JP2013170303A - Nickel alloy powder and method for producing the same - Google Patents

Nickel alloy powder and method for producing the same Download PDF

Info

Publication number
JP2013170303A
JP2013170303A JP2012035884A JP2012035884A JP2013170303A JP 2013170303 A JP2013170303 A JP 2013170303A JP 2012035884 A JP2012035884 A JP 2012035884A JP 2012035884 A JP2012035884 A JP 2012035884A JP 2013170303 A JP2013170303 A JP 2013170303A
Authority
JP
Japan
Prior art keywords
particles
alloy powder
nickel alloy
nickel
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035884A
Other languages
Japanese (ja)
Other versions
JP5984419B2 (en
Inventor
Takanori Makise
貴紀 牧瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2012035884A priority Critical patent/JP5984419B2/en
Priority to KR1020130010912A priority patent/KR20130096651A/en
Priority to TW102105514A priority patent/TWI599659B/en
Publication of JP2013170303A publication Critical patent/JP2013170303A/en
Application granted granted Critical
Publication of JP5984419B2 publication Critical patent/JP5984419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles

Abstract

PROBLEM TO BE SOLVED: To provide nickel powder in which the number of connected grains in which the ratio of the major axis to the minor axis of the grains is ≥2 is reduced as metal grains suitable when the electrode layer of a laminated ceramic capacitor is obtained by pasting metal grains, coating the same and performing firing; and to provide a method for producing the same.SOLUTION: An alloy or a gaseous mixture including 0.5 to 60 mass% tin in nickel is used as raw material, and a vapor deposition method such as PVD and CVD is used to obtain nickel alloy powder including tin. The number ratio of the connected grains of the nickel alloy powder is ≤1%.

Description

本発明は、ニッケル合金粉末およびその製造方法に関する。   The present invention relates to a nickel alloy powder and a method for producing the same.

積層セラミックコンデンサ(MLCC)のエネルギー密度を上げるための技術開発は目覚ましく、電極層、チタン酸バリウムの誘電体層ともに薄層化の一途をたどっている。
ニッケルなどの金属粒子をペースト化して塗布して電極層を作製しているが、電極層の薄層化に伴い、より細かい金属粒子が所望されている。
金属粒子の細粒化に伴い、金属粒子の焼結温度が低下していくと誘電体層の焼結温度と大きな差が生じてしまう。そのため、可能な限り金属粒子の焼結温度を高める必要があり、結晶性が悪いために焼結温度が下がってしまう液相で粒子を作製する湿式法を用いるのは好ましくない。
そうすると、PVD(Physical Vapor Deposition)法やCVD(Chemical Vapor Deposition)法などの気相法(例えば、特許文献1)で作製するのがよいということになる。
The technological development for increasing the energy density of the multilayer ceramic capacitor (MLCC) is remarkable, and both the electrode layer and the dielectric layer of barium titanate are becoming thinner.
An electrode layer is prepared by pasting and applying metal particles such as nickel, but finer metal particles are desired as the electrode layer is made thinner.
If the sintering temperature of the metal particles is lowered as the metal particles are made finer, a large difference from the sintering temperature of the dielectric layer occurs. Therefore, it is necessary to increase the sintering temperature of the metal particles as much as possible, and it is not preferable to use a wet method in which particles are produced in a liquid phase in which the sintering temperature is lowered due to poor crystallinity.
If it does so, it will be good to produce by vapor phase methods (for example, patent documents 1), such as PVD (Physical Vapor Deposition) method and CVD (Chemical Vapor Deposition) method.

特表2005−505695号公報JP 2005-505695 A

電極層の薄層化に伴い、電極間距離よりも長い粒子が混入し電極間をショートさせてしまう問題がより顕著になっている。従来、粗大な粒子を分級などで取り除くことを行っているが、分級では細長い粒子を取り除くことが困難であるため、連結粒子の混入は大きな問題である。
連結粒子は粒径が細かくなるほど増加する。連結粒子の数を低減する試みは粒子の冷却速度を速くするなど取られているが十分とはいえない。また、粉末の作製量を減らせば粒子同士の衝突確率を減らせるので連結粒子の数を低減し得るが、工業的な生産の観点から現実的ではない。
As the electrode layers become thinner, the problem that particles longer than the distance between the electrodes are mixed and the electrodes are short-circuited becomes more prominent. Conventionally, coarse particles are removed by classification or the like. However, since it is difficult to remove elongated particles by classification, mixing of connected particles is a big problem.
The connected particles increase as the particle size decreases. Attempts to reduce the number of connected particles have been made, such as increasing the cooling rate of the particles, but this is not sufficient. Further, if the amount of powder produced is reduced, the probability of collision between particles can be reduced, so the number of connected particles can be reduced. However, this is not practical from the viewpoint of industrial production.

本発明は、以上の点を鑑みてなされたものであり、連結粒子の個数が低減された金属粉末を提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide a metal powder in which the number of connected particles is reduced.

本発明者は、上記目的を達成するために鋭意検討を行なった。その結果、原料となるニッケルに所定の元素を特定量添加することで、得られるニッケル合金粉末において、連結粒子の個数を低減できることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(1)〜(3)を提供する。
The present inventor has intensively studied to achieve the above object. As a result, the inventors have found that the number of connected particles in the obtained nickel alloy powder can be reduced by adding a specific amount of a predetermined element to nickel as a raw material, thereby completing the present invention.
That is, the present invention provides the following (1) to (3).

(1)気相にした原料から粒子を得る気相法を用いて得られる、連結粒子が個数割合で1%以下である、ニッケル合金粉末。   (1) A nickel alloy powder obtained by using a vapor phase method for obtaining particles from a gas phase raw material, wherein the number of connected particles is 1% or less.

(2)上記原料がニッケルとスズとを含み、上記原料における上記スズの量が0.5〜60質量%である、上記(1)に記載のニッケル合金粉末。   (2) The nickel alloy powder according to (1), wherein the raw material contains nickel and tin, and the amount of the tin in the raw material is 0.5 to 60% by mass.

(3)気相にした原料から粒子を得る気相法を用いて上記(1)に記載のニッケル合金粉末を得る、ニッケル合金粉末の製造方法であって、上記原料がニッケルとスズとを含み、上記原料における上記スズの量が0.5〜60質量%である、ニッケル合金粉末の製造方法。   (3) A nickel alloy powder manufacturing method for obtaining the nickel alloy powder according to (1) above by using a gas phase method for obtaining particles from a gas phase raw material, wherein the raw material contains nickel and tin. The manufacturing method of the nickel alloy powder whose quantity of the said tin in the said raw material is 0.5-60 mass%.

本発明によれば、連結粒子の個数が低減された金属粉末を提供することができる。   According to the present invention, it is possible to provide a metal powder in which the number of connected particles is reduced.

微粒子製造装置1の一例を示す模式図である。1 is a schematic diagram showing an example of a fine particle manufacturing apparatus 1. FIG. 比較例1の粉末を示すSEM像である。3 is a SEM image showing the powder of Comparative Example 1. 実施例1の粉末を示すSEM像である。2 is a SEM image showing the powder of Example 1. 実施例2の粉末を示すSEM像である。3 is a SEM image showing the powder of Example 2.

以下、図1に基いて、気相法として、試料を物理的に蒸発させて微粒子を得るPVD(Physical Vapor Deposition)法を用いた実施形態について説明する。具体的には、電極と試料との間にアーク放電を発生させることにより試料を蒸発させて微粒子を得る場合について説明する。   Hereinafter, an embodiment using a PVD (Physical Vapor Deposition) method for obtaining fine particles by physically evaporating a sample will be described with reference to FIG. Specifically, a case where fine particles are obtained by evaporating the sample by generating an arc discharge between the electrode and the sample will be described.

図1は、微粒子製造装置1の一例を示す模式図である。微粒子製造装置1は、試料4を蒸発させるためのチャンバ11と、試料4の蒸気を冷却するための熱交換器6と、微粒子を捕集するための捕集フィルタ7が設けられた捕集器12とを備えており、熱交換器6を介して、チャンバ11と捕集器12とが連結されている。   FIG. 1 is a schematic diagram illustrating an example of a fine particle manufacturing apparatus 1. The fine particle manufacturing apparatus 1 is a collector provided with a chamber 11 for evaporating a sample 4, a heat exchanger 6 for cooling the vapor of the sample 4, and a collection filter 7 for collecting fine particles. The chamber 11 and the collector 12 are connected via the heat exchanger 6.

チャンバ11の内部には、試料4を支持するために、試料支持台5が設置されている。試料支持台5は、例えば、水冷銅るつぼであり、その内径や冷却水量などは、特に限定されない。
ところで、試料支持台5として水冷銅るつぼを用いた場合には、試料4を蒸発させて得られる粒子(合金粉末)に銅(Cu)が不可避不純物として含まれる場合がある。
しかしながら、本発明で得られる粒子(合金粉末)においては、上述した銅に代表される不可避不純物の含有量が0.1質量%未満であるのが好ましい。
A sample support 5 is installed inside the chamber 11 to support the sample 4. The sample support 5 is, for example, a water-cooled copper crucible, and the inner diameter and the amount of cooling water are not particularly limited.
By the way, when a water-cooled copper crucible is used as the sample support 5, the particles (alloy powder) obtained by evaporating the sample 4 may contain copper (Cu) as an inevitable impurity.
However, in the particles (alloy powder) obtained in the present invention, the content of inevitable impurities represented by copper described above is preferably less than 0.1% by mass.

また、チャンバ11の内部には、例えば、タングステン電極である電極2が設置されている。電極2は、その先端が試料支持台5に近接する位置で、トーチ13内に配置されている。なお、トーチ13は、図示しない水冷手段によって水冷されている。   Moreover, the electrode 2 which is a tungsten electrode is installed in the inside of the chamber 11, for example. The electrode 2 is disposed in the torch 13 at a position where the tip thereof is close to the sample support 5. The torch 13 is water cooled by a water cooling means (not shown).

微粒子製造装置1においては、所定のガスが循環ポンプ8によって循環され、ガス気流が形成されている。より詳細には、ライン14からチャンバ11に導入されたガスは、熱交換器6および捕集器12を経て、ライン15を経て、循環ポンプ8に戻る。   In the fine particle manufacturing apparatus 1, a predetermined gas is circulated by the circulation pump 8 to form a gas flow. More specifically, the gas introduced into the chamber 11 from the line 14 passes through the heat exchanger 6 and the collector 12, returns to the circulation pump 8 through the line 15.

ライン14は、トーチ13に接続する分岐ライン14aを有する。ライン14を流れるガスの一部は、分岐ライン14aを経由してトーチ13内に導入され先端から放出される。トーチ13の先端から放出されるガスは、電極2の損耗防止に役立つとともに、アーク放電により活性化(プラズマ化)される。   The line 14 has a branch line 14 a connected to the torch 13. Part of the gas flowing through the line 14 is introduced into the torch 13 via the branch line 14a and discharged from the tip. The gas released from the tip of the torch 13 is useful for preventing wear of the electrode 2 and is activated (plasmaized) by arc discharge.

チャンバ11に接続するライン14の途中には、ガス気流の流量を測定するためのチャンバ用流量計10が設けられ、同様に、トーチ13に接続する分岐ライン14aの途中にも、トーチ用流量計9が設けられている。   A chamber flow meter 10 for measuring the flow rate of the gas flow is provided in the middle of the line 14 connected to the chamber 11. Similarly, a torch flow meter is also provided in the middle of the branch line 14 a connected to the torch 13. 9 is provided.

このような構成において、チャンバ11内でアーク放電を発生させる雰囲気(以下、「アーク雰囲気」ともいう)を所定のガス雰囲気とし、試料支持台5を直流電源(図示せず)の陽極と接続し、電極2を直流電源の陰極と接続して、試料支持台5上の試料4と電極2の先端との間でアーク放電を生じさせ、移行式アーク3を生じさせて、試料支持台5に支持された試料4を強制蒸発させて気相とする。
試料4の蒸気は、ガス気流に搬送されて、熱交換器6を経由して、捕集器12に導かれる。この過程において、蒸気は冷却され、原子どうしが互いに凝集し、微粒子が得られる。
In such a configuration, an atmosphere that generates arc discharge in the chamber 11 (hereinafter also referred to as “arc atmosphere”) is a predetermined gas atmosphere, and the sample support 5 is connected to an anode of a DC power source (not shown). The electrode 2 is connected to the cathode of the DC power source, an arc discharge is generated between the sample 4 on the sample support 5 and the tip of the electrode 2, and a transfer arc 3 is generated. The supported sample 4 is forcibly evaporated to a gas phase.
The vapor of the sample 4 is conveyed to the gas stream and guided to the collector 12 via the heat exchanger 6. In this process, the vapor is cooled, the atoms aggregate together and fine particles are obtained.

捕集器12においては、捕集フィルタ7に微粒子が付着して捕集され、ガスが分離される。なお、分離後のガスは、ライン15を通じて循環ポンプ8に戻り、ライン14を経由して再びチャンバ11に導入される。   In the collector 12, fine particles adhere to the collection filter 7 and are collected, and the gas is separated. The separated gas returns to the circulation pump 8 through the line 15 and is again introduced into the chamber 11 through the line 14.

ところで、気相法を用いて試料4としてニッケル単体のみを蒸発させた場合には、生成したニッケル粒子が直線的に並んだあと焼結が起こり、連結粒子が生成する場合がある。   By the way, when only the nickel simple substance is evaporated as the sample 4 using the vapor phase method, sintering may occur after the generated nickel particles are linearly arranged, and connected particles may be generated.

そのため、例えば、試料4としてニッケル単体のみを蒸発させ、捕集フィルタ7に捕集された微粒子のSEM像を観察すると、例えば図2に示すように、多数の連結粒子が確認される。なお、詳しくは後述するが、図2に示すSEM像においては、連結粒子の個数割合は4.0%と高く、1%を超えており、実用上、使用できない。   Therefore, for example, when only nickel as a sample 4 is evaporated and an SEM image of fine particles collected by the collection filter 7 is observed, a large number of connected particles are confirmed, for example, as shown in FIG. As will be described in detail later, in the SEM image shown in FIG. 2, the number ratio of the connected particles is as high as 4.0%, exceeding 1%, and cannot be used practically.

なお、本発明において、「連結粒子」とは、任意の視野のSEM像で観察される粒子のうち、短径に対する長径の比(長径/短径)が2以上である粒子と定義する。
ここで、粒子の「短径」とは、その視野で測定される最小長さである。また、粒子の「長径」とは、その視野で測定される最大長さであり、例えば、連結粒子が屈曲している場合には、その屈曲に沿った長さを意味するものとする。
In the present invention, “connected particles” are defined as particles having a ratio of major axis to minor axis (major axis / minor axis) of 2 or more among particles observed in an SEM image of an arbitrary field of view.
Here, the “minor axis” of the particle is the minimum length measured in the field of view. Further, the “major axis” of the particle is the maximum length measured in the field of view. For example, when the connecting particle is bent, it means the length along the bent.

しかしながら、試料4として、ニッケル(Ni)とスズ(Sn)とを含み、スズの量が0.5〜60質量%である原料(以下、「本発明の原料」ともいう。)を用いることにより、連結粒子が個数割合で1%以下である、ニッケル合金粉末(以下、「本発明のニッケル合金粉末」ともいう。)が得られる。   However, as the sample 4, a raw material containing nickel (Ni) and tin (Sn) and having an amount of tin of 0.5 to 60% by mass (hereinafter also referred to as “the raw material of the present invention”) is used. A nickel alloy powder (hereinafter also referred to as “nickel alloy powder of the present invention”) in which the number of connected particles is 1% or less is obtained.

本発明のニッケル合金粉末の比表面積径は、特に限定されないが、例えば、200nm以下で作製可能な粒子径は10nmまでとなるが、粒子が細かくなるほど連結粒子が生成されやすくなるため、連結粒子の個数割合を低減するという効果がより実効的なものとなる。   The specific surface area diameter of the nickel alloy powder of the present invention is not particularly limited. For example, the particle diameter that can be produced at 200 nm or less is up to 10 nm, but the smaller the particle, the more easily the connected particles are generated. The effect of reducing the number ratio becomes more effective.

本発明のニッケル合金粉末においては、連結粒子の個数割合は少ないほど好ましく、具体的には、0.5%以下が好ましく、0.3%以下がより好ましい。   In the nickel alloy powder of the present invention, the smaller the number ratio of the connected particles, the more preferable. Specifically, 0.5% or less is preferable, and 0.3% or less is more preferable.

本発明のニッケル合金粉末によれば、ペースト化した際の凝集を抑えることができる。
また、通信用途においてはGHz帯の利用も拡大しているために電子回路の設計においても高周波でのインピーダンスの低減が求められているという背景があるが、本発明のニッケル合金粉末を用いて作製した電極においては、透磁率の低下によって高周波領域でもインピーダンスが低減するというメリットが得られる。さらに磁気凝集の影響も低減することができるため、電極ペーストの作製が容易というメリットも得られる。
本発明のニッケル合金粉末は、例えば、積層コンデンサ、積層インダクタ、積層アクチュエーターなどの積層セラミック電子部品の内部電極を形成するのに好適に用いることができる。
According to the nickel alloy powder of the present invention, aggregation at the time of forming into a paste can be suppressed.
In addition, the use of the GHz band for communication applications is expanding, and there is a background that the reduction of impedance at high frequencies is also required in the design of electronic circuits, but it is manufactured using the nickel alloy powder of the present invention. In such an electrode, there is a merit that impedance is reduced even in a high frequency region due to a decrease in magnetic permeability. Furthermore, since the influence of magnetic aggregation can be reduced, the merit that the electrode paste can be easily produced is also obtained.
The nickel alloy powder of the present invention can be suitably used for forming internal electrodes of multilayer ceramic electronic components such as multilayer capacitors, multilayer inductors, multilayer actuators, and the like.

本発明のニッケル合金粉末が上述した用途に適用された場合、セラミックと共に1100℃程度で高温焼成されることを考えると融点の降下は好ましくなく、また、電気抵抗が高くなりすぎることも好ましくない。
そこで、本発明の原料においては、スズ(Sn)の量が6質量%未満であるのが好ましく、5質量%未満であるのがより好ましい。スズ量がこの範囲であれば、本発明のニッケル合金粉末の融点を降下させずに1300℃以上に保つことができ、また、電気抵抗の上昇も抑制できる。
When the nickel alloy powder of the present invention is applied to the above-mentioned application, considering that the ceramic alloy is fired at a high temperature at about 1100 ° C., a decrease in melting point is not preferable, and it is not preferable that the electric resistance becomes too high.
Therefore, in the raw material of the present invention, the amount of tin (Sn) is preferably less than 6% by mass, and more preferably less than 5% by mass. If the amount of tin is within this range, the melting point of the nickel alloy powder of the present invention can be maintained at 1300 ° C. or higher without lowering the temperature, and an increase in electrical resistance can be suppressed.

また、上述したように、本発明のニッケル合金粉末は、不可避不純物の含有量が0.1質量%未満であるのが好ましく、実質的にニッケルおよびスズのみからなるのがより好ましい。
そのため、本発明の原料も、実質的にニッケルおよびスズのみからなるのが好ましい。
As described above, the nickel alloy powder of the present invention preferably has an inevitable impurity content of less than 0.1% by mass, and more preferably consists essentially of nickel and tin.
Therefore, it is preferable that the raw material of the present invention also consists essentially of nickel and tin.

本発明の原料としては、具体的には、例えば、純度99.99質量%のニッケルと純度99.99質量%のスズとを溶かし合わせて合金化し、スズ量が上記範囲内となるようにしたものが挙げられる。
もっとも、本発明の原料としては合金化したものに限定されることはなく、例えば、ニッケルとスズとを別々に蒸発させるようにしてもよい。この場合、ニッケルとスズとの合計量におけるスズの量を上記範囲内とすればよい。
Specifically, as the raw material of the present invention, for example, nickel having a purity of 99.99% by mass and tin having a purity of 99.99% by mass are melted and alloyed so that the amount of tin is within the above range. Things.
However, the raw material of the present invention is not limited to an alloyed material, and for example, nickel and tin may be evaporated separately. In this case, the amount of tin in the total amount of nickel and tin may be within the above range.

図1に示す微粒子製造装置1の説明に戻る。ガス気流の流量は、微粒子の発生速度等に対応させて調整される。例えば、チャンバ用流量計10によって測定される流量は、20〜100NL/minが好ましく、トーチ用流量計9によって測定される流量は、0〜10NL/minが好ましい。   Returning to the description of the fine particle manufacturing apparatus 1 shown in FIG. The flow rate of the gas flow is adjusted in accordance with the generation speed of fine particles. For example, the flow rate measured by the chamber flow meter 10 is preferably 20 to 100 NL / min, and the flow rate measured by the torch flow meter 9 is preferably 0 to 10 NL / min.

アーク雰囲気としては、特に限定されず、例えば、従来一般的なアルゴンと水素との混合ガス雰囲気とすることができ、この場合、水素濃度を濃くするほど蒸発量を増加させることができるという観点から、アルゴンと水素との体積比(アルゴン/水素)は、90/10〜0/100が好ましい。   The arc atmosphere is not particularly limited. For example, a conventional mixed gas atmosphere of argon and hydrogen can be used, and in this case, the evaporation amount can be increased as the hydrogen concentration is increased. The volume ratio of argon to hydrogen (argon / hydrogen) is preferably 90/10 to 0/100.

また、チャンバ11内におけるアーク雰囲気の圧力条件としては、例えば、点火前において、0.1〜1.5気圧であるのが好ましい。   Moreover, as a pressure condition of the arc atmosphere in the chamber 11, it is preferable that it is 0.1-1.5 atmospheres before ignition, for example.

アーク電流値は、例えば、50〜1000Aである。なお、アーク電流値とは、アーク放電中に流れる電流の値であって、電流プローブ等によって測定されるものである。   The arc current value is, for example, 50 to 1000A. The arc current value is a value of current flowing during arc discharge, and is measured by a current probe or the like.

電極2の先端と試料4との距離(以下、「電極間距離」という)としては、例えば、5〜40mmが好ましい。
また、電極2と試料4との角度は、50±20゜程度の範囲とするのが望ましい。このような範囲の角度になるように電極2を配置することより、試料4から発生した蒸気がアーク放電による反応領域に戻ることが回避でき、微粒子の凝集、再溶融化を防止できる。
The distance between the tip of the electrode 2 and the sample 4 (hereinafter referred to as “distance between electrodes”) is preferably 5 to 40 mm, for example.
The angle between the electrode 2 and the sample 4 is preferably in the range of about 50 ± 20 °. By disposing the electrode 2 so as to have an angle in such a range, it is possible to avoid the vapor generated from the sample 4 from returning to the reaction region due to arc discharge, and to prevent aggregation and remelting of fine particles.

電極2の直径は、例えば、2〜20mmである。電極2の最先端には、平坦な端面(平坦面)が形成されているのが好ましい。これにより、アーク3は、それほど絞られずに加速が抑制されて、試料融液は対流が減少して温度が上昇し、蒸発量が増加して回収率が向上する。   The diameter of the electrode 2 is, for example, 2 to 20 mm. A flat end surface (flat surface) is preferably formed at the forefront of the electrode 2. Thereby, the acceleration of the arc 3 is suppressed without being reduced so much, the convection of the sample melt decreases, the temperature rises, the amount of evaporation increases, and the recovery rate improves.

以上、本実施の形態では、図1に基いて、気相法の例としてPVD法を挙げて説明したが、これに限定されることはなく、CVD法、熱分解法、レーザーを用いた蒸発法などの他の気相法を用いてもよい。   As described above, in the present embodiment, the PVD method has been described as an example of the vapor phase method based on FIG. 1, but the present invention is not limited to this, and a CVD method, a thermal decomposition method, and evaporation using a laser Other gas phase methods such as the method may be used.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

<比較例1、実施例1〜6>
各例においては、いずれも、図1に基いて説明した微粒子製造装置を用い、40gの試料を蒸発させて、捕集用フィルタで微粒子を回収した。
このとき、
・循環させた混合ガス(体積比):アルゴン/水素(50/50)
・チャンバ用流量計で測定されるガス流量:50NL/min
・電極間距離:10mm
・電極の直径:5mm
・アーク雰囲気の圧力条件(点火する前):0.7気圧
・実験時間:30分間
・アーク電流値:100A
とした。
<Comparative example 1, Examples 1-6>
In each example, 40 g of the sample was evaporated using the fine particle production apparatus described with reference to FIG. 1, and the fine particles were collected with a collection filter.
At this time,
-Circulated gas mixture (volume ratio): Argon / hydrogen (50/50)
-Gas flow rate measured with a chamber flow meter: 50 NL / min
・ Distance between electrodes: 10mm
-Electrode diameter: 5 mm
-Arc atmosphere pressure condition (before ignition): 0.7 atmosphere-Experiment time: 30 minutes-Arc current value: 100A
It was.

(試料)
各実施例においては、純度99.99質量%のニッケル試料と純度99.99質量%のスズ試料とを溶かし合わせて合金化したものを試料として用い、スズ量(単位:質量%)については、下記第1表に示すように各例で異ならせた。
なお、比較例1のみ、純度99.99質量%のニッケル試料のみを用いた。
(sample)
In each example, a nickel sample having a purity of 99.99% by mass and a tin sample having a purity of 99.99% by mass were melted and alloyed as a sample, and the tin amount (unit: mass%) As shown in Table 1 below, each example was varied.
In addition, only the nickel sample of purity 99.99 mass% was used only for the comparative example 1.

(焼結温度)
まず、試料粉末に10質量%PVA水溶液を、試料粉末質量に対して5質量%添加した粉末を作製し、作製した粉末0.5gを量り取りφ5mmの錠剤成型器を用いて50kNの荷重をかけてペレット化し、ベースガスを窒素とした水素1300ppmの雰囲気で5℃/minで昇温させた。ペレットの体積は徐々に縮んでいくため、温度とペレットの体積変化とをグラフに取り、体積変化が起こる前後の温度領域の接線を取り、2つの直線が交わる点を焼結温度とした。
(Sintering temperature)
First, a powder is prepared by adding 5% by mass of a 10% by mass PVA aqueous solution to the sample powder, and 0.5 g of the prepared powder is weighed out and a 50 kN load is applied using a φ5 mm tablet molding machine. The mixture was pelletized and heated at 5 ° C./min in an atmosphere of hydrogen of 1300 ppm using nitrogen as a base gas. Since the volume of the pellet gradually shrinks, the temperature and the volume change of the pellet are plotted on a graph, the tangent line of the temperature region before and after the volume change is taken, and the point where the two straight lines intersect is defined as the sintering temperature.

(比表面積径)
捕集用フィルタで回収された微粒子の比表面積径(単位:nm)を求めた。結果を下記第1表に示す。なお、測定した比表面積径は、BET径であり、BET法で測定した粒子の比表面積(単位:m/g)をもとに粒子が球状であるとして求めた平均粒径である。
(Specific surface area diameter)
The specific surface area diameter (unit: nm) of the fine particles collected by the collection filter was determined. The results are shown in Table 1 below. In addition, the measured specific surface area diameter is a BET diameter, and is an average particle diameter obtained by assuming that the particles are spherical based on the specific surface area (unit: m 2 / g) of the particles measured by the BET method.

(SEM像)
捕集用フィルタで回収された微粒子について、電子顕微鏡(HITACHI S−4300)を用いて、倍率2万倍でSEM像の観察を行なった。なお、比較例1ならびに実施例1および2のSEM像を図2〜図4に示す。
各例においてSEM像の観察を行ない、2万倍1視野辺りの粒子総数、および、連結粒子の個数を数え、粒子総数に対する連結粒子の個数の割合(単位:%)を求めた。結果を下記第1表に示す。
(SEM image)
About the microparticles | fine-particles collect | recovered with the filter for collection, the SEM image was observed with the magnification of 20,000 times using the electron microscope (HITACHI S-4300). In addition, the SEM image of the comparative example 1 and Example 1 and 2 is shown in FIGS.
In each example, an SEM image was observed, and the total number of particles per visual field of 20,000 times and the number of connected particles were counted, and the ratio (unit:%) of the number of connected particles to the total number of particles was determined. The results are shown in Table 1 below.

上記第1表に示す結果から明らかなように、比較例1では連結粒子の個数割合が4.0%と高いのに対して、実施例1〜6では、連結粒子の個数割合をいずれも1%以下に抑えることができた。   As is clear from the results shown in Table 1, in Comparative Example 1, the number ratio of connected particles is as high as 4.0%, whereas in Examples 1 to 6, the number ratio of connected particles is 1 % Or less.

<実施例7>
実験室規模の気相化学反応装置内に、純度99.5質量%のNiClと純度99.5質量%のSnClとの混合物を、Sn量が5質量%となるように調製して装入した。温度1100℃に加熱した状態において、窒素ガスをキャリアガスとして、上記混合物の蒸気を反応容器(石英管)内で反応させ、反応容器の出側において、水素ガスとを接触、混合させ、還元反応を起こさせて、ニッケル合金粉末を得た。
得られたニッケル合金粉末について、上記と同様に評価したところ、比表面積径が75nm、連結粒子の割合が0.2%であった。
<Example 7>
In a laboratory-scale gas phase chemical reaction apparatus, a mixture of NiCl 2 having a purity of 99.5% by mass and SnCl 2 having a purity of 99.5% by mass was prepared so as to have an Sn content of 5% by mass. I entered. In a state heated to 1100 ° C., nitrogen gas is used as a carrier gas, the vapor of the above mixture is reacted in a reaction vessel (quartz tube), and hydrogen gas is contacted and mixed on the exit side of the reaction vessel to reduce the reaction. To obtain a nickel alloy powder.
When the obtained nickel alloy powder was evaluated in the same manner as described above, the specific surface area diameter was 75 nm and the proportion of connected particles was 0.2%.

1 微粒子製造装置
2 電極
3 アーク
4 試料
5 試料支持台
6 熱交換器
7 捕集用フィルタ
8 循環ポンプ
9 トーチ用流量計
10 チャンバ用流量計
11 チャンバ
12 捕集器
13 トーチ
14 ライン
14a 分岐ライン
15 ライン
DESCRIPTION OF SYMBOLS 1 Fine particle manufacturing apparatus 2 Electrode 3 Arc 4 Sample 5 Sample support stand 6 Heat exchanger 7 Filter for collection 8 Circulation pump 9 Flow meter for torch 10 Flow meter for chamber 11 Chamber 12 Collector 13 Torch 14 Line 14a Branch line 15 line

Claims (3)

気相にした原料から粒子を得る気相法を用いて得られる、連結粒子が個数割合で1%以下である、ニッケル合金粉末。   Nickel alloy powder obtained by using a vapor phase method for obtaining particles from a gas phase raw material, wherein the number of connected particles is 1% or less. 前記原料がニッケルとスズとを含み、前記原料における前記スズの量が0.5〜60質量%である、請求項1に記載のニッケル合金粉末。   The nickel alloy powder according to claim 1, wherein the raw material contains nickel and tin, and the amount of tin in the raw material is 0.5 to 60% by mass. 気相にした原料から粒子を得る気相法を用いて請求項1に記載のニッケル合金粉末を得る、ニッケル合金粉末の製造方法であって、
前記原料がニッケルとスズとを含み、前記原料における前記スズの量が0.5〜60質量%である、ニッケル合金粉末の製造方法。
A method for producing a nickel alloy powder, wherein the nickel alloy powder according to claim 1 is obtained by using a gas phase method for obtaining particles from a gas phase raw material,
The manufacturing method of the nickel alloy powder whose said raw material contains nickel and tin and the quantity of the said tin in the said raw material is 0.5-60 mass%.
JP2012035884A 2012-02-22 2012-02-22 Method for producing nickel tin alloy powder Active JP5984419B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012035884A JP5984419B2 (en) 2012-02-22 2012-02-22 Method for producing nickel tin alloy powder
KR1020130010912A KR20130096651A (en) 2012-02-22 2013-01-31 Nickel alloy powder and method for producing the same
TW102105514A TWI599659B (en) 2012-02-22 2013-02-18 Nickel alloy powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035884A JP5984419B2 (en) 2012-02-22 2012-02-22 Method for producing nickel tin alloy powder

Publications (2)

Publication Number Publication Date
JP2013170303A true JP2013170303A (en) 2013-09-02
JP5984419B2 JP5984419B2 (en) 2016-09-06

Family

ID=49219469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035884A Active JP5984419B2 (en) 2012-02-22 2012-02-22 Method for producing nickel tin alloy powder

Country Status (3)

Country Link
JP (1) JP5984419B2 (en)
KR (1) KR20130096651A (en)
TW (1) TWI599659B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148323A (en) * 2014-08-13 2017-09-08 独立行政法人产业技术综合研究所 The processing unit of metal material
KR20190121152A (en) * 2018-08-23 2019-10-25 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20200093496A (en) * 2018-08-23 2020-08-05 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
CN112712999A (en) * 2018-10-17 2021-04-27 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
EP4081150A4 (en) * 2019-12-24 2024-01-31 Battelle Energy Alliance Llc Laser ablation methods and systems for producing feedstock powder suitable for laser-based additive manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332254A (en) * 2000-03-13 2001-11-30 Canon Inc Manufacturing method for electrode material of lithium secondary battery, electrode structure of the lithium secondary battery and the lithium secondary battery and manufacturing method therefor
JP2004052026A (en) * 2002-07-18 2004-02-19 Ishihara Chem Co Ltd Method for manufacturing ultrafine pure-metal powder and ultrafine alloy powder
JP2004186630A (en) * 2002-12-06 2004-07-02 Tamura Kaken Co Ltd Conductive coating composition, conductor for electronic circuit, forming method thereof, and component for electronic circuit
JP2005256125A (en) * 2004-03-12 2005-09-22 Fujikura Ltd Metal powder production apparatus
JP2006083461A (en) * 2004-09-17 2006-03-30 Fujikura Ltd Apparatus for manufacturing metallic powder and method for manufacturing metallic powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332254A (en) * 2000-03-13 2001-11-30 Canon Inc Manufacturing method for electrode material of lithium secondary battery, electrode structure of the lithium secondary battery and the lithium secondary battery and manufacturing method therefor
JP2004052026A (en) * 2002-07-18 2004-02-19 Ishihara Chem Co Ltd Method for manufacturing ultrafine pure-metal powder and ultrafine alloy powder
JP2004186630A (en) * 2002-12-06 2004-07-02 Tamura Kaken Co Ltd Conductive coating composition, conductor for electronic circuit, forming method thereof, and component for electronic circuit
JP2005256125A (en) * 2004-03-12 2005-09-22 Fujikura Ltd Metal powder production apparatus
JP2006083461A (en) * 2004-09-17 2006-03-30 Fujikura Ltd Apparatus for manufacturing metallic powder and method for manufacturing metallic powder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148323B (en) * 2014-08-13 2020-05-29 独立行政法人产业技术综合研究所 Processing device for metal material
CN107148323A (en) * 2014-08-13 2017-09-08 独立行政法人产业技术综合研究所 The processing unit of metal material
KR20200093496A (en) * 2018-08-23 2020-08-05 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
CN110858517A (en) * 2018-08-23 2020-03-03 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same
JP2020031202A (en) * 2018-08-23 2020-02-27 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and manufacturing method of the same
KR102140622B1 (en) * 2018-08-23 2020-08-03 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
KR20190121152A (en) * 2018-08-23 2019-10-25 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
US10840017B2 (en) 2018-08-23 2020-11-17 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component having improved internal electrode, and method of manufacturing the same
KR102351181B1 (en) * 2018-08-23 2022-01-14 삼성전기주식회사 Multi-layered ceramic electronic component and method for manufacturing the same
JP7283674B2 (en) 2018-08-23 2023-05-30 サムソン エレクトロ-メカニックス カンパニーリミテッド. Laminated ceramic electronic component and manufacturing method thereof
CN112712999A (en) * 2018-10-17 2021-04-27 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
US11551874B2 (en) 2018-10-17 2023-01-10 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
CN112712999B (en) * 2018-10-17 2023-07-14 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same
EP4081150A4 (en) * 2019-12-24 2024-01-31 Battelle Energy Alliance Llc Laser ablation methods and systems for producing feedstock powder suitable for laser-based additive manufacturing

Also Published As

Publication number Publication date
KR20130096651A (en) 2013-08-30
TWI599659B (en) 2017-09-21
JP5984419B2 (en) 2016-09-06
TW201343926A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP6141318B2 (en) Method for producing Ta powder and method for producing Ta granulated powder
JP5984419B2 (en) Method for producing nickel tin alloy powder
JP5768322B2 (en) Nickel fine powder and method for producing the same
US9061353B2 (en) Production method for high purity copper powder using a thermal plasma
KR101408238B1 (en) Plasma device for manufacturing a metal powder
KR101143890B1 (en) Preparation method of copper nano powder using transfeered arc or non-transferred arc plasma system
JP2011195888A5 (en)
TWI539009B (en) Nickel powder,conductive paste and laminate ceramic electronic component
JP4731347B2 (en) Method for producing composite copper fine powder
US20220051849A1 (en) Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
JPH04365806A (en) Production of globular-nickel superfine powder
Ranjan et al. Synthesis, characterisation and formation mechanism of Sn-0.75 Cu solder nanoparticles by pulsed wire discharge
Livan et al. Carbon encapsulation of elemental nanoparticles by spark discharge
JP5008377B2 (en) Method for producing true spherical tin fine powder
JP5274603B2 (en) Composite copper fine powder
CN107983963A (en) A kind of low temperature preparation method of pure W-Cu nanocomposite powder
JP5382293B2 (en) Manufacturing method of inorganic material and metal material by high frequency plasma method
KR101679725B1 (en) Manufacturing Method of Micrometer sized Silver (Ag) coated Nickel (Ni) Particle Using Nontransferable Thermal Plasma System
JP7194544B2 (en) Particle manufacturing method
JP5354398B2 (en) True spherical fine powder
JP2006169559A (en) Copper alloy fine-particle and method for producing the same
JP2020180329A (en) Method for producing copper powder
JP7473475B2 (en) Metal powder for use as an electrode material in multilayer ceramic capacitors and methods of making and using same - Patents.com
JP2024018487A (en) Nickel alloy powder and method for producing nickel alloy powder
JP2024018489A (en) Nickel alloy powder and method for producing nickel alloy powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250