JP4731347B2 - Method for producing composite copper fine powder - Google Patents

Method for producing composite copper fine powder Download PDF

Info

Publication number
JP4731347B2
JP4731347B2 JP2006035552A JP2006035552A JP4731347B2 JP 4731347 B2 JP4731347 B2 JP 4731347B2 JP 2006035552 A JP2006035552 A JP 2006035552A JP 2006035552 A JP2006035552 A JP 2006035552A JP 4731347 B2 JP4731347 B2 JP 4731347B2
Authority
JP
Japan
Prior art keywords
fine powder
copper
copper fine
composite copper
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006035552A
Other languages
Japanese (ja)
Other versions
JP2007211332A (en
Inventor
裕二 川上
啓嗣 鎌田
建作 森
昌次 二木
隆正 石垣
継光 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Original Assignee
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, National Institute for Materials Science filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006035552A priority Critical patent/JP4731347B2/en
Publication of JP2007211332A publication Critical patent/JP2007211332A/en
Application granted granted Critical
Publication of JP4731347B2 publication Critical patent/JP4731347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性ペーストや電子部品用電極材料などに好適な複合銅微粉及びその製造方法に関する。   The present invention relates to a composite copper fine powder suitable for a conductive paste, an electrode material for electronic parts, and the like, and a method for producing the same.

従来から、積層セラミックコンデンサなどの電極用材料として、ニッケル、銀−パラジウム、銅などの金属粉末が用いられている。最近では、積層セラミックコンデンサの小型化に伴い、これら電極用金属粉末の粒径も微細化されている。しかしながら、粒径200nm以下の金属微粉を積層セラミックコンデンサの電極に用いた場合、焼成時に400℃以下の温度で急激な熱収縮を起こし、電極にクラックやデラミネーションが発生するという問題があった。   Conventionally, metal powders such as nickel, silver-palladium, and copper have been used as electrode materials for multilayer ceramic capacitors. Recently, with the miniaturization of multilayer ceramic capacitors, the particle size of these metal powders for electrodes has also been reduced. However, when metal fine powder having a particle size of 200 nm or less is used for an electrode of a multilayer ceramic capacitor, there is a problem that rapid thermal shrinkage occurs at a temperature of 400 ° C. or less during firing, and cracks and delamination occur in the electrode.

また、積層セラミックコンデンサの内部電極用として、銅系微粉を使用する試みもなされている。銅系微粉は、現在主流となっているニッケル粉よりも安価で低コスト化が可能であり、しかも、得られる銅電極が低抵抗であることから、近年要求が高まっている高周波用途において低インダクタンスを実現することができる。   Attempts have also been made to use copper-based fine powder for internal electrodes of multilayer ceramic capacitors. Copper-based fine powder is cheaper and lower in cost than nickel powder, which is currently mainstream, and the resulting copper electrode has low resistance. Can be realized.

銅系微粉を積層セラミックコンデンサの内部電極として使用するためには、焼成温度を1000℃程度まで下げる必要がある。積層セラミックコンデンサを作製する際の焼成温度は、セラミック誘電体の構成成分に依存して変化する。そのため、BaTiOやSrTiOなどのペロブスカイト型の酸化物をベースとし、これにガラス材料や鉛、カルシウムなどの酸化物を添加して、焼成温度を1000℃程度まで下げて焼成できる材料の開発もされている。しかしながら、銅系微粉はニッケル粉よりも更に低い温度で急激な熱収縮を起こすことから、積層セラミックコンデンサの内部電極として使用するためには、ニッケル粉以上にクラックやデラミネーションに対する改善が必要であった。 In order to use copper fine powder as an internal electrode of a multilayer ceramic capacitor, it is necessary to lower the firing temperature to about 1000 ° C. The firing temperature when producing the multilayer ceramic capacitor varies depending on the constituent components of the ceramic dielectric. Therefore, the development of materials that can be baked at the base of perovskite type oxides such as BaTiO 3 and SrTiO 3 by adding glass materials, oxides of lead, calcium, etc. and reducing the firing temperature to about 1000 ° C. Has been. However, since copper-based fine powder undergoes rapid thermal shrinkage at a temperature lower than that of nickel powder, in order to use it as an internal electrode of a multilayer ceramic capacitor, it is necessary to improve cracks and delamination more than nickel powder. It was.

一方、粒径の小さい金属微粉を効率よく製造できる方法として、液相法及び気相法が知られている。液相法については、例えば、特開2000−87121号公報に、金属塩をヒドラジンなどで還元する方法が記載されている。気相法についても、例えば、特開平2−6837号公報に、気相熱化学反応を利用した方法が記載されている。これらの方法によれば、粒径100nm以下の金属微粉が得られるが、低温度における急激な熱収縮の問題を解決するものではない。また、特開昭56−9304号公報及び特開昭63−266008号公報には、プラズマを利用した気相法による金属微粉の製造方法が示されているが、電極からの不純物混入の問題があるばかりか、熱収縮問題の解決については何ら記載されていない。   On the other hand, a liquid phase method and a gas phase method are known as methods for efficiently producing fine metal particles having a small particle size. As for the liquid phase method, for example, Japanese Patent Application Laid-Open No. 2000-87121 describes a method of reducing a metal salt with hydrazine or the like. As for the gas phase method, for example, JP-A-2-6837 discloses a method using a gas phase thermochemical reaction. According to these methods, metal fine powder having a particle size of 100 nm or less can be obtained, but it does not solve the problem of rapid thermal shrinkage at a low temperature. Japanese Patent Laid-Open Nos. 56-9304 and 63-266008 show a method for producing metal fine powder by a vapor phase method using plasma. However, there is a problem of impurity contamination from electrodes. In addition, there is no mention of a solution to the heat shrink problem.

焼成時における低温での熱収縮開始温度の問題については、特開2000−345201号公報に、銅微粒子表面にMgやCaなどの金属酸化物が固着した複合銅微粉末が開示され、熱収縮開始温度を700℃以上まで遅らせることができるとされている。しかし、この複合銅微粉末は平均粒径が500nm以上であるうえ、複合化を別工程として水溶液中で行うため高コストとなる欠点がある。また、特開2003−168321号公報には、熱収縮開始温度を上昇させた銅合金粉が記載されているが、平均粒径が100nm以上と大きく、今後望まれている平均粒径100nm以下に対応したものではない。   Regarding the problem of the thermal shrinkage start temperature at low temperature during firing, JP 2000-345201 A discloses a composite copper fine powder in which a metal oxide such as Mg or Ca is fixed on the surface of a copper fine particle, and thermal shrinkage starts. It is said that the temperature can be delayed to 700 ° C. or higher. However, this composite copper fine powder has an average particle size of 500 nm or more and has a disadvantage that the composite is performed in an aqueous solution as a separate process, resulting in high costs. Japanese Patent Application Laid-Open No. 2003-168321 describes copper alloy powder having an increased heat shrinkage start temperature, but the average particle size is as large as 100 nm or more, and the desired average particle size is 100 nm or less in the future. It is not compatible.

尚、特開平6−91162号公報には、プラズマを利用した複合微粉の製造装置が示されているが、熱収縮問題の解決についての記載はなく、複合微粉を製造するために装置も複雑なものとなっている。また、特開2002−348603号公報には、ニッケル粉の複合化による熱収縮問題解決について記載されているが、銅系粉に関しては記載がない。   JP-A-6-91162 discloses an apparatus for producing a composite fine powder using plasma, but there is no description about the solution of the heat shrinkage problem, and the apparatus is complicated to produce the composite fine powder. It has become a thing. Japanese Patent Application Laid-Open No. 2002-348603 describes a solution to the problem of heat shrinkage by compositing nickel powder, but does not describe copper-based powder.

特開2000−87121号公報JP 2000-87121 A 特開平2−6837号公報JP-A-2-6837 特開昭56−9304号公報JP-A-56-9304 特開昭63−266008号公報JP-A 63-266008 特開2000−345201号公報JP 2000-345201 A 特開2003−168321号公報JP 2003-168321 A 特開平6−91162号公報JP-A-6-91162 特開2002−348603号公報JP 2002-348603 A

本発明は、上記した従来の事情に鑑み、焼成時における低温での熱収縮問題が改善され、積層セラミックコンデンサなどの電子部品用電極材料用として好適な銅系微粉、及びその製造方法を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention provides a copper fine powder suitable for use as an electrode material for electronic parts such as a multilayer ceramic capacitor, and a method for producing the same, in which the problem of thermal shrinkage at low temperatures during firing is improved. For the purpose.

上記目的を達成するため、本発明が提供する複合銅微粉は、銅と1〜20重量%のタングステン、モリブデン、タンタルから選ばれた少なくとも1種の高融点金属とからなり、平均粒径が10〜100nmであって、該高融点金属が銅微粒子表面に存在することを特徴とする。 In order to achieve the above object, the composite copper fine powder provided by the present invention comprises copper and at least one refractory metal selected from 1 to 20% by weight of tungsten, molybdenum and tantalum, and has an average particle size of 10 ˜100 nm, characterized in that the refractory metal is present on the surface of the copper fine particles.

上記本発明の複合銅微粉においては、前記高融点金属が銅微粒子表面に粒子状態ないし膜状態で存在する。また、上記本発明の複合銅微粉は、熱収縮開始温度が400℃以上900℃以下である。 In the composite copper fine powder of the present invention, the refractory metal is present in the form of particles or film on the surface of the copper fine particles . The composite copper fine powder of the present invention has a heat shrinkage starting temperature of 400 ° C. or higher and 900 ° C. or lower.

また、本発明は、平均粒径が10〜100nmで、タングステン、モリブデン、タンタルから選ばれた少なくとも1種の高融点金属が銅微粒子表面に存在する複合銅微粉の製造方法であって、銅又は銅化合物と該高融点金属の化合物とを熱プラズマにより気化させ、得られた金属蒸気を凝縮させることを特徴とする複合銅微粉の製造方法を提供するものである。 Further, the present invention is a method for producing a composite copper fine powder having an average particle size of 10 to 100 nm and having at least one refractory metal selected from tungsten, molybdenum and tantalum on the surface of copper fine particles, The present invention provides a method for producing a composite copper fine powder characterized in that a copper compound and a compound of the refractory metal are vaporized by thermal plasma and the resulting metal vapor is condensed.

上記本発明による複合銅微粉の製造方法においては、水素を含む不活性ガスあるいは窒素を含む不活性ガスの熱プラズマ中で、銅又は銅酸化物と前記高融点金属の酸化物とを気化させることが好ましいIn the method for producing a composite copper fine powder according to the present invention , copper or copper oxide and the oxide of the refractory metal are vaporized in a thermal plasma of an inert gas containing hydrogen or an inert gas containing nitrogen. Is preferred .

更に、上記本発明による複合銅微粉の製造方法においては、得られた複合銅微粉を、酸素を含む不活性ガス雰囲気中で徐酸化処理することができる。   Furthermore, in the method for producing composite copper fine powder according to the present invention, the obtained composite copper fine powder can be gradually oxidized in an inert gas atmosphere containing oxygen.

本発明によれば、焼成時における低温での熱収縮問題が改善され、高純度で焼結特性に優れた複合銅微粉を低コストで提供することができる。従って、本発明による複合銅微粉は、積層セラミックコンデンサの内部電極などの電子部品用電極材料用として好適であって、近年要求が高まっている高周波用途において低インダクタンスを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat shrink problem at the low temperature at the time of baking is improved, and the composite copper fine powder excellent in the sintering characteristic with high purity can be provided at low cost. Therefore, the composite copper fine powder according to the present invention is suitable for use as an electrode material for electronic parts such as an internal electrode of a multilayer ceramic capacitor, and can realize a low inductance in a high frequency application that has recently been demanded.

本発明の複合銅微粉は、銅と高融点金属とからなり、高融点金属が銅微粒子表面に存在している。銅微粉はニッケル粉と比較して低温で焼結しやすい特性を持っているが、その粒子表面に高融点金属が存在することで焼結特性を改善することができる。即ち、高融点金属あるいはその酸化物は、銅よりも高融点のため難焼結性を有している。そのため、高融点金属の添加量が多いほど、銅の焼結を阻害して熱収縮開始温度を高温側に移行させると共に、複合銅微粉全体の熱収縮特性を改善することができる。   The composite copper fine powder of the present invention comprises copper and a refractory metal, and the refractory metal is present on the surface of the copper fine particles. Although copper fine powder has the characteristic that it is easy to sinter at low temperature compared with nickel powder, sintering characteristics can be improved by the presence of a refractory metal on the particle surface. That is, a refractory metal or its oxide has difficulty in sintering because it has a higher melting point than copper. Therefore, as the amount of the refractory metal added is increased, the sintering of copper is inhibited and the heat shrinkage start temperature is shifted to the high temperature side, and the heat shrinkage characteristics of the entire composite copper fine powder can be improved.

複合銅微粉に高融点金属を1〜20重量%の範囲で含有させることにより、焼結特性の改善が可能となり、積層セラミックコンデンサの電極焼成時におけるクラックやデラミネーションの発生を抑制することができる。高融点金属の含有量が1重量%未満では焼結特性の改善効果がなく、20重量%を超えると熱収縮開始温度が高温となり過ぎるため、積層セラミックコンデンサ焼成時の電極形成が不十分となる。   By incorporating the high melting point metal in the composite copper fine powder in the range of 1 to 20% by weight, the sintering characteristics can be improved, and the generation of cracks and delamination during the firing of the electrode of the multilayer ceramic capacitor can be suppressed. . If the content of the refractory metal is less than 1% by weight, there is no effect of improving the sintering characteristics, and if it exceeds 20% by weight, the heat shrinkage start temperature becomes too high, and the electrode formation during firing of the multilayer ceramic capacitor becomes insufficient. .

複合銅微粉中の高融点金属は、銅と合金化するのではなく、銅粒子表面に存在することで、効果的に熱収縮を抑制することが可能となる。即ち、高融点金属は、粒子状態若しくは膜状態又はこれらが混在した状態で銅粒子表面に存在して、効果的に熱収縮を抑制するが、特に粒子状態で存在することが好ましい。また、本発明方法により複合銅微粉を製造する際に、気相からの凝集時に高融点金属が銅粒子表面に存在することで粒子の成長を抑制し、均一な微粒子が生成される効果もある。尚、高融点金属が銅と合金化し若しくは銅粒子内部に存在した場合でも、熱収縮の抑制効果はあるが、その効果は表面に存在する場合に比べて少ない。   The high melting point metal in the composite copper fine powder is not alloyed with copper, but is present on the surface of the copper particles, so that thermal shrinkage can be effectively suppressed. That is, the refractory metal is present on the surface of the copper particles in a particle state, a film state, or a mixture thereof, and effectively suppresses heat shrinkage, but is preferably present in a particle state. In addition, when producing a composite copper fine powder by the method of the present invention, the presence of a high melting point metal on the surface of the copper particles during aggregation from the gas phase has the effect of suppressing particle growth and producing uniform fine particles. . Even when the refractory metal is alloyed with copper or present inside the copper particles, there is an effect of suppressing thermal shrinkage, but the effect is less than when it exists on the surface.

本発明の銅複合微粉は、平均粒径が10〜100nmである。平均粒径を10〜100nmとすることで、例えば積層セラミックコンデンサの電極に用いられた場合、必要な膜厚が例えば1μm以下であっても、均一な電極の作製が可能となる。銅複合微粉の平均粒径が10nm未満では焼成時の収縮が大きく、クラックやデラミネーションが発生しやすい。逆に、平均粒径が100nmを超えると均一な電極が形成されず、電極間に短絡が発生する可能性がある。   The copper composite fine powder of the present invention has an average particle size of 10 to 100 nm. By setting the average particle size to 10 to 100 nm, for example, when used for an electrode of a multilayer ceramic capacitor, a uniform electrode can be produced even if the required film thickness is 1 μm or less, for example. When the average particle size of the copper composite fine powder is less than 10 nm, shrinkage during firing is large, and cracks and delamination are likely to occur. Conversely, if the average particle size exceeds 100 nm, a uniform electrode is not formed, and there is a possibility that a short circuit occurs between the electrodes.

また、高融点金属が銅微粒子表面に粒子状態で存在する場合、高融点金属の粒子径は1〜20nmであることが好ましい。銅微粒子表面に粒子状態で存在する高融点金属の平均粒径が1nm未満では、効率的な焼結特性の改善効果が不十分となり、逆に20nmを超えると焼結が不均一に進行し、焼成時のクラック等の発生原因となる。更に、高融点金属が銅微粒子表面に膜状態で存在する場合、その膜厚は1〜10nmであることが好ましい。この膜厚が1nm未満では焼結特性の改善効果が不十分であり、逆に10nmを超えると熱収縮開始温度が高温となり過ぎるため好ましくない。   In addition, when the refractory metal is present on the surface of the copper fine particles in a particle state, the particle diameter of the refractory metal is preferably 1 to 20 nm. If the average particle diameter of the refractory metal existing in the particle state on the surface of the copper fine particles is less than 1 nm, the effect of improving the efficient sintering characteristics is insufficient, and conversely, if it exceeds 20 nm, the sintering proceeds non-uniformly, This may cause cracks during firing. Furthermore, when the refractory metal is present on the surface of the copper fine particles in a film state, the film thickness is preferably 1 to 10 nm. If the film thickness is less than 1 nm, the effect of improving the sintering characteristics is insufficient. Conversely, if the film thickness exceeds 10 nm, the heat shrinkage starting temperature becomes too high, which is not preferable.

上記高融点金属としては、難焼結性の高融点金属であれば特に制限はないが、タングステン、モリブデン、タンタルから選ばれる少なくとも1種であることが好ましく、その中でもタングステンが最も好ましい。タングステンは銅と固溶せず、効果的に銅微粒子表面に存在させることが可能であるため、優れた焼結抑制効果を安定して得ることができる。   The refractory metal is not particularly limited as long as it is a hardly sinterable refractory metal, but is preferably at least one selected from tungsten, molybdenum, and tantalum, and tungsten is most preferable. Since tungsten does not dissolve in copper and can be effectively present on the surface of the copper fine particles, an excellent sintering suppression effect can be stably obtained.

本発明の複合銅微粉は、平均粒径が10〜100nmと極めて微細であるにもかかわらず、その熱収縮開始温度は400℃以上900℃以下である。熱収縮開始温度が400℃未満では、例えば積層セラミックコンデンサの電極焼成時にクラックやデラミネーションが発生しやすくなり、900℃を超えると積層セラミックコンデンサ焼成時の電極形成が不十分となる。   The composite copper fine powder of the present invention has a heat shrinkage starting temperature of 400 ° C. or more and 900 ° C. or less, although the average particle size is as extremely fine as 10 to 100 nm. When the heat shrinkage start temperature is less than 400 ° C., for example, cracks and delamination are likely to occur during firing of the multilayer ceramic capacitor, and when it exceeds 900 ° C., electrode formation during firing of the multilayer ceramic capacitor becomes insufficient.

次に、本発明による複合銅微粉の製造方法について説明する。本発明方法においては、まず、銅又は銅化合物と高融点金属化合物とを、熱プラズマにより気化させる。高周波プラズマやアークプラズマのような熱プラズマは、プラズマ領域が10000℃以上の温度を有し、その中に銅又は銅化合物と高融点金属化合物を導入すると、瞬時に蒸発気化する。熱プラズマは外部加熱方式等と比較すると高温領域が狭いため、気化した金属蒸気は、プラズマ尾炎部への移動中に凝縮し、プラズマ領域から出ると急冷凝固されて微粉化される。   Next, the manufacturing method of the composite copper fine powder by this invention is demonstrated. In the method of the present invention, first, copper or a copper compound and a refractory metal compound are vaporized by thermal plasma. Thermal plasma such as high-frequency plasma or arc plasma has a plasma region having a temperature of 10000 ° C. or more, and when copper or a copper compound and a refractory metal compound are introduced into the plasma region, it evaporates instantaneously. Since thermal plasma has a narrower high-temperature region than external heating methods and the like, the vaporized metal vapor is condensed while moving to the plasma tail flame part, and is rapidly cooled and solidified when it exits the plasma region.

例えば、銅とタングステンは、3500℃以上では互いに溶融した状態であるが、3500℃以下では二相分離する。モリブデンやタンタルの場合も、ほぼ同様である。従って、銅とタングステンなどの高融点金属の蒸気は、プラズマ尾炎部への移動中に二相分離し、融点の高いタングステンなどの高融点金属が銅微粒子の表面に析出するものと考えられる。そのため、本発明方法では、強制的な冷却を行わなくても、銅微粒子を核として、その表面にタングステンなどの高融点金属が粒子状態又は膜状態で存在する複合銅微粉が得られる。   For example, copper and tungsten are in a melted state at 3500 ° C. or higher, but are separated into two phases at 3500 ° C. or lower. The same applies to molybdenum and tantalum. Therefore, it is considered that the vapor of refractory metal such as copper and tungsten undergoes two-phase separation while moving to the plasma tail flame portion, and the refractory metal such as tungsten having a high melting point is deposited on the surface of the copper fine particles. Therefore, in the method of the present invention, a composite copper fine powder in which a high-melting-point metal such as tungsten is present in a particle state or a film state on the surface of the copper fine particle can be obtained without forced cooling.

使用する高融点金属化合物としては、タングステン、モリブデン、タンタルから選ばれる少なくとも1種の化合物が好ましく、その中でも酸化物が好ましい。一般に高融点金属は沸点が高く、高温のプラズマでも未気化の原料が残る傾向があるが、金属に比べて低融点の化合物を使用することで、容易に気化させることができる。特にタングステン酸化物は、沸点が金属タングステンより低く、気化が容易であるばかりか、低コストで安定的に入手が可能であるため好ましい。また、銅化合物としては酸化物が好ましい。   As the refractory metal compound to be used, at least one compound selected from tungsten, molybdenum and tantalum is preferable, and among these, an oxide is preferable. In general, a high melting point metal has a high boiling point and tends to remain an unvaporized raw material even in high-temperature plasma, but it can be easily vaporized by using a compound having a lower melting point than that of a metal. In particular, tungsten oxide is preferable because it has a boiling point lower than that of metallic tungsten and is easily vaporized, and can be stably obtained at low cost. Moreover, an oxide is preferable as the copper compound.

上記銅又は銅化合物と高融点金属化合物の気化に用いる熱プラズマは、通常の不活性ガスの熱プラズマを用いることができる。特に、銅又は銅酸化物と高融点金属化合物、特にタングステン酸化物を気化させる場合、水素ガスを含む不活性ガスあるいは窒素ガスを含む不活性ガスの熱プラズマを用いることが好ましい。銅酸化物やタングステン酸化物などは、金属が蒸気から凝縮する過程で、化合物元素、特に酸素と再結合する可能性があるが、上記した水素を含む還元性の不活性ガスあるいは窒素ガスを含む不活性ガスを用いることにより、酸素などとの結合が阻害され、金属のみからなる複合銅微粉を得ることができる。   As the thermal plasma used for vaporizing the copper or the copper compound and the refractory metal compound, a normal inert gas thermal plasma can be used. In particular, when vaporizing copper or a copper oxide and a refractory metal compound, particularly tungsten oxide, it is preferable to use thermal plasma of an inert gas containing hydrogen gas or an inert gas containing nitrogen gas. Copper oxide, tungsten oxide, etc., may be recombined with compound elements, especially oxygen, in the process of metal condensing from vapor, but contain reducing inert gas or nitrogen gas containing hydrogen as described above. By using an inert gas, the bond with oxygen or the like is inhibited, and a composite copper fine powder made of only metal can be obtained.

尚、得られる複合銅微粉の粒径は、プラズマの出力、雰囲気ガス圧力、プラズマガス流量、投入原料量などにより、容易に制御することができる。   The particle size of the obtained composite copper fine powder can be easily controlled by the plasma output, the atmospheric gas pressure, the plasma gas flow rate, the input raw material amount, and the like.

このようにして得られた複合銅微粉は、酸素を含む不活性ガス雰囲気中で徐酸化処理することが好ましい。除徐酸化処理としては、例えば、1〜5%の酸素を含むアルゴン雰囲気下で一定時間酸化する。この除徐酸化処理により、銅表面及びタングステン表面に薄い酸化層が形成され、大気雰囲気中でも安定な複合銅微粉が得られる。   The composite copper fine powder thus obtained is preferably subjected to a gradual oxidation treatment in an inert gas atmosphere containing oxygen. As the slow oxidation treatment, for example, oxidation is performed for a certain time in an argon atmosphere containing 1 to 5% oxygen. By this slow oxidation treatment, a thin oxide layer is formed on the copper surface and the tungsten surface, and a stable composite copper powder can be obtained even in the air atmosphere.

銅粉末(三井金属鉱業(株)製、MD−1、平均粒径約40μm、純度99.7%以上)に、三酸化タングステン粉末((株)高純度化学研究所製、WWO03PB、純度99.9%)を、タングステンとしての添加量が3重量%、5重量%、10重量%、20重量%となるように秤量し、それぞれ混合して試料1〜4の原料粉末とした。   Copper powder (Mitsui Mining & Smelting Co., Ltd., MD-1, average particle size of about 40 μm, purity of 99.7% or more) and tungsten trioxide powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., WWO03PB, purity of 99. 9%) was weighed so that the addition amount as tungsten would be 3% by weight, 5% by weight, 10% by weight, and 20% by weight, and mixed to obtain raw material powders of Samples 1 to 4.

上記試料1〜4の各原料粉末を用いて、図1に示す高周波プラズマ微粉製造装置により、それぞれ複合銅微粉の作製を行った。即ち、プラズマガス供給口2からプラズマガスとしてアルゴンを30リットル/分で供給すると共に、シースガス供給口3からシースガスとしてアルゴンガスを85リットル/分及び水素ガスを5リットル/分の流量で混合して供給し、プラズマトーチ1に約40kWの入力で高周波プラズマを点火して、安定したプラズマ炎5を得た。   Using each raw material powder of Samples 1 to 4 above, composite copper fine powder was produced by the high-frequency plasma fine powder production apparatus shown in FIG. That is, argon is supplied from the plasma gas supply port 2 as a plasma gas at 30 liters / minute, and the sheath gas supply port 3 is mixed with argon gas as sheath gas at 85 liters / minute and hydrogen gas at a flow rate of 5 liters / minute. The high frequency plasma was ignited with an input of about 40 kW to the plasma torch 1 to obtain a stable plasma flame 5.

原料粉末供給口4から、上記試料1〜4の各原料粉末をキャリアガス(アルゴン10リットル/分)と共に導入して、約1g/分の割合でプラズマ炎5の内部へ供給した。このプラズマ炎5は10000℃以上であるため、原料粉末は瞬時に蒸発気化し、温度が低くなるプラズマ尾炎部6で凝縮し、微粉化した。生成した複合銅微粉は、プラズマトーチ1から反応チャンバー7、冷却チャンバー8に移動し、配管内を搬送されて、大気雰囲気に暴露することなく回収装置9に到達した。得られた複合銅微粉は、回収装置9内にてアルゴン−5%酸素雰囲気中で2時間保持する徐酸化処理を行った後、装置から回収した。   From the raw material powder supply port 4, the raw material powders of the above samples 1 to 4 were introduced together with a carrier gas (argon 10 liters / minute) and supplied into the plasma flame 5 at a rate of about 1 g / minute. Since the plasma flame 5 is 10000 ° C. or higher, the raw material powder is instantly evaporated and condensed in the plasma tail flame portion 6 where the temperature is lowered to be pulverized. The produced composite copper fine powder moved from the plasma torch 1 to the reaction chamber 7 and the cooling chamber 8, was transported through the piping, and reached the recovery device 9 without being exposed to the air atmosphere. The obtained composite copper fine powder was recovered from the apparatus after performing a gradual oxidation treatment for 2 hours in an argon-5% oxygen atmosphere in the recovery apparatus 9.

得られた試料1〜4の各複合銅微粉について、透過型電子顕微鏡((株)日立ハイテクノロジーズ製、HF−220:以下TEMと記載)により観察すると共に、面分析装置(NORAN(株)製、商品名VANTAGE:以下EDXと記載)により解析した。試料2の複合銅微粉について、TEM写真を図2及び図3に、EDX回析写真を図4に示した。これらの結果から、得られた試料1〜4の各複合銅微粉は、いずれもほぼ球形であり、銅微粒子表面にタングステンが粒子状態で存在していることが分った。   Each of the obtained composite copper fine powders of Samples 1 to 4 was observed with a transmission electron microscope (manufactured by Hitachi High-Technologies Corporation, HF-220: hereinafter referred to as TEM) and a surface analyzer (manufactured by NORAN Corporation). And trade name VANTAGE: hereinafter referred to as EDX). About the composite copper fine powder of the sample 2, the TEM photograph was shown in FIG.2 and FIG.3, and the EDX diffraction photograph was shown in FIG. From these results, it was found that each of the obtained composite copper fine powders of Samples 1 to 4 was almost spherical, and tungsten was present in a particle state on the surface of the copper fine particles.

また、試料1〜4の各複合銅微粉について、倍率30000倍の走査電子顕微鏡((株)日立ハイテクノロジーズ製、S−4700:以下SEMと記載)により観察し、それぞれ粒子1000個を測定して平均粒径を求めたところ、42〜47nmであった。これら試料1〜4の各複合銅微粉の平均粒径を、銅とタングステンの組成と共に、下記表1に示した。   Moreover, about each composite copper fine powder of the samples 1-4, it observes with the scanning electron microscope (made by Hitachi High-Technologies Corporation, S-4700: hereinafter, described as SEM) with a magnification of 30000 times, and 1000 particles are measured respectively. When the average particle size was determined, it was 42 to 47 nm. The average particle diameter of each composite copper fine powder of Samples 1 to 4 is shown in Table 1 below together with the composition of copper and tungsten.

次に、上記試料1〜4の各複合銅微粉を、それぞれ0.3g秤量して直径5mmの金型に充填し、ハンドプレス機で200kgfの荷重を掛けてのペレット状に成形した。これらの各ペレットについて、熱機械分析装置(ブルカー・エイエックスエス(株)製、TMA4000SA:以下TMAと記載)により、荷重10gfを掛けながら、窒素と2%の水素からなる混合ガスを200ml/分で連続的に流した還元性雰囲気中で、熱収縮特性を測定した。得られた各複合銅微粉の熱収縮開始温度を、下記表1に示した。   Next, 0.3 g of each of the composite copper fine powders of Samples 1 to 4 was weighed and filled into a 5 mm diameter mold, and formed into pellets with a hand press of 200 kgf. About each of these pellets, a mixed gas composed of nitrogen and 2% hydrogen was applied at 200 ml / min while applying a load of 10 gf by a thermomechanical analyzer (manufactured by Bruker AXS Co., Ltd., TMA4000SA: hereinafter described as TMA). The heat shrinkage characteristics were measured in a reducing atmosphere that was continuously flown through. The thermal shrinkage start temperatures of the obtained composite copper fine powders are shown in Table 1 below.

[比較例]
上記実施例と同じ条件で、銅粉末のみを気化・凝縮させて、試料5の純銅微粉を得た。得られた試料5の純銅微粉について、実施例と同様に測定した平均粒径と熱収縮開始温度を、下記表1に示した。純銅微粉の場合は、タングステンを添加した場合より粒成長が起こり、平均粒径は111nmであった。また、熱収縮開始温度は実施例の複合銅微粉よりも低く、340℃であった。
[Comparative example]
Under the same conditions as in the above example, only copper powder was vaporized and condensed to obtain pure copper fine powder of Sample 5. About the obtained pure copper fine powder of the sample 5, the average particle diameter measured similarly to the Example and the heat shrink start temperature are shown in Table 1 below. In the case of pure copper fine powder, grain growth occurred more than when tungsten was added, and the average particle diameter was 111 nm. Moreover, the heat shrink start temperature was 340 ° C. lower than the composite copper fine powder of the example.

Figure 0004731347
Figure 0004731347

上記した実施例の試料1〜4の各複合銅微粉、並びに比較例の試料5の純銅微粉について、TMAチャートを図5に示した。比較例である試料5の純銅微粉の場合には340℃から熱収縮が開始されるのに対し、タングステン添加量が3重量%、5重量%、10重量%、20重量%の本発明の試料1〜4では、粒径が小さいにもかかわらず、熱収縮開始温度はそれぞれ400℃、430℃、490℃、680℃であり、タングステン添加量の増加と共に高温側に移行していることが分る。   A TMA chart is shown in FIG. 5 for each of the composite copper fine powders of Samples 1 to 4 of the above-described Examples and a pure copper fine powder of Sample 5 of the Comparative Example. In the case of the pure copper fine powder of Sample 5 which is a comparative example, thermal shrinkage starts from 340 ° C., whereas the sample of the present invention in which the added amount of tungsten is 3% by weight, 5% by weight, 10% by weight and 20% by weight. In 1-4, although the particle size is small, the thermal shrinkage start temperatures are 400 ° C., 430 ° C., 490 ° C. and 680 ° C., respectively. The

上記の結果から、本発明によるタングステンを添加した複合銅微粉は、微粉間の焼結が抑制されることで、熱収縮開始温度を400℃以上の高温側に移行させると共に、焼成時の熱収縮量の少ない優れた複合銅微粉であることが確認できた。従って、本発明の複合銅微粉は、焼成時における低温での熱収縮問題が改善され、焼成時のクラックやデラミネーションの発生を防止できるため、積層セラミックコンデンサなどの電子部品用電極材料用として好適であることが分る。   From the above results, the composite copper fine powder to which tungsten according to the present invention is added is suppressed from sintering between the fine powders, and the thermal shrinkage start temperature is shifted to a high temperature side of 400 ° C. or higher, and the thermal shrinkage at the time of firing. It was confirmed that it was an excellent composite copper fine powder with a small amount. Therefore, the composite copper fine powder of the present invention is suitable for use as an electrode material for electronic parts such as a multilayer ceramic capacitor because the problem of thermal shrinkage at low temperatures during firing is improved and cracks and delamination can be prevented during firing. It turns out that it is.

実施例で用いた高周波プラズマ微粉製造装置を模式的に示した側面図である。It is the side view which showed typically the high frequency plasma fine powder manufacturing apparatus used in the Example. 本発明の複合銅微粉のTEM写真である。It is a TEM photograph of the composite copper fine powder of the present invention. 図2の複合銅微粉を拡大したTEM写真である。It is the TEM photograph which expanded the composite copper fine powder of FIG. 本発明の複合銅微粉のEDX解析写真である。It is an EDX analysis photograph of the composite copper fine powder of the present invention. 実施例及び比較例の各複合銅微粉のTMAチャートである。It is a TMA chart of each composite copper fine powder of an Example and a comparative example.

符号の説明Explanation of symbols

1 プラズマトーチ
2 プラズマガス供給口
3 シースガス供給口
4 原料粉末供給口
5 プラズマ炎
6 プラズマ尾炎部
7 反応チャンバー
8 冷却チャンバー
9 回収装置


DESCRIPTION OF SYMBOLS 1 Plasma torch 2 Plasma gas supply port 3 Sheath gas supply port 4 Raw material powder supply port 5 Plasma flame 6 Plasma tail flame part 7 Reaction chamber 8 Cooling chamber 9 Collection | recovery apparatus


Claims (3)

平均粒径が10〜100nmで、タングステン、モリブデン、タンタルから選ばれた少なくとも1種の高融点金属が銅微粒子表面に存在する複合銅微粉の製造方法であって、銅又は銅化合物と該高融点金属の化合物とを熱プラズマにより気化させ、得られた金属蒸気を凝縮させることを特徴とする複合銅微粉の製造方法 A method for producing a composite copper fine powder having an average particle diameter of 10 to 100 nm and at least one refractory metal selected from tungsten, molybdenum, and tantalum on the surface of copper fine particles, comprising copper or a copper compound and the high melting point A method for producing a composite copper fine powder, comprising vaporizing a metal compound with thermal plasma and condensing the obtained metal vapor . 水素を含む不活性ガスあるいは窒素を含む不活性ガスの熱プラズマ中で、銅又は銅酸化物と前記高融点金属の酸化物とを気化させることを特徴とする、請求項1に記載の複合銅微粉の製造方法 2. The composite copper according to claim 1, wherein copper or copper oxide and the oxide of the refractory metal are vaporized in a thermal plasma of an inert gas containing hydrogen or an inert gas containing nitrogen. Production method of fine powder . 得られた複合銅微粉を、酸素を含む不活性ガス雰囲気中で徐酸化処理することを特徴とする、請求項1又は2に記載の複合銅微粉の製造方法 The method for producing a composite copper fine powder according to claim 1 or 2, wherein the obtained composite copper fine powder is subjected to a slow oxidation treatment in an inert gas atmosphere containing oxygen .
JP2006035552A 2006-02-13 2006-02-13 Method for producing composite copper fine powder Expired - Fee Related JP4731347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035552A JP4731347B2 (en) 2006-02-13 2006-02-13 Method for producing composite copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035552A JP4731347B2 (en) 2006-02-13 2006-02-13 Method for producing composite copper fine powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011041211A Division JP5274603B2 (en) 2011-02-28 2011-02-28 Composite copper fine powder

Publications (2)

Publication Number Publication Date
JP2007211332A JP2007211332A (en) 2007-08-23
JP4731347B2 true JP4731347B2 (en) 2011-07-20

Family

ID=38490026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035552A Expired - Fee Related JP4731347B2 (en) 2006-02-13 2006-02-13 Method for producing composite copper fine powder

Country Status (1)

Country Link
JP (1) JP4731347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418456B2 (en) 2019-02-13 2024-01-19 アデエム28 エス.アエール.エル. Hybrid molding method and corresponding molding equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623470B2 (en) * 2008-06-20 2014-01-07 Toyota Motor Engineering & Manufacturing North America, Inc. Process to make core-shell structured nanoparticles
JP2012102354A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nano-size particle, negative electrode material for lithium ion secondary battery including the nano-size particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nano-size particle
JP2012101958A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nanoscale particle, negative electrode material for lithium ion secondary battery containing the same, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing the nanoscale particle
JP5656570B2 (en) * 2010-11-08 2015-01-21 古河電気工業株式会社 Method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode material for lithium ion secondary battery
KR102301256B1 (en) * 2017-09-29 2021-09-10 제이엑스금속주식회사 Metal powder for metal lamination molding and a sculpture manufactured using the metal powder
CN113178328B (en) * 2021-03-30 2023-04-25 大连海外华昇电子科技有限公司 Copper inner electrode conductive paste for multilayer ceramic capacitor and application thereof
CN113337741B (en) * 2021-04-09 2022-01-28 陕西斯瑞新材料股份有限公司 Method for preparing CuCr alloy by utilizing Cr powder plasma-assisted vacuum induction melting
WO2023126998A1 (en) * 2021-12-27 2023-07-06 ニイミ産業株式会社 Composite copper particles, method for producing same, and method for molding composite copper molded body performed using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275511A (en) * 2001-03-15 2002-09-25 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418456B2 (en) 2019-02-13 2024-01-19 アデエム28 エス.アエール.エル. Hybrid molding method and corresponding molding equipment

Also Published As

Publication number Publication date
JP2007211332A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4731347B2 (en) Method for producing composite copper fine powder
KR101745030B1 (en) Nickel powder and production method thereof
JP2005505695A (en) Multilayer ceramic capacitor electrode internal powder
JP4986356B2 (en) Method for producing nickel powder
WO2006134743A1 (en) Ruthenium-alloy sputtering target
TWI539009B (en) Nickel powder,conductive paste and laminate ceramic electronic component
JP2002348603A (en) Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
JP5274603B2 (en) Composite copper fine powder
TWI599659B (en) Nickel alloy powder and method for producing the same
WO2019148277A1 (en) Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
US9679675B2 (en) Manufacturing and applications of metal powders and alloys
WO2008041541A1 (en) Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
JP2005281712A (en) Metal powder, and method and device for producing the same
JP5886473B2 (en) Ti-Al alloy sputtering target
JP2015040692A (en) Molybdenum crucible for metal evaporation and manufacturing method and use method thereof
JP6738460B1 (en) Method for producing copper powder
JP2009013456A (en) Nickel alloy powder production method
WO2008041540A1 (en) Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
JP2024018487A (en) Nickel alloy powder and method for producing nickel alloy powder
JP2024018489A (en) Nickel alloy powder and method for producing nickel alloy powder
KR20240049855A (en) Metallic Powders for Use as Electrode Material in Multilayer Ceramic Capacitors and Method of Manufacturing and of Using Same
KR20140089147A (en) Refractory for manufacturing copper powder and manufacturing method of copper powder
KR20150016697A (en) Refractory for manufacturing nickel powder, manufacturing method of the same and manufacturing method of nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees