JP2016127496A - 増幅回路 - Google Patents

増幅回路 Download PDF

Info

Publication number
JP2016127496A
JP2016127496A JP2015001094A JP2015001094A JP2016127496A JP 2016127496 A JP2016127496 A JP 2016127496A JP 2015001094 A JP2015001094 A JP 2015001094A JP 2015001094 A JP2015001094 A JP 2015001094A JP 2016127496 A JP2016127496 A JP 2016127496A
Authority
JP
Japan
Prior art keywords
transistor
input
voltage
base
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015001094A
Other languages
English (en)
Other versions
JP6467924B2 (ja
Inventor
奥 秀樹
Hideki Oku
秀樹 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015001094A priority Critical patent/JP6467924B2/ja
Priority to US14/969,063 priority patent/US9509259B2/en
Publication of JP2016127496A publication Critical patent/JP2016127496A/ja
Application granted granted Critical
Publication of JP6467924B2 publication Critical patent/JP6467924B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45098PI types
    • H03F3/45103Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45601Indexing scheme relating to differential amplifiers the IC comprising one or more passive resistors by feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45612Indexing scheme relating to differential amplifiers the IC comprising one or more input source followers as input stages in the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45668Indexing scheme relating to differential amplifiers the LC comprising a level shifter circuit, which does not comprise diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

【課題】ベース接地したトランジスタを使用して電気信号を増幅する増幅回路を、高速且つ低雑音化する。【解決手段】増幅回路12は、ベース接地され、エミッタに入力される入力電流の変動に応じてエミッタ電流が変動する第1トランジスタ23と、ベース接地され、エミッタが第1トランジスタ23のコレクタに接続され、第1トランジスタ23のエミッタ電流の変動に応じてコレクタ電圧が変動する第2トランジスタ24と、コレクタ接地され、ベースが第2トランジスタ24のコレクタに接続された第3トランジスタ31と、第3トランジスタ31のエミッタ電圧が入力され、第3トランジスタ31のエミッタ電圧を増幅した増幅電圧を出力する増幅部40とを有し、第2トランジスタ24のベース抵抗は、第1トランジスタ23のベース抵抗よりも大きい。【選択図】図2

Description

本発明は、増幅回路に関する。
トランスインピーダンスアンプ(Trans Impedance Amplifier、TIA)回路とも称され、フォトダイオード等のフォトディテクタにより光信号から変換された電気信号を、電圧信号に変換し、増幅する増幅回路が知られている。例えば、光信号から変換された電流信号をベース接地又はゲート接地したトランジスタを使用して電圧信号に変換する増幅回路が知られている(例えば、特許文献1〜3及び非特許文献1を参照)。また、光信号から変換された電流信号を一方の入力信号とする差動型の増幅回路が知られている(例えば、特許文献4及び5を参照)。
国際公開第2010/100741号 特開2009−100337号公報 特開平11−205047号公報 特開2005−210147号公報 国際公開第2008/120663号
「Bandwidth Extension in CMOS with Optimized On-Chip Inductors」, S.Mohan, et. al, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 3, pp.346-355,MARCH 2000号
光信号から変換された電流信号をベース接地又はゲート接地したトランジスタで電圧信号に変換し、増幅する増幅回路を、高速動作が可能な構成にすると、光信号から変換された電流信号に雑音が重畳されるおそれがある。
一実施形態では、電流信号をベース接地又はゲート接地したトランジスタを使用して電圧信号に変換し、増幅する増幅回路を、高速且つ低雑音化することを目的とする。
1つの態様では、増幅回路は、第1トランジスタと、第2トランジスタと、第3トランジスタと、増幅部と、を有する。第1トランジスタは、ベース接地され、エミッタに入力される入力電流の変動に応じてエミッタ電流が変動する。第2トランジスタは、ベース接地され、エミッタが第1トランジスタのコレクタに接続され、第1トランジスタのエミッタ電流の変動に応じてコレクタ電圧が変動する。第3トランジスタは、コレクタ接地され、ベースが第2トランジスタのコレクタに接続される。増幅部は、第3トランジスタのエミッタ電圧を増幅した増幅電圧を出力する。第2トランジスタのベース抵抗は、第1トランジスタのベース抵抗よりも大きい。
一実施形態では、電流信号をベース接地又はゲート接地したトランジスタを使用して電圧信号に変換する増幅回路を高速且つ低雑音化することが可能になった。
実施形態に係る通信システムの回路ブロック図である。 図1に示す増幅回路の内部回路ブロック図である。 図2に示す第1ベース接地部、第1エミッタフォロア部及び第1増幅部の入力換算雑音電流及び入力換算雑音電圧を含む回路図である。 (a)は図2に示す第2トランジスタを示す図であり、(b)は(a)に示す第2トランジスタの小信号等価回路である。 第1増幅部の入力換算雑音を第1エミッタフォロア部の入力換算雑音に変換した図3の等価回路図である。 関連する増幅回路の入力換算雑音電流及び入力換算雑音電圧を含む回路図である。 (a)は図3に示す増幅回路のベース接地回路の寄生容量を示す図であり、図7(b)は図6に示す増幅回路のベース接地回路の寄生容量を示す図である。 他の実施形態に係る増幅回路の回路ブロック図である。
以下図面を参照して、増幅回路について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明との均等物に及ぶ点に留意されたい。
(実施形態に係る増幅回路の概要)
実施形態に係る増幅回路では、ベース抵抗が小さいトランジスタのエミッタに電流信号が入力されるようにカスケード接続したベース接地回路と、ベース接地回路と増幅部との間に配置されたエミッタフォロア回路とを有する。これにより、実施形態に係る増幅回路は、ベース接地回路の寄生容量を小さくして遮断周波数を高くして高速化を図ると共に、ベース接地回路の入力換算雑音を小さくし且つ増幅部の雑音をエミッタフォロア回路で遮断して低雑音化を図ることができる。
(実施形態に係る通信システム)
図1は実施形態に係る通信システムの回路ブロック図である。
通信システム1は、送信装置2と、受信装置3と、送信装置2と受信装置3との間を光信号が伝送する光導波路4とを有する。
送信装置2は、演算装置200と、送信器201とを有する。送信器201は、発光素子駆動回路202と、発光素子203とを有する。演算装置200は、CPUであり、受信装置3に送信する電気信号を生成し、発光素子駆動回路202に出力する。発光素子駆動回路202は、演算装置200が生成した電気信号を発光素子203が光信号に変換可能な電気信号を生成し、発光素子203に出力する。発光素子203は、発光素子駆動回路202から入力された電気信号に応じて光信号を生成し、光導波路4を介して受信装置3に出力する。
受信装置3は、受信器10と、CPUである演算装置300とを有する。受信器10は、フォトダイオードである光電変換素子11と、増幅回路12と、リミティングアンプ13と、識別回路14と、DCフィードバック回路15と、ローパスフィルタ16とを有する。光電変換素子11は、光導波路4を介して送信装置2から入力された光信号に応じた電流信号を生成し、増幅回路12に出力する。増幅回路12は、光電変換素子11から入力される電流信号と、ローパスフィルタ16から入力される電流信号を使用して、光電変換素子11から入力された電流信号を増幅して電圧信号に変換し、リミティングアンプ13に出力する差動増幅回路である。リミティングアンプ13は、増幅回路12から入力される電圧信号の周波数特性を調整して電圧信号の整形して、識別回路14に出力する。識別回路14は、リミティングアンプ13から入力された電圧信号に含まれる情報を識別して、識別した情報に対応する電気信号を演算装置300に出力する。DCフィードバック回路15は、増幅回路12にフィードバックされる電流信号の振幅が所望の大きさになるように、リミティングアンプ13から入力された電圧信号の振幅を増幅して、ローパスフィルタ16に出力する。ローパスフィルタ16は、DCフィードバック回路15から入力された信号を平均化した電流信号を増幅回路12に出力する。
(実施形態に係る増幅回路の構成及び機能)
図2は、増幅回路12の内部回路ブロック図である。
増幅回路12は、第1ベース接地部20と、第1エミッタフォロア部30と、第1増幅部40と、第1出力部50と、第2ベース接地部60と、第2エミッタフォロア部70と、第2増幅部80と、第2出力部90とを有する。
第1ベース接地部20は、第1入力端子21と、第1抵抗素子22と、第1トランジスタ23と、第2トランジスタ24と、第2抵抗素子25とを有する。第1入力端子21は、光電変換素子11から入力される電流信号である入力電流を第1抵抗素子22の一端及び第1トランジスタのエミッタに供給する。第1抵抗素子22は、他端が接地され、光電変換素子11から入力される入力電流及び第1トランジスタのエミッタ電流が流れる。第1トランジスタ23及び第2トランジスタ24のそれぞれは、ベース接地されたnpnトランジスタである。第1トランジスタ23のエミッタが第1入力端子21に接続され、第1トランジスタ23のコレクタと第2トランジスタ24のコレクタが接続されることにより、第1トランジスタ23及び第2トランジスタ24はカスケード接続される。第1トランジスタ23のトランジスタサイズは、第2トランジスタ24のトランジスタサイズよりも大きくなっている。すなわち、第1トランジスタ23のベース抵抗は、第2トランジスタ24のベース抵抗よりも小さくなっている。第2抵抗素子25は、一端が第2トランジスタ24のコレクタに接続され、他端が電源電圧Vccに接続される。
第1ベース接地部20では、光電変換素子11から入力電流が入力されるか否かに応じて、第2トランジスタ24のコレクタ電圧が変動する。第1トランジスタ23はベース接地されているので、光電変換素子11から入力電流が入力されるか否かにかかわらず、第1トランジスタ23のエミッタ電圧は一定値である。光電変換素子11から入力電流が入力されると、入力電流と第1トランジスタ23のエミッタ電流の合計の電流が第1抵抗素子22に流れる。第1トランジスタ23のエミッタ電圧が一定値なので、光電変換素子11から入力電流が入力されると、エミッタ電流は、入力電流が入力されないときより減少する。第1トランジスタ23のエミッタ電流が減少することに応じて、第2トランジスタ24のコレクタ電流が減少する。第2トランジスタ24のコレクタ電流が減少すると、第2抵抗素子25による電圧降下量が小さくなり、第2トランジスタ24のコレクタ電圧が上昇する。このように、第2トランジスタ24のコレクタ電圧は、光電変換素子11から入力電流が入力されているときに、光電変換素子11から入力電流が入力されていないときと比較して上昇する。
第1エミッタフォロア部30は、第3トランジスタ31と、第1電流源32とを有する。第3トランジスタ31は、コレクタ接地すなわちエミッタフォロア回路であるnpnトランジスタである。第3トランジスタ31は、ベースが第2トランジスタ24のコレクタに接続され、エミッタが第1電流源32に接続され、コレクタが電源電圧Vccに接続される。第1電流源32は、一端が第3トランジスタ31のエミッタに接続され、他端が接地される。
第1エミッタフォロア部30では、第3トランジスタ31のエミッタ電圧は、第2トランジスタ24のコレクタ電圧の変動に応じて変動する。第3トランジスタ31のエミッタ電圧は、第2トランジスタ24のコレクタ電圧と同電位である第3トランジスタ31のベース電圧の変動に追従して変動するためである。第1エミッタフォロア部30では、光電変換素子11から入力電流が入力されているときに、第2トランジスタ24のコレクタ電圧及び第3トランジスタ31のベース電圧が上昇することに追従して、第3トランジスタ31のエミッタ電圧が上昇する。
第1増幅部40は、第4トランジスタ41と、第5トランジスタ42と、第2電流源43と、第1接続抵抗素子44と、第3抵抗素子45とを有する。第4トランジスタ41及び第5トランジスタ42のそれぞれはnpnトランジスタであり、第4トランジスタ41はエミッタ接地され、第5トランジスタ42はベース接地されることによりカスコード接続される。第2電流源43は、一端が第4トランジスタ41のエミッタに接続され、他端が接地される。第1接続抵抗素子44は、一端が第4トランジスタ41のエミッタに接続され、他端が第2出力部90に接続される。第3抵抗素子45は、一端が第5トランジスタ42のコレクタに接続され、他端が電源電圧Vccに接続される。
第1増幅部40は、第4トランジスタ41のベース電圧の変動を反転増幅して第1出力端子出力する。第4トランジスタ41のベース電圧が変動すると、第4トランジスタ41のエミッタ電圧は、第4トランジスタ41のベース電圧の変動に追従して変動する。第4トランジスタ41のエミッタ電圧が変動すると、第4トランジスタ41のエミッタ電流は、第4トランジスタ41のベース電圧の変動に追従して変動する。例えば、第4トランジスタ41のエミッタ電圧が上昇すると、第4トランジスタ41のエミッタ電流は増加する。第4トランジスタ41のエミッタ電圧が上昇すると、第4トランジスタ41のエミッタ電流は、第2電流源43に流れる定電流と、第1接続抵抗素子44を介して第2出力部90に流れる電流との合計の電流になるためである。また、第4トランジスタ41のエミッタ電圧が下降すると、第4トランジスタ41のエミッタ電流は減少する。第4トランジスタ41のエミッタ電圧が下降すると、第4トランジスタ41のエミッタ電流は、第2電流源43に流れる定電流から第1接続抵抗素子44を介して第2出力部90から流れる電流を差し引いた電流になるためである。第5トランジスタ42のコレクタ電圧は、第4トランジスタ41のエミッタ電圧が変動すると、第4トランジスタ41のエミッタ電圧の変動した反転増幅した電圧に応じて変動する。第4トランジスタ41のエミッタ電圧の変動に応じて第4トランジスタ41のエミッタ電流が変動することにより、第3抵抗素子45による電圧降下量が変動するためである。第5トランジスタ42のコレクタ電圧は、第4トランジスタ41のエミッタ電圧が上昇すると下降し、第4トランジスタ41のエミッタ電圧が下降すると上昇する。
第1出力部50は、第6トランジスタ51と、第4抵抗素子52と、第1フィードバック抵抗素子53と、第1出力端子54とを有する。第6トランジスタ51は、コレクタ接地されたnpnトランジスタである。第4抵抗素子52は、一端が第6トランジスタ51のエミッタに接続され、他端が接地される。第1フィードバック抵抗素子53は、一端が第6トランジスタ51のエミッタに接続され、他端が第3トランジスタ31のベースに接続される。第1出力端子54は、第6トランジスタ51のエミッタ電圧を、リミティングアンプ13の入力端子に供給する。
第1出力端子54の電圧は、第5トランジスタ42のコレクタ電圧に接続された第6トランジスタ51のベース電圧に追従して変動するので、第4トランジスタ41のベース電圧の変動を反転増幅した値に応じて変動する。
第2ベース接地部60は、第2入力端子61と、第5抵抗素子62と、第7トランジスタ63と、第8トランジスタ64と、第6抵抗素子65とを有する。第2ベース接地部60の構成及び機能は、ローパスフィルタ16で平均化された電流信号が第2入力端子61に入力されること以外は第2ベース接地部60と同様なので、詳細な説明は省略する。
第2エミッタフォロア部70は、第9トランジスタ71と、第3電流源72とを有する。第2エミッタフォロア部70の構成及び機能は、第1エミッタフォロア部30と同様なので、詳細な説明は省略する。
第2増幅部80は、第10トランジスタ81と、第11トランジスタ82と、第4電流源83と、第2接続抵抗素子84と、第7抵抗素子85とを有する。第2増幅部80の構成及び機能は、第1増幅部40と同様なので、詳細な説明は省略する。
第2出力部90は、第12トランジスタ91と、第8抵抗素子92と、第2フィードバック抵抗素子93と、第2出力端子94とを有する。第2出力部90の構成及び機能は、第1出力部50と同様なので、詳細な説明は省略する。
(実施形態に係る増幅回路の雑音特性)
図3は、第1ベース接地部20、第1エミッタフォロア部30及び第1増幅部40の入力換算雑音電流及び入力換算雑音電圧を含む回路図である。入力換算雑音電流及び入力換算雑音電圧は、第1ベース接地部20、第1エミッタフォロア部30及び第1増幅部40のそれぞれの雑音がそれぞれの回路の入力側で発生したものとして等価換算したものである。図3において、増幅機構部46は、第4トランジスタ41、第5トランジスタ42、第2電流源43、第1接続抵抗素子44及び第3抵抗素子45を含む。また、図3において、/(i2 prop)は第1ベース接地部20、第1エミッタフォロア部30及び第1増幅部40の全体の入力換算雑音電流であり、/(i2 ip)は第1エミッタフォロア部30及び第1増幅部40の合計の入力換算雑音電流である。また、/(i2 q1)は第2トランジスタ24の入力換算雑音電流であり、/(v2 q1)は第2トランジスタ24の入力換算雑音電圧である。また、/(i2 e)は第1エミッタフォロア部30の入力換算雑音電流であり、/(v2 e)は第1エミッタフォロア部30の入力換算雑音電圧である。また、/(i2 a)は第1増幅部40の入力換算雑音電流であり、/(v2 a)は第1増幅部40の入力換算雑音電圧である。
第1ベース接地部20、第1エミッタフォロア部30及び第1増幅部40の全体の入力換算雑音電流/(i2 prop)は、
Figure 2016127496
で示される。ここで、/(i2 bp)は第1ベース接地部20の第1抵抗素子22、第1トランジスタ23及び第2抵抗素子25の合計の入力換算雑音電流であり、/(i2 ip)は第1エミッタフォロア部30及び第1増幅部40の合計の入力換算雑音電流である。/(i2 bp)は第2トランジスタ24の入力換算雑音電流/(i2 q1)及び入力換算雑音電圧/(v2 q1)を含まないが、これは第2トランジスタ24の入力換算雑音が以下の理由で無視できるためである。
図4(a)は第2トランジスタ24を示す図であり、図4(b)は第2トランジスタ24の小信号等価回路である。図4(a)において、VBはベース電圧を示し、Rは第1トランジスタ23のコレクタのインピーダンスである。図4(b)において、vbは、入力換算雑音電流/(i2 q1)及び入力換算雑音電圧/(v2 q1)の双方を含むベース抵抗雑音を示す。また、Rbは第1トランジスタ23のベース抵抗であり、Rπはモデリングのための抵抗であり、Rは第1トランジスタ23のコレクタのインピーダンスであり、gmは定数である。第1トランジスタ23のベース抵抗Rbは数十Ω〜数百Ω程度であり、モデリングのための抵抗Rπは数キロΩ程度であり、第1トランジスタ23のコレクタのインピーダンスRは数百Ω程度である。また、コレクタ電流icとベース電流ibとの比で示されるトランジスタの電流増幅率hfeは数百程度である。図4(b)からベース抵抗雑音vbは、
Figure 2016127496
となる。式(2)の(1+hfe)Rは、モデリングのための抵抗値Rπよりも十分に大きいため、入力換算雑音電流/(i2 q1)及び入力換算雑音電圧/(v2 q1)の双方を含むベース抵抗雑音vbは無視できる。
次いで、第1エミッタフォロア部30及び第1増幅部40の合計の入力換算雑音電流/(i2 ip)を演算するために、第1増幅部40の入力換算雑音電流/(i2 a)及び入力換算雑音電圧/(v2 a)を第1エミッタフォロア部30の入力換算雑音に変換する。一般にエミッタフォロア回路では、電圧増幅率は略1であるため、第1増幅部40の入力換算雑音電圧/(v2 a)は、値を変更することなく、第1エミッタフォロア部30の入力換算雑音に変換することができる。一方、エミッタフォロア回路では、出力インピーダンスは非常に低いため、第1増幅部40の入力換算雑音電流/(i2 a)はエミッタフォロア回路の出力電流よりも非常に小さくなるため、無視することができる。これから、第1エミッタフォロア部30及び第1増幅部40の合計の入力換算雑音電流/(i2 ip)は、
Figure 2016127496
で示される。ここで、RCは、第2抵抗素子25の抵抗値である。なお、ここでは、雑音電流について検討しているため、第1エミッタフォロア部30の入力換算雑音電流/(i2 e)は交流成分であり、入力換算雑音電流/(i2 e)を第2抵抗素子25の抵抗値RCで除算することにより、入力換算雑音電圧に変換される。
図5は、第1増幅部40の入力換算雑音電流/(i2 a)及び入力換算雑音電圧/(v2 a)を第1エミッタフォロア部30の入力換算雑音に変換したときの入力換算雑音電流及び入力換算雑音電圧を含む回路図である。全体の入力換算雑音電流/(i2 prop)は、
Figure 2016127496
で示される。
(実施形態に係る増幅回路に関連する増幅回路の雑音特性)
図6は、第1ベース接地部20が第1トランジスタ23が配置されていなく且つ第1ベース接地部20と第1増幅部40との間に第1エミッタフォロア部30が配置されていないときの入力換算雑音電流及び入力換算雑音電圧を含む回路図である。すなわち、図6において、ベース接地部220は、第2トランジスタ24とカスケード接続された第1トランジスタ23が配置されておらず且つベース接地部220と第1増幅部40との間に第1エミッタフォロア部30が配置されていない。
図6に示すベース接地部220及び第1増幅部40の全体の入力換算雑音電流/(i2 conv)は、
Figure 2016127496
で示される。ここで、/(i2 bc)は第1抵抗素子22、第2トランジスタ24及び第2抵抗素子25の合計の入力換算雑音電流であり、/(i2 ic)はベース接地部220の出力換算雑音電流である。ベース接地部220の出力換算雑音電流/(i2 ic)は、
Figure 2016127496
で示される。式(5)及び(6)から、全体の入力換算雑音電流/(i2 conv)は、
Figure 2016127496
となる。
(実施形態に係る増幅回路と図6に示す増幅回路の雑音特性の比較)
図3に示す実施形態に係る増幅回路と図6に示す増幅回路の雑音特性を比較する。図3に示す実施形態に係る増幅回路の雑音特性を示す式(4)及び図6に示す増幅回路の雑音特性を示す式(7)において、第2抵抗素子25の抵抗値RCで除算している項は無視できるので、式(4)及び(7)はそれぞれ、式(8)及び(9)に示すように近似される。
Figure 2016127496
Figure 2016127496
まず、式(8)及び(9)のそれぞれの右辺の第1項について検討する。式(8)の右辺の第1項/(i2 bp)は、第1ベース接地部20の第1抵抗素子22、第1トランジスタ23及び第2抵抗素子25の合計の入力換算雑音電流である。一方、式(9)の右辺の第1項/(i2 cp)は、ベース接地部220の第1抵抗素子22、第2トランジスタ24及び第2抵抗素子25の合計の入力換算雑音電流である。第1トランジスタ23のトランジスタサイズは、第2トランジスタ24のトランジスタサイズよりも大きいので、第1トランジスタ23のベース抵抗は第2トランジスタ24のベース抵抗よりも小さい。ベース抵抗雑音/(v2 b)は、
Figure 2016127496
で示される。ここで、kBはボルツマン定数であり、Tは温度であり、Rはベース抵抗値であり、Δfは帯域である。これから、第1トランジスタ23のベース抵抗は第2トランジスタ24のベース抵抗よりも小さいので、第1トランジスタ23のベース抵抗雑音は第2トランジスタ24のベース抵抗よりも小さくなる。したがって、第1トランジスタ23のベース抵抗雑音の入力換算雑音電流を含む式(8)の右辺の第1項/(i2 bp)は、第1トランジスタ23のベース抵抗雑音の入力換算雑音電流を含む式(9)の右辺の第1項/(i2 bc)よりも小さくなる。
次に、式(8)及び(9)のそれぞれの右辺の第2項について検討する。式(8)の右辺の第2項/(i2 e)は、第1エミッタフォロア部30の入力換算雑音電流である。一方、式(9)の右辺の第2項/(i2 a)は、エミッタ接地回路を含む第1増幅部40の入力換算雑音電流である。トランジスタサイズが同一の場合、エミッタフォロア回路の入力換算雑音電流は、エミッタ接地回路の入力換算雑音電流よりも小さい。したがって、第1エミッタフォロア部30の入力換算雑音電流を含む式(8)の右辺の第2項/(i2 e)は、エミッタ接地回路を含む第1増幅部40の入力換算雑音電流を含む式(9)の右辺の第2項/(i2 a)よりも小さくなる。
式(8)の右辺の第1項/(i2 bp)は式(9)の右辺の第1項/(i2 bc)よりも小さく、式(8)の右辺の第2項/(i2 e)は式(9)の右辺の第2項/(i2 a)よりも小さいので、式(8)の左辺は式(9)の左辺よりも小さくなる。
(実施形態に係る増幅回路と図6に示す増幅回路の周波数特性の比較)
図7(a)は増幅回路12の第1ベース接地部20の寄生容量を示す図であり、図7(b)は図6に示す増幅回路のベース接地部220の寄生容量を示す図である。
増幅回路12の第1ベース接地部20及び図6に示すベース接地部220の遮断周波数fCは、第2トランジスタ24のコレクタ容量COP及び第2抵抗素子25の抵抗値RCから、
Figure 2016127496
となるので、増幅回路12は、第1トランジスタ23及び第2トランジスタ24のベース接地された2つのトランジスタをカスケード接続した場合でも、第2トランジスタ24のみをベース接地した回路と同等の遮断周波数fCを実現できる。
一方、第1トランジスタ23のトランジスタサイズが第2トランジスタ24のトランジスタサイズよりも大きいので、第1トランジスタ23の容量Cipは第2トランジスタC24の容量CiCよりも大きくなる。しかしながら、光電変換素子11が接続される入力端子における入力静電寄生容量は、光電変換素子11の容量、ESD容量、配線容量及びベース接地されたトランジスタの容量の和であるが、光電変換素子11の容量、ESD容量、配線容量が支配的である。したがって、第1トランジスタ23及び第2トランジスタ24のトランジスタサイズにかかわらず、第1ベース接地部20の入力静電寄生容量と、図6に示すベース接地部220の入力静電寄生容量とは、略等しくなる。
(実施形態に係る増幅回路の作用効果)
増幅回路12は、光電変換素子11から電流信号が入力される第1入力端子21に、ベース接地された2つのトランジスタをカスケード接続することにより、遮断周波数を維持しつつベース抵抗に起因する雑音を低減することができる。ベース接地された2つのトランジスタをカスケード接続すると、増幅部に電圧を供給する上段のトランジスタのコレクタ電圧が上昇するので、増幅部に所望の電圧を供給されないおそれがある。そこで、増幅回路12は、第1ベース接地部20と第1増幅部40との間に第1エミッタフォロア部30を配置することにより、増幅部に供給される電圧を調整している。また、第1ベース接地部20と第1増幅部40との間に第1エミッタフォロア部30を配置することにより、光電変換素子11から電流信号が入力される第1入力端子21の雑音レベルを更に低減できる。エミッタフォロア回路の出力インピーダンスは、非常に低いため、第1増幅部40の入力換算雑音電流は第1入力端子21に現れないレベルにまで低減できる。また、エミッタフォロア回路の入力換算雑音電流は、エミッタ接地等の増幅回路の入力換算雑音電流よりも小さいので、第1入力端子21の雑音レベルは更に低減できる。
なお、トランジスタのベース抵抗は、ベースを形成する物質の導電率、ベースの面積及び厚さから演算することができる。
また、増幅回路12は、第1フィードバック抵抗素子53により第1出力端子54と、第1エミッタフォロア部30の入力との間にフィードバック回路が形成されるため、第1入力端子21の雑音レベルは更に低減できる。第1フィードバック抵抗素子53は、第2抵抗素子25と並列に、第2トランジスタ24のコレクタに接続されている。第1フィードバック抵抗素子53が第2抵抗素子25に並列接続されることにより、フィードバック回路が形成されていない場合と比較して、第2抵抗素子25の抵抗値を大きくできる。第2抵抗素子25の抵抗値を大きくすることにより、第2抵抗素子25に起因する雑音は小さくなり、第1入力端子21の雑音レベルは更に低減される。
また、増幅回路12の第1増幅部40及び第2増幅部80は、カスコード接続されたエミッタ接地回路を有するので、出力インピーダンスを大きくすることにより、利得を向上させることができる。
また、増幅回路12は、第1入力端子21に光電変換素子11から電流信号が入力され、第2入力端子61に光電変換素子11から入力された電流信号を平均化した電流信号が入力される差動増幅回路を形成するので、受光特性を向上できる。
(他の実施形態に係る増幅回路)
増幅回路12は、バイポーラトランジスタで形成されるが、実施形態に係る増幅回路は、MOSトランジスタにより形成してもよい。
図8は、MOSトランジスタにより形成された増幅回路を示す図である。
増幅回路112は、第1ベース接地部120と、第1エミッタフォロア部130と、第1増幅部140と、第1出力部150と、第2ベース接地部160と、第2エミッタフォロア部170と、第2増幅部180と、第2出力部190とを有する。増幅回路112のそれぞれの回路は、バイポーラトランジスタトランジスタではなくMOSトランジスタを有することが増幅回路12の対応する回路とそれぞれ相違する。増幅回路112のそれぞれの回路の構成及び機能は、MOSトランジスタを有すること以外は増幅回路12の対応する回路の構成及び機能と同様なので、ここでは詳細な説明は省略する。
1 通信システム
2 送信装置
3 受信装置
4 光導波路
10 受信器
11 光電変換素子
12 増幅回路
13 リミティングアンプ
14 識別回路
15 DCフィードバック回路
16 ローパスフィルタ
20 第1ベース接地部
23 第1トランジスタ
24 第2トランジスタ
30 第1エミッタフォロア部
31 第3トランジスタ
40 第1増幅部(増幅部)
50 第1出力部(出力部)
53 第1フィードバック抵抗素子

Claims (6)

  1. ベース接地され、エミッタに入力される入力電流の変動に応じてエミッタ電流が変動する第1トランジスタと、
    ベース接地され、エミッタが前記第1トランジスタのコレクタに接続され、前記第1トランジスタのエミッタ電流の変動に応じてコレクタ電圧が変動する第2トランジスタと、
    コレクタ接地され、ベースが前記第2トランジスタのコレクタに接続された第3トランジスタと、
    前記第3トランジスタのエミッタ電圧が入力され、前記第3トランジスタのエミッタ電圧を増幅した増幅電圧を出力する増幅部と、を有し、
    前記第2トランジスタのベース抵抗は、前記第1トランジスタのベース抵抗よりも大きい、増幅回路。
  2. 前記第2トランジスタのトランジスタサイズは、前記第1トランジスタのトランジスタサイズよりも小さい、請求項1に記載の増幅回路。
  3. 前記増幅部から前記増幅電圧が入力され、前記増幅電圧の変動に応じて変動する出力電圧を出力端子から出力する出力部を更に有し、
    前記出力部は、前記出力端子と前記第3トランジスタのベースとの間に配置されたフィードバック抵抗素子を有する、請求項1又は2に記載の増幅回路。
  4. ゲート接地され、ドレインに入力される入力電流に応じてドレイン電流が変動する第1トランジスタと、
    ゲート接地され、ドレインが前記第1トランジスタのソースに接続され、前記第1トランジスタのドレイン電流の変動に応じてソース電圧が変動する第2トランジスタと、
    ソース接地され、ゲートが前記第2トランジスタのソースに接続された第3トランジスタと、
    前記第3トランジスタのドレイン電圧が入力され、前記第3トランジスタのドレイン電圧を増幅した増幅電圧を出力する増幅部と、を有し、
    前記第2トランジスタのゲート抵抗は、前記第1トランジスタのゲート抵抗よりも大きい、増幅回路。
  5. 前記第2トランジスタのトランジスタサイズは、前記第1トランジスタのトランジスタサイズよりも小さい、請求項4に記載の増幅回路。
  6. 前記増幅部から前記増幅電圧が入力され、前記増幅電圧の変動に応じて変動する出力電圧を出力端子から出力する出力部を更に有し、
    前記出力部は、前記出力端子と前記第3トランジスタのゲートとの間に配置されたフィードバック抵抗素子を有する、請求項4又は5に記載の増幅回路。
JP2015001094A 2015-01-06 2015-01-06 増幅回路 Active JP6467924B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015001094A JP6467924B2 (ja) 2015-01-06 2015-01-06 増幅回路
US14/969,063 US9509259B2 (en) 2015-01-06 2015-12-15 Amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001094A JP6467924B2 (ja) 2015-01-06 2015-01-06 増幅回路

Publications (2)

Publication Number Publication Date
JP2016127496A true JP2016127496A (ja) 2016-07-11
JP6467924B2 JP6467924B2 (ja) 2019-02-13

Family

ID=56287033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001094A Active JP6467924B2 (ja) 2015-01-06 2015-01-06 増幅回路

Country Status (2)

Country Link
US (1) US9509259B2 (ja)
JP (1) JP6467924B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263567B2 (en) 2017-02-17 2019-04-16 Fujitsu Component Limited Amplifier circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612430B (zh) * 2018-04-16 2021-11-19 深圳市汇顶科技股份有限公司 影像传感***及电子装置
JP7186044B2 (ja) 2018-09-26 2022-12-08 株式会社Soken 内燃機関用のスパークプラグ
JP7467298B2 (ja) 2020-09-16 2024-04-15 株式会社東芝 保護回路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177663A (ja) * 1992-12-04 1994-06-24 Hitachi Ltd 光電気変換トランジスタ回路
JPH08148947A (ja) * 1994-09-19 1996-06-07 Alps Electric Co Ltd ベース接地トランジスタ増幅器
JPH08293743A (ja) * 1995-02-23 1996-11-05 Matsushita Electric Ind Co Ltd 増幅回路
WO2010100741A1 (ja) * 2009-03-05 2010-09-10 株式会社日立製作所 光通信装置
JP2014107630A (ja) * 2012-11-26 2014-06-09 Sumitomo Electric Ind Ltd 増幅器
US20140171005A1 (en) * 2012-12-18 2014-06-19 Broadcom Corporation Low-noise tia-to-adc interface with a wide-range of passive gain control

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870968A (en) * 1971-01-15 1975-03-11 Monroe Electronics Inc Electrometer voltage follower having MOSFET input stage
FR2695272B1 (fr) * 1992-08-26 1994-12-09 Philips Composants Circuit mélangeur pour des signaux de radio ou de télévision.
JP3116884B2 (ja) 1998-01-13 2000-12-11 日本電気株式会社 光受信器用トランスインピーダンスアンプ
US6856198B2 (en) * 2002-12-23 2005-02-15 Intel Corporation Amplifier and method for voltage-to-current conversion
JP2005210147A (ja) 2004-01-19 2005-08-04 Sharp Corp 受光アンプ回路及びそれを備える光ピックアップ素子
JP4217247B2 (ja) * 2005-07-07 2009-01-28 パナソニック株式会社 可変トランスコンダクタンス回路
US8222590B2 (en) 2007-03-29 2012-07-17 Nec Corporation Signal amplifier for optical receiver circuit
JP2009100337A (ja) 2007-10-18 2009-05-07 Renesas Technology Corp 可変利得増幅器を内蔵する半導体集積回路
US7795973B2 (en) * 2008-10-13 2010-09-14 Gigle Networks Ltd. Programmable gain amplifier
US8390379B2 (en) * 2010-10-11 2013-03-05 Texas Instruments Deutschland Gmbh Amplifier input stage and slew boost circuit
JP5633327B2 (ja) * 2010-11-17 2014-12-03 住友電気工業株式会社 信号増幅回路、電流電圧変換回路、および光受信器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177663A (ja) * 1992-12-04 1994-06-24 Hitachi Ltd 光電気変換トランジスタ回路
JPH08148947A (ja) * 1994-09-19 1996-06-07 Alps Electric Co Ltd ベース接地トランジスタ増幅器
JPH08293743A (ja) * 1995-02-23 1996-11-05 Matsushita Electric Ind Co Ltd 増幅回路
WO2010100741A1 (ja) * 2009-03-05 2010-09-10 株式会社日立製作所 光通信装置
JP2014107630A (ja) * 2012-11-26 2014-06-09 Sumitomo Electric Ind Ltd 増幅器
US20140171005A1 (en) * 2012-12-18 2014-06-19 Broadcom Corporation Low-noise tia-to-adc interface with a wide-range of passive gain control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263567B2 (en) 2017-02-17 2019-04-16 Fujitsu Component Limited Amplifier circuit

Also Published As

Publication number Publication date
US9509259B2 (en) 2016-11-29
US20160197585A1 (en) 2016-07-07
JP6467924B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6467924B2 (ja) 増幅回路
Atef et al. Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS
US9065407B2 (en) High speed transimpedance amplifier
JP5459424B2 (ja) 光受信回路用信号増幅器
JP5743924B2 (ja) Daコンバータ
CN101978600B (zh) 电容乘法器电路
JP5734784B2 (ja) 光結合装置
JP5639554B2 (ja) 受光回路
JP6515666B2 (ja) 増幅回路
US11411542B2 (en) Transimpedance amplifier circuit
Kumar et al. Single stage low noise inductor-less TIA for RF over fiber communication
JP6389144B2 (ja) 電流検出回路
JP2013149687A (ja) 光受信回路及び光結合形絶縁回路
JP2017073677A (ja) 光受信回路、光トランシーバ、および光受信回路の制御方法
JP4851577B2 (ja) 検波回路、及び、高周波回路
JP6096650B2 (ja) トランスインピーダンスアンプ、コア回路、および利得制御回路
JP7259625B2 (ja) トランスインピーダンス増幅回路
JP5302356B2 (ja) 差動トランスインピーダンス増幅器
JP6397374B2 (ja) 増幅器
JP2015185971A (ja) 増幅器
JP7415476B2 (ja) トランスインピーダンスアンプ
JP5525000B2 (ja) 差動トランスインピーダンス増幅器
JPH07170130A (ja) 増幅回路及びこれを用いた半導体集積回路
CN208538007U (zh) 跨阻放大电路及通讯装置
JP5571732B2 (ja) 差動増幅器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6467924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150