JP2011184264A - Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film - Google Patents

Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film Download PDF

Info

Publication number
JP2011184264A
JP2011184264A JP2010053276A JP2010053276A JP2011184264A JP 2011184264 A JP2011184264 A JP 2011184264A JP 2010053276 A JP2010053276 A JP 2010053276A JP 2010053276 A JP2010053276 A JP 2010053276A JP 2011184264 A JP2011184264 A JP 2011184264A
Authority
JP
Japan
Prior art keywords
graphite
dispersion
exfoliated graphite
compound
exfoliated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010053276A
Other languages
Japanese (ja)
Inventor
Takuya Wada
拓也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010053276A priority Critical patent/JP2011184264A/en
Publication of JP2011184264A publication Critical patent/JP2011184264A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a dispersion of flaked graphite, which allows efficient production of the dispersion of flaked graphite, wherein the flaked graphite is stably dispersed. <P>SOLUTION: The method for producing a dispersion of flaked graphite is characterized by preparing a mixed liquid having a pH of 7.5-10 by mixing a graphite compound, an alkali metal hydroxide and water to flake the graphite compound. Thereby, layer surfaces of the graphite compound are exfoliated from each other and the dispersion of the flaked graphite, wherein the flaked graphite is stably dispersed, is efficiently produced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、薄片化黒鉛分散液の製造方法及びこの製造方法で得られた薄片化黒鉛分散液、並びに、上記製造方法で得られた薄片化黒鉛分散液を用いた薄膜の製造方法に関する。   The present invention relates to a method for producing an exfoliated graphite dispersion, an exfoliated graphite dispersion obtained by this production method, and a method for producing a thin film using the exfoliated graphite dispersion obtained by the above production method.

近年、炭素骨格を有し且つ形状異方性の高い物質として、黒鉛をその層面間で剥離し、層面(グラフェン)の重なりが数十層以下になるまで薄片化した薄片化黒鉛が注目されており、薄片化黒鉛は非常に大きな表面積を有するため、樹脂などと複合化すると、少量の薄片化黒鉛の添加で各種機能が発現すると期待されている。   In recent years, exfoliated graphite, which has a carbon skeleton and has high shape anisotropy, has been attracted attention by exfoliating graphite between its layer surfaces and exfoliating until the layer surface (graphene) overlaps to several tens of layers or less. Since exfoliated graphite has a very large surface area, it is expected that various functions will be manifested by adding a small amount of exfoliated graphite when combined with a resin or the like.

上記薄片化黒鉛の製造方法としては、例えば、特許文献1に、硫酸・硝酸及び過マンガン酸カリウムを用いて酸化させた黒鉛層間化合物を精製し、遠心分離した後、上澄みを除去することによって薄片化黒鉛が得られることが提案されている。   As a method for producing the exfoliated graphite, for example, in Patent Document 1, a graphite intercalation compound oxidized with sulfuric acid / nitric acid and potassium permanganate is purified, centrifuged, and then the supernatant is removed. It has been proposed to obtain graphitized graphite.

しかしながら、上記方法では、薄片化黒鉛の製造に長時間を要し又は高温状態を利用するものであるため、薄片化黒鉛の製造効率が低いという問題点を有しており、薄片化黒鉛がより安定的に分散してなる薄片化黒鉛分散液をより効率良く製造することができる製造方法が要望されている。   However, in the above method, since it takes a long time to produce exfoliated graphite or a high temperature state is used, there is a problem that the production efficiency of exfoliated graphite is low. There is a demand for a production method that can more efficiently produce a exfoliated graphite dispersion that is stably dispersed.

特開2002−53313号公報JP 2002-53313 A

本発明は、薄片化黒鉛が安定的に分散してなる薄片化黒鉛分散液を効率良く製造することができる薄片化黒鉛分散液の製造方法及びこの製造方法で得られた薄片化黒鉛分散液、並びに、上記製造方法で得られた薄片化黒鉛分散液を用いた薄膜の製造方法を提供する。   The present invention provides a method for producing exfoliated graphite dispersion that can efficiently produce exfoliated graphite dispersion in which exfoliated graphite is stably dispersed, and exfoliated graphite dispersion obtained by this production method, And the manufacturing method of the thin film using the exfoliated graphite dispersion liquid obtained by the said manufacturing method is provided.

本発明の薄片化黒鉛分散液の製造方法は、黒鉛化合物とアルカリ金属の水酸化物と水とを混合してpHが7.5〜10である混合液とし、上記黒鉛化合物を薄片化することを特徴とする。   The method for producing the exfoliated graphite dispersion of the present invention comprises exfoliating the above graphite compound by mixing a graphite compound, an alkali metal hydroxide and water to obtain a mixed liquid having a pH of 7.5 to 10. It is characterized by.

本発明において用いられる黒鉛化合物としては、黒鉛、黒鉛層間化合物の何れであってもよい。又、黒鉛に官能基が化学的に結合してしても、或いは、黒鉛に官能基が弱い相互作用により疑似的に結合していてもよい。   The graphite compound used in the present invention may be any of graphite and graphite intercalation compounds. Further, a functional group may be chemically bonded to graphite, or a functional group may be artificially bonded to graphite due to weak interaction.

黒鉛としては、粒子全体で単一の多層構造を有する黒鉛が好ましく、例えば、天然黒鉛、キッシュ黒鉛、高配向性熱分解黒鉛などが挙げられる。天然黒鉛とキッシュ黒鉛は、各層面(基本層)が略単一の方位を有する単独の結晶又はその集合体であり、高配向性熱分解黒鉛の各層面(基本層)は異なる方位を有する多数の小さな結晶の集合体である。   As the graphite, graphite having a single multilayer structure as a whole is preferable, and examples thereof include natural graphite, quiche graphite, and highly oriented pyrolytic graphite. Natural graphite and quiche graphite are single crystals or aggregates in which each layer surface (basic layer) has a substantially single orientation, and each layer surface (basic layer) of highly oriented pyrolytic graphite has many different orientations. It is an aggregate of small crystals.

黒鉛層間化合物は、上記黒鉛の層面間にインターカレーターを挿入することによって形成されている。黒鉛層間化合物における黒鉛の層面間に挿入されるインターカレーターとしては、特に限定されず、例えば、酸、酸化剤、金属、金属塩、気体、ハロゲン化合物などが挙げられ、高圧条件を用いることなく黒鉛層間化合物を生成することができるので、酸と酸化剤との混合物が好ましい。インターカレーターは単独で用いられても二種以上が併用されてもよい。   The graphite intercalation compound is formed by inserting an intercalator between the graphite layer surfaces. The intercalator inserted between the graphite layer surfaces in the graphite intercalation compound is not particularly limited, and examples thereof include acids, oxidants, metals, metal salts, gases, halogen compounds, and the like, without using high-pressure conditions. Since an intercalation compound can be formed, a mixture of an acid and an oxidizing agent is preferred. An intercalator may be used independently or 2 or more types may be used together.

酸としては、例えば、硝酸、塩酸、硫酸、カルボン酸、クロム酸、リン酸、ヨウ素酸などが挙げられる。酸化剤としては、例えば、過マンガン酸カリウム、過酸化水素、塩素酸カリウム、臭素酸ナトリウム、次亜塩素酸ナトリウムなどが挙げられる。金属としては、例えば、カリウム、ナトリウムなどが挙げられる。金属塩としては、例えば、塩化銅、塩化鉄、塩化アルミニウム、塩化ナトリウム、塩化カリウム、硫酸銅、酢酸ナトリウムなどが挙げられる。気体としては、例えば、水素などが挙げられる。ハロゲン化合物としては、例えば、塩化ヨウ素、塩化臭素、臭化ヨウ素、フッ化ヨウ素、フッ化臭素、フッ化塩素、フッ素、塩素、塩化アルミニウムなどが挙げられる。   Examples of the acid include nitric acid, hydrochloric acid, sulfuric acid, carboxylic acid, chromic acid, phosphoric acid, iodic acid and the like. Examples of the oxidizing agent include potassium permanganate, hydrogen peroxide, potassium chlorate, sodium bromate, and sodium hypochlorite. Examples of the metal include potassium and sodium. Examples of the metal salt include copper chloride, iron chloride, aluminum chloride, sodium chloride, potassium chloride, copper sulfate, sodium acetate and the like. Examples of the gas include hydrogen. Examples of the halogen compound include iodine chloride, bromine chloride, iodine bromide, iodine fluoride, bromine fluoride, chlorine fluoride, fluorine, chlorine, and aluminum chloride.

黒鉛の層面間にインターカレーターを挿入して黒鉛層間化合物を製造する方法としては、公知の方法を採用することができ、例えば、黒鉛をインターカレーターの溶液に分散させて、分散液中において黒鉛とインターカレーターとを反応させて黒鉛層間化合物を製造する方法、黒鉛と気体状のインターカレーターとを高圧下にて反応させて黒鉛層間化合物を製造する方法、酸化剤を用いてHummers−Offeman法によって黒鉛層間化合物を製造する方法などが挙げられ、酸化剤を用いてHummers−Offeman法によって黒鉛層間化合物を製造する方法が好ましい。   As a method for producing a graphite intercalation compound by inserting an intercalator between graphite layer surfaces, a known method can be adopted. For example, graphite is dispersed in an intercalator solution, and graphite and A method for producing a graphite intercalation compound by reacting with an intercalator, a method for producing a graphite intercalation compound by reacting graphite and a gaseous intercalator under high pressure, and a graphite by a Hummers-Offeman method using an oxidizing agent. The method of manufacturing an intercalation compound etc. are mentioned, The method of manufacturing a graphite intercalation compound by the Hummers-Offeman method using an oxidizing agent is preferred.

上述の要領で製造された黒鉛層間化合物に薄層化処理を施して原料黒鉛よりも薄層化させておくことが好ましい。黒鉛層間化合物に施す薄層化処理としては、例えば、黒鉛層間化合物にマイクロ波又は超音波を照射する方法、黒鉛層間化合物に物理的に応力を加えて黒鉛層間化合物を粉砕する方法などが挙げられる。   It is preferable to apply a thinning treatment to the graphite intercalation compound produced as described above to make it thinner than the raw material graphite. Examples of the thinning treatment applied to the graphite intercalation compound include a method of irradiating the graphite intercalation compound with microwaves or ultrasonic waves, and a method of physically applying stress to the graphite intercalation compound to pulverize the graphite intercalation compound. .

黒鉛化合物において、レーザー光回折法により粒度分布を測定した場合に50%径として得られる値は、小さいと、黒鉛化合物が黒鉛層間化合物である場合にインターカレーターが層面間から脱離し易くなることがあり、大きいと、黒鉛化合物の層面間にアルカリ金属の水酸化物が侵入しにくくなり、黒鉛化合物の薄片化が進行しにくいことがあるので、0.1〜100μmが好ましい。   In a graphite compound, when the particle size distribution is measured by a laser diffraction method, the value obtained as a 50% diameter is small. If the graphite compound is a graphite intercalation compound, the intercalator is likely to be detached from between the layer surfaces. If it is large, it is difficult for alkali metal hydroxide to penetrate between the layer surfaces of the graphite compound, and it is difficult to make the graphite compound thin. Therefore, 0.1 to 100 μm is preferable.

なお、レーザー光回折法により粒度分布を測定した場合に50%径として得られる値が0.1〜100μmである黒鉛化合物は、例えば、SECカーボン社から商品名「SNO−15」などのSNOシリーズにて、中越黒鉛工業所から商品名「CX−3000」にて、伊藤黒鉛社からCNP−シリーズにて、XGSience社から商品名「XGnP−5」にて市販されている。   In addition, when a particle size distribution is measured by a laser beam diffraction method, a graphite compound having a value obtained as a 50% diameter of 0.1 to 100 μm is, for example, an SNO series such as a trade name “SNO-15” from SEC Carbon Corporation. In China, it is commercially available under the trade name “CX-3000” from Chuetsu Graphite Industries Co., Ltd. under the product name “XGnP-5” from XGSience Co., Ltd. under the CNP-series from Ito Graphite.

次に、黒鉛化合物とアルカリ金属の水酸化物と水とを混合して混合液を作製する。アルカリ金属の水酸化物としては、特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどが挙げられ、水酸化ナトリウム、水酸化カリウムが好ましい。なお、アルカリ金属の水酸化物は、単独で用いられても二種以上が併用されてもよい。   Next, a graphite compound, an alkali metal hydroxide, and water are mixed to prepare a mixed solution. The alkali metal hydroxide is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, and lithium hydroxide, and sodium hydroxide and potassium hydroxide are preferable. The alkali metal hydroxides may be used alone or in combination of two or more.

黒鉛化合物とアルカリ金属の水酸化物と水とを混合して混合液を作製する方法としては、特に限定されず、例えば、黒鉛化合物を水に分散させて黒鉛化合物分散液を作製すると共に、アルカリ金属の水酸化物を水に溶解させてアルカリ金属の水酸化物水溶液を作製し、黒鉛化合物分散液とアルカリ金属の水酸化物水溶液とを均一に混合して混合液を作製する方法、アルカリ金属の水酸化物を水に溶解させてアルカリ金属の水酸化物水溶液を作製し、このアルカリ金属の水酸化物水溶液に黒鉛化合物を添加して均一に混合して混合液を作製する方法などが挙げられる。   A method of preparing a mixed liquid by mixing a graphite compound, an alkali metal hydroxide, and water is not particularly limited. For example, a graphite compound dispersion is prepared by dispersing a graphite compound in water, and an alkali is used. A method in which a metal hydroxide is dissolved in water to prepare an alkali metal hydroxide aqueous solution, and a graphite compound dispersion and an alkali metal hydroxide aqueous solution are uniformly mixed to prepare a mixed solution, alkali metal A method of preparing an aqueous solution of an alkali metal hydroxide by dissolving the hydroxide of water in water, adding a graphite compound to the aqueous solution of the alkali metal hydroxide and uniformly mixing the solution, etc. It is done.

黒鉛化合物とアルカリ金属の水酸化物と水とを混合させて混合液を作製するにあたって、得られる混合液のpHが7.5〜10となるように黒鉛化合物とアルカリ金属の水酸化物と水の混合割合を調整する。黒鉛化合物が黒鉛(黒鉛が官能基を有する場合を含む)である場合には、混合液のpHを8〜10に調整することが好ましい。   In preparing a mixed liquid by mixing a graphite compound, an alkali metal hydroxide and water, the graphite compound, the alkali metal hydroxide and water so that the pH of the obtained mixed liquid is 7.5 to 10. Adjust the mixing ratio. When the graphite compound is graphite (including the case where the graphite has a functional group), it is preferable to adjust the pH of the mixed solution to 8 to 10.

混合液をpH7.5〜10に調整する理由は明確には解明されていないが、アルカリ金属の水酸化物由来のアルカリ金属イオンが黒鉛化合物の層面間に進入し、アルカリ金属イオンの有する正電荷同士の反発力によって、黒鉛化合物の対向する層面を互いが離間する方向に変位させることにより黒鉛化合物の層面間の間隔が拡がり、黒鉛化合物における層面間の剥離の進行を促進し黒鉛化合物を薄片化して薄片化黒鉛の製造を効率的に行うことができると考えている。そして、分散液をpHが7.5〜10に調整することによって、黒鉛化合物の層面間へのアルカリ金属の水酸化物由来のアルカリ金属イオンの進入が容易となり、その結果、上述の作用によって黒鉛化合物の層面間における剥離が円滑に行われて黒鉛化合物を薄片化して薄片化黒鉛を効率良く製造できると考えられる。   The reason for adjusting the mixed solution to pH 7.5 to 10 is not clearly understood, but alkali metal ions derived from alkali metal hydroxide enter between the layer surfaces of the graphite compound, and the positive charge possessed by the alkali metal ions. By repelling each other, the opposing layer surfaces of the graphite compound are displaced in the direction of separating each other, thereby increasing the spacing between the layer surfaces of the graphite compound, accelerating the progress of peeling between the layer surfaces in the graphite compound, and thinning the graphite compound We believe that exfoliated graphite can be produced efficiently. Then, by adjusting the pH of the dispersion to 7.5 to 10, it becomes easy for alkali metal ions derived from alkali metal hydroxide to enter between the layer surfaces of the graphite compound. It is considered that exfoliation between the layer surfaces of the compound is performed smoothly, and the graphite compound is exfoliated to produce exfoliated graphite efficiently.

上述のように、黒鉛化合物とアルカリ金属の水酸化物と水とを混合させてpHが7.5〜10の混合液を製造した後、この混合液を静置することによって黒鉛化合物の層面間における剥離を進行させ、黒鉛化合物を薄片化させて得られる薄片化黒鉛が水中に安定的に分散してなる薄片化黒鉛分散液を得ることができる。   As described above, a graphite compound, an alkali metal hydroxide, and water are mixed to produce a mixed solution having a pH of 7.5 to 10, and the mixed solution is allowed to stand to leave a space between the graphite compound layers. The exfoliated graphite dispersion can be obtained in which exfoliated graphite obtained by exfoliating the graphite compound and exfoliating the graphite compound is stably dispersed in water.

更に、薄片化黒鉛分散液中に分散している薄片化黒鉛及び残存する黒鉛化合物における層面間の剥離を更に促進するために、薄片化黒鉛分散液中に分散している薄片化黒鉛及び残存する黒鉛化合物に剥離処理を施してもよい。このような剥離処理としては、例えば、(1)薄片化黒鉛分散液中に分散している薄片化黒鉛及び残存する黒鉛化合物に超音波を照射する方法、(2)薄片化黒鉛分散液中に分散している薄片化黒鉛及び残存する黒鉛化合物にマイクロ波を照射する方法、(3)薄片化黒鉛分散液中に分散している薄片化黒鉛及び残存する黒鉛化合物に物理的に応力を加える方法などが挙げられる。なお、上記(1)の方法において、超音波の周波数は、低すぎても高すぎても、得られる薄片化黒鉛分散液中の薄片化黒鉛の分散性が低下するので、20〜50kHzが好ましい。又、上記(1)の方法において、超音波の照射時間は、短いと、薄片化黒鉛又は黒鉛化合物の層面間における剥離が充分に進行しないことがあり、長いと、薄片化黒鉛における層面の面方向に沿った大きさが必要以上に小さくなることがあるので、5〜60分が好ましい。   Further, the exfoliated graphite dispersed in the exfoliated graphite dispersion and the remaining exfoliated graphite dispersed in the exfoliated graphite dispersion and the remaining graphite compound further promote exfoliation between the layer surfaces. Exfoliation treatment may be performed on the graphite compound. Examples of such peeling treatment include (1) a method of irradiating the exfoliated graphite dispersed in the exfoliated graphite dispersion and the remaining graphite compound with ultrasonic waves, and (2) in the exfoliated graphite dispersion. Method of irradiating microwaves to dispersed exfoliated graphite and remaining graphite compound, (3) Method of physically applying stress to exfoliated graphite and remaining graphite compound dispersed in exfoliated graphite dispersion Etc. In the above method (1), the frequency of the ultrasonic wave is preferably 20 to 50 kHz because the dispersibility of the exfoliated graphite in the exfoliated graphite dispersion liquid is lowered if the frequency of the ultrasonic wave is too low or too high. . In the method (1), if the ultrasonic irradiation time is short, the exfoliation between the exfoliated graphite or the graphite compound layer may not proceed sufficiently, and if long, the surface of the exfoliated graphite layer surface. Since the size along the direction may be smaller than necessary, 5 to 60 minutes is preferable.

上述のようにして、黒鉛化合物がその層面間において剥離して薄片化黒鉛が生成し、この薄片化黒鉛が水中に安定的に分散してなる薄片化黒鉛分散液を製造することができる。なお、薄片化黒鉛分散液に沈殿物が生じる場合があるが、この沈殿物は、層面間において充分に剥離しなかった黒鉛化合物であると推定され、このような沈殿物が薄片化黒鉛分散液中に生じた場合は、薄片化黒鉛分散液における沈殿物が存在している下方部分を除いた部分を採取し、この採取液を薄片化黒鉛分散液とすればよい。   As described above, a graphite compound is exfoliated between the layer surfaces to produce exfoliated graphite, and an exfoliated graphite dispersion liquid in which the exfoliated graphite is stably dispersed in water can be produced. In some cases, precipitates may occur in the exfoliated graphite dispersion, but this precipitate is presumed to be a graphite compound that has not been sufficiently separated between the layer surfaces, and such precipitates are exfoliated graphite dispersion. If it occurs inside, the portion excluding the lower portion where the precipitate in the exfoliated graphite dispersion is present may be collected, and this collected liquid may be used as the exfoliated graphite dispersion.

得られた薄片化黒鉛分散液中に分散している薄片化黒鉛の層面の積層数は、15層以下が好ましく、5層以下がより好ましい。   The number of laminated layers of exfoliated graphite dispersed in the obtained exfoliated graphite dispersion is preferably 15 layers or less, more preferably 5 layers or less.

上述のようにして得られた薄片化黒鉛分散液は、極めて薄い薄片化黒鉛が安定に分散しているため、何ら処理を施すことなく、所望の用途に使用し又は分散液のまま安定的に保管しておくことがきる。薄片化黒鉛分散液の使用方法としては、薄片化黒鉛分散液を所望個所に噴霧し又は塗布する方法の他に、薄片化黒鉛分散液を水溶性合成樹脂と混合することによって樹脂組成物を得ることができ、薄片化黒鉛分散液を水溶性モノマーと混合することによって高濃度の薄片化黒鉛が含有されるモノマー組成物を容易に得ることができる。   Since the exfoliated graphite dispersion obtained as described above has an extremely thin exfoliated graphite stably dispersed, it can be used for a desired application without any treatment or can be stably used as a dispersion. It can be stored. As a method of using the exfoliated graphite dispersion, in addition to a method of spraying or applying the exfoliated graphite dispersion to a desired location, a resin composition is obtained by mixing the exfoliated graphite dispersion with a water-soluble synthetic resin. A monomer composition containing a high concentration of exfoliated graphite can be easily obtained by mixing exfoliated graphite dispersion with a water-soluble monomer.

水溶性合成樹脂としては、例えば、ポリビニルアルコール、ポリアクリル酸、ポリエチレンオキサイド、ポリエチレングリコール、エチレン−ビニルアルコール共重合体が挙げられる。水溶性モノマーとしては、例えば、メタクリル酸、アクリル酸、2−ヒドロキシエチルメタクリレート、2−ヒドロキシメチルアクリレート、メタクリルアミド、アクリルアミドなどが挙げられる。   Examples of the water-soluble synthetic resin include polyvinyl alcohol, polyacrylic acid, polyethylene oxide, polyethylene glycol, and ethylene-vinyl alcohol copolymer. Examples of the water-soluble monomer include methacrylic acid, acrylic acid, 2-hydroxyethyl methacrylate, 2-hydroxymethyl acrylate, methacrylamide, and acrylamide.

薄片化黒鉛分散液は、上述の通り、極めて薄い薄片化黒鉛が安定に分散しているため、水溶性合成樹脂や水溶性モノマーと混合しやすく、樹脂組成物又はモノマー組成物を簡便に得ることができる。なお、得られる樹脂組成物、及び、モノマー組成物中の水溶性モノマーを重合させて得られる樹脂組成物は、バリア性材料、耐熱性材料、耐候性材料、電気伝導性材料、熱伝導性材料、IR反射性材料などとして用いることができる。   As described above, the exfoliated graphite dispersion liquid can be easily mixed with a water-soluble synthetic resin or a water-soluble monomer because an extremely thin exfoliated graphite is stably dispersed, and a resin composition or a monomer composition can be easily obtained. Can do. The resin composition obtained and the resin composition obtained by polymerizing the water-soluble monomer in the monomer composition are a barrier material, a heat resistant material, a weather resistant material, an electrically conductive material, and a thermally conductive material. It can be used as an IR reflective material.

薄片化黒鉛分散液の用途によっては水以外の分散媒が望ましいことがある。そのような場合には、薄片化黒鉛分散液を遠心分離などで濃縮して水量を減らしてから、他の溶媒を薄片化黒鉛分散液に加えて混合後に遠心分離などで濃縮する工程を繰返し、薄片化黒鉛の分散媒を交換すればよい。又、薄片化黒鉛分散液の分散媒の交換の際に、水と、交換後の分散媒の相溶性が良くない場合には、水と交換後の分散媒の双方に相溶性の良い第3の分散媒を経由して分散媒の交換を行ってもよい。   Depending on the use of the exfoliated graphite dispersion, a dispersion medium other than water may be desirable. In such a case, after concentrating the exfoliated graphite dispersion by centrifugation or the like to reduce the amount of water, repeat the process of adding another solvent to the exfoliated graphite dispersion and concentrating by centrifugation after mixing, The dispersion medium of exfoliated graphite may be replaced. In addition, if the compatibility of water and the dispersion medium after the exchange is not good at the time of exchanging the dispersion medium of the exfoliated graphite dispersion, the third compatible with both the water and the dispersion medium after the exchange. The dispersion medium may be exchanged via the dispersion medium.

そして、薄片化黒鉛分散液を用いて薄片化黒鉛からなる薄膜を形成することができる。具体的には、ガラスや合成樹脂板などの基材上に薄片化黒鉛分散液を塗布、乾燥させることによって薄片化黒鉛からなる薄膜を安定的に形成することができる。   And the thin film which consists of exfoliated graphite can be formed using exfoliated graphite dispersion liquid. Specifically, a thin film made of exfoliated graphite can be stably formed by applying and drying exfoliated graphite dispersion on a substrate such as glass or a synthetic resin plate.

又、黒鉛層間化合物を形成するために用いたインターカレーターが酸化剤又は酸である場合、黒鉛層間化合物の各層面は酸化物を形成している場合がある。この各層面が酸化した黒鉛層間化合物を上述の要領で薄片化して得られた薄片化黒鉛の各層面は酸化グラフェンと呼ばれる。   Further, when the intercalator used for forming the graphite intercalation compound is an oxidizing agent or an acid, each layer surface of the graphite intercalation compound may form an oxide. Each layer surface of exfoliated graphite obtained by exfoliating the graphite intercalation compound in which each layer surface is oxidized as described above is called graphene oxide.

この酸化グラフェンからなる薄片化黒鉛を導電膜などの用途に用いる場合には、高い導電性を得るために、酸化グラフェンを還元することが好ましい。薄片化黒鉛を構成している酸化グラフェンの還元方法としては、特に限定されず、例えば、薄片化黒鉛を構成している酸化グラフェンに還元剤溶液を接触させる方法が挙げられる。還元剤としては、ヒドラジン、ジメチルヒドラジン、ジエチルヒドロキシルアミンなどが挙げられる。なお、還元剤は単独で用いられても二種以上が併用されてもよい。還元剤溶液を構成している溶媒としては、例えば、水、などが挙げられる。   When exfoliated graphite made of graphene oxide is used for applications such as a conductive film, it is preferable to reduce graphene oxide in order to obtain high conductivity. The method for reducing graphene oxide constituting exfoliated graphite is not particularly limited, and examples thereof include a method of bringing a reducing agent solution into contact with graphene oxide constituting exfoliated graphite. Examples of the reducing agent include hydrazine, dimethyl hydrazine, and diethylhydroxylamine. In addition, a reducing agent may be used independently or 2 or more types may be used together. Examples of the solvent constituting the reducing agent solution include water.

薄片化黒鉛を構成している酸化グラフェンに還元剤溶液を接触させる方法としては、例えば、上述のようにして薄片化黒鉛分散液を用いて薄片化黒鉛を含有する薄膜を形成し、この薄膜に還元剤溶液を接触させることによって酸化グラフェンを還元させることが好ましい。このように、先ず、薄片化黒鉛を含む薄膜を基材上に形成し、この基材上の薄膜に還元剤溶液を接触させることによって、薄片化黒鉛の凝集を防止しつつ、薄片化黒鉛を構成している酸化グラフェンの還元を容易に行うことができる。   As a method of bringing the reducing agent solution into contact with the graphene oxide constituting the exfoliated graphite, for example, a thin film containing exfoliated graphite is formed using the exfoliated graphite dispersion as described above, and the thin film is applied to the thin film. It is preferable to reduce the graphene oxide by bringing a reducing agent solution into contact therewith. Thus, first, a thin film containing exfoliated graphite is formed on a base material, and the reducing agent solution is brought into contact with the thin film on the base material, thereby preventing exfoliated graphite from aggregating. Reduction of the graphene oxide that is formed can be easily performed.

本発明は、黒鉛化合物とアルカリ金属の水酸化物と水とを混合してpHが7.5〜10である混合液とし、上記黒鉛化合物を薄片化することを特徴とするので、黒鉛化合物の層面同士を剥離して薄片化黒鉛が安定的に分散してなる薄片化黒鉛分散液を効率良く製造することができる。   The present invention is characterized in that a graphite compound, an alkali metal hydroxide, and water are mixed to obtain a mixed solution having a pH of 7.5 to 10, and the graphite compound is exfoliated. An exfoliated graphite dispersion liquid in which exfoliated graphite is stably dispersed by separating the layer surfaces can be efficiently produced.

次に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

(実施例1)
黒鉛化合物(XGSience社製 商品名「XGnP−5」、レーザー光回折法により粒度分布を測定した場合に50%径として得られる値:5μm)を用意した。
Example 1
A graphite compound (trade name “XGnP-5” manufactured by XGSense, Inc., a value obtained as a 50% diameter when the particle size distribution is measured by a laser diffraction method: 5 μm) was prepared.

次に、pHが9の水酸化ナトリウム水溶液を用意し、この水酸化ナトリウム水溶液18gに上記黒鉛化合物0.05gを供給して均一に混合してpH8.5の混合液を製造し、この混合液を25℃にて60分間に亘って静置して黒鉛化合物をその層面間から剥離し薄片化して、薄片化黒鉛が水中に分散してなる薄片化黒鉛分散液を得た。なお、薄片化黒鉛分散液中には沈殿物は生じていなかった。   Next, an aqueous sodium hydroxide solution having a pH of 9 is prepared, and 0.05 g of the above graphite compound is supplied to 18 g of this aqueous sodium hydroxide solution and uniformly mixed to produce a mixed solution having a pH of 8.5. Was allowed to stand at 25 ° C. for 60 minutes to exfoliate the graphite compound from between the layer surfaces and exfoliate it to obtain exfoliated graphite dispersion in which exfoliated graphite was dispersed in water. In addition, no precipitate was generated in the exfoliated graphite dispersion.

更に、薄片化黒鉛分散液に周波数28kHz、100Wの条件下にて超音波を5分間に亘って照射し、続いて、周波数45kHz、100Wの条件下にて超音波を10分間に亘って照射して25℃にて2時間に亘って静置し、薄片化黒鉛分散液中に分散している薄片化黒鉛における層面間の剥離を更に促進した。なお、薄片化黒鉛分散液中には沈殿物は生じていなかった。   Further, the exfoliated graphite dispersion was irradiated with ultrasonic waves for 5 minutes under the conditions of a frequency of 28 kHz and 100 W, and subsequently irradiated with ultrasonic waves for 10 minutes under the conditions of a frequency of 45 kHz and 100 W. The film was allowed to stand at 25 ° C. for 2 hours to further promote peeling between the layer surfaces of the exfoliated graphite dispersed in the exfoliated graphite dispersion. In addition, no precipitate was generated in the exfoliated graphite dispersion.

薄片化黒鉛分散液から試験液を3cm3採取し、この試験液を25℃にて24時間に亘って静置したが沈殿物は生成しなかった。 3 cm 3 of the test solution was sampled from the exfoliated graphite dispersion, and this test solution was allowed to stand at 25 ° C. for 24 hours, but no precipitate was produced.

又、薄片化黒鉛分散液から塗布液を3cm3採取し、この塗布液をガラス板上に塗布し90℃にて乾燥させて薄片化黒鉛からなる薄膜を形成した。この薄片化黒鉛からなる薄膜は、薄灰色で且つ透明性が高かった。 Also, 3 cm 3 of the coating solution was sampled from the exfoliated graphite dispersion, and this coating solution was applied on a glass plate and dried at 90 ° C. to form a thin film made of exfoliated graphite. The thin film made of exfoliated graphite was light gray and highly transparent.

(実施例2)
pHが9の水酸化ナトリウム水溶液の代わりに、pHが9の水酸化カリウム水溶液を用いて、pHが8.5の混合液を製造したこと以外は実施例1と同様にして薄片化黒鉛分散液を得た。なお、薄片化黒鉛分散液中に沈殿物は生じていなかった。更に、実施例1と同様の要領で、薄片化黒鉛分散液中に分散している薄片化黒鉛における層面間の剥離を促進させた。なお、薄片化黒鉛分散液中には沈殿物は生じていなかった。
(Example 2)
Exfoliated graphite dispersion in the same manner as in Example 1 except that a potassium hydroxide aqueous solution having a pH of 9 was used instead of a sodium hydroxide aqueous solution having a pH of 9 to produce a mixed solution having a pH of 8.5. Got. A precipitate was not generated in the exfoliated graphite dispersion. Further, in the same manner as in Example 1, exfoliation between layer surfaces in exfoliated graphite dispersed in the exfoliated graphite dispersion was promoted. In addition, no precipitate was generated in the exfoliated graphite dispersion.

薄片化黒鉛分散液から試験液を3cm3採取し、この試験液を25℃にて24時間に亘って静置したが沈殿物は生成しなかった。 3 cm 3 of the test solution was sampled from the exfoliated graphite dispersion, and this test solution was allowed to stand at 25 ° C. for 24 hours, but no precipitate was produced.

又、薄片化黒鉛分散液から塗布液を3cm3採取し、この塗布液をガラス板上に塗布し90℃にて乾燥させて薄片化黒鉛からなる薄膜を形成した。この薄片化黒鉛からなる薄膜は、薄灰色で且つ透明性が高かった。 Also, 3 cm 3 of the coating solution was sampled from the exfoliated graphite dispersion, and this coating solution was applied on a glass plate and dried at 90 ° C. to form a thin film made of exfoliated graphite. The thin film made of exfoliated graphite was light gray and highly transparent.

(実施例3)
pHが9の水酸化ナトリウム水溶液の代わりに、pHが10の水酸化カリウム水溶液を用いて、pHが10の混合液を製造したこと以外は実施例1と同様にして薄片化黒鉛分散液を得た。なお、薄片化黒鉛分散液中に沈殿物は生じていなかった。更に、実施例1と同様の要領で、薄片化黒鉛分散液中に分散している薄片化黒鉛における層面間の剥離を促進させた。なお、薄片化黒鉛分散液中には沈殿物は生じていなかった。
(Example 3)
An exfoliated graphite dispersion was obtained in the same manner as in Example 1 except that a potassium hydroxide aqueous solution having a pH of 10 was used instead of a sodium hydroxide aqueous solution having a pH of 9, and a mixture having a pH of 10 was produced. It was. A precipitate was not generated in the exfoliated graphite dispersion. Further, in the same manner as in Example 1, exfoliation between layer surfaces in exfoliated graphite dispersed in the exfoliated graphite dispersion was promoted. In addition, no precipitate was generated in the exfoliated graphite dispersion.

薄片化黒鉛分散液から試験液を3cm3採取し、この試験液を25℃にて24時間に亘って静置したが沈殿物は生成しなかった。 3 cm 3 of the test solution was sampled from the exfoliated graphite dispersion, and this test solution was allowed to stand at 25 ° C. for 24 hours, but no precipitate was produced.

又、薄片化黒鉛分散液から塗布液を3cm3採取し、この塗布液をガラス板上に塗布し90℃にて乾燥させて薄片化黒鉛からなる薄膜を形成した。この薄片化黒鉛からなる薄膜は、薄灰色で且つ透明性が高かった。 Also, 3 cm 3 of the coating solution was sampled from the exfoliated graphite dispersion, and this coating solution was applied on a glass plate and dried at 90 ° C. to form a thin film made of exfoliated graphite. The thin film made of exfoliated graphite was light gray and highly transparent.

(実施例4)
黒鉛化合物として、SECカーボン社から商品名「SNO−15」にて市販されている黒鉛化合物(レーザー光回折法により粒度分布を測定した場合に50%径として得られる値:15μm)を用いたこと、pHが9の水酸化ナトリウム水溶液の代わりに、pHが7.5の水酸化ナトリウム水溶液を用いて、pHが7.5の混合液を製造したこと以外は実施例1と同様にして薄片化黒鉛分散液を得た。なお、薄片化黒鉛分散液中に沈殿物は生じていなかった。更に、実施例1と同様の要領で、薄片化黒鉛分散液中に分散している薄片化黒鉛における層面間の剥離を促進させた。なお、薄片化黒鉛分散液中には沈殿物は生じていなかった。
Example 4
As the graphite compound, a graphite compound commercially available from SEC Carbon under the trade name “SNO-15” (value obtained as a 50% diameter when the particle size distribution is measured by a laser diffraction method: 15 μm) was used. In the same manner as in Example 1, except that a sodium hydroxide aqueous solution having a pH of 7.5 was used instead of a sodium hydroxide aqueous solution having a pH of 9, a mixture having a pH of 7.5 was produced. A graphite dispersion was obtained. A precipitate was not generated in the exfoliated graphite dispersion. Further, in the same manner as in Example 1, exfoliation between layer surfaces in exfoliated graphite dispersed in the exfoliated graphite dispersion was promoted. In addition, no precipitate was generated in the exfoliated graphite dispersion.

薄片化黒鉛分散液から試験液を3cm3採取し、この試験液を25℃にて24時間に亘って静置したが沈殿物は生成しなかった。 3 cm 3 of the test solution was sampled from the exfoliated graphite dispersion, and this test solution was allowed to stand at 25 ° C. for 24 hours, but no precipitate was produced.

又、薄片化黒鉛分散液から塗布液を3cm3採取し、この塗布液をガラス板上に塗布し90℃にて乾燥させて薄片化黒鉛からなる薄膜を形成した。この薄片化黒鉛からなる薄膜は、薄灰色で且つ透明性が高かった。 Also, 3 cm 3 of the coating solution was sampled from the exfoliated graphite dispersion, and this coating solution was applied on a glass plate and dried at 90 ° C. to form a thin film made of exfoliated graphite. The thin film made of exfoliated graphite was light gray and highly transparent.

(比較例1)
pHが9の水酸化ナトリウム水溶液の代わりに、pHが11の水酸化ナトリウム水溶液を用いて、pHが11の混合液を製造したこと以外は実施例1と同様にして薄片化黒鉛分散液を製造しようとしたが、沈殿物と透明度の高い上澄み部とに分離してしまい薄片化黒鉛分散液を得ることができなかった。更に、実施例1と同様の要領で、混合液に周波数28kHz、100Wの条件下にて超音波を5分間に亘って照射し、続いて、周波数45kHz、100Wの条件下にて超音波を10分間に亘って照射して25℃にて2時間に亘って静置したが、沈殿物と光透過性の高い上澄み部とに分離してしまい薄片化黒鉛分散液を得ることができなかった。
(Comparative Example 1)
A exfoliated graphite dispersion was produced in the same manner as in Example 1 except that a sodium hydroxide aqueous solution having a pH of 11 was used instead of a sodium hydroxide aqueous solution having a pH of 9, and a liquid mixture having a pH of 11 was produced. Attempts were made to separate the precipitate into a highly transparent supernatant, and it was not possible to obtain a exfoliated graphite dispersion. Further, in the same manner as in Example 1, the mixed solution was irradiated with ultrasonic waves for 5 minutes under conditions of a frequency of 28 kHz and 100 W, and subsequently, ultrasonic waves were applied for 10 minutes under conditions of a frequency of 45 kHz and 100 W. Irradiation was carried out for 5 minutes, and the mixture was allowed to stand at 25 ° C. for 2 hours. However, it separated into a precipitate and a highly light-transmitting supernatant, and a exfoliated graphite dispersion could not be obtained.

薄片化黒鉛分散液の上澄みから試験液を3cm3採取し、この試験液を25℃にて24時間に亘って静置したところ、黒鉛層間化合物と思われる沈殿物が生じていた。試験液の上澄みは透明度が高く、薄片化黒鉛は存在していないと推定された。 When 3 cm 3 of the test liquid was sampled from the supernatant of the exfoliated graphite dispersion, and this test liquid was allowed to stand at 25 ° C. for 24 hours, a precipitate that appeared to be a graphite intercalation compound was produced. The supernatant of the test solution was highly transparent, and it was estimated that exfoliated graphite was not present.

(比較例2)
pHが9の水酸化ナトリウム水溶液の代わりに、pHが11の水酸化カリウム水溶液を用いて、pHが11の混合液を製造したこと以外は実施例1と同様にして薄片化黒鉛分散液を製造しようとしたが、沈殿物と透明度の高い上澄み部とに分離してしまい薄片化黒鉛分散液を得ることができなかった。更に、実施例1と同様の要領で、混合液に周波数28kHz、100Wの条件下にて超音波を5分間に亘って照射し、続いて、周波数45kHz、100Wの条件下にて超音波を10分間に亘って照射して25℃にて2時間に亘って静置したが、沈殿物と光透過性の高い上澄み部とに分離してしまい薄片化黒鉛分散液を得ることができなかった。
(Comparative Example 2)
A exfoliated graphite dispersion was produced in the same manner as in Example 1, except that a potassium hydroxide aqueous solution having a pH of 11 was used instead of a sodium hydroxide aqueous solution having a pH of 9, and a mixture having a pH of 11 was produced. Attempts were made to separate the precipitate into a highly transparent supernatant, and it was not possible to obtain a exfoliated graphite dispersion. Further, in the same manner as in Example 1, the mixed solution was irradiated with ultrasonic waves for 5 minutes under conditions of a frequency of 28 kHz and 100 W, and subsequently, ultrasonic waves were applied for 10 minutes under conditions of a frequency of 45 kHz and 100 W. Irradiation was carried out for 5 minutes, and the mixture was allowed to stand at 25 ° C. for 2 hours. However, it separated into a precipitate and a highly light-transmitting supernatant, and a exfoliated graphite dispersion could not be obtained.

薄片化黒鉛分散液の上澄みから試験液を3cm3採取し、この試験液を25℃にて24時間に亘って静置したところ、黒鉛層間化合物と思われる沈殿物が生じていた。試験液の上澄みは透明度が高く、薄片化黒鉛は存在していないと推定された。 When 3 cm 3 of the test liquid was sampled from the supernatant of the exfoliated graphite dispersion, and this test liquid was allowed to stand at 25 ° C. for 24 hours, a precipitate that appeared to be a graphite intercalation compound was produced. The supernatant of the test solution was highly transparent, and it was estimated that exfoliated graphite was not present.

Claims (4)

黒鉛化合物とアルカリ金属の水酸化物と水とを混合してpHが7.5〜10である混合液とし、上記黒鉛化合物を薄片化することを特徴とする薄片化黒鉛分散液の製造方法。 A method for producing a exfoliated graphite dispersion, comprising mixing a graphite compound, an alkali metal hydroxide, and water to obtain a mixed solution having a pH of 7.5 to 10, and exfoliating the graphite compound. アルカリ金属の水酸化物が、水酸化ナトリウム又は水酸化カリウムであることを特徴とする請求項1に記載の薄片化黒鉛分散液の製造方法。 The method for producing exfoliated graphite dispersion according to claim 1, wherein the alkali metal hydroxide is sodium hydroxide or potassium hydroxide. 請求項1又は請求項2に記載の薄片化黒鉛分散液の製造方法によって製造されてなることを特徴とする薄片化黒鉛分散液。 An exfoliated graphite dispersion liquid produced by the method for producing an exfoliated graphite dispersion liquid according to claim 1 or 2. 請求項1又は請求項2に記載の薄片化黒鉛分散液の製造方法で得られた薄片化黒鉛分散液を基材に塗布、乾燥させて薄片化黒鉛を含む薄膜を形成することを特徴とする薄膜の製造方法。 A thin film containing exfoliated graphite is formed by applying the exfoliated graphite dispersion obtained by the method for producing an exfoliated graphite dispersion according to claim 1 or 2 to a substrate and drying it. Thin film manufacturing method.
JP2010053276A 2010-03-10 2010-03-10 Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film Pending JP2011184264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053276A JP2011184264A (en) 2010-03-10 2010-03-10 Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053276A JP2011184264A (en) 2010-03-10 2010-03-10 Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film

Publications (1)

Publication Number Publication Date
JP2011184264A true JP2011184264A (en) 2011-09-22

Family

ID=44790996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053276A Pending JP2011184264A (en) 2010-03-10 2010-03-10 Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film

Country Status (1)

Country Link
JP (1) JP2011184264A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189700A (en) * 2010-03-16 2011-09-29 Sekisui Chem Co Ltd Combined sheet
JP5098064B1 (en) * 2012-04-02 2012-12-12 国立大学法人 岡山大学 Oxidized flake graphite and method for producing the same
JP2013122884A (en) * 2011-12-12 2013-06-20 Toshiba Corp Transparent conductive material, dispersion liquid, transparent conductive film, and manufacturing method of those
JP2014009151A (en) * 2012-07-03 2014-01-20 Harima Chemicals Group Inc Method for producing thin-layer graphite or thin-layer graphite compound
WO2014163127A1 (en) * 2013-04-05 2014-10-09 積水化学工業株式会社 Method for manufacturing flaked graphite and flaked graphite liquid dispersion, as well as flaked graphite, flaked graphite liquid dispersion, and flaked graphite/resin composite material
JP2015193499A (en) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 Production method of flaky carbon using plant extract
JP5873588B1 (en) * 2015-05-12 2016-03-01 マイクロ波化学株式会社 Method for producing flaky carbon material
JP2017502168A (en) * 2013-11-20 2017-01-19 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Production of graphene oxide
JPWO2014136757A1 (en) * 2013-03-06 2017-02-09 積水化学工業株式会社 Method for producing random structure GIC, method for producing exfoliated graphite dispersion, exfoliated graphite dispersion and exfoliated graphite
JP2018035056A (en) * 2017-07-11 2018-03-08 康博 青木 Method for producing graphene

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003192316A (en) * 2001-12-25 2003-07-09 National Institute Of Advanced Industrial & Technology Porous graphite composite material and its manufacturing method
JP2003238131A (en) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc Random aggregate of thin particle with carbon skeletal structure
JP2004091252A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2005048089A (en) * 2003-07-30 2005-02-24 Mitsubishi Gas Chem Co Inc Conductive polymer material
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
WO2009049375A1 (en) * 2007-10-19 2009-04-23 University Of Wollongong Process for the preparation of graphene
JP2009242209A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Method for producing organized graphite material
JP2010102829A (en) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP2010275186A (en) * 2009-05-26 2010-12-09 Belenos Clean Power Holding Ag Stable dispersion of single and multiple graphene layers in solution
JP2011063492A (en) * 2009-09-18 2011-03-31 Fuji Electric Holdings Co Ltd Method for producing graphene thin film, and graphene thin film
JP2011111367A (en) * 2009-11-27 2011-06-09 Sekisui Chem Co Ltd Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
JP2011136881A (en) * 2009-12-28 2011-07-14 Sekisui Chem Co Ltd Method for producing dispersion liquid of flake type graphite, dispersion liquid of flake type graphite, method for producing thin film, resin composition, and monomer composition

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003192316A (en) * 2001-12-25 2003-07-09 National Institute Of Advanced Industrial & Technology Porous graphite composite material and its manufacturing method
JP2003238131A (en) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc Random aggregate of thin particle with carbon skeletal structure
JP2004091252A (en) * 2002-08-30 2004-03-25 Mitsubishi Gas Chem Co Inc Method for reducing thin-film particle having framework comprising carbon
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2005063951A (en) * 2003-07-23 2005-03-10 Mitsubishi Gas Chem Co Inc Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof
JP2005048089A (en) * 2003-07-30 2005-02-24 Mitsubishi Gas Chem Co Inc Conductive polymer material
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
WO2009049375A1 (en) * 2007-10-19 2009-04-23 University Of Wollongong Process for the preparation of graphene
JP2009242209A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Method for producing organized graphite material
JP2010102829A (en) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc Evaluation method of liquid containing graphite oxide particle, manufacturing method of liquid containing graphite oxide particle, and manufacturing method of conductor using the evaluation method
JP2010275186A (en) * 2009-05-26 2010-12-09 Belenos Clean Power Holding Ag Stable dispersion of single and multiple graphene layers in solution
JP2011063492A (en) * 2009-09-18 2011-03-31 Fuji Electric Holdings Co Ltd Method for producing graphene thin film, and graphene thin film
JP2011111367A (en) * 2009-11-27 2011-06-09 Sekisui Chem Co Ltd Method for producing dispersion liquid of flake-type graphite, dispersion liquid of flake-type graphite, and method for producing thin film
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
JP2011136881A (en) * 2009-12-28 2011-07-14 Sekisui Chem Co Ltd Method for producing dispersion liquid of flake type graphite, dispersion liquid of flake type graphite, method for producing thin film, resin composition, and monomer composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013019003; J.I. PAREDES et al.: Langmuir Published on Web 29 August 2008, Vol.24, No.19, pp.10560-10564 *
JPN6013019005; Sungjin PARK et al.: Nano Letters Published on Web 03/05/2009, Vol.9, No.4, pp.1593-1597 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189700A (en) * 2010-03-16 2011-09-29 Sekisui Chem Co Ltd Combined sheet
JP2013122884A (en) * 2011-12-12 2013-06-20 Toshiba Corp Transparent conductive material, dispersion liquid, transparent conductive film, and manufacturing method of those
JP5098064B1 (en) * 2012-04-02 2012-12-12 国立大学法人 岡山大学 Oxidized flake graphite and method for producing the same
JP2014009151A (en) * 2012-07-03 2014-01-20 Harima Chemicals Group Inc Method for producing thin-layer graphite or thin-layer graphite compound
JPWO2014136757A1 (en) * 2013-03-06 2017-02-09 積水化学工業株式会社 Method for producing random structure GIC, method for producing exfoliated graphite dispersion, exfoliated graphite dispersion and exfoliated graphite
WO2014163127A1 (en) * 2013-04-05 2014-10-09 積水化学工業株式会社 Method for manufacturing flaked graphite and flaked graphite liquid dispersion, as well as flaked graphite, flaked graphite liquid dispersion, and flaked graphite/resin composite material
JP5699252B1 (en) * 2013-04-05 2015-04-08 積水化学工業株式会社 Exfoliated graphite, method for producing exfoliated graphite dispersion, exfoliated graphite, exfoliated graphite dispersion, and exfoliated graphite-resin composite material
JP2017502168A (en) * 2013-11-20 2017-01-19 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Production of graphene oxide
JP2015193499A (en) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 Production method of flaky carbon using plant extract
JP5873588B1 (en) * 2015-05-12 2016-03-01 マイクロ波化学株式会社 Method for producing flaky carbon material
WO2016181760A1 (en) * 2015-05-12 2016-11-17 マイクロ波化学株式会社 Lamellar carbonaceous material and method for producing same
JP2018035056A (en) * 2017-07-11 2018-03-08 康博 青木 Method for producing graphene

Similar Documents

Publication Publication Date Title
JP2011184264A (en) Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film
WO2017128929A1 (en) Method for preparing graphene dispersion and article thereof
Zhang et al. Carbon dots@ rGO paper as freestanding and flexible potassium‐ion batteries anode
Zhang et al. Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage
Huang et al. A facile, high‐yield, and freeze‐and‐thaw‐assisted approach to fabricate MXene with plentiful wrinkles and its application in on‐chip micro‐supercapacitors
Chen et al. Simultaneous production and functionalization of boron nitride nanosheets by sugar‐assisted mechanochemical exfoliation
Tang et al. 2D metal carbides and nitrides (MXenes) as high‐performance electrode materials for Lithium‐based batteries
CN108251076B (en) Carbon nanotube-graphene composite heat dissipation film, and preparation method and application thereof
Wang et al. Mn3O4− graphene hybrid as a high-capacity anode material for lithium ion batteries
US8747623B2 (en) One-step production of graphene materials
CN102167311B (en) Method for preparing graphene on large scale
WO2016074393A1 (en) Method for large-scale preparation of bulky graphene
JP2010275186A5 (en)
WO2015100682A1 (en) Anthracite-based method for preparation of graphene and graphene oxide
JP2013139373A (en) Method for producing graphene
Wu et al. Effect of pH values on the morphology of zinc oxide nanostructures and their photoluminescence spectra
JP2011136881A (en) Method for producing dispersion liquid of flake type graphite, dispersion liquid of flake type graphite, method for producing thin film, resin composition, and monomer composition
He et al. Integration of black phosphorene and MXene to improve fire safety and mechanical properties of waterborne polyurethane
Liu et al. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances
Song et al. Graphene functionalization: a review
Nagaraju et al. Na0. 33V2O5· 1.5 H2O nanorings/nanorods and Na0. 33V2O5· 1.5 H2O/RGO composite fabricated by a facile one pot synthesis and its lithium storage behavior
Chen et al. CNTs–C@ TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries
TWI581488B (en) Method for manufacturing negative electrode plate of secondary battery
KR20110121583A (en) Transition metal oxide/graphene composites by using microwave-polyol process and synthesizing method thereof
TW201825396A (en) Method of producing graphene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130815