JPH0840712A - Production of dispersion liquid of carbon electric conductor powder - Google Patents

Production of dispersion liquid of carbon electric conductor powder

Info

Publication number
JPH0840712A
JPH0840712A JP6200106A JP20010694A JPH0840712A JP H0840712 A JPH0840712 A JP H0840712A JP 6200106 A JP6200106 A JP 6200106A JP 20010694 A JP20010694 A JP 20010694A JP H0840712 A JPH0840712 A JP H0840712A
Authority
JP
Japan
Prior art keywords
carbon
liquid
conductor powder
elastomer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200106A
Other languages
Japanese (ja)
Inventor
Mitsuhiko Sakakibara
満彦 榊原
Yasumasa Takeuchi
安正 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP6200106A priority Critical patent/JPH0840712A/en
Publication of JPH0840712A publication Critical patent/JPH0840712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a process for producing a dispersion liquid of carbon electric conductor powder capable of increasing electric conductivity without increasing a compounding ratio of the carbon electric conductor powder and excellent in storage stability in the state of the dispersed liquid. CONSTITUTION:A liquid mixture is prepared by mixing 100 pts.wt. of carbon electric conductor powder into a liquid prepared by dissolving or dispersing 0.25-200 pts.wt. of an elastomer. The liquid mixture is ejected from a pair of nozzles facing to each other at the pressure of >=500kg/cm<2> so that the ejected streams of liquid are made to collide with each other. After the collision, the liquid is recycled into the nozzles and made to repeat the ejection and collision process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素系導電性粉末分散
液の製造方法に関する。詳しくは、エラストマーを含有
する炭素系導電体粉末分散液の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon-based conductive powder dispersion liquid. Specifically, it relates to a method for producing a carbon-based conductor powder dispersion liquid containing an elastomer.

【0002】[0002]

【従来の技術】近年、エレクトロニクスの技術の進歩に
より、多種類の電子機器が製造され広く使用されるよう
になった。これに伴い、静電気や電磁波の障害も多く発
生するようになり、これらを防止するための材料が開発
されつつある。例えば導電性塗料や導電性を有する紙、
シート、板などの製造において、カーボンブラックの水
性分散体が利用されている(特開平6−116506号
公報参照)。しかし、前記カーボンブラック分散体は、
カーボンブラック分散のために相当量の界面活性剤を含
んでおり、これを嫌う用途、例えば精密電子部品の導電
材料用原料、電池用原料などとしては使用が困難という
問題がある。一方、炭素系導電体粉末とエラストマーな
どのバインダーとの組成物は、直接両者をロール、バン
バリーミキサー、ペイントコンディショナーなどを用い
て混練りして製造される。これらは電磁波遮蔽材、導電
性塗料などに使用されている。しかし、さらに高い導電
性を必要とする用途には、バインダーに対する炭素系導
電体粉末の配合割合を高める必要があるが、該組成物の
機械的強度が低下するために、該組成物の導電性に限界
がある。
2. Description of the Related Art In recent years, due to advances in electronics technology, various types of electronic equipment have been manufactured and widely used. Along with this, a lot of static electricity and electromagnetic waves have been generated, and materials for preventing them have been developed. For example, conductive paint or conductive paper,
An aqueous dispersion of carbon black is used in the production of sheets, plates and the like (see Japanese Patent Laid-Open No. 6-116506). However, the carbon black dispersion is
It contains a considerable amount of a surfactant to disperse carbon black, and there is a problem that it is difficult to use it for applications in which it is disliked, such as raw materials for conductive materials of precision electronic parts, raw materials for batteries and the like. On the other hand, a composition of the carbon-based conductor powder and a binder such as an elastomer is produced by directly kneading the both using a roll, a Banbury mixer, a paint conditioner or the like. These are used in electromagnetic wave shielding materials, conductive paints and the like. However, for applications requiring higher conductivity, it is necessary to increase the blending ratio of the carbon-based conductor powder with respect to the binder, but since the mechanical strength of the composition decreases, the conductivity of the composition decreases. Is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、エラ
ストマーに対する炭素系導電体粉末の配合割合を増加さ
せることなく得られる組成物の導電性を高め、しかも分
散液の状態での貯蔵安定性に優れた炭素系導電体粉末分
散液の製造方法を提供することにある。
The object of the present invention is to increase the conductivity of the composition obtained without increasing the blending ratio of the carbon-based conductor powder with respect to the elastomer, and also to improve the storage stability in the dispersion state. An object of the present invention is to provide a method for producing an excellent carbon-based conductor powder dispersion.

【0004】[0004]

【課題を解決するための手段】本発明は、炭素系導電体
粉末100重量部を、エラストマー0.25〜200重
量部を溶解または分散した液体に混合した後、この混合
液を、500Kg/cm2 以上の圧力で、向かい合った
2つのノズルから噴射液が互いに衝突するように噴射し
(以下、「高圧処理」と称す。)、衝突後の液をノズル
に循環して、噴射と衝突工程を反復して行うことを特徴
とする炭素系導電体粉末分散液の製造方法を提供するも
のである。
According to the present invention, 100 parts by weight of a carbon-based conductor powder is mixed with a liquid in which 0.25 to 200 parts by weight of an elastomer is dissolved or dispersed, and then the mixed liquid is added at 500 Kg / cm. Two or more nozzles facing each other are sprayed at a pressure of 2 or more so that the sprayed liquids collide with each other (hereinafter referred to as “high pressure processing”), and the liquid after the collision is circulated to the nozzles to perform the spraying and the collision process. It is intended to provide a method for producing a carbon-based conductor powder dispersion, which is characterized by being repeatedly performed.

【0005】以下、本発明の構成要件について説明す
る。炭素系導電体粉末としては、カーボンブラック、グ
ラファイト(黒鉛)、ポリアセチレン、ポリアニリン、
ポリピロール、ポリチオフェンおよびこれらの誘導体が
挙げられ、カーボンブラックおよびグラファイトが好ま
しい。また、カーボンブラックとしては、一般用のファ
ーネスブラック、導電性が優れたケッチェンブラック、
アセチレンブラックなどが挙げられ、ゴム用カーボンブ
ラックとしては、ASTMコードにて、N100、N2
00、N300、N400、N500、N600、N7
00番台のものが例示される。さらにグラファイトとし
ては、天然グラファイト、合成グラファイトの双方が使
用できる。これらの炭素系導電体粉末の形状としては、
粒状、球状、板状、フレーク状、針状などが挙げられる
が、高圧処理時のノズルの詰まりを回避するために、高
圧処理前の段階にて、直径あるいは長径が150μm以
下にしておくことが好ましい。本発明に用いるエラスト
マーとしては、ジエン系ゴム、オレフィン系ゴム、シリ
コーン系ゴム、フッ素ゴム、ウレタンゴムなどが挙げら
れる。ジエン系ゴムとしては、天然ゴム、ポリイソプレ
ンゴム、ポリブタジエンゴム、スチレン−ブタジエンゴ
ム、スチレン−イソプレンゴム、アクリルゴム、アクリ
ロニトリル−ブタジエンゴムなどが挙げられる。オレフ
ィン系ゴムとしては、エチレン−プロピレンゴム,EP
DM、ブチルゴムなどが挙げられる。また、ジエン系ブ
ロックポリマー、水素添加したジエン系ブロックポリマ
ーも使用でき、これらの内の水素添加したジエン系ブロ
ックポリマーとしては、ポリスチレンブロック−ポリブ
タジエンブロック−ポリスチレンブロックの水素添加物
(以下、「H−SBS]と称す。),ポリスチレンブロ
ック−ポリイソプレンブロック−ポリスチレンブロック
の水素添加物(以下、「H−SIS]と称す。)、ポリ
スチレンブロック−ポリブタジエンブロックの水素添加
物(以下、「H−SB]と称す。),ポリスチレンブロ
ック−ポリイソプレンブロックの水素添加物(以下、
「H−SI]と称す。)などが挙げられ、特にH−SB
SおよびH−SISが好ましい。本発明において使用す
るエラストマーは、炭素系導電体粉末のバインダーとし
て作用する。エラストマーの配合量は、必要とする導電
性により、また、成形加工方法により適宜調節可能であ
るが、エラストマーは絶縁材料であることから少ないほ
ど好ましい。このためエラストマーの配合量は、通常、
炭素系導電体粉末100重量部に対して0.25〜20
0重量部、好ましくは0.5〜150重量部である。2
00重量部を越えると、得られる分散液を乾燥してなる
成形品の導電性が不十分になり、0.25重量部未満で
はバインダーとしての効果が発揮できない。また、特に
抵抗体としての使用や帯電防止の目的のためには炭素系
導電体粉末100重量部に対してエラストマー50〜2
00重量部、好ましくは50〜150重量部を、電池の
電極としての使用の場合には、炭素系導電体粉末100
重量部に対してエラストマー0.25〜60重量部、好
ましくは0.5〜50重量部を配合することが望まし
い。
The constituent features of the present invention will be described below. Carbon-based conductor powders include carbon black, graphite, polyacetylene, polyaniline,
Examples include polypyrrole, polythiophene and their derivatives, with carbon black and graphite being preferred. Further, as carbon black, general-purpose furnace black, Ketjenblack having excellent conductivity,
Acetylene black and the like can be cited. As carbon black for rubber, ASTM code N100, N2
00, N300, N400, N500, N600, N7
Those in the 00s are exemplified. Further, as graphite, both natural graphite and synthetic graphite can be used. As the shape of these carbon-based conductor powders,
Granular, spherical, plate-shaped, flake-shaped, needle-shaped, etc. may be mentioned, but in order to avoid clogging of the nozzle during high-pressure processing, the diameter or major axis should be 150 μm or less before the high-pressure processing. preferable. Examples of the elastomer used in the present invention include diene rubber, olefin rubber, silicone rubber, fluororubber and urethane rubber. Examples of the diene rubber include natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, styrene-isoprene rubber, acrylic rubber and acrylonitrile-butadiene rubber. As the olefin rubber, ethylene-propylene rubber, EP
Examples include DM and butyl rubber. In addition, a diene-based block polymer and a hydrogenated diene-based block polymer can also be used, and as the hydrogenated diene-based block polymer, a hydrogenated product of polystyrene block-polybutadiene block-polystyrene block (hereinafter, referred to as "H- SBS]), polystyrene block-polyisoprene block-polystyrene block hydrogenated product (hereinafter referred to as "H-SIS"), polystyrene block-polybutadiene block hydrogenated product (hereinafter referred to as "H-SB"). Hydrogenated substance of polystyrene block-polyisoprene block (hereinafter, referred to as
"H-SI]) and the like, particularly H-SB.
S and H-SIS are preferred. The elastomer used in the present invention acts as a binder for the carbon-based conductor powder. The blending amount of the elastomer can be appropriately adjusted depending on the required conductivity and the molding processing method, but the less the elastomer is an insulating material, the better. Therefore, the blending amount of the elastomer is usually
0.25 to 20 relative to 100 parts by weight of carbon-based conductor powder
It is 0 part by weight, preferably 0.5 to 150 parts by weight. Two
If it exceeds 100 parts by weight, the conductivity of the molded product obtained by drying the obtained dispersion becomes insufficient, and if it is less than 0.25 part by weight, the effect as a binder cannot be exhibited. Further, particularly for use as a resistor or for the purpose of preventing static electricity, 50 to 2 parts of the elastomer is added to 100 parts by weight of the carbon-based conductor powder.
100 parts by weight, preferably 50 to 150 parts by weight of carbon-based conductor powder 100 when used as an electrode of a battery.
It is desirable to add 0.25 to 60 parts by weight, and preferably 0.5 to 50 parts by weight of elastomer to the parts by weight.

【0006】エラストマーは、有機溶剤に溶解させて使
用することが好ましい。この場合の有機溶剤としては、
反応性や腐食性がなく、毒性が少なく、かつ、適度の揮
発性を有し、エラストマーを溶解するものから選択さ
れ、例えばトルエン、キシレンなどの芳香族炭化水素化
合物、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化
水素、シクロヘキサンなどの脂環族炭化水素、メチルエ
チルケトンなどのケトン類、テトラヒドロフラン、ジオ
キサンなどのエーテル類、酢酸エチルエステル、酢酸ブ
チルエステル、プロピレングリコールメチルエーテルア
セテートなどのエステル類、ジエチレングリコールジエ
チルエーテル、エチレングリコールモノメチルエーテル
などの多価アルコールのアルキルエーテル類の如き溶剤
が挙げられる。これらの有機溶剤の使用量は、有機溶剤
100重量部に対し、エラストマーが1〜50重量部、
好ましくは3〜30重量部になる量である。50重量部
を越えると、得られる分散液を乾燥してなる成形品の導
電性が不十分になり、1重量部未満では分散液の貯蔵安
定性が不十分となる。エラストマーは、前記有機溶剤に
溶解し、これに炭素系導電体粉末を直接あるいは前記有
機溶剤のスラリーとして混合する。なお、本発明におい
ては、前記有機溶剤のかわりに、その全量または一部と
して水を使用することもできる。この場合のエラストマ
ーとしては、乳化重合ラテックス、天然ラテックスなど
が使用可能であり、さらに、固形エラストマーを有機溶
剤に溶解し、これを水に分散、乳化し、必要により有機
溶剤を除去して得られるエマルジョンも使用可能であ
る。
The elastomer is preferably dissolved in an organic solvent before use. As the organic solvent in this case,
It is not reactive or corrosive, has low toxicity, has moderate volatility, and is selected from those that dissolve elastomers. For example, aromatic hydrocarbon compounds such as toluene and xylene, pentane, hexane, and heptane. Aliphatic hydrocarbons, alicyclic hydrocarbons such as cyclohexane, ketones such as methyl ethyl ketone, tetrahydrofurans, ethers such as dioxane, ethyl acetate, acetic acid butyl ester, esters such as propylene glycol methyl ether acetate, diethylene glycol diethyl ether, Solvents such as alkyl ethers of polyhydric alcohols such as ethylene glycol monomethyl ether are included. The amount of the organic solvent used is 1 to 50 parts by weight of the elastomer with respect to 100 parts by weight of the organic solvent.
The amount is preferably 3 to 30 parts by weight. If it exceeds 50 parts by weight, the conductivity of the molded product obtained by drying the resulting dispersion becomes insufficient, and if it is less than 1 part by weight, the storage stability of the dispersion becomes insufficient. The elastomer is dissolved in the organic solvent, and the carbon-based conductor powder is mixed therein directly or as a slurry of the organic solvent. In the present invention, instead of the organic solvent, water may be used in whole or in part. As the elastomer in this case, emulsion polymerization latex, natural latex or the like can be used, and further, it is obtained by dissolving solid elastomer in an organic solvent, dispersing this in water, emulsifying, and removing the organic solvent if necessary. Emulsions can also be used.

【0007】エラストマーと炭素系導電体粉末とを含む
混合液は、高圧処理する前に、ホモミキサーなどを使用
して均一化処理をしておくことが好ましい。
The mixed liquid containing the elastomer and the carbon-based conductor powder is preferably subjected to a homogenizing treatment using a homomixer or the like before the high pressure treatment.

【0008】前記混合液は、向かい合った2つのノズル
から高圧で噴射させて、噴射液を互いに衝突させて高圧
処理を行う。噴射時の圧力は500Kg/cm2以上、
好ましくは700Kg/cm2以上である。噴射時の圧
力が500Kg/cm2未満では、得られる分散液を乾
燥してなる成形品の比抵抗が大きくなる。なお、噴射時
の圧力の上限は特にないが、通常2500Kg/cm2
程度である。また、前記混合液は、高圧で細いノズルを
通過させるので、その粘度は、10万センチポイズ以
下、特に100〜50,000センチポイズとすること
が好ましい。また、高圧処理時の混合液温度は、特に限
定されないが溶媒が気化せず、エラストマーの変質が生
じず、かつ、条件を一定にするために、加熱または冷却
して所定の温度に維持する。この温度は、通常20〜1
50℃である。本発明により得られる炭素系導電体粉末
分散液は、必要に応じて、添加剤を配合することができ
る。
The mixed liquid is jetted at high pressure from two nozzles facing each other, and the jetted liquids are made to collide with each other to perform high-pressure treatment. The pressure during injection is 500 Kg / cm 2 or more,
It is preferably 700 Kg / cm 2 or more. If the pressure at the time of injection is less than 500 Kg / cm 2 , the specific resistance of the molded product obtained by drying the obtained dispersion becomes large. There is no particular upper limit to the pressure during injection, but it is usually 2500 Kg / cm 2
It is a degree. Further, since the mixed liquid is passed through a thin nozzle under high pressure, its viscosity is preferably 100,000 centipoise or less, and particularly preferably 100 to 50,000 centipoise. The temperature of the mixed solution during the high-pressure treatment is not particularly limited, but the solvent does not evaporate, the elastomer does not deteriorate, and the temperature is maintained at a predetermined temperature by heating or cooling in order to keep the conditions constant. This temperature is usually 20 to 1
50 ° C. The carbon-based conductor powder dispersion liquid obtained by the present invention may contain additives, if necessary.

【0009】[0009]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 H−SBS(日本合成ゴム(株)製;ダイナロン)の1
2重量%トルエン溶液2500g、グラファイト粉末
(日立粉末冶金(株)製)1000gおよびトルエン5
00gを10リットルのステンレス製容器に入れ、ホモ
ミキサー(特殊機化工業(株)製)を用い、1,500
rpmで3分間攪拌して均一なスラリーを得た。このス
ラリー中のグラファイトの平均粒径は45μmであっ
た。この混合液を、高圧機(特殊機化工業(株)製;
T.K.ナノマイザー)を用い、1,300Kg/cm
2 の圧力で、向かい合った2つのノズルから噴射液が互
いに衝突するように噴射した。この処理を3回反復し
て、スラリー状の分散液を得た。高圧処理時の混合液の
平均温度は38℃、平均粘度は18、000センチポイ
ズであった。高圧処理前の混合液の粒径および高圧処理
後のグラファイト分散液の粒径は、粒径アナライザー
((株)島津製作所製;商品名SD1000)を用いて
求めた。また、得られたグラファイト分散液の一部を用
いて、バーコーターでガラス板上に塗布し、乾燥して、
薄膜を作成した。この薄膜を試料にして、抵抗計(横河
精機(株)製;デジタルマルチメーター7561)を使
用して四端子法により比抵抗を測定した。製造後のグラ
ファイト分散液は、室温にて24時間放置し、スラリー
の分離の有無、凝集の有無を観察した。分離と凝集が共
に観察されないものを「安定」と評価した。結果を表1
に示す。
EXAMPLES The present invention will be described below in greater detail by giving Examples, but the present invention is not limited thereto. Example 1 1 of H-SBS (manufactured by Japan Synthetic Rubber Co., Ltd .; Dynaron)
2500 g of 2 wt% toluene solution, 1000 g of graphite powder (manufactured by Hitachi Powder Metallurgy Co., Ltd.) and 5 toluene
00g was placed in a 10-liter stainless steel container, and a homomixer (made by Tokushu Kika Kogyo Co., Ltd.) was used to obtain 1,500
A uniform slurry was obtained by stirring at rpm for 3 minutes. The average particle size of graphite in this slurry was 45 μm. This mixed liquid was used as a high-pressure machine (made by Tokushu Kika Kogyo Co., Ltd.);
T. K. Nanomizer), 1,300 Kg / cm
At a pressure of 2 , jets were jetted from two nozzles facing each other such that the jets collided with each other. This treatment was repeated 3 times to obtain a slurry-like dispersion liquid. The average temperature of the mixed solution during the high-pressure treatment was 38 ° C., and the average viscosity was 18,000 centipoise. The particle size of the mixed solution before the high-pressure treatment and the particle size of the graphite dispersion after the high-pressure treatment were determined by using a particle size analyzer (manufactured by Shimadzu Corporation; trade name SD1000). Further, using a part of the obtained graphite dispersion liquid, applied on a glass plate with a bar coater, dried,
A thin film was created. Using this thin film as a sample, the resistivity was measured by a four-terminal method using an ohmmeter (manufactured by Yokogawa Seiki Co., Ltd .; Digital Multimeter 7561). The manufactured graphite dispersion was allowed to stand at room temperature for 24 hours, and the presence or absence of slurry separation and the presence or absence of aggregation were observed. The case where neither separation nor aggregation was observed was evaluated as "stable". The results are shown in Table 1.
Shown in

【0010】実施例2 H−SBSの12重量%トルエン溶液1667gおよび
トルエンを333g使用した以外は、実施例1と同じ方
法で分散液を調製し、同じ実験をした。結果を表1に示
す。 実施例3 H−SBSの12重量%トルエン溶液833gおよびト
ルエンを1067g使用した以外は、実施例1と同じ方
法で分散液を調製し、同じ実験をした。結果を表1に示
す。 実施例4および5 高圧機の圧力を、それぞれ1000Kg/cm2 および
700Kg/cm2 とした以外は、実施例1と同じ実験
をした。結果を表1に示す。 比較例1 高圧機による処理を行わず、ホモミキサー(特殊機化工
業(株)製)を用い、1,500rpmで30分間攪拌
した以外は、実施例1と同じ実験をした。結果を表1に
示す。
Example 2 A dispersion was prepared in the same manner as in Example 1 except that 1667 g of a 12 wt% toluene solution of H-SBS and 333 g of toluene were used, and the same experiment was conducted. The results are shown in Table 1. Example 3 A dispersion was prepared in the same manner as in Example 1 except that 833 g of a 12 wt% toluene solution of H-SBS and 1067 g of toluene were used, and the same experiment was performed. The results are shown in Table 1. The pressure of Examples 4 and 5 high pressure machines, except for using each of 1000 Kg / cm 2 and 700 Kg / cm 2, and the same experiment as in Example 1. The results are shown in Table 1. Comparative Example 1 The same experiment as in Example 1 was carried out except that the treatment with a high pressure machine was not performed and the mixture was stirred for 30 minutes at 1,500 rpm using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】本発明によれば、エラストマーに対する
炭素系導電体粉末の配合割合を増加させることなく得ら
れる組成物の導電性を高め、しかも分散液の状態での貯
蔵安定性に優れた炭素系導電体粉末分散液が得られる。
EFFECTS OF THE INVENTION According to the present invention, the carbon obtained by increasing the conductivity of the composition obtained without increasing the blending ratio of the carbon-based conductor powder to the elastomer, and having excellent storage stability in the dispersion state. A system conductor powder dispersion is obtained.

【0013】本発明の効果が発揮される理由は不明であ
るが、噴射時の衝突により高い衝突エネルギーが生じ、
分子間の相互作用が働き混合液は分子オーダーで複合化
され、生成した炭素系導電体粉末分散液が安定なものに
なるためと考えられる。
Although the reason why the effect of the present invention is exerted is unknown, high collision energy is generated due to collision at the time of injection,
It is considered that the interaction between molecules works and the mixed solution is complexed in the molecular order, and the generated carbon-based conductor powder dispersion becomes stable.

【0014】本発明により得られる炭素系導電体粉末分
散液は、導電性塗料または黒色塗料の原料として好適に
使用できる。また、セルロース繊維の水性体に添加して
これを抄紙することによって、導電性の良好なカーボン
ブラック含有紙とすることができ、この紙は、静電気防
止や電磁波シールドの目的に使用できる。さらに、炭素
系導電体粉末分散液を、そのまま成形硬化して、電池の
材料として使用することもできる。
The carbon-based conductor powder dispersion obtained by the present invention can be suitably used as a raw material for conductive paints or black paints. Further, by adding it to an aqueous body of cellulose fibers to make a paper, a carbon black-containing paper having good conductivity can be obtained, and this paper can be used for the purpose of preventing static electricity and electromagnetic wave shielding. Further, the carbon-based conductor powder dispersion can be molded and cured as it is and used as a battery material.

【0015】次に本発明の好ましい態様を列挙する。 1)炭素系導電体粉末100重量部を、エラストマー
0.5〜50重量部を溶解または分散した有機溶剤に混
合した後、この混合液を、700Kg/cm2 以上の圧
力で、向かい合った2つのノズルから噴射液が互いに衝
突するように噴射し、衝突後の液をノズルに循環して、
噴射と衝突工程を反復して行うことを特徴とする炭素系
導電体粉末分散液の製造方法。 2)エラストマーがH−SBSまたはH−SISである
前記1)の製造方法。
Next, preferred embodiments of the present invention will be listed. 1) 100 parts by weight of a carbon-based conductor powder is mixed with an organic solvent in which 0.5 to 50 parts by weight of an elastomer is dissolved or dispersed, and then this mixed solution is applied at a pressure of 700 Kg / cm 2 or more to two facing surfaces. Jets are jetted from the nozzle so that they collide with each other, and the liquid after the collision is circulated to the nozzle,
A method for producing a carbon-based conductor powder dispersion, which comprises repeating the jetting and collision steps. 2) The method according to 1) above, wherein the elastomer is H-SBS or H-SIS.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素系導電体粉末100重量部を、エラ
ストマー0.25〜200重量部を溶解または分散した
液体に混合した後、この混合液を、500Kg/cm2
以上の圧力で、向かい合った2つのノズルから噴射液が
互いに衝突するように噴射し、衝突後の液をノズルに循
環して、噴射と衝突工程を反復して行うことを特徴とす
る炭素系導電体粉末分散液の製造方法。
1. 100 parts by weight of a carbon-based conductor powder is mixed with a liquid in which 0.25 to 200 parts by weight of an elastomer is dissolved or dispersed, and then this mixed solution is subjected to 500 kg / cm 2
The carbon-based conductive material characterized in that the jet liquid is jetted from two nozzles facing each other under the above pressure so as to collide with each other, the liquid after colliding is circulated to the nozzles, and the jetting and colliding processes are repeated. A method for producing a body powder dispersion.
JP6200106A 1994-08-02 1994-08-02 Production of dispersion liquid of carbon electric conductor powder Pending JPH0840712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200106A JPH0840712A (en) 1994-08-02 1994-08-02 Production of dispersion liquid of carbon electric conductor powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200106A JPH0840712A (en) 1994-08-02 1994-08-02 Production of dispersion liquid of carbon electric conductor powder

Publications (1)

Publication Number Publication Date
JPH0840712A true JPH0840712A (en) 1996-02-13

Family

ID=16418938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200106A Pending JPH0840712A (en) 1994-08-02 1994-08-02 Production of dispersion liquid of carbon electric conductor powder

Country Status (1)

Country Link
JP (1) JPH0840712A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051018A (en) * 2005-08-17 2007-03-01 Nok Corp Method for producing carbon material thin film
WO2007088810A1 (en) * 2006-01-31 2007-08-09 Mitsui & Co., Ltd. Process for producing fine carbon fiber agglomerate
JP2008016218A (en) * 2006-07-03 2008-01-24 Advanced Pdp Development Corp Manufacturing method for plasma display panel
JP2013119491A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Graphite thin film and method for producing the same
JP2014009151A (en) * 2012-07-03 2014-01-20 Harima Chemicals Group Inc Method for producing thin-layer graphite or thin-layer graphite compound
JP2017536317A (en) * 2014-12-11 2017-12-07 エルジー・ケム・リミテッド Graphene production method using high-speed homogenization pretreatment and high-pressure homogenization
JP6449390B1 (en) * 2017-08-09 2019-01-09 住友理工株式会社 Method for producing conductive film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051018A (en) * 2005-08-17 2007-03-01 Nok Corp Method for producing carbon material thin film
WO2007088810A1 (en) * 2006-01-31 2007-08-09 Mitsui & Co., Ltd. Process for producing fine carbon fiber agglomerate
JP2007204857A (en) * 2006-01-31 2007-08-16 Bussan Nanotech Research Institute Inc Method for producing fine carbon fiber assembly
JP2008016218A (en) * 2006-07-03 2008-01-24 Advanced Pdp Development Corp Manufacturing method for plasma display panel
JP2013119491A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Graphite thin film and method for producing the same
JP2014009151A (en) * 2012-07-03 2014-01-20 Harima Chemicals Group Inc Method for producing thin-layer graphite or thin-layer graphite compound
JP2017536317A (en) * 2014-12-11 2017-12-07 エルジー・ケム・リミテッド Graphene production method using high-speed homogenization pretreatment and high-pressure homogenization
US10472242B2 (en) 2014-12-11 2019-11-12 Lg Chem, Ltd. Method for preparing graphene by using high speed homogenization pretreatment and high pressure homogenation
JP6449390B1 (en) * 2017-08-09 2019-01-09 住友理工株式会社 Method for producing conductive film
WO2019031063A1 (en) * 2017-08-09 2019-02-14 住友理工株式会社 Method for producing electroconductive film
JP2019033025A (en) * 2017-08-09 2019-02-28 住友理工株式会社 Production method of conductive film
CN109791822A (en) * 2017-08-09 2019-05-21 住友理工株式会社 The manufacturing method of conductive film
CN109791822B (en) * 2017-08-09 2020-08-14 住友理工株式会社 Method for producing conductive film

Similar Documents

Publication Publication Date Title
US4950423A (en) Coating of EMI shielding and method therefor
CN105001759B (en) Molybdate Doped polypyrrole/epoxy resin self-healing coatings and its preparation and application
CN102977742B (en) A kind of electrically conducting coating
CN102618107B (en) Conductive graphite cream and preparation method thereof
Kojima et al. Development of high performance, waterborne coatings. Part I: emulsification of epoxy resin
CN101353547A (en) High elastic aqueous conductive nano coating
CN109749569A (en) Two-component graphene anticorrosive paint and preparation method thereof
KR100624316B1 (en) Electroconductive paint composition and electroconductive film prepared therefrom
US4826631A (en) Coating for EMI shielding and method for making
JPH0840712A (en) Production of dispersion liquid of carbon electric conductor powder
CN108410297A (en) A kind of antistatic acrylic coating and preparation method thereof
US6106742A (en) High solids conductive coatings compositions suitable for electrostatic atomization application methods
US4478643A (en) Base composition comprising an irradiated organic pigment
KR100642427B1 (en) Composition for electromagnetic interference shielding using carbon nanotube
JPH0394078A (en) Production of electrically conductive particles
JP5526576B2 (en) Conductive ink
US3389116A (en) Metal pigment and method of making same
JP5453789B2 (en) Metal fine particle dispersion, method for producing metal thin film, and metal thin film
CN102443331A (en) Electromagnetic-shielding conductive coating
CN108485356A (en) A kind of preparation method of High-conductivity carbon nanotube base conductive coating
CN113621299A (en) Light broadband electromagnetic shielding coating and preparation method thereof
CN105131719A (en) Alcohol-based silver nanowire conductive ink with strong protective bonding performance
JPH02182809A (en) Production of fine granular copper powder
KR101966279B1 (en) Carbon black dispersion and method of preparing the same
CN112574667A (en) One-step method for preparing antistatic material, photocureable coating and application