JP2014009151A - Method for producing thin-layer graphite or thin-layer graphite compound - Google Patents

Method for producing thin-layer graphite or thin-layer graphite compound Download PDF

Info

Publication number
JP2014009151A
JP2014009151A JP2012149565A JP2012149565A JP2014009151A JP 2014009151 A JP2014009151 A JP 2014009151A JP 2012149565 A JP2012149565 A JP 2012149565A JP 2012149565 A JP2012149565 A JP 2012149565A JP 2014009151 A JP2014009151 A JP 2014009151A
Authority
JP
Japan
Prior art keywords
graphite
thin
compound
layer
layer graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012149565A
Other languages
Japanese (ja)
Other versions
JP5933374B2 (en
Inventor
Hisashi Takahashi
恒 高橋
Noriaki Hata
憲明 畑
Yorishige Matsuba
頼重 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Group Inc
Original Assignee
Harima Chemical Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50106161&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014009151(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harima Chemical Group Inc filed Critical Harima Chemical Group Inc
Priority to JP2012149565A priority Critical patent/JP5933374B2/en
Publication of JP2014009151A publication Critical patent/JP2014009151A/en
Application granted granted Critical
Publication of JP5933374B2 publication Critical patent/JP5933374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing thin-layer graphite or a thin-layer graphite compound suitable for industrial mass production.SOLUTION: The method for producing thin-layer graphite or a thin-layer graphite compound includes a high-pressure emulsification step of separating layers of graphite or a graphite compound by high-pressure emulsification treatment.

Description

本発明は、薄層黒鉛または薄層黒鉛化合物の製造方法に関する。   The present invention relates to a method for producing a thin layer graphite or a thin layer graphite compound.

黒鉛(グラファイト)の結晶構造の基本となるグラフェンは炭素六員環が無限に連なる二次元平面結晶であり、その特異的な結晶構造から、優れた電気的特性、機械的特性、熱的特性、光学的特性、化学的安定性を示し、次世代高速電子デバイス、透明電極、蓄電デバイス、構造材料などの様々な分野への応用が期待されている。   Graphene, the basis of the crystal structure of graphite (graphite), is a two-dimensional planar crystal consisting of an infinite number of carbon six-membered rings. From its unique crystal structure, excellent electrical properties, mechanical properties, thermal properties, It exhibits optical properties and chemical stability, and is expected to be applied to various fields such as next-generation high-speed electronic devices, transparent electrodes, power storage devices, and structural materials.

薄層黒鉛はグラフェンが1〜数10層積層した構造を有したものを指し、薄層黒鉛化合物は薄層黒鉛の層間に電子供与体あるいは電子受容体が挿入された層間化合物や化学的に官能基が結合したものを指す。   Thin-layer graphite refers to a structure having 1 to several tens of layers of graphene laminated, and thin-layer graphite compounds are intercalation compounds in which an electron donor or an electron acceptor is inserted between thin-layer graphite layers or chemically functionally. Refers to the group attached.

薄層黒鉛の製造方法として、一般にハマーズ(Hummers)法と呼ばれる方法を用い、黒鉛を濃硫酸および酸化剤で強酸化を行い、層間剥離が容易な酸化黒鉛とし、剥離処理・精製を行い、薄層酸化黒鉛を得、更に還元処理をすることで薄層黒鉛を得る製造方法が開示されている(特許文献1および2)。   As a method for producing thin-layer graphite, a method generally called the Hummers method is used. The graphite is strongly oxidized with concentrated sulfuric acid and an oxidizing agent to obtain graphite oxide that is easily delaminated. There is disclosed a production method for obtaining thin-layer graphite by obtaining layered graphite and further reducing treatment (Patent Documents 1 and 2).

黒鉛の強酸化工程を含まない製造方法としては、黒鉛もしくは黒鉛化合物を水に分散した後、超音波により剥離処理を行い、分散液を静置させた後、上澄み液を採取することで薄層黒鉛化合物分散水溶液を得る製造方法や、黒鉛化合物とアルカリ金属水酸化物と水とを混合してpH7.5〜10の混合液とし、この混合液を静置する方法が開示されている(特許文献3および4)。   As a manufacturing method that does not include a strong oxidation step of graphite, after dispersing graphite or a graphite compound in water, performing a peeling treatment by ultrasonic waves, allowing the dispersion to stand, and then collecting the supernatant liquid to obtain a thin layer A manufacturing method for obtaining a graphite compound-dispersed aqueous solution and a method for mixing a graphite compound, an alkali metal hydroxide, and water to obtain a mixed solution having a pH of 7.5 to 10 and allowing the mixed solution to stand are disclosed (patents). References 3 and 4).

特開2002−053313号公報JP 2002-053313 A 特表2011−500488号公報Special table 2011-500488 gazette 特開2011−219318号公報JP2011-219318A 特表2011−184264号公報Special table 2011-184264 gazette

しかしながら、特許文献1または2に開示されるような製造方法では、黒鉛を強酸化する工程があり、酸洗浄工程を含むと多大な時間と手間を要し、工業的量産に好適とは言えない。   However, in the production method disclosed in Patent Document 1 or 2, there is a step of strongly oxidizing graphite, and if an acid washing step is included, it takes a lot of time and labor, and it cannot be said that it is suitable for industrial mass production. .

特許文献3または4に開示されるような製造方法では容易に薄層黒鉛化合物は得られるものの収率は低く、工業的量産に好適とは言えない。   Although the thin-layer graphite compound can be easily obtained by the production method as disclosed in Patent Document 3 or 4, the yield is low and it cannot be said that it is suitable for industrial mass production.

本発明の目的は、工業的量産化に適する薄層黒鉛または薄層黒鉛化合物の製造方法を提供することである。   An object of the present invention is to provide a method for producing a thin-layer graphite or a thin-layer graphite compound suitable for industrial mass production.

本発明によれば、黒鉛または黒鉛化合物の層間を高圧乳化法により剥離する高圧乳化処理工程を有することを特徴とする薄層黒鉛または薄層黒鉛化合物の製造方法が提供される。   According to the present invention, there is provided a method for producing a thin-layer graphite or a thin-layer graphite compound characterized by having a high-pressure emulsification treatment step of peeling between graphite or graphite compound layers by a high-pressure emulsification method.

前記高圧乳化処理工程において、黒鉛または黒鉛化合物を分散媒に懸濁させた黒鉛または黒鉛化合物の濃度が0.1質量%以上10質量%以下の懸濁液を用いることが好ましい。   In the high-pressure emulsification treatment step, it is preferable to use a suspension in which the concentration of graphite or graphite compound in which graphite or graphite compound is suspended in a dispersion medium is 0.1 mass% or more and 10 mass% or less.

前記高圧乳化処理工程において、黒鉛または黒鉛化合物を分散媒に懸濁させた懸濁液を、孔径0.05mm〜0.50mmの細孔に通過させる高圧乳化法を用いることが好ましい。   In the high-pressure emulsification treatment step, it is preferable to use a high-pressure emulsification method in which a suspension in which graphite or a graphite compound is suspended in a dispersion medium is passed through pores having a pore diameter of 0.05 mm to 0.50 mm.

本発明によれば、工業的量産化に適する薄層黒鉛または薄層黒鉛化合物の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the thin layer graphite or thin layer graphite compound suitable for industrial mass production is provided.

原料懸濁液と高圧乳化処理後の懸濁液の48時間静置後の様子を示す写真である。It is a photograph which shows the mode after leaving still for 48 hours of a raw material suspension and the suspension after a high pressure emulsification process. 原料黒鉛化合物粒子の電子顕微鏡写真である。It is an electron micrograph of raw material graphite compound particles. 高圧乳化処理後の凝集粒子の電子顕微鏡写真である。2 is an electron micrograph of aggregated particles after high-pressure emulsification treatment.

本発明の薄層黒鉛または薄層黒鉛化合物の製造方法においては、黒鉛または黒鉛化合物の層間を高圧乳化法により剥離する。高圧乳化法によれば、黒鉛または黒鉛化合物の層間を物理的に剥離することができ、したがって、酸化剤による酸化などの化学的処理を行うことなく、薄層黒鉛または薄層黒鉛化合物を得ることができる。   In the method for producing thin-layer graphite or thin-layer graphite compound of the present invention, the interlayer of graphite or graphite compound is peeled off by a high-pressure emulsification method. According to the high-pressure emulsification method, it is possible to physically peel the graphite or graphite compound between layers, and thus to obtain a thin-layer graphite or a thin-layer graphite compound without performing chemical treatment such as oxidation with an oxidizing agent. Can do.

本発明において、薄層黒鉛は、原料として用いた黒鉛が層間剥離されて、より薄くなったものを意味し、また、薄層黒鉛化合物は、原料として用いた黒鉛化合物が層間剥離されて、より薄くなったものを意味する。薄層黒鉛および薄層黒鉛化合物の厚さ(層方向の厚さ)は、例えば100nm以下である。原料として用いる黒鉛もしくは黒鉛化合物自体が例えば厚さ100nm以下といった薄いものであってもよく、この場合でも、得られる薄層黒鉛もしくは薄層黒鉛化合物がさらに薄くなっていればよい。   In the present invention, the thin-layer graphite means that the graphite used as a raw material is delaminated and thinned, and the thin-layer graphite compound is more delaminated by the delamination of the graphite compound used as a raw material. It means that it has become thinner. The thickness (thickness in the layer direction) of the thin layer graphite and the thin layer graphite compound is, for example, 100 nm or less. The graphite or graphite compound itself used as a raw material may be as thin as, for example, a thickness of 100 nm or less, and even in this case, the obtained thin-layer graphite or thin-layer graphite compound only needs to be thinner.

薄層黒鉛もしくは薄層黒鉛化合物の原料として、それぞれ黒鉛もしくは黒鉛化合物を用いることができる。黒鉛化合物は、例えば黒鉛層間化合物、膨張化黒鉛、酸化黒鉛の何れであってもよい。これらの中でも、ハマーズ法のような強酸化処理工程無しに製造でき、入手しやすい黒鉛、黒鉛層間化合物、あるいは、膨張化黒鉛が好ましい。   As a raw material of the thin layer graphite or the thin layer graphite compound, graphite or a graphite compound can be used, respectively. The graphite compound may be any of, for example, a graphite intercalation compound, expanded graphite, and graphite oxide. Among these, graphite, graphite intercalation compound, or expanded graphite, which can be manufactured without a strong oxidation treatment step such as the Hammers method and is easily available, is preferable.

黒鉛としては、層面の結晶が発達しているものが好ましく、そのような黒鉛として例えば、天然鱗片状黒鉛、キッシュ黒鉛などが挙げられる。   As the graphite, those in which the crystal of the layer surface is developed are preferable. Examples of such graphite include natural flake graphite and quiche graphite.

黒鉛層間化合物としては、天然黒鉛を濃硫酸および濃硝酸の混酸で化学処理し、層間に硫酸イオン、硝酸イオンを挿入した黒鉛化合物を用いることができる。   As the graphite intercalation compound, a graphite compound obtained by chemically treating natural graphite with a mixed acid of concentrated sulfuric acid and concentrated nitric acid and inserting sulfate ions and nitrate ions between the layers can be used.

高圧乳化法は一般的に化粧品、食品、製薬、塗料など幅広い分野で応用されている。その原理は、原料を含む液体に高圧をかけて、乳化ノズルと呼ばれる狭い隙間(細孔)を通すことにより、高速流を発生させ、その際のせん断力、摩砕力、衝撃力、キャビテーションなどで、乳化、分散、均質化、微細化を行うものである。   The high pressure emulsification method is generally applied in a wide range of fields such as cosmetics, foods, pharmaceuticals, and paints. The principle is that high-pressure flow is generated by applying high pressure to the liquid containing the raw material and passing through narrow gaps (pores) called emulsifying nozzles. At that time, shearing force, grinding force, impact force, cavitation, etc. Thus, emulsification, dispersion, homogenization, and refinement are performed.

高圧乳化法の方式として、衝突型と貫通型が知られているが、面方向の粒子径が大きく層方向の厚さが薄い薄層黒鉛または薄層黒鉛化合物を得るには、せん断力が大きく、粒子への衝撃力の少ない貫通型が特に有効である。   Collision type and penetration type are known as high-pressure emulsification methods. However, in order to obtain thin-layer graphite or thin-layer graphite compounds with a large particle size in the plane direction and a small thickness in the layer direction, a large shear force is required. In particular, a penetration type with little impact force on the particles is effective.

高圧乳化法を行う際に、黒鉛または黒鉛化合物を液体(分散媒)に分散させて原料懸濁液を得、原料懸濁液を高圧乳化装置によって処理することができる。   When performing the high pressure emulsification method, graphite or a graphite compound can be dispersed in a liquid (dispersion medium) to obtain a raw material suspension, and the raw material suspension can be processed by a high pressure emulsification apparatus.

原料懸濁液に用いる分散媒として、水や、エタノール、N−メチルピロリドンなどの有機溶媒、またはこれらの混合液を用いることができる。分散媒が水の場合など、原料と親和性が低く混ざりにくい時には、分散剤などを適宜添加することができる。   As a dispersion medium used for the raw material suspension, water, an organic solvent such as ethanol and N-methylpyrrolidone, or a mixture thereof can be used. When the dispersion medium is water or the like and has a low affinity with the raw material and is difficult to mix, a dispersant or the like can be added as appropriate.

原料(黒鉛または黒鉛化合物)の最大粒径としては、乳化ノズル(原料懸濁液を通過させる細孔)の詰まり防止の観点から、50μm以下が好ましく、20μm以下がより好ましい。ここでの最大粒径はレーザー回折法により測定される粒度分布において積算値100%の粒径を指す。   The maximum particle size of the raw material (graphite or graphite compound) is preferably 50 μm or less and more preferably 20 μm or less from the viewpoint of preventing clogging of the emulsification nozzle (pores through which the raw material suspension is passed). The maximum particle size here refers to a particle size having an integrated value of 100% in the particle size distribution measured by the laser diffraction method.

上記の乳化ノズルの孔径(例えば断面形状が円の場合、その直径)は、乳化ノズルの詰まり防止の観点から0.05mm以上が好ましく、高速流を得るための好適な圧力を生じさせる観点から、0.5mm以下が好ましい。   From the viewpoint of preventing clogging of the emulsifying nozzle, the hole diameter of the emulsifying nozzle is preferably 0.05 mm or more from the viewpoint of generating a suitable pressure for obtaining a high-speed flow. 0.5 mm or less is preferable.

上記の高速流の速度(乳化ノズル中の原料懸濁液の流速)として、効率的に層間剥離を行う観点から、100m/sec以上が好ましい。また、乳化ノズルの摩耗の観点から、1000m/sec以下が好ましい。   The speed of the high-speed flow (flow rate of the raw material suspension in the emulsification nozzle) is preferably 100 m / sec or more from the viewpoint of efficiently performing delamination. Moreover, 1000 m / sec or less is preferable from a viewpoint of abrasion of an emulsification nozzle.

原料懸濁液における原料(黒鉛または黒鉛化合物)の濃度としては、0.1質量%以上10質量%以下、さらには0.5質量%以上5.0質量%以下が望ましい。   The concentration of the raw material (graphite or graphite compound) in the raw material suspension is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5.0% by mass.

原料濃度が0.1質量%以上である場合、処理量の観点から量産化に好ましく、また、10質量%以下の場合、懸濁液の粘度の上昇を抑え、ノズル詰まりなどのトラブルを防止することが容易である。   When the raw material concentration is 0.1% by mass or more, it is preferable for mass production from the viewpoint of the processing amount. When the raw material concentration is 10% by mass or less, an increase in the viscosity of the suspension is suppressed and troubles such as nozzle clogging are prevented. Is easy.

高圧乳化処理後の懸濁液はそのまま薄層黒鉛または薄層黒鉛化合物の分散液とすることができ、希釈あるいは濃縮することで必要な濃度にすることができる。   The suspension after the high-pressure emulsification treatment can be used as it is as a dispersion of thin-layer graphite or a thin-layer graphite compound, and it can be diluted or concentrated to the required concentration.

高圧乳化処理後の懸濁液に残存する層間剥離が進行しなかった黒鉛または黒鉛化合物粒子は、遠心分離などの分離法により、容易に除去することができる。   The graphite or graphite compound particles that have not progressed in the delamination remaining in the suspension after the high-pressure emulsification treatment can be easily removed by a separation method such as centrifugation.

また、高圧乳化処理後の懸濁液を、ろ過あるいは遠心分離などで固液分離した後、乾燥することで、薄層黒鉛または薄層黒鉛化合物の粉末を得ることができる。   Further, the suspension after the high-pressure emulsification treatment is subjected to solid-liquid separation by filtration or centrifugation, and then dried to obtain a thin-layer graphite or a thin-layer graphite compound powder.

本発明の薄層黒鉛または薄層黒鉛化合物の製造方法においては、黒鉛または黒鉛化合物の層間を高圧乳化処理の強力なせん断力により、物理的に剥離することができるので、面に沿って大きな面積を有しつつ厚みの薄い薄層黒鉛または薄層黒鉛化合物を容易かつ効率的に製造することができる。   In the method for producing thin-layer graphite or thin-layer graphite compound of the present invention, the interlayer of graphite or graphite compound can be physically peeled off by the strong shearing force of high-pressure emulsification treatment, so a large area along the surface A thin-layer graphite or a thin-layer graphite compound having a small thickness can be easily and efficiently produced.

本発明によって、電気伝導性・透明性、機械的特性等に優れた薄層黒鉛または薄層黒鉛化合物を容易に製造することができ、透明電極、次世代高速電子デバイスなどへの応用が期待される。   According to the present invention, it is possible to easily produce a thin-layer graphite or a thin-layer graphite compound excellent in electrical conductivity / transparency, mechanical properties, etc., and application to transparent electrodes, next-generation high-speed electronic devices, etc. is expected. The

次に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

(実施例1)
原料黒鉛化合物(ブリジストンケービージー社製、商品名:WGNP、層厚(積層方向の厚さ)50nm以下、層の面方向の平均粒径4μm)10gを、分散剤(BYK社製、商品名:DISPERBYK−193)を2g添加混合したイオン交換水1000mlに、攪拌機(特殊機化工業社製 商品名:TKホモミクサー)を用いて、回転数3000rpmで1時間、撹拌・分散させて、原料濃度0.99質量%の原料懸濁液とした。
Example 1
10 g of a raw material graphite compound (manufactured by Bridgestone CB, trade name: WGNP, layer thickness (thickness in the stacking direction) of 50 nm or less, average particle size in the plane direction of the layer) is 10 g of a dispersant (manufactured by BYK, trade name: Using a stirrer (trade name: TK homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.) in ion-exchanged water (2 g) added with 2 g of DISPERBYK-193), the mixture was stirred and dispersed at a rotational speed of 3000 rpm for 1 hour to obtain a raw material concentration of 0. A 99% by mass raw material suspension was obtained.

原料懸濁液を高圧乳化機(商品名:DeBEE−2000、BEE International社)を用い、乳化圧力200MPaで、10回通液し、高圧乳化処理を行った。この際、乳化ノズルとして孔径0.13mm、孔長7.5mmのダイヤモンドノズルを用いた。また、処理速度は約300ml/minであったことから、ノズル内での懸濁液の流速は約377m/secと計算された。図1に高圧乳化処理前後の懸濁液のそれぞれ48時間静置後の様子を示す。原料懸濁液に比べ、高圧乳化処理後の懸濁液は48時間静置後でも、粒子の沈降は、ほとんど無かった。   Using a high-pressure emulsifier (trade name: DeBEE-2000, BEE International), the raw material suspension was passed 10 times at an emulsification pressure of 200 MPa to perform high-pressure emulsification treatment. At this time, a diamond nozzle having a hole diameter of 0.13 mm and a hole length of 7.5 mm was used as an emulsifying nozzle. Since the processing speed was about 300 ml / min, the flow rate of the suspension in the nozzle was calculated to be about 377 m / sec. FIG. 1 shows the state of each suspension after standing for 48 hours before and after the high-pressure emulsification treatment. Compared with the raw material suspension, the suspension after the high-pressure emulsification treatment had almost no settling of particles even after standing for 48 hours.

また、高圧乳化処理前後の粒度分布を粒度分布測定装置(日機装社製、商品名:ナノトラックUPA150)を用いて測定したところ、処理前は平均粒径が4.1μmに対し、処理後は2.4μmであった。原料の層方向の厚さが50nm以下と薄いことから、これらの値は層の面方向の粒子径に相当するものと考えられた。高圧乳化処理後に平均粒径は約6割程度に小さくはなってはいるが、極端に微細化されてないことが確認できた。ここでの平均粒径はレーザー回折法により測定された粒度分布において積算値50%の粒径を指す。   Moreover, when the particle size distribution before and after the high-pressure emulsification treatment was measured using a particle size distribution measuring device (trade name: Nanotrac UPA150, manufactured by Nikkiso Co., Ltd.), the average particle size before the treatment was 4.1 μm, and 2 after the treatment. It was 0.4 μm. Since the thickness of the raw material in the layer direction was as thin as 50 nm or less, these values were considered to correspond to the particle size in the plane direction of the layer. Although the average particle diameter was reduced to about 60% after the high-pressure emulsification treatment, it was confirmed that it was not extremely refined. Here, the average particle diameter refers to a particle diameter having an integrated value of 50% in the particle size distribution measured by the laser diffraction method.

(実施例2)
前記原料黒鉛化合物(ブリジストンケービージー社製、商品名:WGNP)を20gとし、分散剤を4gとした原料濃度1.95質量%の原料混合液を用いた以外は実施例1と同様な操作を行った。実施例1と同様に48時間静置後でも沈降粒子の少ない懸濁液を得ることができた。
(Example 2)
The same operation as in Example 1 was performed except that the raw material graphite compound (manufactured by Bridgestone CB, trade name: WGNP) was 20 g, and the raw material mixture liquid having a raw material concentration of 1.95% by mass was used, with the dispersant being 4 g. went. Similar to Example 1, a suspension with few precipitated particles could be obtained even after standing for 48 hours.

(実施例3)
前記原料黒鉛化合物(ブリジストンケービージー社製、商品名:WGNP)10gをエタノール100mlに分散させた後、純水900mlで希釈し、原料濃度1.01質量%の原料懸濁液とした以外は実施例1と同様の操作を行った。得られた懸濁液には微小な凝集体が発生し、凝集体と液相が分離していた。凝集体は吸引濾過により、容易に分離できた。乾燥した凝集体粒子をSEMにより観察した。図2、図3にはそれぞれ原料および凝集体粒子のSEM像を示す。原料は層の厚い粒子が存在し、部分的に粒子どうしが隙間を有して、重なっているのが分かるが、凝集体粒子ではほとんどの粒子が隙間なく重なり合い、粒子が薄層化していることが確認できた。高圧乳化後の凝集体の生成は、粒子の薄層化・微細化によるものと考えられた。また、凝集体粒子はエタノールなどの有機溶媒に容易に分散することを確認した。
(Example 3)
The procedure was carried out except that 10 g of the above raw material graphite compound (trade name: WGNP, manufactured by Bridgestone CB Corp.) was dispersed in 100 ml of ethanol and then diluted with 900 ml of pure water to obtain a raw material suspension having a raw material concentration of 1.01% by mass. The same operation as in Example 1 was performed. In the obtained suspension, fine aggregates were generated, and the aggregates and the liquid phase were separated. Aggregates could be easily separated by suction filtration. The dried aggregate particles were observed by SEM. 2 and 3 show SEM images of the raw material and aggregate particles, respectively. There are thick particles in the raw material, and it can be seen that the particles partially overlap with each other, but in the aggregate particles, most of the particles overlap without gaps, and the particles are thinned Was confirmed. The formation of aggregates after high-pressure emulsification was thought to be due to thinning and refinement of particles. Further, it was confirmed that the aggregate particles are easily dispersed in an organic solvent such as ethanol.

(実施例4)
原料を市販鱗片状黒鉛(伊藤黒鉛社製、商品名:Z−5F、平均粒径4μm)に変えた以外は実施例1と同様な操作を行った。実施例1と同様に48時間静置後でも沈降粒子の少ない懸濁液を得ることができた。
Example 4
The same operation as in Example 1 was performed except that the raw material was changed to commercially available scaly graphite (manufactured by Ito Graphite Co., Ltd., trade name: Z-5F, average particle size 4 μm). Similar to Example 1, a suspension with few precipitated particles could be obtained even after standing for 48 hours.

(実施例5)
原料を前記市販鱗片状黒鉛(伊藤黒鉛社製、商品名:Z−5F)に変えた以外は実施例3と同様な操作を行った。実施例3と同様に凝集体が発生し、液相と分離していた。凝集粒子をSEMで観察したところ、薄層化した粒子であることを確認した。
(Example 5)
The same operation as in Example 3 was performed except that the raw material was changed to the above-mentioned commercially available scaly graphite (manufactured by Ito Graphite Co., Ltd., trade name: Z-5F). In the same manner as in Example 3, aggregates were generated and separated from the liquid phase. When the aggregated particles were observed with an SEM, it was confirmed that the particles were thinned.

(実施例6)
原料を市販膨張化黒鉛(伊藤黒鉛社製、商品名:EC−1500、平均粒径7μm)に変えた以外は実施例1と同様な操作を行った。実施例1と同様に48時間静置後でも沈降粒子の少ない懸濁液を得ることができた。
(Example 6)
The same operation as in Example 1 was performed except that the raw material was changed to commercially available expanded graphite (manufactured by Ito Graphite Co., Ltd., trade name: EC-1500, average particle size 7 μm). Similar to Example 1, a suspension with few precipitated particles could be obtained even after standing for 48 hours.

(実施例7)
原料を前記市販膨張化黒鉛(伊藤黒鉛社製、商品名:EC−1500)に変えた以外は実施例3と同様な操作を行った。実施例3と同様に凝集体が発生し、液相と分離していた。凝集粒子をSEMで観察したところ、薄層化した粒子であることを確認した。また凝集体の生成量は実施例3および実施例5に比べ多く、より薄層化・微細化が進んでいるものと考えられた。
(Example 7)
The same operation as in Example 3 was performed except that the raw material was changed to the commercially available expanded graphite (trade name: EC-1500, manufactured by Ito Graphite Co., Ltd.). In the same manner as in Example 3, aggregates were generated and separated from the liquid phase. When the aggregated particles were observed with an SEM, it was confirmed that the particles were thinned. Moreover, the amount of aggregates produced was larger than in Example 3 and Example 5, and it was considered that the layer thickness and miniaturization were further advanced.

(比較例1)
層間の剥離工程として、高圧乳化処理ではなく、超音波処理(周波数47kHz、100W、30分)を行った以外は実施例1と同様の操作を行った。得られた懸濁液は48時間静置後でほとんどの粒子が沈降した。
(Comparative Example 1)
The same operation as in Example 1 was performed except that, as a delamination process between layers, ultrasonic treatment (frequency: 47 kHz, 100 W, 30 minutes) was performed instead of high-pressure emulsification treatment. The resulting suspension was allowed to stand for 48 hours and most of the particles settled out.

Claims (3)

黒鉛または黒鉛化合物の層間を高圧乳化法により剥離する高圧乳化処理工程を有することを特徴とする薄層黒鉛または薄層黒鉛化合物の製造方法。   A method for producing a thin-layer graphite or a thin-layer graphite compound, comprising a high-pressure emulsification treatment step of peeling between layers of graphite or a graphite compound by a high-pressure emulsification method. 前記高圧乳化処理工程において、黒鉛または黒鉛化合物を分散媒に懸濁させた黒鉛または黒鉛化合物の濃度が0.1質量%以上10質量%以下の懸濁液を用いることを特徴とする請求項1に記載の薄層黒鉛または薄層黒鉛化合物の製造方法。   The suspension of graphite or a graphite compound in which graphite or a graphite compound is suspended in a dispersion medium is used in the high-pressure emulsification treatment step, wherein the suspension has a concentration of 0.1% by mass to 10% by mass. A method for producing the thin-layer graphite or the thin-layer graphite compound described in 1. 前記高圧乳化処理工程において、黒鉛または黒鉛化合物を分散媒に懸濁させた懸濁液を、孔径0.05mm〜0.50mmの細孔に通過させる高圧乳化法を用いることを特徴とする請求項1または2に記載の薄層黒鉛または薄層黒鉛化合物の製造方法。
The high-pressure emulsification treatment step uses a high-pressure emulsification method in which a suspension in which graphite or a graphite compound is suspended in a dispersion medium is passed through pores having a pore diameter of 0.05 mm to 0.50 mm. A method for producing the thin-layer graphite or thin-layer graphite compound according to 1 or 2.
JP2012149565A 2012-07-03 2012-07-03 Method for producing thin-layer graphite or thin-layer graphite compound Active JP5933374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149565A JP5933374B2 (en) 2012-07-03 2012-07-03 Method for producing thin-layer graphite or thin-layer graphite compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149565A JP5933374B2 (en) 2012-07-03 2012-07-03 Method for producing thin-layer graphite or thin-layer graphite compound

Publications (2)

Publication Number Publication Date
JP2014009151A true JP2014009151A (en) 2014-01-20
JP5933374B2 JP5933374B2 (en) 2016-06-08

Family

ID=50106161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149565A Active JP5933374B2 (en) 2012-07-03 2012-07-03 Method for producing thin-layer graphite or thin-layer graphite compound

Country Status (1)

Country Link
JP (1) JP5933374B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193499A (en) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 Production method of flaky carbon using plant extract
JP2015199645A (en) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 Method of producing flaky carbon
JP2015199647A (en) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 Method of producing flaky carbon
WO2016143901A1 (en) * 2015-03-11 2016-09-15 国立研究開発法人物質・材料研究機構 Method for delaminating layered material and device therefor
WO2017002680A1 (en) * 2015-06-30 2017-01-05 国立研究開発法人物質・材料研究機構 Layered substance modifying method and device therefor, modified graphite, and secondary battery electrode material using same
WO2017047521A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
WO2017047522A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene/organic solvent dispersion and method for producing same, and method for producing lithium-ion battery electrode
WO2017047523A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
WO2017110295A1 (en) * 2015-12-24 2017-06-29 国立研究開発法人物質・材料研究機構 Manufacturing method for composite material of two-dimensional substance and fibrous substance
JP2017536317A (en) * 2014-12-11 2017-12-07 エルジー・ケム・リミテッド Graphene production method using high-speed homogenization pretreatment and high-pressure homogenization
JP2018118868A (en) * 2017-01-25 2018-08-02 株式会社常光 Method for producing graphene dispersion, apparatus for producing graphene dispersion, and graphene dispersion
JP2019502536A (en) * 2015-11-26 2019-01-31 フォンダツィオーネ・イスティトゥート・イタリアーノ・ディ・テクノロジャFondazione Istituto Italiano Di Tecnologia Layered material delamination by wet jet milling technology
CN109791822A (en) * 2017-08-09 2019-05-21 住友理工株式会社 The manufacturing method of conductive film
US10602646B2 (en) * 2015-10-30 2020-03-24 Lg Chem, Ltd. Method for preparing magnetic iron oxide-graphene composite
US20210269650A1 (en) * 2018-07-30 2021-09-02 Adeka Corporation Method for producing composite material
CN116329361A (en) * 2023-05-19 2023-06-27 苏州中毅精密科技有限公司 Method, device, equipment and medium for preparing sheet based on fluid impact

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840712A (en) * 1994-08-02 1996-02-13 Japan Synthetic Rubber Co Ltd Production of dispersion liquid of carbon electric conductor powder
JP2000210546A (en) * 1999-01-21 2000-08-02 Harima Chem Inc Production of aqueous emulsion of rosin type compound
JP2006152012A (en) * 2004-11-25 2006-06-15 Tokai Carbon Co Ltd Aqueous dispersion of carbon black and method for producing the same
JP2007051018A (en) * 2005-08-17 2007-03-01 Nok Corp Method for producing carbon material thin film
US20090224211A1 (en) * 2005-09-09 2009-09-10 Futurecarbon Gmbh Dispersion and Method for the Production Thereof
JP2010173884A (en) * 2009-01-28 2010-08-12 Jsr Corp Carbon nanotube dispersion, film using the same and method of producing the same
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
WO2012045727A1 (en) * 2010-10-08 2012-04-12 Bayer Materialscience Ag Production of dispersions containing carbon nanotubes
JP2012240853A (en) * 2011-05-16 2012-12-10 Panasonic Corp Method of manufacturing graphene film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840712A (en) * 1994-08-02 1996-02-13 Japan Synthetic Rubber Co Ltd Production of dispersion liquid of carbon electric conductor powder
JP2000210546A (en) * 1999-01-21 2000-08-02 Harima Chem Inc Production of aqueous emulsion of rosin type compound
JP2006152012A (en) * 2004-11-25 2006-06-15 Tokai Carbon Co Ltd Aqueous dispersion of carbon black and method for producing the same
US20080168922A1 (en) * 2004-11-25 2008-07-17 Tokai Carbon Co., Ltd. Carbon Black Aqueous Dispersion and Method of Producing the Same
JP2007051018A (en) * 2005-08-17 2007-03-01 Nok Corp Method for producing carbon material thin film
US20090224211A1 (en) * 2005-09-09 2009-09-10 Futurecarbon Gmbh Dispersion and Method for the Production Thereof
JP2010173884A (en) * 2009-01-28 2010-08-12 Jsr Corp Carbon nanotube dispersion, film using the same and method of producing the same
JP2011184264A (en) * 2010-03-10 2011-09-22 Sekisui Chem Co Ltd Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
WO2012045727A1 (en) * 2010-10-08 2012-04-12 Bayer Materialscience Ag Production of dispersions containing carbon nanotubes
JP2014500212A (en) * 2010-10-08 2014-01-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing carbon nanotube-containing dispersion
JP2012240853A (en) * 2011-05-16 2012-12-10 Panasonic Corp Method of manufacturing graphene film

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199645A (en) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 Method of producing flaky carbon
JP2015199647A (en) * 2014-03-31 2015-11-12 大阪瓦斯株式会社 Method of producing flaky carbon
JP2015193499A (en) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 Production method of flaky carbon using plant extract
JP2017536317A (en) * 2014-12-11 2017-12-07 エルジー・ケム・リミテッド Graphene production method using high-speed homogenization pretreatment and high-pressure homogenization
US10472242B2 (en) 2014-12-11 2019-11-12 Lg Chem, Ltd. Method for preparing graphene by using high speed homogenization pretreatment and high pressure homogenation
WO2016143901A1 (en) * 2015-03-11 2016-09-15 国立研究開発法人物質・材料研究機構 Method for delaminating layered material and device therefor
JP2016169114A (en) * 2015-03-11 2016-09-23 国立研究開発法人物質・材料研究機構 Method and device for delaminating layered substance
WO2017002680A1 (en) * 2015-06-30 2017-01-05 国立研究開発法人物質・材料研究機構 Layered substance modifying method and device therefor, modified graphite, and secondary battery electrode material using same
JPWO2017002680A1 (en) * 2015-06-30 2018-05-24 国立研究開発法人物質・材料研究機構 Method for modifying layered substance and apparatus therefor, modified graphite and electrode material for secondary battery using the same
WO2017047522A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene/organic solvent dispersion and method for producing same, and method for producing lithium-ion battery electrode
CN108028352B (en) * 2015-09-18 2019-08-23 东丽株式会社 Graphene dispersing solution and its manufacturing method
JP6152923B1 (en) * 2015-09-18 2017-06-28 東レ株式会社 Graphene / organic solvent dispersion, method for producing the same, and method for producing an electrode for a lithium ion battery
US10763494B2 (en) 2015-09-18 2020-09-01 Toray Industries, Inc. Graphene/organic solvent dispersion and method for producing same, and method for producing lithium-ion battery electrode
JP6152925B1 (en) * 2015-09-18 2017-06-28 東レ株式会社 Graphene dispersion and method for producing the same, method for producing graphene-active material composite particles, and method for producing electrode paste
CN108028352A (en) * 2015-09-18 2018-05-11 东丽株式会社 Graphene dispersing solution and its manufacture method, graphene-manufacture method of active agent complex particle and the manufacture method of electrode paste
WO2017047523A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
US10654721B2 (en) 2015-09-18 2020-05-19 Toray Industries, Inc. Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
US10636586B2 (en) 2015-09-18 2020-04-28 Toray Industries, Inc. Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
WO2017047521A1 (en) * 2015-09-18 2017-03-23 東レ株式会社 Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
JP6152924B1 (en) * 2015-09-18 2017-06-28 東レ株式会社 Graphene dispersion and method for producing the same, method for producing graphene-active material composite particles, and method for producing electrode paste
US10602646B2 (en) * 2015-10-30 2020-03-24 Lg Chem, Ltd. Method for preparing magnetic iron oxide-graphene composite
JP2019502536A (en) * 2015-11-26 2019-01-31 フォンダツィオーネ・イスティトゥート・イタリアーノ・ディ・テクノロジャFondazione Istituto Italiano Di Tecnologia Layered material delamination by wet jet milling technology
JPWO2017110295A1 (en) * 2015-12-24 2018-09-13 国立研究開発法人物質・材料研究機構 Method for producing composite material of two-dimensional substance and fibrous substance
WO2017110295A1 (en) * 2015-12-24 2017-06-29 国立研究開発法人物質・材料研究機構 Manufacturing method for composite material of two-dimensional substance and fibrous substance
JP2018118868A (en) * 2017-01-25 2018-08-02 株式会社常光 Method for producing graphene dispersion, apparatus for producing graphene dispersion, and graphene dispersion
CN109791822A (en) * 2017-08-09 2019-05-21 住友理工株式会社 The manufacturing method of conductive film
DE112018001254T5 (en) 2017-08-09 2019-12-19 Sumitomo Riko Company Limited METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE FILM
CN109791822B (en) * 2017-08-09 2020-08-14 住友理工株式会社 Method for producing conductive film
US20210269650A1 (en) * 2018-07-30 2021-09-02 Adeka Corporation Method for producing composite material
CN116329361A (en) * 2023-05-19 2023-06-27 苏州中毅精密科技有限公司 Method, device, equipment and medium for preparing sheet based on fluid impact
CN116329361B (en) * 2023-05-19 2023-08-01 苏州中毅精密科技有限公司 Method, device, equipment and medium for preparing sheet based on fluid impact

Also Published As

Publication number Publication date
JP5933374B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5933374B2 (en) Method for producing thin-layer graphite or thin-layer graphite compound
Tao et al. Scalable exfoliation and dispersion of two-dimensional materials–an update
Shams et al. Graphene synthesis: a review
KR102267918B1 (en) A scalable process for producing exfoliated defect-free, non-oxidised 2-dimensional materials in large quantities
CN107108226B (en) Method for preparing graphene by utilizing high-speed homogenization pretreatment and high-pressure homogenization
Zhou et al. Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water
US20190023577A1 (en) Industrial method for preparing large-sized graphene
US20200331761A1 (en) Inorganic particle composite, method for producing the same, and inorganic particle composite dispersion
EP3216758B1 (en) Suspension of nanodiamond aggregates and single-nano-sized nanodiamond dispersion
CN105778571B (en) A kind of graphene composite mortar and preparation method thereof
JP2011219318A (en) Graphite dispersion liquid, method for manufacturing the same, and graphite powder
KR20160100268A (en) Graphene having pores made by irregular and random, and Manufacturing method of the same
US20170240429A1 (en) Nanodiamonds having acid functional group and method for producing same
US10781106B2 (en) Method for separating detonation nanodiamonds
CN110526293B (en) Method for preparing two-dimensional nano material by aid of easily decomposed salt
KR102097133B1 (en) Method for preparation of highly concentrated graphene dispersion
WO2017203763A1 (en) Nano-diamond organic solvent dispersion production method and nano-diamond organic solvent dispersion
JP2011148701A (en) Method for synthesizing thin film-like particle with skeleton formed from carbon
JP2017171512A (en) Apparatus and method for producing graphene
CN110759337A (en) Preparation method of graphene
JP2015229619A (en) Complex between titanium dioxide and graphene, and production method therefor
EP3350121A1 (en) Method of forming graphene material by graphite exfoliation
JP6979196B2 (en) Method for exfoliating layered mineral powder and method for producing layered nanoplate complex
JP5969905B2 (en) Method for producing alignment film of thin layer graphite or thin layer graphite compound
JP2011111367A (en) Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5933374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250