WO2017110295A1 - Manufacturing method for composite material of two-dimensional substance and fibrous substance - Google Patents

Manufacturing method for composite material of two-dimensional substance and fibrous substance Download PDF

Info

Publication number
WO2017110295A1
WO2017110295A1 PCT/JP2016/083540 JP2016083540W WO2017110295A1 WO 2017110295 A1 WO2017110295 A1 WO 2017110295A1 JP 2016083540 W JP2016083540 W JP 2016083540W WO 2017110295 A1 WO2017110295 A1 WO 2017110295A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
dimensional
fibrous
composite material
composite
Prior art date
Application number
PCT/JP2016/083540
Other languages
French (fr)
Japanese (ja)
Inventor
捷 唐
坤 張
ジン リー
松葉 頼重
畑 憲明
Original Assignee
国立研究開発法人物質・材料研究機構
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, ハリマ化成株式会社 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2017557786A priority Critical patent/JP6573262B2/en
Publication of WO2017110295A1 publication Critical patent/WO2017110295A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the present invention relates to a method for producing a composite material of a two-dimensional substance and a fibrous substance.
  • the two-dimensional material is generally a single-layer or thin-layer solid in which atoms have a predetermined crystal structure, and graphene is known as a representative two-dimensional material.
  • Graphene is a single layer (monoatomic layer) structure in which carbon atoms form a hexagonal structure, and forms the basic structure of a layered structure of graphite (graphite).
  • Patent Document 1 a graphene derivative-carbon nanotube composite material containing graphene oxide and carbon nanotubes in a predetermined ratio has been proposed (Patent Document 1).
  • Patent Document 1 a graphene oxide prepared by ultrasonically treating graphite oxide obtained by oxidizing graphite is added to an alcohol dispersant together with carbon nanotubes, and a suspension obtained by performing ultrasonic dispersion for 120 to 150 minutes is used.
  • the target composite material is produced by filtering and drying.
  • the apparatus is originally assumed to homogenize the raw material while crushing it to a smaller particle size by combining the impact force and the grinding force into the raw material solution.
  • the configuration is designed.
  • the conventional high-pressure emulsification apparatus including the high-pressure homogenizer described in Patent Document 2 and the high-pressure emulsifier described in Patent Document 3 has a pressure generator (pump unit) and a portion in which the flow path is significantly narrowed. Parts (for example, nozzles and orifices, hereinafter also referred to as “nozzle portions”) are included, and these are essential components for performing the high-pressure emulsification method.
  • the pressure from the pump unit is converted into a jet flow at the nozzle unit, and the liquid ejected from the nozzle unit becomes a turbulent flow while passing through a member called an absorption cell, and an impact force or shear force is applied. Therefore, when the high-pressure emulsification method is applied to a two-dimensional substance such as graphene using such a conventional high-pressure emulsification apparatus, the two-dimensional structure is destroyed by applying an impact force in the plane direction.
  • the particle size in the plane direction becomes small flakes or fragments having a size of about several ⁇ m, and as a result, there may be a case where excellent properties that a two-dimensional substance can originally exhibit cannot be obtained.
  • the present invention has been made in view of the circumstances as described above, and combines a two-dimensional substance and a fibrous substance while suppressing the destruction and cutting of the characteristic structures of the two-dimensional substance and the fibrous substance. It is an object of the present invention to provide a method for producing a composite material of a two-dimensional material and a fibrous material, which can be used for industrial mass production.
  • the present inventors have found that a process in which a jet flow is generated by the operation of feeding the raw material solution to the nozzle part, which is an essential component in the conventional high-pressure emulsification apparatus.
  • a process in which a jet flow is generated by the operation of feeding the raw material solution to the nozzle part which is an essential component in the conventional high-pressure emulsification apparatus.
  • the conditions for generating the jet flow are not necessarily appropriate from the viewpoint of combining the two-dimensional substance and the fibrous substance.
  • the jet flow generated by the liquid passing operation to the nozzle part may cause destruction or cutting of the characteristic structure of the two-dimensional substance and the fibrous substance.
  • the present inventors have improved the method to be more suitable for the combination of the two-dimensional material and the fibrous material while taking advantage of the characteristics of the conventional high-pressure emulsification method, thereby achieving higher accuracy than the conventional method. It has been found that a composite material in which a fibrous substance is inserted between two-dimensional substance layers can be obtained with high yield.
  • this invention includes the following aspects.
  • (1) A step in which a suspension obtained by suspending a two-dimensional substance and a fibrous substance in a dispersion medium is subjected to high pressure treatment and supplied from a raw material introduction unit, and the suspension supplied from the raw material introduction unit is combined. Passing through the module to obtain a dispersion of the composite material in which the fibrous material is inserted between the layers of the two-dimensional material in the dispersion medium, and dispersing the composite material after passing through the composite module
  • a method for producing a composite material of a two-dimensional substance and a fibrous substance including a step of recovering a liquid in a recovery part, wherein the raw material introduction part and the composite module have an inner diameter of a liquid passage through which the suspension flows.
  • a method for producing a composite material of a two-dimensional substance and a fibrous substance characterized by not having a liquid passage having an inner diameter of 0.15 mm or more and an inner diameter of less than 0.15 mm.
  • (3) The composite module has a structure in which two or more liquid passing members are connected in series, and is downstream of the inner diameter of the liquid passing path of the upstream liquid passing member with respect to the flow of the suspension.
  • the method further comprises a step of supplying again the dispersion liquid of the composite material recovered by the recovery unit to the raw material introduction unit and allowing the composite module to pass through.
  • the two-dimensional material and the fibrous material can be combined while suppressing the destruction and cutting of the characteristic structure of the two-dimensional material and the fibrous material, which is suitable for industrial mass production.
  • a method for producing a composite material of a two-dimensional material and a fibrous material is provided.
  • the schematic diagram which shows the manufacturing apparatus of the composite material of the two-dimensional substance and fibrous substance which concerns on one Embodiment of this invention
  • SEM image of TRGO-SGCNT composite material obtained in Example 1 SEM image of TRGO-SGCNT composite material obtained in Example 2
  • SEM image of TRGO-SGCNT composite material obtained in Example 3 Graph showing charge / discharge characteristics of comparative capacitors (Comparative Cell 1 and Comparative Cell 2) produced in Examples 1 to 3
  • the “two-dimensional substance” refers to a single-layer or thin-layer solid in which atoms have a predetermined crystal structure.
  • the two-dimensional material include molybdenum (IV) (MoS 2 ), boron nitride (BN), and the like in addition to graphene, which is a representative example.
  • fibrous substance refers to a substance whose length is 100 times or more the average value of the outer diameter.
  • fibrous material include nanofibers having a nanoscale whose average outer diameter is in the range of 1 nm to 100 nm.
  • nanofiber include a nanotube having a hollow structure, a nanorod having no hollow structure, and a nanowire having a conductive or semiconductive property. More specifically, examples of nanofibers used in the present embodiment include carbon nanotubes, cellulose nanofibers, and metal nanowires.
  • the average particle size in the plane direction of the two-dimensional material is not particularly limited, but from the viewpoint of obtaining the effect of combining with the fibrous material with higher accuracy, the average particle size in the plane direction of the two-dimensional material. Is preferably 200 ⁇ m or less, and more preferably, the average particle size in the plane direction of the two-dimensional substance is 100 ⁇ m or less. Even if the average particle size in the plane direction of the two-dimensional material is 200 ⁇ m or more, the composite effect according to the present embodiment can be obtained.
  • the method for producing graphene used in the present embodiment as a two-dimensional material is not particularly limited, and graphene produced according to a generally known method can be used.
  • a method for producing graphene a method of exfoliating graphite is generally used, and a typical example is a method of exfoliating graphite oxide oxidized under strong oxidation conditions (Hammers method).
  • a method for producing graphene that does not require a strong oxidation treatment step for example, ultrasonically treating a graphite dispersion solution, inserting a stirring blade or the like into the graphite dispersion solution, and rotating the graphite at high speed, A method of delamination is known.
  • the average value of the outer diameter of the fibrous substance is not particularly limited, but from the viewpoint of more efficiently combining with the two-dimensional substance, the average value of the outer diameter is 0.4 to 5.0 nm. Is preferably considered, and more preferably in the range of 1.0 to 3.0 nm.
  • the average value of the outer diameter of the fibrous material is observed with an arbitrary magnification using, for example, a transmission electron microscope, and a plurality of fibrous materials arbitrarily extracted from a visual field in which a certain proportion of the visual field area is the fibrous material. It can be an arithmetic average value when the outer diameter of the substance is measured.
  • the carbon nanotubes used in the present embodiment as the fibrous material are aggregates in which a plurality of carbon nanotubes are present, and the form of the carbon nanotubes is not particularly limited, and each may exist independently or a bundle. May exist in a form such as a shape, entanglement, or a mixed form thereof. Various layers and outer diameters may be included.
  • the method for producing the carbon nanotubes used in the present embodiment is not particularly limited, and is produced according to a generally known method such as a chemical vapor deposition (CVD) method, a super growth (SG) method, a laser ablation method, or an arc discharge method. Carbon nanotubes can be used.
  • CVD chemical vapor deposition
  • SG super growth
  • laser ablation method or an arc discharge method.
  • Carbon nanotubes can be used.
  • the purity of the carbon nanotube is not particularly limited, but in this embodiment, even when a higher purity carbon nanotube (for example, purity> 99.5%, purity> 99.98%) is used, A composite material in which carbon nanotubes are inserted between layers of a two-dimensional substance can be obtained while suppressing damage.
  • a higher purity carbon nanotube for example, purity> 99.5%, purity> 99.98%
  • a dispersion medium used for preparing a suspension of a two-dimensional substance and a fibrous substance can be appropriately selected.
  • examples include alcohols, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), and mixed solvents thereof.
  • the dispersion medium is, for example, dodecylbenzene, for the purpose of more uniformly dispersing in consideration of the affinity between the two-dimensional substance and the fibrous substance and the dispersion medium within a range not inhibiting the purpose and effect of the present invention.
  • Sodium sulfonate, sodium dodecyl sulfate, sodium cholate, sodium deoxycholate and the like may be added as a dispersant, and other additives may be added according to the required purpose.
  • the target composite material is a composite material of graphene and carbon nanotubes, in principle, it is not necessary to add an additive such as a dispersant to the dispersion medium.
  • the concentration of the two-dimensional substance in the raw material suspension is not particularly limited, and is, for example, 0.1 to 100 mg / mL, preferably 0.5 to 50 mg / mL, more preferably 1 to 10 mg / mL. .
  • concentration of the two-dimensional substance is within the above range, the effect of combining with the fibrous substance in the dispersion medium can be obtained more efficiently.
  • concentration of the two-dimensional substance exceeds 100 mg / mL, the efficiency of complexing with the fibrous substance may be inferior.
  • the concentration of the fibrous substance in the raw material suspension is not particularly limited, but is, for example, 0.01 to 5.0 mg / mL, preferably 0.05 to 1.0 mg / mL, more preferably 0.1 ⁇ 0.5 mg / mL.
  • concentration of the fibrous substance is within the above range, the complexing effect with the two-dimensional substance in the dispersion medium can be obtained more efficiently.
  • concentration of a fibrous substance exceeds 5.0 mg / mL, the compounding efficiency with a two-dimensional substance may be inferior.
  • the mass ratio of the two-dimensional substance and the fibrous substance in the raw material suspension is not particularly limited.
  • the mass ratio of the two-dimensional substance and the fibrous substance is within the above range, the composite effect of the two-dimensional substance and the fibrous substance in the dispersion medium can be obtained more efficiently, and the composite material can be obtained more efficiently. High yield can be obtained.
  • the composite apparatus according to the present embodiment has a configuration without the nozzle part as described later. Therefore, even when the viscosity of the raw material suspension is high, the target composite material can be obtained by combining the two-dimensional substance and the fibrous substance.
  • the fibrous material may be suspended together with the two-dimensional material in the dispersion medium without performing any special pretreatment, and may be used as a raw material suspension.
  • a dispersion of a fibrous substance that has been dispersed may be mixed with a suspension in which a two-dimensional substance or a two-dimensional substance is suspended to form a raw material suspension.
  • a carbon nanotube dispersion liquid dispersed in a desired dispersion medium can be used.
  • the raw material suspension can be prepared by adding graphene as a two-dimensional substance to the carbon nanotube dispersion.
  • FIG. 1 is a schematic diagram showing an apparatus for producing a composite material of a two-dimensional substance and a fibrous substance (hereinafter also referred to as “compositing apparatus”) according to an embodiment of the present invention.
  • the compounding apparatus 1 includes a raw material introduction unit 2, a compounding module 3, and a recovery unit 4 as main components.
  • the method for producing a composite material of a two-dimensional substance and a fibrous substance according to this embodiment performed using such a compounding apparatus 1 is a suspension in which a two-dimensional substance and a fibrous substance are suspended in a dispersion medium.
  • the high pressure treatment and supplying from the raw material introduction unit 2, the suspension supplied from the raw material introduction unit 2 is passed through the composite module 3, and the fibrous material is formed between the layers of the two-dimensional material in the dispersion medium.
  • a suspension obtained by suspending a two-dimensional substance and a fibrous substance in a dispersion medium is subjected to high pressure treatment and supplied to the composite module 3. More specifically, in the raw material introduction unit 2, as shown in FIG. 1, the raw material suspension stored in the solution tank 21 is subjected to high pressure treatment by the high pressure pump 22 and supplied to the composite module 3.
  • the pressure applied to the raw material suspension by the high-pressure pump 22 is the average particle size in the surface direction of the two-dimensional material, the average value of the outer diameter of the fibrous material, the concentration of the two-dimensional material and the fibrous material in the raw material suspension, It can be set as appropriate according to the intended use of the composite material.
  • the pressure is, for example, 5 to 150 MPa, preferably 10 to 125 MPa, and more preferably 20 to 100 MPa.
  • the pressure may be adjusted within the above range each time.
  • the molecules of the dispersion medium are aggregated between the layers of the two-dimensional material and the fibrous materials to form a bundle structure.
  • the force penetrating the dispersion medium molecules exceeds the force acting between the layers of the two-dimensional material and the fibrous material (for example, van der Waals force)
  • the dispersion medium molecules move between the layers of the two-dimensional material.
  • the bundle structure of the fibrous material can be successively inserted (intercalated).
  • the raw material suspension supplied from the raw material introduction unit 2 is passed, and the fibrous material is inserted between the layers of the two-dimensional material.
  • the composite module 3 has a structure in which two or more liquid passing members are connected in series.
  • the composite module 3 includes three liquid passing members 31, 32, and 33. The form which has the structure connected in series is illustrated.
  • liquid passing members 31, 32, 33 for example, straight tubes, spiral tubes and the like used as absorption cells in conventional high-pressure emulsification apparatuses can be applied.
  • the inner diameter is configured to be large. That is, when the inner diameters of the liquid passages of the liquid passage members 31, 32, and 33 are D31, D32, and D33, respectively, the relationship of D31 ⁇ D32 ⁇ D33 is established.
  • the lengths of the fluid-permeable members 31, 32, 33 are appropriately determined according to the average particle size in the plane direction of the two-dimensional substance, the concentration of the two-dimensional substance and the fibrous substance in the raw material suspension, the intended use of the composite material, and the like Can be set.
  • the two-dimensional material is graphene, for example, a range of 5 to 100 cm can be used as a rough standard.
  • the lengths of the liquid passing members 31, 32, and 33 are preferably considered as appropriate depending on the liquid passing time and the number of times of passing through which will be described later.
  • Table 1 below shows an example of the configuration of the composite module 3.
  • the inner diameter of the flow path through which the raw material suspension flows is 0.15 mm or more, preferably in the range of 0.15 mm to 1 mm.
  • the raw material introduction part 2 and the composite module 3 do not have a liquid passage having an inner diameter of less than 0.15 mm. That is, in the compounding apparatus 1 according to the present embodiment, it is not intended with respect to the surface direction of the two-dimensional substance by adopting a configuration that does not have the nozzle part that is an essential component in the conventional high-pressure emulsification apparatus. The application of an impact force is suppressed, and further, the application of an unintended impact force in the length direction of the fibrous material is also suppressed.
  • a shearing force is applied according to the fluid dynamics.
  • This shear force acts on the gap formed between the layers of the two-dimensional material and the gap formed between the bundle structures of the fibrous material in the above-described high-pressure treatment process, and thereby the interlayer of the two-dimensional material and the fibrous material.
  • the interaction that is working between is further weakened.
  • the two-dimensional material is dispersed in the dispersion medium as a single-layer or several-layer flake-like structure, and is stabilized by the rapid adsorption of the dispersion medium molecules on the surface. Thus, lamination is suppressed.
  • one or several fibrous substances are dispersed in the dispersion medium such that the fibrous substances are lifted and unraveled from the aggregate formed by aggregating the fibrous substances.
  • the dispersed fibrous material is stabilized by quickly adsorbing the dispersion medium molecules on the surface thereof, and the fibrous materials are prevented from aggregating again to form a bundle structure.
  • the fibrous material is inserted between the layers of the two-dimensional material to generate a composite material. More specifically, the fibrous substance is inserted into a mesopore (gap) formed by sandwiching a fibrous substance between two layers of a single layer or between several layers of two-dimensional substances. As a result, the two-dimensional material and the fibrous material are combined.
  • a mesopore mesopore
  • the two-dimensional substance is obtained by continuously performing the high-pressure treatment process of the raw material suspension and the subsequent composite process.
  • the fibrous material is efficiently inserted between the layers, and the target composite material can be obtained in high yield.
  • the flow rate of the raw material suspension when passing through the composite module 3 is the average particle size in the surface direction of the two-dimensional material, the average value of the outer diameter of the fibrous material, the two-dimensional material and the fibrous material in the raw material suspension.
  • the concentration can be appropriately set according to the intended use of the composite material.
  • it is preferable to consider that the speed of the raw material suspension when passing through the composite module 3 is appropriately adjusted according to the liquid passing time and the number of times of liquid passing described later.
  • the composite module 3 since a large shearing force is applied to the raw material suspension, the temperature of the suspension may rise during the flow of liquid. Therefore, the composite module 3 can be cooled by the cooling means 34 for the purpose of preventing deterioration and peeling due to excessive heating of the raw materials, preventing the suspension from boiling in the recovery unit 4, and the like.
  • the recovery unit 4 recovers the dispersion liquid of the composite material after passing through the composite module 3.
  • the recovered dispersion can be taken out and used as it is as a dispersion of the desired composite material, and can be made to a desired concentration by diluting or concentrating. Further, the two-dimensional substance and fibrous substance of the raw material remaining in the recovered raw material suspension can be removed by a generally known separation method such as centrifugation. Moreover, the target composite material can be obtained by drying the recovered dispersion after solid-liquid separation by filtration or centrifugation, and the like.
  • the composite material dispersion recovered by the recovery unit 4 can be supplied again to the raw material introduction unit 2 and allowed to pass through the composite module 3. In this way, by passing the composite module 3 a plurality of times, the composite accuracy of inserting and combining the fibrous substance between the layers of the two-dimensional substance is further improved, and the target composite material can be obtained at a higher yield. Obtainable.
  • the compounding apparatus 1 since the compounding apparatus 1 according to the present embodiment has a configuration that does not include the nozzle portion, even if the raw material suspension is passed through the compounding module 3 multiple times, The two-dimensional substance and the fibrous substance can be combined while suppressing an unintended impact force from being applied to the surface direction of the two-dimensional substance of the two-dimensional substance and the length direction of the fibrous substance.
  • the time for passing the raw material suspension through the composite module 3, that is, the time for performing the composite process (liquid passing time) is the average particle size in the surface direction of the two-dimensional material, the two-dimensional material and fiber in the raw material suspension. It can be set as appropriate according to the concentration of the substance, the intended use of the composite material, and the like.
  • the two-dimensional material is graphene, it is, for example, 15 seconds to 180 minutes, preferably 30 seconds to 150 minutes, and more preferably 1 to 120 minutes. It is understood that the number of times of performing the compounding step (number of times of liquid passing) is appropriately adjusted with the liquid passing time.
  • a fibrous substance for example, carbon
  • layers of the two-dimensional substance for example, graphene
  • the two-dimensional substance has suppressed the destruction of the two-dimensional structure in the plane direction, and the damage and cutting of the fibrous substance are suppressed. Therefore, for example, when graphene is used as the two-dimensional material and carbon nanotubes are used as the fibrous material, the electrical conductivity, transparency, mechanical properties, etc. inherent to the composite graphene and carbon nanotubes, etc. Is expected to be applied more effectively, and is expected to be applied as electronic materials such as transparent electrodes, wiring materials, and capacitor members that realize high-speed charging, high output, and large capacity.
  • the manufacturing method and composite device 1 of the composite material of the two-dimensional substance and the fibrous substance according to the present embodiment are limited to the case where graphene is used as the two-dimensional substance and the case where the carbon nanotube is used as the fibrous substance. It can be applied to other two-dimensional materials and fibrous materials.
  • the various conditions described above can be appropriately designed in accordance with the types and properties of the two-dimensional material and the fibrous material used.
  • SGCNT thermally reduced graphene oxide
  • TRGO used in the present Example was produced as follows. First, graphene oxide obtained by oxidizing a commercially available graphite (manufactured by Shin-Etsu Chemical Co., Ltd., scaly graphite BF-5A) is dispersed in water at a concentration of 2 mg / mL, and the solvent is freeze-dried (freeze-dried). A uniform graphene oxide foam was obtained. Next, this graphene oxide foam was thermally reduced at 400 ° C. for 1 minute to obtain TRGO.
  • a commercially available graphite manufactured by Shin-Etsu Chemical Co., Ltd., scaly graphite BF-5A
  • a uniform graphene oxide foam was obtained.
  • this graphene oxide foam was thermally reduced at 400 ° C. for 1 minute to obtain TRGO.
  • FIGS. 2 to 4 The SEM observation results of the composite materials obtained in Examples 1 to 3 are shown in FIGS. 2 to 4, respectively.
  • a sample for SEM observation was prepared by dropping several mL of a dispersion of a composite material on a Si wafer. SEM observation was performed using a field emission scanning electron microscope (FE-SEM, JSM-6500, JEOL).
  • FE-SEM field emission scanning electron microscope
  • the composite material and poly (tetrafluoroethylene) (PTFE) were mixed in NMP at a mass ratio of 90:10. Next, this solution was subjected to suction filtration on a porous membrane (Hydrophilic, 0.2 ⁇ m PTFE) to form an electrode membrane. This electrode film was vacuum-dried at 25 ° C. for 24 hours and then cut to a diameter of 15 mm to produce an electrode having a weight of about 0.8 mg.
  • test cell 1-ethyl-3-methylimidazolium-tetrafluoroborate (EMI-BF4) is used as the electrolyte solute, glass fiber is used as the separator, and carbon is applied as a conductive material to the current collector.
  • the aluminum foil (Exopack TM 0.5 mil double-sided coating) was used.
  • the test cell was assembled in a glove box under an argon gas atmosphere. In the following, test cells using the electrodes prepared using the composite materials of Examples 1, 2, and 3 are referred to as “test cell 1”, “test cell 2”, and “test cell 3”, respectively. Called.
  • a cell using an electrode produced using only TRGO as a raw material (comparison cell 1), and SGCNT were suspended in 100 mL of NMP at a concentration of 0.1 mg / mL and ultrasonicated for 30 minutes.
  • a cell (Comparative Cell 2) using an electrode manufactured using a dispersion treatment and adding 100 mg of TRGO soot (mass ratio SGCNT: TRGO 1: 10) was prepared.
  • Cyclic voltammetry was performed on the test cells 1 to 3 and the comparative cells 1 and 2 using a VMP3 multichannel potentiostat / galvanostat (Biologic).
  • FIG. 5 is a graph showing the charge / discharge characteristics of the comparative cell 1 and the comparative cell 2.
  • FIG. 6 is a graph showing the charge / discharge characteristics of the test cells 1 to 3.
  • the specific capacitances of the comparative cells 1 and 2 were 182 F / g and 162 F / g with 3.7 V charge, respectively (FIGS. 5A and 5B).
  • the test cells 1 to 3 achieved capacities of 234 F / g, 250 F / g, and 236 F / g, respectively, with 3.7 V charge (FIG. 6A).
  • the test cells 1 to 3 achieved capacities of 276 F / g, 286 F / g, and 271 F / g, respectively, with 4.0 V charge (FIG. 6B).
  • a single-walled carbon nanotube (manufactured by Nippon Zeon Co., Ltd .; hereinafter also referred to as “SGCNT”) produced by the super-growth method is suspended in 100 mL of NMP at a concentration of 0.1 mg / mL, and sonicated for 30 minutes.
  • SGCNT single-walled carbon nanotube
  • This raw material suspension was supplied from the raw material introduction section at a pressure of 100 MPa using a compounding device having the same compounding module as in Example 1, and the compounding module was continuously passed through the compounding module five times to perform compounding. A dispersion of the material was obtained.
  • SEM observation it was confirmed that the carbon nanotubes were inserted between the graphene layers in the composite material obtained in this example, like the composite materials obtained in Examples 1 to 3.
  • the composite of graphene and carbon nanotubes is effectively performed without depending on the type (manufacturing method) of the raw graphene. .
  • exfoliated graphene one produced in accordance with a generally known method can be used.
  • a compounding device including a compounding module similar to that of Example 1 is applied as a device for exfoliating graphite.
  • exfoliated graphene can be produced as follows. First, a raw material suspension prepared by suspending commercially available graphite (manufactured by Shin-Etsu Chemical Co., Ltd., scaly graphite BF-5A) in NMP at a concentration of 10 mg / mL was supplied from the raw material introduction section at a pressure of 100 MPa. Then, the composite module (delamination module) is continuously passed for 120 minutes to perform delamination of graphite.
  • the flow rate of the raw material suspension at the time of passing is about 140 ml / min.
  • the raw material suspension recovered in the recovery unit is centrifuged at 6000 rpm for 60 minutes to remove the graphite precipitate that has not been delaminated, thereby obtaining a graphene dispersion.
  • the obtained dispersion is vacuum filtered to remove the dispersion medium, and the residue is dried at 120 ° C. to obtain graphene powder.
  • test cell 4 the test cell using the electrode manufactured using the composite material of Example 4 is referred to as “test cell 4”.
  • a cell using an electrode manufactured using only exfoliated graphene as a raw material (Comparative Cell 3), and SGCNT were suspended in 100 mL of NMP at a concentration of 0.1 mg / mL for more than 30 minutes.
  • a cell (comparative cell 4) was prepared using an electrode produced by using 200 mg of exfoliated graphene soot as a raw material after being subjected to sonic dispersion treatment (mass ratio SGCNT: exfoliated graphene 1: 20).
  • Cyclic voltammetry was performed on the test cell 4 and the comparative cells 3 and 4 using a VMP3 multichannel potentiostat / galvanostat (Biologic).
  • FIG. 7 is a graph showing the charge / discharge characteristics of the comparative cell 3 and the comparative cell 4.
  • FIG. 8 is a graph showing the charge / discharge characteristics of the test cell 4.

Abstract

Provided is a manufacturing method for a composite material of a two-dimensional substance and a fibrous substance capable of compositing the two-dimensional substance and fibrous substance while suppressing fractures or cuts in the distinctive structures of the two-dimensional substance and the fibrous substance and that is suitable for industrial mass production. The manufacturing method for a composite material of a two-dimensional substance and a fibrous substance of the present invention is characterized by including a step for high-pressure treating a suspension in which the two-dimensional substance and the fibrous substance have been suspended in a dispersion medium and supplying the suspension from a raw material introduction unit 2; a step for passing the suspension supplied from the raw material introduction unit 2 through a compositing module 3 and obtaining a dispersion of a composite material in which, in the dispersion medium, the fibrous substance has been inserted between layers of the two-dimensional substance; and a step for recovering the composite material dispersion with a recovery unit 4 after the dispersion has passed through the compositing module 3; the internal diameter of liquid flow passages in the raw material introduction unit 2 and the compositing module 3 through which the suspension flows being at least 0.15 mm and the raw material introduction unit 2 and the compositing module 3 not having liquid flow passages with an internal diameter of less than 0.15 mm.

Description

二次元物質と繊維状物質の複合材料の製造方法Method for producing composite material of two-dimensional substance and fibrous substance
 本発明は、二次元物質と繊維状物質の複合材料の製造方法に関するものである。 The present invention relates to a method for producing a composite material of a two-dimensional substance and a fibrous substance.
 二次元物質は、一般に、原子が所定の結晶構造をなしている単層または薄層の固体であり、代表的な二次元物質として、グラフェンが知られている。グラフェンは、炭素原子が六方晶系構造をなしている単層(単原子層)構造であり、グラファイト(黒鉛)の層状構造の基本構成をなすものである。 The two-dimensional material is generally a single-layer or thin-layer solid in which atoms have a predetermined crystal structure, and graphene is known as a representative two-dimensional material. Graphene is a single layer (monoatomic layer) structure in which carbon atoms form a hexagonal structure, and forms the basic structure of a layered structure of graphite (graphite).
 近年、グラフェンに関する研究を皮切りに、多様な二次元物質に関する研究および開発が行われている。二次元物質に関する研究は、当初はフレーク形態における電気伝導性や機械的特性等の基本的な物性を把握するものが中心であったが、最近ではグラフェン・コンポジットのような応用研究へと拡張され、活発化している。 In recent years, research and development on various two-dimensional materials have been conducted, starting with research on graphene. Research on two-dimensional materials was initially focused on understanding basic physical properties such as electrical conductivity and mechanical properties in flake form, but has recently been extended to applied research such as graphene composites. Is becoming more active.
 グラフェン・コンポジットとしては、これまでに、ポリマー、金属材料、カーボンナノチューブ等をグラフェンと複合化してなる複合材料が種々検討されている。例えば、酸化グラフェンとカーボンナノチューブとを所定の割合で含むグラフェン誘導体-カーボンナノチューブ複合材料が提案されている(特許文献1)。特許文献1においては、グラファイトを酸化させた酸化グラファイトを超音波処理して作製した酸化グラフェンをカーボンナノチューブとともにアルコール分散剤に加え、120~150分間、超音波分散を行って得た懸濁液を濾過し、乾燥させて、目的の複合材料が作製されている。 As a graphene composite, various composite materials obtained by combining a polymer, a metal material, a carbon nanotube, and the like with graphene have been studied so far. For example, a graphene derivative-carbon nanotube composite material containing graphene oxide and carbon nanotubes in a predetermined ratio has been proposed (Patent Document 1). In Patent Document 1, a graphene oxide prepared by ultrasonically treating graphite oxide obtained by oxidizing graphite is added to an alcohol dispersant together with carbon nanotubes, and a suspension obtained by performing ultrasonic dispersion for 120 to 150 minutes is used. The target composite material is produced by filtering and drying.
 このようなグラフェン・コンポジットの作製においては、所定の分散媒中で、グラフェンと、複合化する物質とを均一に分散させることが重要である。そのため、上述の超音波処理する方法のほかに、例えば、原料の粗分散液に背圧を付加した状態でせん断力を加えることによって分散させる方法(特許文献2)や、化粧品、食品、製薬等の分野で利用されている高圧乳化法を利用する方法(特許文献3)を適用することも想定され得る。 In producing such a graphene composite, it is important to uniformly disperse graphene and the compound to be combined in a predetermined dispersion medium. Therefore, in addition to the above-mentioned ultrasonic treatment method, for example, a method of dispersing by applying a shearing force with a back pressure applied to the raw raw dispersion (Patent Document 2), cosmetics, foods, pharmaceuticals, etc. It may be assumed that a method using a high-pressure emulsification method used in the above field (Patent Document 3) is applied.
特表2014-505650号公報Special table 2014-505650 gazette 国際公開第2015/015758号International Publication No. 2015/015758 特開2014-9151号公報JP 2014-9151 A
 しかしながら、カーボンナノチューブのような繊維状物質を分散させる際に超音波処理を用いる方法では、繊維状物質に長時間超音波処理を施す必要があるため、繊維状物質の特徴的な構造(例えば、カーボンナノチューブのグラファイト構造)の破壊や切断を生じ、繊維状物質および複合材料の特性が損なわれる場合がある。 However, in the method using ultrasonic treatment when dispersing a fibrous substance such as carbon nanotube, since it is necessary to perform ultrasonic treatment for a long time on the fibrous substance, a characteristic structure of the fibrous substance (for example, In some cases, the graphite structure of the carbon nanotube) is broken or cut, and the properties of the fibrous material and the composite material are impaired.
 また、上述の高圧乳化法では、もともと、衝撃力や摩砕力等を複合的に組み合わせて原料溶液に作用させることによって原料をより小さい粒径に破砕しながら均質化することを想定して装置構成が設計されている。具体的には、特許文献2に記載の高圧ホモジナイザーや特許文献3に記載の高圧乳化機を含む従来の高圧乳化装置は、圧力発生装置(ポンプ部)と、流路を著しく狭くした部分を有するパーツ(例えばノズルやオリフィスであり、以下「ノズル部」ともいう。)とを備えており、これらは高圧乳化法を行うために必須の構成要素である。ポンプ部からの圧力は、ノズル部でジェット流に変換され、ノズル部から噴射された液体は、吸収セルと呼ばれる部材を通過しながら乱流となり、衝撃力やせん断力が加えられる。従って、このような従来の高圧乳化装置を用いて、グラフェンのような二次元物質に対して高圧乳化法を適用した場合には、面方向への衝撃力が加わることによって二次元構造が破壊され、面方向の粒径が数μmほどの小さなフレーク状もしくはフラグメント状となり、その結果、二次元物質が本来発揮し得るほどの優れた特性が得られない場合がある。また、従来の高圧乳化装置を用いてカーボンナノチューブのような繊維状物質の分散処理を行った場合には、超音波処理による分散処理と同様に、繊維状物質の損傷が大きく、複合材料とした際に期待される程度の特性が得られない場合がある。 In the above-mentioned high-pressure emulsification method, the apparatus is originally assumed to homogenize the raw material while crushing it to a smaller particle size by combining the impact force and the grinding force into the raw material solution. The configuration is designed. Specifically, the conventional high-pressure emulsification apparatus including the high-pressure homogenizer described in Patent Document 2 and the high-pressure emulsifier described in Patent Document 3 has a pressure generator (pump unit) and a portion in which the flow path is significantly narrowed. Parts (for example, nozzles and orifices, hereinafter also referred to as “nozzle portions”) are included, and these are essential components for performing the high-pressure emulsification method. The pressure from the pump unit is converted into a jet flow at the nozzle unit, and the liquid ejected from the nozzle unit becomes a turbulent flow while passing through a member called an absorption cell, and an impact force or shear force is applied. Therefore, when the high-pressure emulsification method is applied to a two-dimensional substance such as graphene using such a conventional high-pressure emulsification apparatus, the two-dimensional structure is destroyed by applying an impact force in the plane direction. The particle size in the plane direction becomes small flakes or fragments having a size of about several μm, and as a result, there may be a case where excellent properties that a two-dimensional substance can originally exhibit cannot be obtained. In addition, when a dispersion treatment of a fibrous substance such as a carbon nanotube is performed using a conventional high-pressure emulsification apparatus, the damage to the fibrous substance is large as in the dispersion treatment by ultrasonic treatment, and a composite material is obtained. In some cases, the expected characteristics may not be obtained.
 このため、上記のようなこれまでの様々な試みにも関わらず、二次元物質と繊維状物質とを複合化してなる複合材料をより簡便かつ効率的に得る観点からは、依然として、さらなる改良が求められている。 For this reason, in spite of various attempts as described above, there is still a further improvement from the viewpoint of obtaining a composite material obtained by combining a two-dimensional substance and a fibrous substance more easily and efficiently. It has been demanded.
 本発明は、以上のとおりの事情に鑑みてなされたものであり、二次元物質および繊維状物質の特徴的な構造の破壊や切断を抑制しつつ、二次元物質と繊維状物質とを複合化することのできる、工業的量産化に適した、二次元物質と繊維状物質の複合材料の製造方法を提供することを目的としている。 The present invention has been made in view of the circumstances as described above, and combines a two-dimensional substance and a fibrous substance while suppressing the destruction and cutting of the characteristic structures of the two-dimensional substance and the fibrous substance. It is an object of the present invention to provide a method for producing a composite material of a two-dimensional material and a fibrous material, which can be used for industrial mass production.
 上記の目的を達成するために鋭意検討した結果、本発明者等は、従来の高圧乳化装置において必須の構成要素であった上記ノズル部への原料溶液の通液操作によってジェット流が発生する過程において、二次元物質の面方向および繊維状物質に過度の衝撃力が付加されていること、つまり、所望の原料を乳化・分散させて乳化分散液を生成するという高圧乳化法の最も根幹をなすジェット流の発生条件は、二次元物質と繊維状物質とを複合化するという観点からは必ずしも適切ではないことを見出した。また、ノズル部への通液操作によって発生するジェット流は、二次元物質および繊維状物質の特徴的な構造の破壊や切断の原因となる場合があることも見出した。 As a result of intensive studies to achieve the above object, the present inventors have found that a process in which a jet flow is generated by the operation of feeding the raw material solution to the nozzle part, which is an essential component in the conventional high-pressure emulsification apparatus. In the surface direction of the two-dimensional material and that the fibrous material is applied with an excessive impact force, that is, the most fundamental high-pressure emulsification method in which an emulsified dispersion is produced by emulsifying and dispersing a desired raw material. It has been found that the conditions for generating the jet flow are not necessarily appropriate from the viewpoint of combining the two-dimensional substance and the fibrous substance. It has also been found that the jet flow generated by the liquid passing operation to the nozzle part may cause destruction or cutting of the characteristic structure of the two-dimensional substance and the fibrous substance.
 そこで、本発明者等は、従来の高圧乳化法の特徴を生かしつつ、二次元物質と繊維状物質との複合化により適した方法に改良することによって、従来の方法と比較して高精度かつ高収率で、二次元物質の層間に繊維状物質が挿入された複合材料を得ることができることを見出した。 Therefore, the present inventors have improved the method to be more suitable for the combination of the two-dimensional material and the fibrous material while taking advantage of the characteristics of the conventional high-pressure emulsification method, thereby achieving higher accuracy than the conventional method. It has been found that a composite material in which a fibrous substance is inserted between two-dimensional substance layers can be obtained with high yield.
 これらの新規な知見に基づき、本発明者等は、さらに研究を重ね、本発明を完成させるに至ったものである。 Based on these novel findings, the present inventors have made further studies and completed the present invention.
 すなわち、本発明は、以下の態様を包含する。
(1)二次元物質と繊維状物質を分散媒に懸濁させた懸濁液を高圧処理して、原料導入部から供給する工程、前記原料導入部から供給された前記懸濁液を複合化モジュールに通過させて、前記分散媒中で前記二次元物質の層間に前記繊維状物質が挿入された複合材料の分散液を得る工程、および前記複合化モジュールを通過した後の前記複合材料の分散液を回収部で回収する工程を含む二次元物質と繊維状物質の複合材料の製造方法であって、前記原料導入部および前記複合化モジュールは、前記懸濁液が流れる通液路の内径が0.15mm以上であり、内径が0.15mm未満である通液路を有さないことを特徴とする二次元物質と繊維状物質の複合材料の製造方法。
(2)前記懸濁液を5MPa以上の圧力で高圧処理することを特徴とする(1)に記載の二次元物質と繊維状物質の複合材料の製造方法。
(3)前記複合化モジュールが、2つ以上の通液部材を直列的に連結した構造を有し、前記懸濁液の流れに関して上流側の通液部材の通液路の内径よりも下流側の通液部材の通液路の内径が大きいことを特徴とする(1)または(2)に記載の二次元物質と繊維状物質の複合材料の製造方法。
(4)前記回収部で回収した前記複合材料の分散液を前記原料導入部に再び供給して、前記複合化モジュールを通過させる工程をさらに含むことを特徴とする(1)から(3)のうちのいずれかに記載の二次元物質と繊維状物質の複合材料の製造方法。
(5)前記二次元物質がグラフェンであることを特徴とする(1)から(4)のうちのいずれかに記載の二次元物質と繊維状物質の複合材料の製造方法。
(6)前記繊維状物質がナノファイバーであることを特徴とする(1)から(5)のうちのいずれかに記載の二次元物質と繊維状物質の複合材料の製造方法。
(7)前記ナノファイバーがカーボンナノチューブであることを特徴とする(6)に記載の二次元物質と繊維状物質の複合材料の製造方法。
That is, this invention includes the following aspects.
(1) A step in which a suspension obtained by suspending a two-dimensional substance and a fibrous substance in a dispersion medium is subjected to high pressure treatment and supplied from a raw material introduction unit, and the suspension supplied from the raw material introduction unit is combined. Passing through the module to obtain a dispersion of the composite material in which the fibrous material is inserted between the layers of the two-dimensional material in the dispersion medium, and dispersing the composite material after passing through the composite module A method for producing a composite material of a two-dimensional substance and a fibrous substance including a step of recovering a liquid in a recovery part, wherein the raw material introduction part and the composite module have an inner diameter of a liquid passage through which the suspension flows. A method for producing a composite material of a two-dimensional substance and a fibrous substance, characterized by not having a liquid passage having an inner diameter of 0.15 mm or more and an inner diameter of less than 0.15 mm.
(2) The method for producing a composite material of a two-dimensional substance and a fibrous substance according to (1), wherein the suspension is subjected to high pressure treatment at a pressure of 5 MPa or more.
(3) The composite module has a structure in which two or more liquid passing members are connected in series, and is downstream of the inner diameter of the liquid passing path of the upstream liquid passing member with respect to the flow of the suspension. The method for producing a composite material of a two-dimensional substance and a fibrous substance according to (1) or (2), wherein an inner diameter of a fluid passage of the fluid passage member is large.
(4) The method further comprises a step of supplying again the dispersion liquid of the composite material recovered by the recovery unit to the raw material introduction unit and allowing the composite module to pass through. The manufacturing method of the composite material of the two-dimensional substance and fibrous substance in any one of them.
(5) The method for producing a composite material of a two-dimensional substance and a fibrous substance according to any one of (1) to (4), wherein the two-dimensional substance is graphene.
(6) The method for producing a composite material of a two-dimensional substance and a fibrous substance according to any one of (1) to (5), wherein the fibrous substance is a nanofiber.
(7) The method for producing a composite material of a two-dimensional substance and a fibrous substance according to (6), wherein the nanofiber is a carbon nanotube.
 本発明によれば、二次元物質および繊維状物質の特徴的な構造の破壊や切断を抑制しつつ、二次元物質と繊維状物質とを複合化することのできる、工業的量産化に適した、二次元物質と繊維状物質の複合材料の製造方法が提供される。 According to the present invention, the two-dimensional material and the fibrous material can be combined while suppressing the destruction and cutting of the characteristic structure of the two-dimensional material and the fibrous material, which is suitable for industrial mass production. A method for producing a composite material of a two-dimensional material and a fibrous material is provided.
本発明の一実施形態に係る二次元物質と繊維状物質の複合材料の製造装置を示す模式図The schematic diagram which shows the manufacturing apparatus of the composite material of the two-dimensional substance and fibrous substance which concerns on one Embodiment of this invention 実施例1で得られたTRGO-SGCNT複合材料のSEM画像SEM image of TRGO-SGCNT composite material obtained in Example 1 実施例2で得られたTRGO-SGCNT複合材料のSEM画像SEM image of TRGO-SGCNT composite material obtained in Example 2 実施例3で得られたTRGO-SGCNT複合材料のSEM画像SEM image of TRGO-SGCNT composite material obtained in Example 3 実施例1~3に関して作製した比較用のキャパシタ(比較用セル1および比較用セル2)についての充放電特性を示すグラフGraph showing charge / discharge characteristics of comparative capacitors (Comparative Cell 1 and Comparative Cell 2) produced in Examples 1 to 3 実施例1~3で得られたTRGO-SGCNT複合材料を用いて作製したスーパーキャパシタ(テスト用セル1~3)についての充放電特性を示すグラフGraph showing charge / discharge characteristics of supercapacitors (test cells 1 to 3) produced using the TRGO-SGCNT composite materials obtained in Examples 1 to 3 実施例4に関して作製した比較用のキャパシタ(比較用セル3および比較用セル4)についての充放電特性を示すグラフThe graph which shows the charging / discharging characteristic about the capacitor for a comparison (comparative cell 3 and comparative cell 4) produced regarding Example 4 実施例4で得られた剥離グラフェン-SGCNT複合材料を用いて作製したスーパーキャパシタ(テスト用セル4)についての充放電特性を示すグラフThe graph which shows the charging / discharging characteristic about the supercapacitor (test cell 4) produced using the peeling graphene-SGCNT composite material obtained in Example 4
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本明細書において、「二次元物質」とは、原子が所定の結晶構造をなしている単層または薄層の固体を指すものとする。二次元物質としては、その代表例であるグラフェンのほか、硫化モリブデン(IV)(MoS)、窒化ホウ素(BN)等が挙げられる。 In the present specification, the “two-dimensional substance” refers to a single-layer or thin-layer solid in which atoms have a predetermined crystal structure. Examples of the two-dimensional material include molybdenum (IV) (MoS 2 ), boron nitride (BN), and the like in addition to graphene, which is a representative example.
 本明細書において、「繊維状物質」とは、長さが外径の平均値の100倍以上である物質を指すものとする。繊維状物質としては、例えば、外径の平均値が1nm~100nmの範囲内のナノスケールであるナノファイバーが挙げられる。また、ナノファイバーとしては、中空構造を有するナノチューブ、中空構造を有しないナノロッド、導電性もしくは半導電性の性質を有するナノワイヤー等が挙げられる。より具体的には、本実施形態で使用されるナノファイバーとしては、例えば、カーボンナノチューブ、セルロースナノファイバー、金属ナノワイヤー等が挙げられる。 In this specification, “fibrous substance” refers to a substance whose length is 100 times or more the average value of the outer diameter. Examples of the fibrous material include nanofibers having a nanoscale whose average outer diameter is in the range of 1 nm to 100 nm. Examples of the nanofiber include a nanotube having a hollow structure, a nanorod having no hollow structure, and a nanowire having a conductive or semiconductive property. More specifically, examples of nanofibers used in the present embodiment include carbon nanotubes, cellulose nanofibers, and metal nanowires.
 以下では、本発明の実施形態の代表例として、二次元物質としてグラフェンを想定し、繊維状物質としてカーボンナノチューブを想定した場合を例にして説明する。 Hereinafter, as a representative example of the embodiment of the present invention, a case where graphene is assumed as a two-dimensional substance and a carbon nanotube is assumed as a fibrous substance will be described as an example.
 本実施形態では、二次元物質の面方向の平均粒径は特に制限されないが、繊維状物質との複合化の効果をより高い精度で得る観点からは、二次元物質の面方向の平均粒径を200μm以下とすることが好ましく考慮され、また、二次元物質の面方向の平均粒径を100μm以下とすることがより好ましく考慮される。なお、二次元物質の面方向の平均粒径が200μm以上の場合であっても、本実施形態による複合化の効果を得ることができる。 In the present embodiment, the average particle size in the plane direction of the two-dimensional material is not particularly limited, but from the viewpoint of obtaining the effect of combining with the fibrous material with higher accuracy, the average particle size in the plane direction of the two-dimensional material. Is preferably 200 μm or less, and more preferably, the average particle size in the plane direction of the two-dimensional substance is 100 μm or less. Even if the average particle size in the plane direction of the two-dimensional material is 200 μm or more, the composite effect according to the present embodiment can be obtained.
 二次元物質として本実施形態で用いるグラフェンの製造方法は特に限定されず、一般に公知の方法に従って製造されたグラフェンを使用することができる。例えば、グラフェンを製造する方法としては、グラファイトを層間剥離する手法が一般的であり、代表的な例としては、強酸化条件で酸化した酸化グラファイトを剥離する方法(ハマーズ法)が挙げられる。また、強酸化処理工程を要しないグラフェンの製造方法としては、例えば、グラファイトの分散溶液を超音波処理したり、グラファイトの分散溶液に撹拌羽根等を挿入して高速回転させたりして、グラファイトを層間剥離する方法等が知られている。 The method for producing graphene used in the present embodiment as a two-dimensional material is not particularly limited, and graphene produced according to a generally known method can be used. For example, as a method for producing graphene, a method of exfoliating graphite is generally used, and a typical example is a method of exfoliating graphite oxide oxidized under strong oxidation conditions (Hammers method). In addition, as a method for producing graphene that does not require a strong oxidation treatment step, for example, ultrasonically treating a graphite dispersion solution, inserting a stirring blade or the like into the graphite dispersion solution, and rotating the graphite at high speed, A method of delamination is known.
 本実施形態では、繊維状物質の外径の平均値は特に制限されないが、二次元物質との複合化をより効率的に行う観点からは、外径の平均値を0.4~5.0nmの範囲内とすることが好ましく考慮され、また、1.0~3.0nmの範囲内とすることがより好ましく考慮される。繊維状物質の外径の平均値は、例えば、透過型電子顕微鏡を用いて任意の倍率により観察し、視野面積の一定割合が当該繊維状物質である視野中から任意に抽出した複数の繊維状物質について外径を測定したときの算術平均値とすることができる。 In the present embodiment, the average value of the outer diameter of the fibrous substance is not particularly limited, but from the viewpoint of more efficiently combining with the two-dimensional substance, the average value of the outer diameter is 0.4 to 5.0 nm. Is preferably considered, and more preferably in the range of 1.0 to 3.0 nm. The average value of the outer diameter of the fibrous material is observed with an arbitrary magnification using, for example, a transmission electron microscope, and a plurality of fibrous materials arbitrarily extracted from a visual field in which a certain proportion of the visual field area is the fibrous material. It can be an arithmetic average value when the outer diameter of the substance is measured.
 繊維状物質として本実施形態で用いるカーボンナノチューブは、複数本のカーボンナノチューブが存在している集合体であり、その存在形態は特に限定されず、それぞれが独立で存在していてもよく、あるいは束状、絡まり合うなどの形態あるいはこれらの混合形態で存在していてもよい。また、種々の層数、外径のものが含まれていてもよい。 The carbon nanotubes used in the present embodiment as the fibrous material are aggregates in which a plurality of carbon nanotubes are present, and the form of the carbon nanotubes is not particularly limited, and each may exist independently or a bundle. May exist in a form such as a shape, entanglement, or a mixed form thereof. Various layers and outer diameters may be included.
 また、本実施形態で用いるカーボンナノチューブの製造方法は特に限定されず、化学気相成長(CVD)法、スーパーグロース(SG)法、レーザーアブレーション法、アーク放電法等、一般に公知の方法に従って製造されたカーボンナノチューブを使用することができる。 The method for producing the carbon nanotubes used in the present embodiment is not particularly limited, and is produced according to a generally known method such as a chemical vapor deposition (CVD) method, a super growth (SG) method, a laser ablation method, or an arc discharge method. Carbon nanotubes can be used.
 カーボンナノチューブの純度は特に制限されないが、本実施形態では、より高純度のカーボンナノチューブ(例えば、純度>99.5%、純度>99.98%)を用いた場合であっても、カーボンナノチューブの損傷を抑制しつつ、二次元物質の層間にカーボンナノチューブが挿入された複合材料を得ることができる。 The purity of the carbon nanotube is not particularly limited, but in this embodiment, even when a higher purity carbon nanotube (for example, purity> 99.5%, purity> 99.98%) is used, A composite material in which carbon nanotubes are inserted between layers of a two-dimensional substance can be obtained while suppressing damage.
 二次元物質と繊維状物質との懸濁液(以下、「原料懸濁液」ともいう。)の調製に用いる分散媒は適宜選択することができ、例えば、水、メタノール、エタノール、イソプロパノール等のアルコール類、ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)等のアミド類、およびこれらの混合溶媒が挙げられる。分散媒は、本発明の目的、効果を阻害しない範囲において、二次元物質および繊維状物質と分散媒との親和性等を考慮して、より均一に分散させることを目的に、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム等が分散剤として添加されていてもよく、また、所要の目的に応じてその他の添加剤が添加されていてもよい。なお、本実施形態では、目的の複合材料がグラフェンとカーボンナノチューブの複合材料である場合には、原則として、分散媒には分散剤等の添加剤を添加することを要しない。 A dispersion medium used for preparing a suspension of a two-dimensional substance and a fibrous substance (hereinafter also referred to as “raw material suspension”) can be appropriately selected. For example, water, methanol, ethanol, isopropanol, etc. Examples include alcohols, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), and mixed solvents thereof. The dispersion medium is, for example, dodecylbenzene, for the purpose of more uniformly dispersing in consideration of the affinity between the two-dimensional substance and the fibrous substance and the dispersion medium within a range not inhibiting the purpose and effect of the present invention. Sodium sulfonate, sodium dodecyl sulfate, sodium cholate, sodium deoxycholate and the like may be added as a dispersant, and other additives may be added according to the required purpose. In this embodiment, when the target composite material is a composite material of graphene and carbon nanotubes, in principle, it is not necessary to add an additive such as a dispersant to the dispersion medium.
 原料懸濁液における二次元物質の濃度は特に制限されないが、例えば、0.1~100mg/mLであり、好ましくは0.5~50mg/mLであり、より好ましくは1~10mg/mLである。二次元物質の濃度が上記の範囲内であると、分散媒中での繊維状物質との複合化の効果をより効率的に得ることができる。二次元物質の濃度が100mg/mLを上回ると、繊維状物質との複合化効率が劣る場合がある。 The concentration of the two-dimensional substance in the raw material suspension is not particularly limited, and is, for example, 0.1 to 100 mg / mL, preferably 0.5 to 50 mg / mL, more preferably 1 to 10 mg / mL. . When the concentration of the two-dimensional substance is within the above range, the effect of combining with the fibrous substance in the dispersion medium can be obtained more efficiently. When the concentration of the two-dimensional substance exceeds 100 mg / mL, the efficiency of complexing with the fibrous substance may be inferior.
 原料懸濁液における繊維状物質の濃度は特に制限されないが、例えば、0.01~5.0mg/mLであり、好ましくは0.05~1.0mg/mLであり、より好ましくは0.1~0.5mg/mLである。繊維状物質の濃度が上記の範囲内であると、分散媒中での二次元物質との複合化効果をより効率的に得ることができる。繊維状物質の濃度が5.0mg/mLを上回ると、二次元物質との複合化効率が劣る場合がある。 The concentration of the fibrous substance in the raw material suspension is not particularly limited, but is, for example, 0.01 to 5.0 mg / mL, preferably 0.05 to 1.0 mg / mL, more preferably 0.1 ~ 0.5 mg / mL. When the concentration of the fibrous substance is within the above range, the complexing effect with the two-dimensional substance in the dispersion medium can be obtained more efficiently. When the density | concentration of a fibrous substance exceeds 5.0 mg / mL, the compounding efficiency with a two-dimensional substance may be inferior.
 原料懸濁液における二次元物質と繊維状物質の質量比は特に制限されないが、例えば、繊維状物質:二次元物質=1:3~1:50であり、好ましくは繊維状物質:二次元物質=1:5~1:35であり、より好ましくは繊維状物質:二次元物質=1:10~1:30である。二次元物質と繊維状物質の質量比が上記の範囲内であると、分散媒中での二次元物質と繊維状物質との複合化効果をより効率的に得ることができ、複合材料をより高い収率で得ることができる。 The mass ratio of the two-dimensional substance and the fibrous substance in the raw material suspension is not particularly limited. For example, fibrous substance: two-dimensional substance = 1: 3 to 1:50, preferably fibrous substance: two-dimensional substance. = 1: 5 to 1:35, more preferably fibrous material: two-dimensional material = 1: 10 to 1:30. When the mass ratio of the two-dimensional substance and the fibrous substance is within the above range, the composite effect of the two-dimensional substance and the fibrous substance in the dispersion medium can be obtained more efficiently, and the composite material can be obtained more efficiently. High yield can be obtained.
 なお、ノズル部を備える従来の高圧乳化装置では、高粘度の溶液を適用することは困難であったが、本実施形態に係る複合化装置では、後述するようにノズル部を有さない構成であるため、原料懸濁液の粘性が高い場合であっても、二次元物質と繊維状物質とを複合化して、目的の複合材料を得ることができる。 In addition, in the conventional high-pressure emulsification apparatus provided with the nozzle part, it was difficult to apply a high-viscosity solution, but the composite apparatus according to the present embodiment has a configuration without the nozzle part as described later. Therefore, even when the viscosity of the raw material suspension is high, the target composite material can be obtained by combining the two-dimensional substance and the fibrous substance.
 本実施形態では、繊維状物質は、特段の前処理を行うことなく、分散媒中で二次元物質と一緒に懸濁させて原料懸濁液としてもよく、また、予め所定の分散媒中で分散させた繊維状物質の分散液を用いて、二次元物質または二次元物質が懸濁した懸濁液と混合して原料懸濁液としてもよい。例えば、繊維状物質としてカーボンナノチューブを用いる場合には、所望の分散媒中で分散したカーボンナノチューブ分散液を用いることができる。この場合においては、カーボンナノチューブ分散液に二次元物質としてのグラフェンを添加することによって、原料懸濁液を調製することができる。 In this embodiment, the fibrous material may be suspended together with the two-dimensional material in the dispersion medium without performing any special pretreatment, and may be used as a raw material suspension. A dispersion of a fibrous substance that has been dispersed may be mixed with a suspension in which a two-dimensional substance or a two-dimensional substance is suspended to form a raw material suspension. For example, when carbon nanotubes are used as the fibrous material, a carbon nanotube dispersion liquid dispersed in a desired dispersion medium can be used. In this case, the raw material suspension can be prepared by adding graphene as a two-dimensional substance to the carbon nanotube dispersion.
 図1は、本発明の一実施形態に係る二次元物質と繊維状物質の複合材料の製造装置(以下、「複合化装置」ともいう。)を示す模式図である。 FIG. 1 is a schematic diagram showing an apparatus for producing a composite material of a two-dimensional substance and a fibrous substance (hereinafter also referred to as “compositing apparatus”) according to an embodiment of the present invention.
 本実施形態に係る複合化装置1は、図1に示すように、その主要な構成として、原料導入部2、複合化モジュール3および回収部4を備えている。 As shown in FIG. 1, the compounding apparatus 1 according to the present embodiment includes a raw material introduction unit 2, a compounding module 3, and a recovery unit 4 as main components.
 このような複合化装置1を用いて行う、本実施形態に係る二次元物質と繊維状物質の複合材料の製造方法は、二次元物質と繊維状物質を分散媒に懸濁させた懸濁液を高圧処理して、原料導入部2から供給する工程、原料導入部2から供給された懸濁液を複合化モジュール3に通過させて、分散媒中で二次元物質の層間に繊維状物質が挿入された複合材料の分散液を得る工程、および複合化モジュール3を通過した後の複合材料の分散液を回収部4で回収する工程を含む。 The method for producing a composite material of a two-dimensional substance and a fibrous substance according to this embodiment performed using such a compounding apparatus 1 is a suspension in which a two-dimensional substance and a fibrous substance are suspended in a dispersion medium. The high pressure treatment and supplying from the raw material introduction unit 2, the suspension supplied from the raw material introduction unit 2 is passed through the composite module 3, and the fibrous material is formed between the layers of the two-dimensional material in the dispersion medium. A step of obtaining a dispersion of the inserted composite material, and a step of collecting the dispersion of the composite material after passing through the composite module 3 by the collection unit 4.
 原料導入部2では、二次元物質と繊維状物質を分散媒に懸濁させた懸濁液を高圧処理して、複合化モジュール3に供給する。より具体的には、原料導入部2では、図1に示すように、溶液タンク21に貯えられた原料懸濁液を、高圧ポンプ22により高圧処理して、複合化モジュール3に供給する。 In the raw material introduction unit 2, a suspension obtained by suspending a two-dimensional substance and a fibrous substance in a dispersion medium is subjected to high pressure treatment and supplied to the composite module 3. More specifically, in the raw material introduction unit 2, as shown in FIG. 1, the raw material suspension stored in the solution tank 21 is subjected to high pressure treatment by the high pressure pump 22 and supplied to the composite module 3.
 高圧ポンプ22によって原料懸濁液に付加する圧力は、二次元物質の面方向の平均粒径、繊維状物質の外径の平均値、原料懸濁液における二次元物質と繊維状物質の濃度、目的の複合材料の用途等に応じて適宜設定することができる。二次元物質がグラファイトである場合には、圧力は、例えば、5~150MPaであり、好ましくは10~125MPaであり、より好ましくは20~100MPaである。なお、後述するように原料懸濁液を複合化モジュール3に複数回通過させる場合には、その都度、上記の範囲内で圧力を調節するようにしてもよい。 The pressure applied to the raw material suspension by the high-pressure pump 22 is the average particle size in the surface direction of the two-dimensional material, the average value of the outer diameter of the fibrous material, the concentration of the two-dimensional material and the fibrous material in the raw material suspension, It can be set as appropriate according to the intended use of the composite material. When the two-dimensional substance is graphite, the pressure is, for example, 5 to 150 MPa, preferably 10 to 125 MPa, and more preferably 20 to 100 MPa. As will be described later, when the raw material suspension is passed through the composite module 3 a plurality of times, the pressure may be adjusted within the above range each time.
 上記の高圧処理工程では、高圧ポンプ22による原料懸濁液への圧力の付加によって、分散媒の分子が二次元物質の層間、および繊維状物質同士が凝集してバンドル構造を形成している場合には繊維状物質の間に浸透する作用が強まる。このとき、分散媒分子が浸透する力が二次元物質の層間、および繊維状物質の間に作用している力(例えば、ファンデルワールス力)を上回ると、分散媒分子が二次元物質の層間、および繊維状物質のバンドル構造の間に次々と入り込んでいく(インターカレートする)ことができるようになる。このようにして、高圧処理工程では、原料の二次元物質の層間、および繊維状物質のバンドル構造の間に多数のギャップが形成されて、二次元物質の層間、および繊維状物質の間に働いている相互作用が弱められることにより、後述する複合化工程において、二次元物質の層間への繊維状物質の挿入が効率的かつ効果的に進行する。 In the above high-pressure treatment step, when a pressure is applied to the raw material suspension by the high-pressure pump 22, the molecules of the dispersion medium are aggregated between the layers of the two-dimensional material and the fibrous materials to form a bundle structure. Has a stronger effect of penetrating between fibrous materials. At this time, if the force penetrating the dispersion medium molecules exceeds the force acting between the layers of the two-dimensional material and the fibrous material (for example, van der Waals force), the dispersion medium molecules move between the layers of the two-dimensional material. , And the bundle structure of the fibrous material can be successively inserted (intercalated). In this way, in the high-pressure treatment process, multiple gaps are formed between the two-dimensional material layers of the raw material and the bundle structure of the fibrous materials, and work between the two-dimensional material layers and the fibrous material. When the interaction is weakened, the insertion of the fibrous material between the layers of the two-dimensional material proceeds efficiently and effectively in the compounding step described later.
 複合化モジュール3では、原料導入部2から供給された原料懸濁液を通過させて、二次元物質の層間への繊維状物質の挿入を行う。 In the composite module 3, the raw material suspension supplied from the raw material introduction unit 2 is passed, and the fibrous material is inserted between the layers of the two-dimensional material.
 より具体的には、複合化モジュール3は、2つ以上の通液部材を直列的に連結した構造を有し、図1では、複合化モジュール3が3つの通液部材31、32、33を直列的に連結した構造を有する形態を例示している。 More specifically, the composite module 3 has a structure in which two or more liquid passing members are connected in series. In FIG. 1, the composite module 3 includes three liquid passing members 31, 32, and 33. The form which has the structure connected in series is illustrated.
 通液部材31、32、33としては、例えば、従来の高圧乳化装置において吸収セルとして使用されるストレートチューブ、スパイラルチューブ等を適用することができる。 As the liquid passing members 31, 32, 33, for example, straight tubes, spiral tubes and the like used as absorption cells in conventional high-pressure emulsification apparatuses can be applied.
 また、図1に示す複合化モジュール3では、複合化モジュール3を通過する原料懸濁液の流れに関して上流側の通液部材の通液路の内径よりも下流側の通液部材の通液路の内径が大きく構成されている。すなわち、通液部材31、32、33の通液路の内径を、それぞれD31、D32、D33とすると、D31<D32<D33の関係が成り立つ。 Further, in the composite module 3 shown in FIG. 1, the flow path of the flow member downstream of the flow path of the liquid flow member on the upstream side with respect to the flow of the raw material suspension passing through the composite module 3. The inner diameter is configured to be large. That is, when the inner diameters of the liquid passages of the liquid passage members 31, 32, and 33 are D31, D32, and D33, respectively, the relationship of D31 <D32 <D33 is established.
 通液部材31、32、33の長さは、二次元物質の面方向の平均粒径、原料懸濁液における二次元物質および繊維状物質の濃度、目的の複合材料の用途等に応じて適宜設定することができる。二次元物質がグラフェンである場合には、例えば、5~100cmの範囲内を一応の目安とすることができる。なお、通液部材31、32、33の長さは、後述する通液時間や通液回数に応じて適宜調節することが好ましく考慮される。 The lengths of the fluid- permeable members 31, 32, 33 are appropriately determined according to the average particle size in the plane direction of the two-dimensional substance, the concentration of the two-dimensional substance and the fibrous substance in the raw material suspension, the intended use of the composite material, and the like Can be set. When the two-dimensional material is graphene, for example, a range of 5 to 100 cm can be used as a rough standard. It should be noted that the lengths of the liquid passing members 31, 32, and 33 are preferably considered as appropriate depending on the liquid passing time and the number of times of passing through which will be described later.
 以下の表1に、複合化モジュール3の構成の一例を示す。 Table 1 below shows an example of the configuration of the composite module 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態において、原料導入部2および複合化モジュール3は、原料懸濁液が流れる通液路の内径が0.15mm以上であり、好ましくは0.15mm~1mmの範囲内である。また、原料導入部2および複合化モジュール3は、内径が0.15mm未満である通液路を有さない。すなわち、本実施形態に係る複合化装置1においては、従来の高圧乳化装置において必須の構成要素であったノズル部を有さない構成とすることによって、二次元物質の面方向に対して意図しない衝撃力が加わることを抑制し、さらに、繊維状物質の長さ方向に対して意図しない衝撃力が加わることも抑制している。 In the present embodiment, in the raw material introduction part 2 and the composite module 3, the inner diameter of the flow path through which the raw material suspension flows is 0.15 mm or more, preferably in the range of 0.15 mm to 1 mm. Moreover, the raw material introduction part 2 and the composite module 3 do not have a liquid passage having an inner diameter of less than 0.15 mm. That is, in the compounding apparatus 1 according to the present embodiment, it is not intended with respect to the surface direction of the two-dimensional substance by adopting a configuration that does not have the nozzle part that is an essential component in the conventional high-pressure emulsification apparatus. The application of an impact force is suppressed, and further, the application of an unintended impact force in the length direction of the fibrous material is also suppressed.
 上記の複合化工程では、複合化モジュール3の通液路を原料懸濁液が通過する際に、流体力学に従ってせん断力が付加される。このせん断力は、上述した高圧処理工程において二次元物質の層間に形成されたギャップ、および繊維状物質のバンドル構造の間に形成されたギャップに作用して、二次元物質の層間および繊維状物質の間に働いている相互作用がさらに弱められる。そして、二次元物質は、単層もしくは数層のフレーク状の構造体として分散媒中に分散し、その表面に分散媒分子が速やかに吸着することによって安定化され、上記構造体同士が再び集積して積層化することが抑制される。また、一本もしくは数本の繊維状物質が、繊維状物質同士が凝集して形成された凝集体から持ち上げられ解きほぐされるようにして、分散媒中に分散される。分散された繊維状物質は、その表面に分散媒分子が速やかに吸着することによって安定化され、繊維状物質同士が再び凝集してバンドル構造を形成することが抑制される。 In the above-mentioned compounding step, when the raw material suspension passes through the liquid passage of the compounding module 3, a shearing force is applied according to the fluid dynamics. This shear force acts on the gap formed between the layers of the two-dimensional material and the gap formed between the bundle structures of the fibrous material in the above-described high-pressure treatment process, and thereby the interlayer of the two-dimensional material and the fibrous material. The interaction that is working between is further weakened. The two-dimensional material is dispersed in the dispersion medium as a single-layer or several-layer flake-like structure, and is stabilized by the rapid adsorption of the dispersion medium molecules on the surface. Thus, lamination is suppressed. Further, one or several fibrous substances are dispersed in the dispersion medium such that the fibrous substances are lifted and unraveled from the aggregate formed by aggregating the fibrous substances. The dispersed fibrous material is stabilized by quickly adsorbing the dispersion medium molecules on the surface thereof, and the fibrous materials are prevented from aggregating again to form a bundle structure.
 そして、原料懸濁液が複合化モジュール3の上流側から下流側に流れるにつれて、二次元物質の層間に繊維状物質が挿入されて、複合材料が生成される。より具体的には、単層の二次元物質の間に繊維状物質が挟み込まれることによって、あるいは、数層の二次元物質の層間に形成されたメソポア(隙間)に繊維状物質が挿入されることによって、二次元物質と繊維状物質が複合化される。 Then, as the raw material suspension flows from the upstream side to the downstream side of the composite module 3, the fibrous material is inserted between the layers of the two-dimensional material to generate a composite material. More specifically, the fibrous substance is inserted into a mesopore (gap) formed by sandwiching a fibrous substance between two layers of a single layer or between several layers of two-dimensional substances. As a result, the two-dimensional material and the fibrous material are combined.
 このように、本実施形態に係る二次元物質と繊維状物質の複合材料の製造方法では、原料懸濁液の高圧処理工程と、その後の複合化工程を連続的に行うことによって、二次元物質の層間に繊維状物質が効率的に挿入され、目的の複合材料を高い収率で得ることができる。 Thus, in the manufacturing method of the composite material of the two-dimensional substance and the fibrous substance according to the present embodiment, the two-dimensional substance is obtained by continuously performing the high-pressure treatment process of the raw material suspension and the subsequent composite process. The fibrous material is efficiently inserted between the layers, and the target composite material can be obtained in high yield.
 複合化モジュール3を通過する際の原料懸濁液の流速は、二次元物質の面方向の平均粒径、繊維状物質の外径の平均値、原料懸濁液における二次元物質および繊維状物質の濃度、目的の複合材料の用途等に応じて適宜設定することができる。なお、複合化モジュール3を通過する際の原料懸濁液の速度は、後述する通液時間や通液回数に応じて適宜調節することが好ましく考慮される。 The flow rate of the raw material suspension when passing through the composite module 3 is the average particle size in the surface direction of the two-dimensional material, the average value of the outer diameter of the fibrous material, the two-dimensional material and the fibrous material in the raw material suspension. The concentration can be appropriately set according to the intended use of the composite material. In addition, it is preferable to consider that the speed of the raw material suspension when passing through the composite module 3 is appropriately adjusted according to the liquid passing time and the number of times of liquid passing described later.
 また、複合化モジュール3では原料懸濁液に大きなせん断力がかかるため、通液中に懸濁液の温度が上昇することがある。そのため、原料の過度な加熱による変質や剥離の抑制、回収部4での懸濁液の沸騰等を防ぐことを目的に、複合化モジュール3を冷却手段34により冷却することができる。 Further, in the composite module 3, since a large shearing force is applied to the raw material suspension, the temperature of the suspension may rise during the flow of liquid. Therefore, the composite module 3 can be cooled by the cooling means 34 for the purpose of preventing deterioration and peeling due to excessive heating of the raw materials, preventing the suspension from boiling in the recovery unit 4, and the like.
 回収部4では、複合化モジュール3を通過した後の複合材料の分散液を回収する。 The recovery unit 4 recovers the dispersion liquid of the composite material after passing through the composite module 3.
 回収した分散液は、これを取り出して、そのまま目的の複合材料の分散液とすることができ、希釈または濃縮することで所望の濃度にすることができる。また、回収した原料懸濁液に残存する原料の二次元物質および繊維状物質は、遠心分離等の一般に公知の分離法によって除去することができる。また、回収した分散液を、ろ過または遠心分離等で固液分離した後、乾燥することによって、目的の複合材料を得ることができる。 The recovered dispersion can be taken out and used as it is as a dispersion of the desired composite material, and can be made to a desired concentration by diluting or concentrating. Further, the two-dimensional substance and fibrous substance of the raw material remaining in the recovered raw material suspension can be removed by a generally known separation method such as centrifugation. Moreover, the target composite material can be obtained by drying the recovered dispersion after solid-liquid separation by filtration or centrifugation, and the like.
 また、本実施形態では、回収部4で回収した複合材料の分散液を原料導入部2に再び供給して、複合化モジュール3を通過させることもできる。このように、複合化モジュール3を複数回通過させることによって、二次元物質の層間に繊維状物質を挿入して複合化する複合化精度がより向上し、目的の複合材料をより高い収率で得ることができる。なお、上述したように、本実施形態に係る複合化装置1はノズル部を有さない構成であるため、原料懸濁液を複合化モジュール3に複数回通過させた場合であっても、二次元物質の二次元物質の面方向、および繊維状物質の長さ方向に対して意図しない衝撃力が加わることを抑制しつつ、二次元物質と繊維状物質の複合化を行うことができる。 Further, in this embodiment, the composite material dispersion recovered by the recovery unit 4 can be supplied again to the raw material introduction unit 2 and allowed to pass through the composite module 3. In this way, by passing the composite module 3 a plurality of times, the composite accuracy of inserting and combining the fibrous substance between the layers of the two-dimensional substance is further improved, and the target composite material can be obtained at a higher yield. Obtainable. As described above, since the compounding apparatus 1 according to the present embodiment has a configuration that does not include the nozzle portion, even if the raw material suspension is passed through the compounding module 3 multiple times, The two-dimensional substance and the fibrous substance can be combined while suppressing an unintended impact force from being applied to the surface direction of the two-dimensional substance of the two-dimensional substance and the length direction of the fibrous substance.
 原料懸濁液を複合化モジュール3に通過させる時間、すなわち、複合化工程を行う時間(通液時間)は、二次元物質の面方向の平均粒径、原料懸濁液における二次元物質と繊維状物質の濃度、目的の複合材料の用途等に応じて適宜設定することができる。二次元物質がグラフェンである場合には、例えば、15秒~180分間であり、好ましくは30秒~150分間であり、より好ましくは1~120分間である。なお、通液時間に伴って、複合化工程を行う回数(通液回数)が適宜調節されることが理解される。 The time for passing the raw material suspension through the composite module 3, that is, the time for performing the composite process (liquid passing time) is the average particle size in the surface direction of the two-dimensional material, the two-dimensional material and fiber in the raw material suspension. It can be set as appropriate according to the concentration of the substance, the intended use of the composite material, and the like. When the two-dimensional material is graphene, it is, for example, 15 seconds to 180 minutes, preferably 30 seconds to 150 minutes, and more preferably 1 to 120 minutes. It is understood that the number of times of performing the compounding step (number of times of liquid passing) is appropriately adjusted with the liquid passing time.
 このように、本実施形態に係る二次元物質と繊維状物質の複合材料の製造方法および複合化装置1を用いることにより、二次元物質(例えば、グラフェン)の層間に繊維状物質(例えば、カーボンナノチューブ)が挿入された複合材料を高効率かつ高収率で得ることができる。 As described above, by using the method for manufacturing a composite material of a two-dimensional substance and a fibrous substance and the composite apparatus 1 according to the present embodiment, a fibrous substance (for example, carbon) is interposed between layers of the two-dimensional substance (for example, graphene). The composite material in which the nanotubes are inserted can be obtained with high efficiency and high yield.
 このようにして得られる複合材料においては、二次元物質は面方向の二次元構造の破壊が抑制されており、かつ繊維状物質の損傷や切断が抑制されている。そのため、例えば、二次元物質としてグラフェンを用い、繊維状物質としてカーボンナノチューブを用いた場合には、複合化されたグラフェンやカーボンナノチューブが本来有している電気伝導性、透明性、機械的特性等がより効果的に発揮され、透明電極等の電子材料や配線材料、および高速充電・高出力・大容量を実現するキャパシタ部材としての応用が期待される。 In the composite material obtained in this way, the two-dimensional substance has suppressed the destruction of the two-dimensional structure in the plane direction, and the damage and cutting of the fibrous substance are suppressed. Therefore, for example, when graphene is used as the two-dimensional material and carbon nanotubes are used as the fibrous material, the electrical conductivity, transparency, mechanical properties, etc. inherent to the composite graphene and carbon nanotubes, etc. Is expected to be applied more effectively, and is expected to be applied as electronic materials such as transparent electrodes, wiring materials, and capacitor members that realize high-speed charging, high output, and large capacity.
 また、本実施形態に係る二次元物質と繊維状物質の複合材料の製造方法および複合化装置1によれば、従来の方法や装置と比較して、バッチ処理および連続処理のいずれにおいても、より大スケール(例えば、数g単位)での実施が可能となることが期待される。 In addition, according to the method for manufacturing a composite material of a two-dimensional substance and a fibrous substance and the composite apparatus 1 according to the present embodiment, compared to the conventional method or apparatus, in both batch processing and continuous processing, more It is expected that implementation on a large scale (for example, several g units) will be possible.
 なお、本実施形態に係る二次元物質と繊維状物質の複合材料の製造方法および複合化装置1は、二次元物質としてグラフェンを用いる場合、および繊維状物質としてカーボンナノチューブを用いる場合に限定されるものではなく、他の二次元物質および繊維状物質に対しても適用することができる。ここで、上記で説明した各種の条件は、用いる二次元物質および繊維状物質の種類、性質等に応じて、適宜設計することができることが理解される。 In addition, the manufacturing method and composite device 1 of the composite material of the two-dimensional substance and the fibrous substance according to the present embodiment are limited to the case where graphene is used as the two-dimensional substance and the case where the carbon nanotube is used as the fibrous substance. It can be applied to other two-dimensional materials and fibrous materials. Here, it is understood that the various conditions described above can be appropriately designed in accordance with the types and properties of the two-dimensional material and the fibrous material used.
 以上、本発明の実施形態を詳述してきたが、上記の構成要件の説明は、本発明の実施形態の一例(代表例)であり、具体的な形態はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更等があっても本発明に含まれる。 As mentioned above, although embodiment of this invention was explained in full detail, description of said structural requirement is an example (representative example) of embodiment of this invention, and a concrete form is not restricted to these embodiment. However, design changes and the like within the scope not departing from the gist of the present invention are included in the present invention.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<実施例1>
 スーパーグロース法で製造された単層カーボンナノチューブ(日本ゼオン株式会社製。以下、「SGCNT」とも称する。)を0.1mg/mLの濃度でNMP 100mLに懸濁させ、30分間超音波処理して分散させた分散液に、質量比でSGCNT:TRGO=1:10となるように熱還元処理された酸化グラフェン(thermally reduced graphene oxide(TRGO))100mgを添加して、原料懸濁液を調製した。
 この原料懸濁液を、表1に示すパターン2の複合化モジュールを備える複合化装置を用いて、圧力100MPaで原料導入部から供給して、複合化モジュールを連続的に5回通液させて複合材料の分散液を得た。なお、通液部材として用いたストレートチューブは、長さ30cmのものを用いた。
<Example 1>
A single-walled carbon nanotube (manufactured by Nippon Zeon Co., Ltd .; hereinafter also referred to as “SGCNT”) produced by the super-growth method is suspended in 100 mL of NMP at a concentration of 0.1 mg / mL, and sonicated for 30 minutes. 100 mg of thermally reduced graphene oxide (TRGO) thermally reduced so that SGCNT: TRGO = 1: 10 by mass ratio was added to the dispersed dispersion to prepare a raw material suspension. .
This raw material suspension was supplied from the raw material introduction part at a pressure of 100 MPa using a compounding device having a compounding module of pattern 2 shown in Table 1, and the compounding module was continuously passed five times. A composite dispersion was obtained. A straight tube having a length of 30 cm was used as the liquid passing member.
 なお、TRGOとしては一般に公知の方法に従って作製されたものを用いることができるが、本実施例で用いたTRGOは、次のようにして作製した。まず、市販のグラファイト(新越化成工業製、鱗片状黒鉛BF-5A)を酸化処理して得た酸化グラフェンを2mg/mLの濃度で水中に分散させ、溶媒を冷凍乾燥(フリーズドライ)して、均一な酸化グラフェン発泡体を得た。次に、この酸化グラフェン発泡体を400℃で1分間熱還元処理して、TRGOを得た。 In addition, although what was generally produced in accordance with a well-known method can be used as TRGO, TRGO used in the present Example was produced as follows. First, graphene oxide obtained by oxidizing a commercially available graphite (manufactured by Shin-Etsu Chemical Co., Ltd., scaly graphite BF-5A) is dispersed in water at a concentration of 2 mg / mL, and the solvent is freeze-dried (freeze-dried). A uniform graphene oxide foam was obtained. Next, this graphene oxide foam was thermally reduced at 400 ° C. for 1 minute to obtain TRGO.
<実施例2>
 原料懸濁液中のSGCNTとTRGOの質量比がSGCNT:TRGO=1:20となるようにTRGOを200mg添加したこと以外は実施例1と同様にして、複合材料の分散液を得た。
<Example 2>
A composite dispersion was obtained in the same manner as in Example 1 except that 200 mg of TRGO was added so that the mass ratio of SGCNT to TRGO in the raw material suspension was SGCNT: TRGO = 1: 20.
<実施例3>
 原料懸濁液中のSGCNTとTRGOの質量比がSGCNT:TRGO=1:30となるようにTRGOを300mg添加したこと以外は実施例1と同様にして、複合材料の分散液を得た。
<Example 3>
A composite dispersion was obtained in the same manner as in Example 1 except that 300 mg of TRGO was added so that the mass ratio of SGCNT to TRGO in the raw material suspension was SGCNT: TRGO = 1: 30.
 実施例1~3で得られた複合材料のSEM観察結果を、それぞれ図2~図4に示す。SEM観察用のサンプルは、Siウエハ上に複合材料の分散液を数mL滴下して調製した。SEM観察は、電界放射型走査型電子顕微鏡(FE-SEM、JSM-6500、JEOL社)を用いて行った。 The SEM observation results of the composite materials obtained in Examples 1 to 3 are shown in FIGS. 2 to 4, respectively. A sample for SEM observation was prepared by dropping several mL of a dispersion of a composite material on a Si wafer. SEM observation was performed using a field emission scanning electron microscope (FE-SEM, JSM-6500, JEOL).
 図2~図4において特に破線の丸印で囲んだように、本実施例で得られた複合材料では、いずれもグラフェンの層間にカーボンナノチューブが挿入されており、分散媒中で均一している様子が確認された。これにより、ノズル部を有さない複合化モジュールを用いて、高圧処理したグラフェンとカーボンナノチューブの懸濁液を通過させることによって、グラフェンとカーボンナノチューブの複合化が効果的に行われることが確認された。また、ノズル部を有さない複合化モジュールを用いることによって、様々な質量比の条件において、グラフェンとカーボンナノチューブが複合化した複合材料が得られることが確認された。 As shown in FIGS. 2 to 4, particularly in the composite material obtained in this example, carbon nanotubes are inserted between graphene layers and are uniform in the dispersion medium. The situation was confirmed. As a result, it was confirmed that the graphene and carbon nanotubes were effectively compounded by passing the suspension of graphene and carbon nanotubes that had been subjected to high-pressure treatment using a compound module that did not have a nozzle part. It was. Further, it was confirmed that a composite material in which graphene and carbon nanotubes were composited was obtained under various mass ratio conditions by using a composite module having no nozzle part.
<スーパーキャパシタの作製と特性評価>
 次に、実施例1~3で得られた複合材料を用いて、以下の手順に従ってスーパーキャパシタを作製し、その特性を評価した。
<Production and characteristics evaluation of supercapacitors>
Next, using the composite materials obtained in Examples 1 to 3, supercapacitors were produced according to the following procedure, and their characteristics were evaluated.
 複合材料とポリ(テトラフルオロエチレン)(PTFE)とを、質量比90:10の割合で、NMP中で混合した。次いで、この溶液を、多孔質膜(Hydrophilic、0.2μm PTFE)上で吸引ろ過して電極膜を形成した。この電極膜を25℃で24時間真空乾燥させた後、直径15mmにカットして、重さが約0.8mgの電極を作製した。 The composite material and poly (tetrafluoroethylene) (PTFE) were mixed in NMP at a mass ratio of 90:10. Next, this solution was subjected to suction filtration on a porous membrane (Hydrophilic, 0.2 μm PTFE) to form an electrode membrane. This electrode film was vacuum-dried at 25 ° C. for 24 hours and then cut to a diameter of 15 mm to produce an electrode having a weight of about 0.8 mg.
 テスト用セルとして、電解液の溶質には1-エチル-3-メチルイミダゾリウム-テトラフルオロボレート(EMI-BF4)を用い、セパレーターにはガラス繊維を用い、電流コレクターには導電物として炭素が塗布されたアルミ箔(ExopackTM 0.5mil 両面塗布)を用いた。なお、テスト用セルは、アルゴンガス雰囲気下のグローブボックス内で組み立てた。以下では、実施例1、2、3の複合材料を用いて作製した電極を用いたテスト用セルを、それぞれ、「テスト用セル1」、「テスト用セル2」、「テスト用セル3」と称する。 As a test cell, 1-ethyl-3-methylimidazolium-tetrafluoroborate (EMI-BF4) is used as the electrolyte solute, glass fiber is used as the separator, and carbon is applied as a conductive material to the current collector. The aluminum foil (Exopack 0.5 mil double-sided coating) was used. The test cell was assembled in a glove box under an argon gas atmosphere. In the following, test cells using the electrodes prepared using the composite materials of Examples 1, 2, and 3 are referred to as “test cell 1”, “test cell 2”, and “test cell 3”, respectively. Called.
 また、比較用セルとして、原料のTRGOのみを用いて作製した電極を用いたセル(比較用セル1)、およびSGCNTを0.1mg/mLの濃度でNMP 100mLに懸濁させて30分間超音波分散処理した後にTRGO 100mgを添加したもの(質量比でSGCNT:TRGO=1:10)を用いて作製した電極を用いたセル(比較用セル2)を作製した。 In addition, as a comparison cell, a cell using an electrode produced using only TRGO as a raw material (comparison cell 1), and SGCNT were suspended in 100 mL of NMP at a concentration of 0.1 mg / mL and ultrasonicated for 30 minutes. A cell (Comparative Cell 2) using an electrode manufactured using a dispersion treatment and adding 100 mg of TRGO soot (mass ratio SGCNT: TRGO = 1: 10) was prepared.
 上記のテスト用セル1~3および比較用セル1、2について、VMP3 マルチチャンネル ポテンショスタット/ガルバノスタット(Biologic社)を用いて、サイクリックボルタンメトリー(CV)を行った。 Cyclic voltammetry (CV) was performed on the test cells 1 to 3 and the comparative cells 1 and 2 using a VMP3 multichannel potentiostat / galvanostat (Biologic).
 図5は、比較用セル1および比較用セル2の充放電特性を示すグラフである。図6は、テスト用セル1~3の充放電特性を示すグラフである。 FIG. 5 is a graph showing the charge / discharge characteristics of the comparative cell 1 and the comparative cell 2. FIG. 6 is a graph showing the charge / discharge characteristics of the test cells 1 to 3.
 比較用セル1、2の比キャパシタンスは、3.7V充電で、それぞれ182F/g、162F/gであった(図5(a)および(b))。これに対して、テスト用セル1~3では、3.7V充電で、それぞれ234F/g、250F/g、236F/gの容量を達成した(図6(a))。さらに、テスト用セル1~3は、4.0V充電で、それぞれ276F/g、286F/g、271F/gの容量を達成した(図6(b))。これらの結果を以下の表2にまとめて示す。 The specific capacitances of the comparative cells 1 and 2 were 182 F / g and 162 F / g with 3.7 V charge, respectively (FIGS. 5A and 5B). In contrast, the test cells 1 to 3 achieved capacities of 234 F / g, 250 F / g, and 236 F / g, respectively, with 3.7 V charge (FIG. 6A). Further, the test cells 1 to 3 achieved capacities of 276 F / g, 286 F / g, and 271 F / g, respectively, with 4.0 V charge (FIG. 6B). These results are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 このように、本実施例で得られた複合材料を用いて、高容量のスーパーキャパシタが作製可能であることが確認された。特に、SGCNTとTRGOの質量比をSGCNT:TRGO=1:20とした実施例2の複合材料を用いた場合には、3.7V充電、4.0V充電のいずれにおいても250F/g以上の比キャパシタンスを有する高性能のスーパーキャパシタが作製可能であることが確認された。 Thus, it was confirmed that a high-capacity supercapacitor could be produced using the composite material obtained in this example. In particular, when the composite material of Example 2 in which the mass ratio of SGCNT to TRGO is SGCNT: TRGO = 1: 20 is used, the ratio is 250 F / g or more in both 3.7 V charge and 4.0 V charge. It was confirmed that a high-performance supercapacitor having a capacitance can be manufactured.
<実施例4>
 スーパーグロース法で製造された単層カーボンナノチューブ(日本ゼオン株式会社製。以下、「SGCNT」とも称する。)を0.1mg/mLの濃度でNMP 100mLに懸濁させ、30分間超音波処理して分散させた分散液に、質量比でSGCNT:TRGO=1:20となるように剥離法で製造されたグラフェン(以下、「剥離グラフェン」とも称する。)200mgを添加して、原料懸濁液を調製した。
 この原料懸濁液を、実施例1と同様の複合化モジュールを備える複合化装置を用いて、圧力100MPaで原料導入部から供給して、複合化モジュールを連続的に5回通液させて複合材料の分散液を得た。
 SEM観察の結果、本実施例で得られた複合材料は、実施例1~3で得られた複合材料と同様に、グラフェンの層間にカーボンナノチューブが挿入されている様子が確認された。これにより、ノズル部を有さない複合化モジュールを用いることによって、原料のグラフェンの種類(製造方法)に依存することなく、グラフェンとカーボンナノチューブの複合化が効果的に行われることが確認された。
<Example 4>
A single-walled carbon nanotube (manufactured by Nippon Zeon Co., Ltd .; hereinafter also referred to as “SGCNT”) produced by the super-growth method is suspended in 100 mL of NMP at a concentration of 0.1 mg / mL, and sonicated for 30 minutes. To the dispersed dispersion, 200 mg of graphene produced by a peeling method (hereinafter also referred to as “peeled graphene”) so as to have a mass ratio of SGCNT: TRGO = 1: 20 is added, and a raw material suspension is added. Prepared.
This raw material suspension was supplied from the raw material introduction section at a pressure of 100 MPa using a compounding device having the same compounding module as in Example 1, and the compounding module was continuously passed through the compounding module five times to perform compounding. A dispersion of the material was obtained.
As a result of SEM observation, it was confirmed that the carbon nanotubes were inserted between the graphene layers in the composite material obtained in this example, like the composite materials obtained in Examples 1 to 3. As a result, it was confirmed that by using a composite module having no nozzle part, the composite of graphene and carbon nanotubes is effectively performed without depending on the type (manufacturing method) of the raw graphene. .
 なお、剥離グラフェンとしては一般に公知の方法に従って作製されたものを用いることができるが、例えば、実施例1と同様の複合化モジュールを備える複合化装置を、グラファイトを層間剥離するための装置として適用することによって、以下のようにして剥離グラフェンを作製することもできる。まず、市販のグラファイト(新越化成工業製、鱗片状黒鉛BF-5A)を10mg/mLの濃度でNMPに懸濁させて調製した原料懸濁液を、圧力100MPaで原料導入部から供給して、複合化モジュール(層間剥離モジュール)を連続的に120分間通液させることによってグラファイトの層間剥離を行う。なお、通液時の原料懸濁液の流速は、約140ml/minである。次に、回収部で回収した原料懸濁液を6000rpmで60分間遠心分離して、層間剥離されなかったグラファイトの沈殿物を除去することにより、グラフェンの分散液とする。また、得られた分散液を真空ろ過して分散媒を除去し、残渣を120℃で乾燥して、グラフェンの粉末を得る。 In addition, as the exfoliated graphene, one produced in accordance with a generally known method can be used. For example, a compounding device including a compounding module similar to that of Example 1 is applied as a device for exfoliating graphite. By doing so, exfoliated graphene can be produced as follows. First, a raw material suspension prepared by suspending commercially available graphite (manufactured by Shin-Etsu Chemical Co., Ltd., scaly graphite BF-5A) in NMP at a concentration of 10 mg / mL was supplied from the raw material introduction section at a pressure of 100 MPa. Then, the composite module (delamination module) is continuously passed for 120 minutes to perform delamination of graphite. In addition, the flow rate of the raw material suspension at the time of passing is about 140 ml / min. Next, the raw material suspension recovered in the recovery unit is centrifuged at 6000 rpm for 60 minutes to remove the graphite precipitate that has not been delaminated, thereby obtaining a graphene dispersion. The obtained dispersion is vacuum filtered to remove the dispersion medium, and the residue is dried at 120 ° C. to obtain graphene powder.
<スーパーキャパシタの作製と特性評価>
 次に、得られた複合材料を用いて、上記と同様の手順に従ってスーパーキャパシタを作製し、その特性を評価した。以下では、実施例4の複合材料を用いて作製した電極を用いたテスト用セルを、「テスト用セル4」と称する。
<Production and characteristics evaluation of supercapacitors>
Next, using the obtained composite material, a supercapacitor was produced according to the same procedure as described above, and its characteristics were evaluated. Hereinafter, the test cell using the electrode manufactured using the composite material of Example 4 is referred to as “test cell 4”.
 また、比較用セルとして、原料の剥離グラフェンのみを用いて作製した電極を用いたセル(比較用セル3)、およびSGCNTを0.1mg/mLの濃度でNMP 100mLに懸濁させて30分間超音波分散処理した後に原料の剥離グラフェン 200mgを添加したもの(質量比でSGCNT:剥離グラフェン=1:20)を用いて作製した電極を用いたセル(比較用セル4)を作製した。 In addition, as a comparative cell, a cell using an electrode manufactured using only exfoliated graphene as a raw material (Comparative Cell 3), and SGCNT were suspended in 100 mL of NMP at a concentration of 0.1 mg / mL for more than 30 minutes. A cell (comparative cell 4) was prepared using an electrode produced by using 200 mg of exfoliated graphene soot as a raw material after being subjected to sonic dispersion treatment (mass ratio SGCNT: exfoliated graphene = 1: 20).
 上記のテスト用セル4および比較用セル3、4について、VMP3 マルチチャンネル ポテンショスタット/ガルバノスタット(Biologic社)を用いて、サイクリックボルタンメトリー(CV)を行った。 Cyclic voltammetry (CV) was performed on the test cell 4 and the comparative cells 3 and 4 using a VMP3 multichannel potentiostat / galvanostat (Biologic).
 図7は、比較用セル3および比較用セル4の充放電特性を示すグラフである。図8は、テスト用セル4の充放電特性を示すグラフである。 FIG. 7 is a graph showing the charge / discharge characteristics of the comparative cell 3 and the comparative cell 4. FIG. 8 is a graph showing the charge / discharge characteristics of the test cell 4.
 比較用セル3、4の比キャパシタンスは、3.7V充電で、それぞれ75F/g、65F/gであった(図7(a)および(b))。これに対して、テスト用セル4では、3.7V充電で、112F/gの容量を達成した(図8)。これらの結果を以下の表3にまとめて示す。 The specific capacitances of the comparison cells 3 and 4 were 75 F / g and 65 F / g, respectively, with 3.7 V charge (FIGS. 7A and 7B). In contrast, the test cell 4 achieved a capacity of 112 F / g with 3.7 V charge (FIG. 8). These results are summarized in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、原料のグラフェンの種類(製造方法)に依存することなく、本実施例で得られた複合材料を用いて、高容量のスーパーキャパシタが作製可能であることが確認された。 Thus, it was confirmed that a high-capacity supercapacitor can be produced using the composite material obtained in this example without depending on the type (manufacturing method) of the raw material graphene.
 以上、本発明の実施形態を詳述してきたが、具体的な形態はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更などがあっても本発明に含まれる。 As described above, the embodiments of the present invention have been described in detail. However, specific embodiments are not limited to these embodiments, and the present invention can be applied even if there is a design change without departing from the gist of the present invention. included.
 1 二次元物質と繊維状物質の複合材料の製造装置(複合化装置)
 2 原料導入部
  21 溶液タンク
  22 高圧ポンプ
 3 複合化モジュール
  31、32、33 通液部材
 4 回収部
1. Manufacturing equipment for composite materials of two-dimensional substances and fibrous substances (compositing equipment)
2 Raw material introduction part 21 Solution tank 22 High-pressure pump 3 Compound module 31, 32, 33 Liquid passing member 4 Collection part

Claims (7)

  1.  二次元物質と繊維状物質を分散媒に懸濁させた懸濁液を高圧処理して、原料導入部から供給する工程、
     前記原料導入部から供給された前記懸濁液を複合化モジュールに通過させて、前記分散媒中で前記二次元物質の層間に前記繊維状物質が挿入された複合材料の分散液を得る工程、および
     前記複合化モジュールを通過した後の前記複合材料の分散液を回収部で回収する工程を含む二次元物質と繊維状物質の複合材料の製造方法であって、
     前記原料導入部および前記複合化モジュールは、前記懸濁液が流れる通液路の内径が0.15mm以上であり、内径が0.15mm未満である通液路を有さないことを特徴とする二次元物質と繊維状物質の複合材料の製造方法。
    A process of high-pressure processing a suspension in which a two-dimensional substance and a fibrous substance are suspended in a dispersion medium, and supplying the suspension from a raw material introduction unit;
    Passing the suspension supplied from the raw material introduction section through a composite module to obtain a dispersion of a composite material in which the fibrous substance is inserted between layers of the two-dimensional substance in the dispersion medium; And a method for producing a composite material of a two-dimensional substance and a fibrous substance, including a step of recovering a dispersion of the composite material after passing through the composite module in a recovery unit,
    The raw material introduction section and the composite module have an inner diameter of a flow path through which the suspension flows are 0.15 mm or more and do not have a flow path whose inner diameter is less than 0.15 mm. A method for producing a composite material of a two-dimensional substance and a fibrous substance.
  2.  前記懸濁液を5MPa以上の圧力で高圧処理することを特徴とする請求項1に記載の二次元物質と繊維状物質の複合材料の製造方法。 The method for producing a composite material of a two-dimensional substance and a fibrous substance according to claim 1, wherein the suspension is subjected to a high-pressure treatment at a pressure of 5 MPa or more.
  3.  前記複合化モジュールが、2つ以上の通液部材を直列的に連結した構造を有し、前記懸濁液の流れに関して上流側の通液部材の通液路の内径よりも下流側の通液部材の通液路の内径が大きいことを特徴とする請求項1または2に記載の二次元物質と繊維状物質の複合材料の製造方法。 The composite module has a structure in which two or more liquid-permeable members are connected in series, and the liquid flow downstream of the flow path of the upstream liquid-permeable member with respect to the flow of the suspension. The method for producing a composite material of a two-dimensional substance and a fibrous substance according to claim 1 or 2, characterized in that the inner diameter of the liquid passage of the member is large.
  4.  前記回収部で回収した前記複合材料の分散液を前記原料導入部に再び供給して、前記複合化モジュールを通過させる工程をさらに含むことを特徴とする請求項1から3のうちのいずれか一項に記載の二次元物質と繊維状物質の複合材料の製造方法。 4. The method according to claim 1, further comprising a step of supplying again the dispersion liquid of the composite material recovered by the recovery unit to the raw material introduction unit and allowing the composite module to pass therethrough. 5. A method for producing a composite material of a two-dimensional substance and a fibrous substance according to item 2.
  5.  前記二次元物質がグラフェンであることを特徴とする請求項1から4のうちのいずれか一項に記載の二次元物質と繊維状物質の複合材料の製造方法。 The method for producing a composite material of a two-dimensional substance and a fibrous substance according to any one of claims 1 to 4, wherein the two-dimensional substance is graphene.
  6.  前記繊維状物質がナノファイバーであることを特徴とする請求項1から5のうちのいずれか一項に記載の二次元物質と繊維状物質の複合材料の製造方法。 The method for producing a composite material of a two-dimensional substance and a fibrous substance according to any one of claims 1 to 5, wherein the fibrous substance is a nanofiber.
  7.  前記ナノファイバーがカーボンナノチューブであることを特徴とする請求項6に記載の二次元物質と繊維状物質の複合材料の製造方法。 The method for producing a composite material of a two-dimensional substance and a fibrous substance according to claim 6, wherein the nanofiber is a carbon nanotube.
PCT/JP2016/083540 2015-12-24 2016-11-11 Manufacturing method for composite material of two-dimensional substance and fibrous substance WO2017110295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017557786A JP6573262B2 (en) 2015-12-24 2016-11-11 Method for producing composite material of two-dimensional substance and fibrous substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251138 2015-12-24
JP2015-251138 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110295A1 true WO2017110295A1 (en) 2017-06-29

Family

ID=59090421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083540 WO2017110295A1 (en) 2015-12-24 2016-11-11 Manufacturing method for composite material of two-dimensional substance and fibrous substance

Country Status (2)

Country Link
JP (1) JP6573262B2 (en)
WO (1) WO2017110295A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597906A (en) * 2018-06-13 2018-09-28 常熟理工学院 A kind of preparation method of fiber/graphene/copper sulfide flexible electrode material
WO2019065004A1 (en) 2017-09-27 2019-04-04 国立研究開発法人物質・材料研究機構 Graphene-containing electrode, method of manufacturing same, and electricity storage device using same
KR20190133496A (en) * 2018-05-23 2019-12-03 전남대학교산학협력단 Preparation method of low-thickness graphene using functional additives and high-pressure cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009151A (en) * 2012-07-03 2014-01-20 Harima Chemicals Group Inc Method for producing thin-layer graphite or thin-layer graphite compound
JP2014505650A (en) * 2010-12-30 2014-03-06 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー Graphene derivative-carbon nanotube composite material and manufacturing method thereof
EP2769960A1 (en) * 2013-02-22 2014-08-27 Samsung Electronics Co., Ltd Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
WO2015015758A1 (en) * 2013-07-31 2015-02-05 日本ゼオン株式会社 Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product
JP2015078096A (en) * 2013-10-17 2015-04-23 独立行政法人物質・材料研究機構 Method for preparing hydrothermally prepared graphene/cnt composite aerogel, hydrothermally prepared graphene/cnt composite aerogel, and electrode for separation and detection of ua, da, and aa

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896240B (en) * 2012-12-26 2016-01-20 海洋王照明科技股份有限公司 A kind of preparation method of Graphene/carbon nanotube composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505650A (en) * 2010-12-30 2014-03-06 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー Graphene derivative-carbon nanotube composite material and manufacturing method thereof
JP2014009151A (en) * 2012-07-03 2014-01-20 Harima Chemicals Group Inc Method for producing thin-layer graphite or thin-layer graphite compound
EP2769960A1 (en) * 2013-02-22 2014-08-27 Samsung Electronics Co., Ltd Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
WO2015015758A1 (en) * 2013-07-31 2015-02-05 日本ゼオン株式会社 Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product
JP2015078096A (en) * 2013-10-17 2015-04-23 独立行政法人物質・材料研究機構 Method for preparing hydrothermally prepared graphene/cnt composite aerogel, hydrothermally prepared graphene/cnt composite aerogel, and electrode for separation and detection of ua, da, and aa

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065004A1 (en) 2017-09-27 2019-04-04 国立研究開発法人物質・材料研究機構 Graphene-containing electrode, method of manufacturing same, and electricity storage device using same
CN111164716A (en) * 2017-09-27 2020-05-15 国立研究开发法人物质材料研究机构 Graphene-containing electrode, method for producing same, and electricity storage device using same
JPWO2019065004A1 (en) * 2017-09-27 2020-11-12 国立研究開発法人物質・材料研究機構 Electrodes containing graphene, their manufacturing methods and storage devices using them
US11283065B2 (en) 2017-09-27 2022-03-22 National Institute For Materials Science Graphene-containing electrode, method for manufacturing same, and power storage device using same
CN111164716B (en) * 2017-09-27 2022-06-03 国立研究开发法人物质材料研究机构 Graphene-containing electrode, method for producing same, and electricity storage device using same
KR20190133496A (en) * 2018-05-23 2019-12-03 전남대학교산학협력단 Preparation method of low-thickness graphene using functional additives and high-pressure cell
KR102091760B1 (en) 2018-05-23 2020-03-20 전남대학교산학협력단 Preparation method of low-thickness graphene using functional additives and high-pressure cell
CN108597906A (en) * 2018-06-13 2018-09-28 常熟理工学院 A kind of preparation method of fiber/graphene/copper sulfide flexible electrode material
CN108597906B (en) * 2018-06-13 2020-02-14 常熟理工学院 Preparation method of fiber/graphene/copper sulfide flexible electrode material

Also Published As

Publication number Publication date
JP6573262B2 (en) 2019-09-11
JPWO2017110295A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
Le Ba et al. Review on the recent progress in the preparation and stability of graphene-based nanofluids
Zhuang et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology
TWI558661B (en) Graphene composite and method of producing the same
TWI732986B (en) Seedless particles with carbon allotropes
US7785492B1 (en) Mass production of nano-scaled platelets and products
Russo et al. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions
Ye et al. Green fabrication of cellulose/graphene composite in ionic liquid and its electrochemical and photothermal properties
KR101700355B1 (en) Preparation method of carbon nanotube and dispersed composition of carbon nanotube
JP6573262B2 (en) Method for producing composite material of two-dimensional substance and fibrous substance
You et al. Preparation of high concentration graphene dispersion with low boiling point solvents
TWI607967B (en) Method of producing graphene
Nam et al. Green, fast, and scalable production of reduced graphene oxide via Taylor vortex flow
Wu et al. 2D boron nitride nanosheets for smart thermal management and advanced dielectrics
KR102091760B1 (en) Preparation method of low-thickness graphene using functional additives and high-pressure cell
Kim et al. Graphene for Water-Based Nanofluid Preparation: Effect of Chemical Modifications on Dispersion and Stability
WO2016189873A1 (en) Carbon film and method for producing same, as well as fibrous carbon nano structure dispersion and method for producing same
JP2016183082A (en) Production method of carbon film, and carbon film
JP5812313B1 (en) Graphene composite and method for producing the same
JP6474077B2 (en) Method for delamination of layered material and apparatus therefor
CN113891853A (en) Method for preparing flake graphene
CN108430917B (en) Fibrous carbon nanostructure dispersion liquid
JP6805440B2 (en) A method for modifying a layered material and a device for that purpose, and modified graphite and an electrode material for a secondary battery using the modified graphite.
CN102442659B (en) Method for nondestructive dispersion of double-walled carbon nanotube by combination of N, N-dimethylformamide and ethylene glycol
US11577961B2 (en) Methods for producing graphene-based materials from graphite
Ekdahl Progress in top-down production of graphene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878192

Country of ref document: EP

Kind code of ref document: A1