%/分であった。
(Comparative Example 3)
The raw silver slurry was filtered and washed with water to obtain a silver cake having a moisture content of 7% by mass (concentration of silver particles in the cake: 5700 g / L). 10 kg of this silver cake was put into a flash jet dryer FJD-4 and dried to obtain silver powder. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 80 ° C., raw material cake supply rate: 1500 g / min, drying time: 0.7 seconds, and the moisture content decreasing rate was 600% by mass / min. It was.

(比較例4)
上記原料銅スラリーを、ろ過し水洗して水分率が7質量%の銅ケーキ(ケーキ中銅粒子濃度:5700g/L)を得た。この銅ケーキ10kgをフラッシュジェットドライヤーFJD−4に入れて乾燥して、銀粉を得た。乾燥条件は、入口温度:120℃、出口温度:80℃、原料ケーキ供給速度:1500g/分、乾燥時間:0.7秒で乾燥したところ、水分率の低下速度は600質量%/分であった。
(Comparative Example 4)
The raw material copper slurry was filtered and washed with water to obtain a copper cake having a moisture content of 7% by mass (concentration of copper particles in the cake: 5700 g / L). 10 kg of this copper cake was put into a flash jet dryer FJD-4 and dried to obtain silver powder. The drying conditions were as follows: inlet temperature: 120 ° C., outlet temperature: 80 ° C., raw material cake supply rate: 1500 g / min, drying time: 0.7 seconds, and the moisture content decreasing rate was 600% by mass / min. It was.

(比較例5)
上記原料銀スラリーを、ろ過し水洗して水分率が7質量%の銀ケーキ(ケーキ中銀粒子濃度:5700g/L)を得た。この銀ケーキ10kgを図1の乾燥装置10を用いて乾燥して銀粉を得た。乾燥装置10は、断面図である図1に示すように、20cmの均熱帯11を有する縦型管状炉12内に全長800mm、外径13mm、内径9mmのアルミナ管13が設けられており、均熱帯11は縦型管状炉12内のアルミナ管13の垂直方向のほぼ中央部に位置している。該均熱帯11は800℃に加熱され、アルミナ管13の上端近傍に設けられた開口部14からアルミナ管13内に空気が100mL/minで上から下に向けて吹き込まれている。そして、原料である銀ケーキをアルミナ管13の上部に設けられたホッパー15に入れ、ホッパー15の電磁フィーダーにより銀ケーキを0.5g/minの速度でアルミナ管13の上部から投入し、原料銀ケーキをアルミナ管13内で自由落下させて、均熱帯11を通過するときに瞬間乾燥させて銀粉を得た。この時の銀ケーキの水分率の低下速度を均熱帯11の長さとケーキの落下速度から算出すると、5800質量%/分であった。
(Comparative Example 5)
The raw silver slurry was filtered and washed with water to obtain a silver cake having a moisture content of 7% by mass (concentration of silver particles in the cake: 5700 g / L). 10 kg of this silver cake was dried using the drying apparatus 10 of FIG. 1 to obtain silver powder. As shown in FIG. 1 which is a sectional view, the drying apparatus 10 includes an alumina tube 13 having a total length of 800 mm, an outer diameter of 13 mm, and an inner diameter of 9 mm in a vertical tubular furnace 12 having a soaking zone 11 of 20 cm. The tropics 11 are located substantially in the center in the vertical direction of the alumina tube 13 in the vertical tubular furnace 12. The soaking zone 11 is heated to 800 ° C., and air is blown into the alumina tube 13 from the opening 14 provided near the upper end of the alumina tube 13 from the top to the bottom at 100 mL / min. Then, the raw material silver cake is put in a hopper 15 provided on the upper part of the alumina tube 13, and the silver cake is charged from the upper part of the alumina tube 13 at a rate of 0.5 g / min by the electromagnetic feeder of the hopper 15. The cake was freely dropped in the alumina tube 13 and dried instantaneously when passing through the soaking zone 11 to obtain silver powder. When the rate of decrease in the moisture content of the silver cake at this time was calculated from the length of the soaking zone 11 and the falling speed of the cake, it was 5800% by mass / min.

上記実施例1〜10及び比較例1〜5で得られた銀粉又は銅粉について、それぞれ、1000倍の走査型電子顕微鏡(SEM)により10箇所観察した際に各視野で観察される10μm以上の粗大粒子の個数の合計(表1中、「SEM10視野」と表記)、一次粒子径、BET比表面積、レーザー回折散乱式粒度分布測定法による体積累積粒径D10、D50、D90、D100(Dmax)、タップ密度(TD)、銀粉をペースト化した際のグラインドゲージ(GG)を測定した。各評価方法は以下に記すとおりで、結果は表1に示す。 The silver powder or copper powder obtained in Examples 1 to 10 and Comparative Examples 1 to 5 is 10 μm or more which is observed in each field of view when 10 places are observed with a 1000 times scanning electron microscope (SEM). Total number of coarse particles (shown as “SEM10 field of view” in Table 1), primary particle diameter, BET specific surface area, volume cumulative particle diameter D 10 , D 50 , D 90 , D by laser diffraction scattering particle size distribution measurement method 100 (D max ), tap density (TD), and a grind gauge (GG) when silver powder was pasted. Each evaluation method is as described below, and the results are shown in Table 1.

1000倍の走査型電子顕微鏡により10箇所観察した際に各視野で観察される10μm以上の粗大粒子の個数の合計は、1000倍の走査型電子顕微鏡(視野:縦130μm×横90μm)による観察で10μm以上の粗大粒子を一つ探し当該粗大粒子を含む視野の範囲内に含まれる10μm以上の粗大粒子の個数を求める操作を観察箇所を変えて10箇所で行い、各視野で観察される10μm以上の粒子の個数を合計して求めた。この際、10μm以上の粗大粒子が見つからなかった場合は、零とした。   The total number of coarse particles of 10 μm or more observed in each visual field when observed at 10 locations with a 1000 × scanning electron microscope is the result of observation with a 1000 × scanning electron microscope (visual field: vertical 130 μm × horizontal 90 μm). Search for one coarse particle of 10 μm or more and obtain the number of coarse particles of 10 μm or more contained in the range of the visual field containing the coarse particle by changing the observation location at 10 locations, and 10 μm or more observed in each visual field The total number of particles was determined. At this time, when coarse particles of 10 μm or more were not found, it was set to zero.

一次粒子径は、上記走査型電子顕微鏡による観察像を撮像し、当該粉末粒子径を視野中より粒子を100個無作為に選び、フェレ径を直接測定し、観察倍率で換算し、平均を求めた。   The primary particle diameter is obtained by taking an image observed by the scanning electron microscope, selecting 100 particles randomly from the field of view, measuring the ferret diameter directly, converting the observation diameter, and calculating the average. It was.

BET比表面積は、試料1gを取り比表面積測定装置(QUANTACHROEM社製MONOSORB)を用いBET法(窒素吸着1点法)により測定した。   The BET specific surface area was measured by a BET method (nitrogen adsorption one-point method) using 1 g of a sample and using a specific surface area measuring device (MONOSORB manufactured by QUANTACHROEM).

レーザー回折散乱式粒度分布測定法による体積累積粒径は、スラリーに含まれる銀粉又は銅粉0.1gをイオン交換水と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて測定した。   The volume cumulative particle size by the laser diffraction / scattering particle size distribution measurement method is obtained by mixing 0.1 g of silver powder or copper powder contained in the slurry with ion-exchanged water, and dispersing for 5 minutes with an ultrasonic homogenizer (US-300T manufactured by Nippon Seiki Seisakusho). Then, the measurement was performed using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup).

グラインドゲージは、JIS K 5101−1991に準拠した測定方法で測定し、銀粉又は銅粉25gをペースト化したものを用い、一端の深さが100μmで他端の深さが0μmであるみぞを掘った板上を水平方向に深さ100μmから0μmに向って、ペーストをスクレーパーで溝に押し付けながら引き動かし、溝のペースト膜面に現れた線の開始位置を測定することにより求めた。また、上記測定値から、D50/BET、Dmax/D50径を算出した。 The grind gauge is measured by a measuring method according to JIS K 5101-1991, and a paste obtained by pasting silver powder or copper powder 25 g is used to dig a groove having a depth of 100 μm at one end and a depth of 0 μm at the other end. The paste was moved in a horizontal direction from a depth of 100 μm to 0 μm while pressing the paste against the groove with a scraper, and the starting position of the line appearing on the paste film surface of the groove was measured. Further, from the measurement value, D 50 / BET, was calculated D max / D 50 diameter.

タップ密度は、試料100gを精秤して150mlのメスシリンダーに入れ、筒井理化学社製タップデンサーを用い、ストローク(落下距離)40mmで1000回タッピングした後試料の容積を測定し、下記式にて算出した。
タップ密度TD[g/cm]=100[g]÷X[cm
X:試料の容積
For the tap density, 100 g of the sample was accurately weighed and placed in a 150 ml measuring cylinder, and the volume of the sample was measured after tapping 1000 times at a stroke (falling distance) of 40 mm using a tap denser manufactured by Tsutsui RIKEN. Calculated.
Tap density TD [g / cm 3 ] = 100 [g] ÷ X [cm 3 ]
X: Sample volume

表1に示すように、金属粒子の濃度が100〜1000g/Lのスラリーを、水分率の低下速度が0.3質量%/分以上10000質量%/分未満の条件で乾燥させた実施例1〜10では、粗大微粒子の頻度が格段に少ないことが明白である。また、乾燥凝集が抑制され微細で分散性に優れた銀粉又は銅粉が得られていた。一方、比較例1〜5では、粗大微粒子の頻度が相当大きいのみならず、分散性等の面でも実施例の銅粉より劣るものであった。   As shown in Table 1, Example 1 was obtained by drying a slurry having a metal particle concentration of 100 to 1000 g / L under the condition that the rate of decrease in moisture content was 0.3% by mass or more and less than 10,000% by mass / min. From 10 to 10, it is clear that the frequency of coarse particles is remarkably low. Moreover, the dry aggregation was suppressed and the silver powder or copper powder which was fine and excellent in the dispersibility was obtained. On the other hand, in Comparative Examples 1-5, not only the frequency of coarse particles was considerably high, but also in terms of dispersibility and the like, it was inferior to the copper powder of the examples.

Figure 2010144197
Figure 2010144197

比較例5の乾燥装置の概略断面図である。10 is a schematic cross-sectional view of a drying apparatus of Comparative Example 5. FIG.

符号の説明Explanation of symbols

10 乾燥装置
11 均熱帯
12 縦型管状炉
13 アルミナ管
14 開口部
15 ホッパー
DESCRIPTION OF SYMBOLS 10 Drying device 11 Soaking zone 12 Vertical tubular furnace 13 Alumina pipe 14 Opening part 15 Hopper

Claims (4)

湿式還元反応又は水アトマイズ法により金属粒子及び水を含有する原料スラリーを得る工程と、該原料スラリーを前記金属粒子の濃度が100〜1000g/Lとなるように調整したスラリーを乾燥機に投入し前記スラリーの水分率の低下速度が0.3質量%/分以上10000質量%/分未満の条件で乾燥させる工程とを具備することを特徴とする金属粉の製造方法。   A step of obtaining a raw material slurry containing metal particles and water by a wet reduction reaction or a water atomizing method, and a slurry prepared by adjusting the raw material slurry so that the concentration of the metal particles is 100 to 1000 g / L is charged into a dryer. And a step of drying the slurry at a rate of decreasing the moisture content of 0.3% by mass or more and less than 10,000% by mass / min. 前記金属粉が、銀又は銅であることを特徴とする請求項1に記載の金属粉の製造方法。   The said metal powder is silver or copper, The manufacturing method of the metal powder of Claim 1 characterized by the above-mentioned. 請求項1又は2に記載の製造方法により製造されたことを特徴とする金属粉。   A metal powder produced by the production method according to claim 1. 1000倍の走査型電子顕微鏡により10箇所観察した際に各視野で観察される10μm以上の粗大粒子の合計が3個未満であることを特徴とする請求項3に記載の金属粉。   4. The metal powder according to claim 3, wherein the total number of coarse particles of 10 μm or more observed in each visual field when observed at 10 positions with a 1000 × scanning electron microscope is less than 3. 5.
JP2008320286A 2008-12-16 2008-12-16 Metal powder, and method for producing the same Pending JP2010144197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320286A JP2010144197A (en) 2008-12-16 2008-12-16 Metal powder, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320286A JP2010144197A (en) 2008-12-16 2008-12-16 Metal powder, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010144197A true JP2010144197A (en) 2010-07-01

Family

ID=42564917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320286A Pending JP2010144197A (en) 2008-12-16 2008-12-16 Metal powder, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010144197A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043267A1 (en) * 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
CN104014804A (en) * 2014-05-20 2014-09-03 苏州明动新材料科技有限公司 Preparation method of nanometer silver powder with particles controllable
JP2016006234A (en) * 2010-09-30 2016-01-14 Dowaエレクトロニクス株式会社 Conductive paste copper powder and production method of the same
JP2016023348A (en) * 2014-07-23 2016-02-08 住友金属鉱山株式会社 Copper powder and manufacturing method thereof, and copper paste using the same
JP2016176093A (en) * 2015-03-19 2016-10-06 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same
CN110614377A (en) * 2019-10-31 2019-12-27 江西铜业铜材有限公司 Production process for preparing copper powder by using SCR (Selective catalytic reduction) shaft furnace system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945166B1 (en) 2010-09-30 2019-02-01 도와 일렉트로닉스 가부시키가이샤 Copper powder for conductive paste and method for manufacturing same
JP2012092432A (en) * 2010-09-30 2012-05-17 Dowa Electronics Materials Co Ltd Copper powder for conductive paste and method for manufacturing the same
CN103079732A (en) * 2010-09-30 2013-05-01 同和电子科技有限公司 Copper powder for conductive paste and method for manufacturing same
KR20180054914A (en) * 2010-09-30 2018-05-24 도와 일렉트로닉스 가부시키가이샤 Copper powder for conductive paste and method for manufacturing same
WO2012043267A1 (en) * 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
CN103079732B (en) * 2010-09-30 2015-09-02 同和电子科技有限公司 Copper powder for conductive paste and manufacture method thereof
JP2016006234A (en) * 2010-09-30 2016-01-14 Dowaエレクトロニクス株式会社 Conductive paste copper powder and production method of the same
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same
EP2614904A4 (en) * 2010-09-30 2017-06-07 DOWA Electronics Materials Co., Ltd. Copper powder for conductive paste and method for manufacturing same
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
JP5872063B2 (en) * 2012-11-26 2016-03-01 三井金属鉱業株式会社 Copper powder
JPWO2014080662A1 (en) * 2012-11-26 2017-01-05 三井金属鉱業株式会社 Copper powder
US10518323B2 (en) 2012-11-26 2019-12-31 Mitsui Mining & Smelting Co., Ltd. Copper power and method for producing same
CN104014804A (en) * 2014-05-20 2014-09-03 苏州明动新材料科技有限公司 Preparation method of nanometer silver powder with particles controllable
JP2016023348A (en) * 2014-07-23 2016-02-08 住友金属鉱山株式会社 Copper powder and manufacturing method thereof, and copper paste using the same
JP2016176093A (en) * 2015-03-19 2016-10-06 Dowaエレクトロニクス株式会社 Silver-covered metal powder and method for producing the same
CN110614377A (en) * 2019-10-31 2019-12-27 江西铜业铜材有限公司 Production process for preparing copper powder by using SCR (Selective catalytic reduction) shaft furnace system
CN110614377B (en) * 2019-10-31 2022-06-10 江西铜业铜材有限公司 Production process for preparing copper powder by using SCR (Selective catalytic reduction) shaft furnace system

Similar Documents

Publication Publication Date Title
JP5355007B2 (en) Method for producing spherical silver powder
JP2010144197A (en) Metal powder, and method for producing the same
JP5937730B2 (en) Method for producing copper powder
TWI600776B (en) Silver powder, and electrically conductive paste
JP5820202B2 (en) Copper powder for conductive paste and method for producing the same
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
TWI642626B (en) Method for manufacturing cuprous oxide particles, and method for manufacturing conductive film
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
US20060213328A1 (en) Method of producing copper powder and copper powder
JP2005146408A (en) Superfine silver particulate-stuck silver powder, and method for producing the superfine silver particulate-stuck silver powder
TWI803486B (en) Copper particle and its manufacturing method
TWI716526B (en) Nickel powder
JPWO2018190246A1 (en) Copper particle mixture and method for producing the same, copper particle mixture dispersion, copper particle mixture-containing ink, method for storing copper particle mixture, and method for sintering copper particle mixture
JP4662760B2 (en) Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2008069457A (en) Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP4961315B2 (en) Method for producing metal-coated nickel powder
JP2007188845A (en) Conductive powder, conductive paste and electrical circuit
TW202030033A (en) Method for producing monodispersed ag powder
TWI763637B (en) Metal composite powder and method for producing same
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
TWI544977B (en) Copper powder for conductive paste and method for producing same