JP2006169559A - Copper alloy fine-particle and method for producing the same - Google Patents

Copper alloy fine-particle and method for producing the same Download PDF

Info

Publication number
JP2006169559A
JP2006169559A JP2004360798A JP2004360798A JP2006169559A JP 2006169559 A JP2006169559 A JP 2006169559A JP 2004360798 A JP2004360798 A JP 2004360798A JP 2004360798 A JP2004360798 A JP 2004360798A JP 2006169559 A JP2006169559 A JP 2006169559A
Authority
JP
Japan
Prior art keywords
copper alloy
fine particles
copper
alloy fine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360798A
Other languages
Japanese (ja)
Inventor
Junichi Takahashi
純一 高橋
Eiji Ishida
栄治 石田
Yoshiaki Mori
芳秋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004360798A priority Critical patent/JP2006169559A/en
Publication of JP2006169559A publication Critical patent/JP2006169559A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper alloy fine-particles which are suitable for a material for a conductive paste, have BET diameters of 3 μm or smaller, high oxidation resistance and high dispersibility, are spherical, and besides have higher oxidation resistance than those with a large crystallite size having excellent oxidation resistance, and to provide a method for inexpensively producing them. <P>SOLUTION: The copper alloy fine-particle has a BET diameter of 3 μm or smaller, is spherical and has an oxidation-initiating temperature of 190°C or higher. The method for producing the fine-particle includes blowing a gas containing ammonia to a molten copper alloy kept at 1,120°C or higher, at a flow rate of at least 0.015 liter/cm<SP>2</SP>×minute per unit area of the molten copper alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銅合金微粒子とその製造方法に関し、さらに詳しくは、導電ペースト用材料として好適な、BET径が3μm以下で、高い耐酸化性を有する分散性の良い真球状の銅を基とする金属微粒子とそれを低コストで製造する方法に関する。   The present invention relates to copper alloy fine particles and a method for producing the same, and more specifically, is based on true spherical copper having a BET diameter of 3 μm or less and high oxidation resistance, which is suitable as a material for conductive paste. The present invention relates to a metal fine particle and a method for producing it at low cost.

回路形成用や積層コンデンサ用の導電ペーストに用いられる導電性金属粉末として、銅、ニッケル及び銀が用いられている。これらの導電性粉末には不純物が少ないことに加えて、粒子形状及び粒径が揃い、かつ凝集のない分散粒子であることなどが望まれている。さらに、ペースト中での分散性が良いことや、不均一な焼結を起こさないように結晶性が良好であることも要求される。   Copper, nickel, and silver are used as conductive metal powders used in conductive pastes for circuit formation and multilayer capacitors. In addition to a small amount of impurities, these conductive powders are desired to be dispersed particles having a uniform particle shape and particle size and no aggregation. Furthermore, it is required that the dispersibility in the paste is good and the crystallinity is good so as not to cause non-uniform sintering.

すなわち、具体的には、近年、以下のような基準値に合致する特性を有する金属粉が特に要求されている。
(1)BET法で測定した粒径(以下、BET径と略称する場合もある。)が3μm以下であること。
(2)粒子形状が球状で、分散性が良好であること。
(3)高い耐酸化性を有すること。
(4)マイグレーションを起こしにくいこと。
Specifically, in recent years, there has been a particular demand for metal powder having characteristics that meet the following reference values.
(1) The particle diameter measured by the BET method (hereinafter sometimes abbreviated as BET diameter) is 3 μm or less.
(2) The particle shape is spherical and the dispersibility is good.
(3) Having high oxidation resistance.
(4) It is difficult for migration to occur.

上記した導電性金属粉末材料のうち、銅はもっとも安価であり、またマイグレーションを起こしにくい材料として優れており、銅を基とする金属微粒子が注目されている。ところが、銅には大気中で比較的低温度で酸化されやすく導電性が低下するという欠点があり、その使用範囲が制約されていた。すなわち、導電性ペーストは、その使用方法で、金属粉末を焼結せしめて配線等に使用される焼成ペーストと、熱硬化型のポリマーで固めるポリマーペーストとに大別されるが、前者の焼成過程に含まれる有機バインダーを分解せしめる脱バインダー工程と後者の熱硬化工程では、いずれも150〜300℃での熱処理が行われ、この温度領域で銅粉の耐酸化性に問題があった。したがって、この温度領域で、銅粉の耐酸化性を向上させることが求められている。   Of the conductive metal powder materials described above, copper is the cheapest and excellent as a material that does not easily cause migration, and metal fine particles based on copper are attracting attention. However, copper has a drawback that it is easily oxidized at a relatively low temperature in the atmosphere and its conductivity is lowered, and its use range is restricted. That is, the conductive paste is roughly classified into a firing paste used for wiring and the like by sintering a metal powder and a polymer paste solidified with a thermosetting polymer, depending on the method of use. In both the binder removal step for decomposing the organic binder contained in the resin and the latter thermosetting step, heat treatment was performed at 150 to 300 ° C., and there was a problem in the oxidation resistance of the copper powder in this temperature range. Therefore, it is required to improve the oxidation resistance of the copper powder in this temperature range.

ところで、金属及び合金の微粒子を製造する方法として多くの方法が提案されている。
例えば、ガス噴霧法(例えば、特許文献1参照。)は、溶融状態の合金をノズルなどから噴き出しアルゴンなどの不活性ガス中で急冷する方法であるが、一般に3μm以下の均一な微粒子を製造することが困難で、所定の粒径の微粒子を得ようとすると、得られた粒子を分級しなければならず、歩留まりが悪くコスト高となる。また銅粉等の卑金属球状粒子を得ようとすると、噴霧時に酸化を受けやすく酸素品位が高くなりやすいなどの問題がある。
By the way, many methods have been proposed as a method for producing fine particles of metals and alloys.
For example, the gas spray method (see, for example, Patent Document 1) is a method in which a molten alloy is ejected from a nozzle or the like and rapidly cooled in an inert gas such as argon, but generally, uniform fine particles of 3 μm or less are produced. When it is difficult to obtain fine particles having a predetermined particle diameter, the obtained particles must be classified, resulting in poor yield and high cost. Further, when trying to obtain base metal spherical particles such as copper powder, there is a problem that oxygen quality is likely to be increased during spraying, which is likely to be oxidized.

また、噴霧熱分解法(例えば、特許文献2参照。)は、1種又は2種以上の金属化合物を含む溶液またはこれらを分散させた懸濁液を噴霧して微細な液滴にし、その液滴を該金属化合物の分解温度より高い温度、望ましくは該金属の融点近傍又はそれ以上の高温で加熱し、金属化合物を熱分解することにより目的とする金属又は合金の粉末を析出させる方法である。この方法によれば、高結晶性または単結晶で、高密度、高分散性の真球状金属粉末や合金粉末が得られる。また、この方法の場合、湿式還元法とは異なり固液分離の必要がないので製造が容易であるばかりでなく、純度に影響を及ぼすような添加剤や溶媒を使用しないので、不純物を含まない高純度の粉末が得られる利点がある。更に、粒径の制御が容易であり、また生成粒子の組成は基本的に溶液中の出発金属化合物の組成と一致するので、組成の制御が容易であるという利点もある。   In addition, the spray pyrolysis method (see, for example, Patent Document 2) sprays a solution containing one or more metal compounds or a suspension in which these are dispersed into fine droplets, and the liquid This is a method in which the droplets are heated at a temperature higher than the decomposition temperature of the metal compound, preferably near the melting point of the metal or higher, and the metal compound is thermally decomposed to precipitate the target metal or alloy powder. . According to this method, a highly crystalline or single crystal, high density, highly dispersible true spherical metal powder or alloy powder can be obtained. In addition, unlike the wet reduction method, this method does not require solid-liquid separation and is easy to manufacture, and does not use impurities or additives that do not affect the purity. There is an advantage that a high-purity powder can be obtained. Furthermore, the particle size can be easily controlled, and the composition of the produced particles basically matches the composition of the starting metal compound in the solution, so that there is an advantage that the composition can be easily controlled.

しかしながら、この方法では、原料の金属化合物を含む液滴を熱分解させるため、溶媒等として用いる水や、アルコール、アセトン、エーテル等の有機溶媒も熱分解させることが必要となり、その結果、熱分解時のエネルギーコストが高くなるという問題がある。
すなわち、このプロセスにおいては、加熱により溶媒が蒸発し、次いで凝縮した金属化合物粒子の熱分解が行われるため、溶媒を蒸発させるのに多大なエネルギーを要する。また、噴霧された液滴が相互に合着したり***したりすると、生成する粉末の粒度分布が大きくなる。このため、これを防止するための噴霧速度、キャリアガス中での液滴濃度、反応器中の滞留時間等の、反応条件を設定しなければならず、この条件設定が非常に難しい。その上、この方法で銅合金等の卑金属粉末を得ようとする場合は、熱分解を厳密にコントロールされた還元性または弱還元性雰囲気で行う必要があり、困難である。加えて、溶媒として水を使用する場合は、水分の分解により発生する酸化性ガスのために銅等が酸化され、結晶性の良い粉末は得られない。
However, in this method, since droplets containing the metal compound as a raw material are thermally decomposed, it is necessary to thermally decompose water used as a solvent and organic solvents such as alcohol, acetone and ether. There is a problem that the energy cost of time increases.
That is, in this process, the solvent evaporates by heating, and then the condensed metal compound particles are thermally decomposed, so that enormous energy is required to evaporate the solvent. Further, when the sprayed droplets coalesce with each other or break up, the particle size distribution of the generated powder increases. For this reason, it is necessary to set reaction conditions such as the spraying speed for preventing this, the concentration of droplets in the carrier gas, the residence time in the reactor, and the like, which are very difficult to set. Moreover, when it is intended to obtain a base metal powder such as a copper alloy by this method, it is difficult to perform thermal decomposition in a strictly controlled reducing or weak reducing atmosphere, which is difficult. In addition, when water is used as the solvent, copper or the like is oxidized due to the oxidizing gas generated by the decomposition of moisture, and a powder with good crystallinity cannot be obtained.

また、気相化学反応法で金属粒子を製造する方法では、例えば、銅の塩化物と合金化すべき元素の塩化物をそれぞれ加熱して蒸発させ、これらの蒸気を混合して水素ガスで還元することにより銅合金微粒子が得られる(例えば、特許文献3参照。)。しかしながら、この方法の場合、銅微粒子の生成速度は塩化物の蒸発速度で制約を受け、高い生成速度すなわち高製造能力が得られ難いという問題がある。加えて、気相からの析出反応で得られる粉末は、凝集しやすく、しかも粒子径の制御が困難である。   In the method of producing metal particles by the gas phase chemical reaction method, for example, copper chloride and the chloride of the element to be alloyed are heated and evaporated, and these vapors are mixed and reduced with hydrogen gas. Thus, copper alloy fine particles can be obtained (see, for example, Patent Document 3). However, in this method, the production rate of copper fine particles is restricted by the evaporation rate of chloride, and there is a problem that it is difficult to obtain a high production rate, that is, a high production capacity. In addition, the powder obtained by the precipitation reaction from the gas phase is likely to aggregate and the particle size is difficult to control.

また、Mg(OH)粉末、銅化合物粉末と銀原料粉末とからなる混合物を水素雰囲気中約600℃で焙焼し、さらに焙焼物中の金属状の銅および銀を互いに拡散させるために約900℃で加熱し、その後加熱生成物中のMgOを酸で溶解し除去する方法(例えば、特許文献4参照。)では、工程が煩雑でありコストが高いという欠点がある。 In addition, a mixture of Mg (OH) 2 powder, copper compound powder and silver raw material powder is roasted at about 600 ° C. in a hydrogen atmosphere, and further, in order to diffuse metallic copper and silver in the roasted material to each other. The method of heating at 900 ° C. and then dissolving and removing MgO in the heated product with an acid (see, for example, Patent Document 4) has the disadvantage that the process is complicated and the cost is high.

さらに、金属水酸化物、金属硝酸塩、有機金属化合物等の熱分解性金属化合物粉末の1種又は2種以上を、キャリアガスと一緒に反応容器に供給し、該金属化合物粉末を10g/l以下の濃度で気相中に分散させた状態のもとに、その分解温度以上で、かつ(Tm−200)℃以下の温度(但し、Tm=該金属の融点)で加熱する方法(例えば、特許文献5参照。)も提案されている。この方法は、卑金属であっても、原料として有機金属化合物を用いることにより、キャリアガスに依存することなく反応雰囲気を還元性として金属粒子を得るとするものである。しかしながら、この方法は、得られる金属微粒子の粒度が原料粉末の粒度に比例するため、粒度の揃ったものを用いることが必要である。従って、予め粉砕機や分級機で粉砕、解砕または分級を行うことが必要になる。また、有機金属化合物を用いた場合には、有機化合物を完全に燃焼させることが必要となり、この分のエネルギーコストが高くなる。加えて、酸化物や窒化物や炭化物が生成しやすい。   Further, one or more kinds of thermally decomposable metal compound powders such as metal hydroxides, metal nitrates, and organometallic compounds are supplied to a reaction vessel together with a carrier gas, and the metal compound powders are 10 g / l or less. And heating at a temperature not lower than the decomposition temperature and not higher than (Tm−200) ° C. (where Tm = the melting point of the metal) (for example, a patent) Reference 5) has also been proposed. In this method, even if it is a base metal, by using an organometallic compound as a raw material, the reaction atmosphere is reduced and metal particles are obtained without depending on the carrier gas. However, in this method, since the particle size of the obtained metal fine particles is proportional to the particle size of the raw material powder, it is necessary to use one having a uniform particle size. Therefore, it is necessary to perform pulverization, crushing, or classification in advance with a pulverizer or a classifier. In addition, when an organic metal compound is used, it is necessary to completely burn the organic compound, which increases the energy cost. In addition, oxides, nitrides, and carbides are easily generated.

以上述べたように、従来、回路形成用や積層コンデンサ用の導電ペースト用材料として求められる上記基準値に合致する特性を全て満たす卑金属微粒子、とりわけ銅微粒子及び銅を基とする合金微粒子はなく、そこで、BET径が3μm以下で、高い耐酸化性を有する分散性の良い真球状の銅を基とする金属微粒子の出現が求められ、同時に低コストの製造方法が求められていた。   As described above, conventionally, there are no base metal fine particles that satisfy all of the characteristics that meet the above-mentioned standard values required for conductive paste materials for circuit formation and multilayer capacitors, especially copper fine particles and copper-based alloy fine particles, Therefore, the appearance of metal fine particles based on true spherical copper having a BET diameter of 3 μm or less and having high oxidation resistance and good dispersibility has been demanded, and at the same time, a low-cost production method has been demanded.

この解決策として、本出願人による特願2003−288481号では、BET径が3μm以下、真球状で、かつ結晶子サイズが0.1〜10μmであることを特徴とし、上記基準値に合致する特性を全て満たす銅微粒子が提案されており、また銅微粒子の結晶性を上昇して耐酸化性を従来の銅粉以上に向上させる方法が開示されている。しかしながら、近年、より高温度での熱処理に対応できる耐酸化性を有する銅を基とする金属微粒子が求められ、かつそれらを実現できる安価な製造方法が強く要請されている。   As a solution to this problem, Japanese Patent Application No. 2003-288881 by the present applicant has a BET diameter of 3 μm or less, a true spherical shape, and a crystallite size of 0.1 to 10 μm, which meets the above-mentioned standard value. Copper fine particles satisfying all the properties have been proposed, and a method for improving the oxidation resistance over conventional copper powder by increasing the crystallinity of the copper fine particles is disclosed. However, in recent years, copper-based metal fine particles having oxidation resistance that can cope with heat treatment at higher temperatures have been demanded, and an inexpensive production method capable of realizing them has been strongly demanded.

なお、本発明に用いる酸化開始温度とは、空気雰囲気における熱重量変化(TG)測定においてサンプル重量が0.5%増加したときの温度を意味する。   The oxidation start temperature used in the present invention means a temperature at which the sample weight increases by 0.5% in thermogravimetric change (TG) measurement in an air atmosphere.

特開平7−331360号公報(第1頁、第2頁)JP-A-7-331360 (first page, second page) 特公昭63−31522号公報(第1頁)Japanese Examined Patent Publication No. 63-31522 (first page) 特開2001−131655号公報(第1頁、第2頁)JP 2001-131655 A (first page, second page) 特開平11−92805号公報(第1頁、第2頁)JP-A-11-92805 (first page, second page) 特開2002−20809号公報(第1頁、第2頁)JP 2002-20809 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、導電ペースト用材料として好適な、BET径が3μm以下で、高い耐酸化性を有する分散性の良い真球状の銅を基とする金属微粒子とそれを低コストで製造する方法を提供することにある。しかも、耐酸化性に優れた結晶子サイズの大きな銅微粒子を超える耐酸化性を実現する。   In view of the above-mentioned problems of the prior art, the object of the present invention is a metal based on a perfectly spherical copper having a BET diameter of 3 μm or less, having high oxidation resistance and good dispersibility, which is suitable as a material for a conductive paste. It is an object of the present invention to provide fine particles and a method for producing them at low cost. Moreover, oxidation resistance exceeding that of copper fine particles having a large crystallite size and excellent oxidation resistance is realized.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、BET径が3μm以下であって、しかも真球状でかつ特定の酸化開始温度を有する銅合金微粒子を創出したところ、これらが従来のものに較べて導電ペースト用粉末として極めて優れていること、さらには、特定条件で、溶融状態の銅合金にアンモニアあるいはアンモニアを含むガスを吹きあてたところ、上記の優れた特性を有する銅合金微粒子が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have created copper alloy fine particles having a BET diameter of 3 μm or less and having a spherical shape and a specific oxidation start temperature. Compared to conventional powders, it is extremely excellent as a powder for conductive pastes. Furthermore, when specific conditions are applied, a molten copper alloy is sprayed with ammonia or a gas containing ammonia. The inventors have found that alloy fine particles can be obtained and have completed the present invention.

すなわち、本発明の第1の発明によれば、BET径が3μm以下、真球状で、かつ酸化開始温度が190℃以上であることを特徴とする銅合金微粒子が提供される。   That is, according to the first invention of the present invention, there are provided copper alloy fine particles characterized by having a BET diameter of 3 μm or less, a spherical shape, and an oxidation start temperature of 190 ° C. or more.

また、本発明の第2の発明によれば、第1の発明において、さらに、酸素含有量が0.6重量%以下であることを特徴とする銅合金微粒子が提供される。   According to the second invention of the present invention, there is further provided copper alloy fine particles according to the first invention, wherein the oxygen content is 0.6% by weight or less.

また、本発明の第3の発明によれば、第1又は2の発明において、銅合金が銅を基としてニッケル、銀、又はスズから選ばれる少なくとも1種を含むことを特徴とする銅合金微粒子が提供される。   According to the third invention of the present invention, the copper alloy fine particles according to the first or second invention, wherein the copper alloy contains at least one selected from nickel, silver, or tin based on copper. Is provided.

また、本発明の第4の発明によれば、第1〜3いずれかの発明において、導電ペースト材料として使用されることを特徴とする銅合金微粒子が提供される。   According to a fourth aspect of the present invention, there is provided copper alloy fine particles characterized by being used as a conductive paste material in any one of the first to third aspects.

また、本発明の第5の発明によれば、溶融状態の銅合金にアンモニアを含むガスを吹きあてる工程を含む、第1〜4いずれかの発明の銅合金微粒子を製造する方法であって、
熔融状態の銅合金の温度を1120℃以上に保持しながら、溶融状態の銅合金単位面積当たり少なくとも0.015リットル/cm・分の流量でアンモニアを含むガスを吹きあてることを特徴とする銅合金微粒子の製造方法が提供される。
According to a fifth aspect of the present invention, there is provided a method for producing copper alloy fine particles according to any one of the first to fourth aspects, comprising a step of blowing a gas containing ammonia to a molten copper alloy,
A copper characterized by blowing a gas containing ammonia at a flow rate of at least 0.015 liter / cm 2 · min per unit area of the molten copper alloy while maintaining the temperature of the molten copper alloy at 1120 ° C. or higher. A method for producing fine alloy particles is provided.

また、本発明の第6の発明によれば、第5の発明において、前記アンモニアを含むガスが、アンモニアガス単独、又はアンモニアガスと非酸化性ガスあるいは不活性ガスとの混合ガスであることを特徴とする銅合金微粒子の製造方法が提供される。   According to a sixth aspect of the present invention, in the fifth aspect, the gas containing ammonia is ammonia gas alone or a mixed gas of ammonia gas and non-oxidizing gas or inert gas. A method for producing a copper alloy fine particle is provided.

本発明の銅合金微粒子は、導電ペースト用材料として好適な、BET径が3μm以下で、高い耐酸化性を有する分散性の良い真球状の銅合金微粒子であり、しかも、耐酸化性に優れた結晶子サイズの大きな銅微粒子を超える耐酸化性が得られるので、近年、特に回路形成用や積層コンデンサ用の導電ペーストに用いられる導電性金属粉末において要求されている特性を全て兼備しており、導電ペースト用材料として極めて有用である。   The copper alloy fine particles of the present invention are spherical copper alloy fine particles having a BET diameter of 3 μm or less, having a high oxidation resistance and good dispersibility, which are suitable as a conductive paste material, and having excellent oxidation resistance. Since oxidation resistance exceeding that of copper fine particles with large crystallite size is obtained, in recent years, it has all the characteristics required for conductive metal powders used in conductive pastes for circuit formation and multilayer capacitors in particular. It is extremely useful as a material for conductive paste.

また、本発明の銅合金微粒子の別の態様である、上記特性に加え、酸素含有量が0.6重量%以下である導電性金属粉末は、積層コンデンサ等特に酸化物の生成を嫌うもの向けに使用する場合に好適である。   In addition to the above characteristics, the conductive metal powder having an oxygen content of 0.6% by weight or less, which is another aspect of the copper alloy fine particles of the present invention, is particularly suitable for multilayer capacitors and the like that do not like the formation of oxides. It is suitable for use in.

さらに、本発明の銅合金微粒子の製造方法は、溶融状態の銅合金にアンモニアを含むガスを吹きあてる工程を含む方法であって、信頼性や実用性が高く、しかも優れた特性を有する銅合金微粒子を低コストで製造することができるので、その工業的価値は極めて大きい。   Furthermore, the copper alloy fine particle production method of the present invention is a method including a step of blowing a gas containing ammonia to a molten copper alloy, which is highly reliable and practical, and has excellent characteristics. Since the fine particles can be produced at a low cost, the industrial value is extremely large.

以下に、本発明の銅合金微粒子とその製造方法について詳細に説明する。
本発明の銅合金微粒子は、BET径が3μm以下、好ましくは2μm以下、より好ましくは1μm以下であって、しかも真球状であり、かつ酸化開始温度が190℃以上、好ましくは200℃以上、より好ましくは210℃以上である。これらの特性は、前述したように、近年、特に回路形成用や積層コンデンサ用の導電ペーストに用いられる導電性金属粉末において要求されている基準値に合致する。
Below, the copper alloy fine particles of the present invention and the production method thereof will be described in detail.
The copper alloy fine particles of the present invention have a BET diameter of 3 μm or less, preferably 2 μm or less, more preferably 1 μm or less, and a spherical shape, and an oxidation start temperature of 190 ° C. or higher, preferably 200 ° C. or higher. Preferably it is 210 degreeC or more. As described above, these characteristics meet the reference values required in recent years for conductive metal powders used for conductive pastes for circuit formation and multilayer capacitors.

すなわち、本発明の銅合金微粒子の耐酸化性は、耐酸化性に優れた結晶子サイズの大きな銅微粒子において得られる酸化開始温度が高々180℃であることからすると、上記銅微粒子に比べて一段と向上している。さらに、耐酸化性のもうひとつ指標である300℃昇温時増量即ち空気雰囲気における熱重量変化(TG)測定において300℃に到達した時点の酸化増量も、上記銅微粒子に比べて低い値が得られ、これらより、180〜300℃の温度領域で上記銅微粒子に比べて耐酸化性が向上しているといえる。   That is, the oxidation resistance of the copper alloy fine particles of the present invention is much higher than that of the copper fine particles because the oxidation start temperature obtained in the copper fine particles having a large crystallite size and excellent oxidation resistance is 180 ° C. at most. It has improved. Furthermore, an increase in the temperature at 300 ° C., which is another index of oxidation resistance, that is, an increase in oxidation at the time when the temperature reaches 300 ° C. in the thermogravimetric change (TG) measurement in the air atmosphere is lower than that of the copper fine particles. Therefore, it can be said that the oxidation resistance is improved in the temperature range of 180 to 300 ° C. as compared with the copper fine particles.

本発明の銅合金微粒子の酸素含有量は、特に限定されるものではなく、酸素含有量が0.6重量%以下、好ましくは0.4重量%以下、より好ましくは0.15重量%以下であるという特性を、上記特性に加えて具備したものが挙げられる。酸素含有濃度が0.6重量%以下であるとする特性は、積層コンデンサ等特に酸化物の生成を嫌うもの向けに使用する場合に好適である。   The oxygen content of the copper alloy fine particles of the present invention is not particularly limited, and the oxygen content is 0.6% by weight or less, preferably 0.4% by weight or less, more preferably 0.15% by weight or less. In addition to the above characteristics, there may be mentioned those having certain characteristics. The characteristic that the oxygen-containing concentration is 0.6% by weight or less is suitable for use in multilayer capacitors and the like that particularly dislike the formation of oxides.

本発明の銅合金微粒子の組成は、特に限定されるものではなく、銅を基として各種の合金元素を含む組成が用いられるが、この中で、特に、耐酸化性に優れており導電性ペースト原料として好適である、銅を基としてニッケル、銀、又はスズから選ばれる少なくとも1種を含む合金が好ましい。   The composition of the copper alloy fine particles of the present invention is not particularly limited, and a composition containing various alloy elements based on copper is used. Among them, the conductive paste is particularly excellent in oxidation resistance. An alloy containing at least one selected from nickel, silver, or tin based on copper, which is suitable as a raw material, is preferable.

そして、本発明の銅合金微粒子は、従来のものに比べて導電ペーストとして極めて優れた特性を示し、特にこれまで斯界において兼備することが困難とされていた特性を全てを具備しているので、導電ペースト用材料として極めて有用である。   And, the copper alloy fine particles of the present invention show extremely excellent characteristics as a conductive paste compared to the conventional ones, and in particular, since it has all the characteristics that have so far been difficult to combine in the field, It is extremely useful as a material for conductive paste.

本発明の銅合金微粒子の製造方法は、溶融状態の銅合金にアンモニアを含むガスを吹きあて上記銅合金微粒子を製造する方法であって、熔融状態の銅合金の温度を1120℃以上、好ましくは1200〜1400℃、より好ましくは1300〜1400℃とする。   The method for producing copper alloy fine particles of the present invention is a method for producing the copper alloy fine particles by blowing a gas containing ammonia to a molten copper alloy, wherein the temperature of the molten copper alloy is 1120 ° C. or higher, preferably It is 1200-1400 degreeC, More preferably, you may be 1300-1400 degreeC.

本発明の製造方法によれば、溶融銅合金の飽和蒸気圧から算出される最大蒸発速度をはるかに超える生成速度が得られる。これは、溶融銅合金にアンモニアガスを吹き付けるとアンモニアが熱分解して活性な原子状の水素あるいは窒素が発生し、これが銅および合金元素と化合し、きわめて高い蒸発速度を実現することに起因するものと見られる。このような化合物は、非平衡物質であるので蒸発後ただちに分解し銅合金粒子を形成すると考えられる。   According to the production method of the present invention, a production rate far exceeding the maximum evaporation rate calculated from the saturated vapor pressure of the molten copper alloy can be obtained. This is because when ammonia gas is blown onto a molten copper alloy, ammonia is thermally decomposed to generate active atomic hydrogen or nitrogen, which combines with copper and alloy elements to achieve a very high evaporation rate. It seems to be a thing. Since such a compound is a non-equilibrium substance, it is considered that it decomposes immediately after evaporation to form copper alloy particles.

すなわち、上記反応機構からみて、本発明の銅合金微粒子を得るためには、活性ガスと銅合金との反応速度および反応量を規定する要因の制御が重要である。これらの要因としては、溶融銅合金の溶融温度のほかに、溶融銅合金表面へのアンモニアガスの供給速度、溶融表面積などが挙げられ、これらが重要な制御要因となる。従って、これらの要因を、工業的に実用できる範囲内で適切に制御することによって、生成銅合金微粒子の粒径分布を本発明のBET径3μm以下とするとともに、真球状でかつ酸化開始温度が190℃以上である微粒子とすることができる。因みに、熔融状態の銅合金の温度を1120℃以上とすれば、BET径3μm以下のものが得られることが確認されている。   That is, in view of the reaction mechanism, in order to obtain the copper alloy fine particles of the present invention, it is important to control the factors that define the reaction rate and reaction amount between the active gas and the copper alloy. These factors include not only the melting temperature of the molten copper alloy, but also the supply rate of ammonia gas to the surface of the molten copper alloy, the molten surface area, and the like, which are important control factors. Therefore, by appropriately controlling these factors within a practical range of industrial use, the particle size distribution of the produced copper alloy fine particles is made to be 3 μm or less of the BET diameter of the present invention, and is spherical and has an oxidation start temperature. Fine particles having a temperature of 190 ° C. or higher can be obtained. Incidentally, it has been confirmed that when the temperature of the molten copper alloy is 1120 ° C. or higher, a BET diameter of 3 μm or less can be obtained.

また、本発明の製造方法においては、もう1つの重要な制御要因として吹きあてるアンモニアガスの流量がある。これは前述した溶融銅合金表面へのアンモニアガスの供給速度と溶融表面積とにより算出されるパラメータである。上記アンモニアガスの流量としては、特に限定されるものではなく、目的の銅合金微粒子を安定的にかつ効率よく得るためには、溶融状態の銅合金単位面積当たり、少なくとも0.015リットル/cm・分以上、好ましくは0.03リットル/cm・分以上、より好ましくは0.04リットル/cm・分以上である。 In the production method of the present invention, the flow rate of ammonia gas blown is another important control factor. This is a parameter calculated from the supply rate of ammonia gas to the surface of the molten copper alloy and the molten surface area. The flow rate of the ammonia gas is not particularly limited, and in order to stably and efficiently obtain the target copper alloy fine particles, at least 0.015 liter / cm 2 per unit area of the molten copper alloy. Min or more, preferably 0.03 liter / cm 2 · min or more, more preferably 0.04 liter / cm 2 · min or more.

本発明の製造方法に用いる銅合金としては、特に限定されるものではなく、アンモニアを吹きつける温度において均一な融体を形成する合金種および組成の銅合金であれば用いることができ、原料組成とほぼ等しい組成の合金微粒子が得られるが、この中で、特に耐酸化性に優れており導電性ペースト原料として好適な微粒子が得られる、銅を基としてニッケル、銀、又はスズから選ばれる少なくとも1種を含む合金が好ましい。   The copper alloy used in the production method of the present invention is not particularly limited, and any copper alloy having an alloy type and composition that forms a uniform melt at the temperature at which ammonia is sprayed can be used. Alloy fine particles having almost the same composition as the above can be obtained. Among these, fine particles particularly excellent in oxidation resistance and suitable as a conductive paste raw material are obtained. At least selected from nickel, silver or tin based on copper Alloys containing one type are preferred.

本発明製造方法に用いるアンモニアを含むガス中のアンモニア濃度は、特に限定されるものではなく、アンモニアが存在さえすれば用いられる。この中で、ガスには生成した銅合金微粒子の酸化を防止しながら回収部へ運搬する役目を果たすことがことが必要であるため、アンモニアガス単独、またはアンモニアガスと非酸化性ガスあるいは不活性ガスとの混合ガスを用いることが推奨される。   The ammonia concentration in the gas containing ammonia used in the production method of the present invention is not particularly limited, and is used as long as ammonia is present. Of these, the gas must play the role of transporting to the recovery section while preventing oxidation of the produced copper alloy fine particles, so ammonia gas alone, or ammonia gas and non-oxidizing gas or inert It is recommended to use a gas mixture with the gas.

なお、混合ガスを用いる場合には、アンモニア濃度、流量、圧力等の具体的な製造条件は、厳密には用いる製造装置のタイプや諸元により左右されるため、用いる装置毎に予め求めておくことが望まれる。   In addition, when using a mixed gas, specific manufacturing conditions such as ammonia concentration, flow rate, pressure, and the like strictly depend on the type and specifications of the manufacturing apparatus to be used. It is desirable.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析と揮発速度、BET径、酸化開始温度及び300℃昇温時増量の評価方法は、以下の通りである。
(1)金属の分析:ICP発光分析法で行った。
(2)揮発速度の測定:単位時間当たりの合金の揮発量から溶融合金の単位表面積当たりに換算して求めた。
(3)BET径の測定:合金粉の粒径をBET法で測定した。
(4)酸化開始温度の測定:空気雰囲気における熱重量変化(TG)測定においてサンプル重量が0.5%増加したときの温度を求めた。
(5)300℃昇温時増量の測定:空気雰囲気における熱重量変化(TG)測定において300℃に到達した時点のサンプルの増量を元試料重量に対する比率として求めた。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used by the Example and the comparative example and the evaluation method of a volatilization rate, a BET diameter, an oxidation start temperature, and a 300 degreeC temperature increase increase are as follows.
(1) Metal analysis: ICP emission analysis was performed.
(2) Measurement of volatilization rate: The volatilization rate was calculated by converting the volatilization amount of the alloy per unit time per unit surface area of the molten alloy.
(3) Measurement of BET diameter: The particle diameter of the alloy powder was measured by the BET method.
(4) Measurement of oxidation start temperature: The temperature at which the sample weight increased by 0.5% in the thermogravimetric change (TG) measurement in an air atmosphere was determined.
(5) Measurement of increase in temperature at 300 ° C .: The increase in the sample when it reached 300 ° C. in the thermogravimetric change (TG) measurement in the air atmosphere was determined as a ratio to the original sample weight.

(実施例1)
横型に配置したSiC管(内径100mm)に、銅品位98重量%及び銀品位2重量%の組成の銅合金をいれたアルミナ製坩堝(溶融金属表面の幅60mm及び長さ300mm)を入れ、内部を窒素ガスで置換した後、抵抗加熱式の電気炉で加熱し銅合金を熔融し、熔体温度を1300℃に維持した。ついで、溶融状態の銅合金表面の上方に設けたノズルから9リットル/分(溶融金属単位面積当たり0.05リットル/cm・分)の流量でアンモニアガスを吹き付けた。その際に生成した微粒子をフィルターで捕集した。
その後、得られた微粒子の走査電子顕微鏡(SEM)観察、合金元素品位と酸素品位の分析、、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。また、得られた合金微粒子のSEM像を図1に示す。
Example 1
An alumina crucible (with a molten metal surface width of 60 mm and a length of 300 mm) containing a copper alloy having a composition of 98% by weight of copper and 2% by weight of silver is placed in a horizontally arranged SiC tube (inner diameter of 100 mm) Was replaced with nitrogen gas and heated in a resistance heating type electric furnace to melt the copper alloy, and the melt temperature was maintained at 1300 ° C. Next, ammonia gas was sprayed from a nozzle provided above the surface of the molten copper alloy at a flow rate of 9 liters / minute (0.05 liters / cm 2 · minute per unit area of molten metal). Fine particles produced at that time were collected by a filter.
Thereafter, scanning electron microscope (SEM) observation of the obtained fine particles, analysis of alloy element quality and oxygen quality, measurement of BET diameter, measurement of oxidation start temperature, measurement of increase at 300 ° C. temperature rise and measurement of volatilization rate went. The results are shown in Table 1. Moreover, the SEM image of the obtained alloy fine particles is shown in FIG.

(実施例2)
銅品位98重量%及びニッケル品位2重量%の組成の銅合金を用いた以外は実施例1と同様に行い、得られた微粒子の走査電子顕微鏡(SEM)観察、合金元素品位と酸素品位の分析、、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。また、得られた合金微粒子のSEM像を図2に示す。
(Example 2)
Except that a copper alloy having a composition of 98% by weight of copper and 2% by weight of nickel was used, the same procedure as in Example 1 was performed, and the obtained fine particles were observed with a scanning electron microscope (SEM), and the quality of the alloy element and oxygen were analyzed. The BET diameter was measured, the oxidation start temperature was measured, the increase in temperature was increased at 300 ° C., and the volatilization rate was measured. The results are shown in Table 1. Moreover, the SEM image of the obtained alloy fine particles is shown in FIG.

(実施例3)
銅品位98重量%及びスズ品位2重量%の組成の銅合金を用いた以外は実施例1と同様に行い、得られた微粒子の走査電子顕微鏡(SEM)観察、合金元素品位と酸素品位の分析、、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。また、得られた合金微粒子のSEM像を図3に示す。
(Example 3)
Except that a copper alloy having a composition of 98% by weight of copper and 2% by weight of tin was used, the same procedure as in Example 1 was carried out. Observation of the obtained fine particles by scanning electron microscope (SEM), analysis of alloy element quality and oxygen quality The BET diameter was measured, the oxidation start temperature was measured, the increase in temperature was increased at 300 ° C., and the volatilization rate was measured. The results are shown in Table 1. Moreover, the SEM image of the obtained alloy fine particles is shown in FIG.

(実施例4)
アンモニア吹きつけ量を2.7リットル/分(溶融金属単位面積当たり0.015リットル/cm・分)とした以外は実施例1と同様に行い、得られた微粒子の合金元素品位と酸素品位の分析、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。
Example 4
The same procedure as in Example 1 was carried out except that the amount of ammonia sprayed was 2.7 liters / minute (0.015 liters / cm 2 · minute per unit area of molten metal). Analysis, measurement of BET diameter, measurement of oxidation start temperature, measurement of increase at 300 ° C. temperature rise, and measurement of volatilization rate. The results are shown in Table 1.

(比較例1)
熔融状態の銅合金の温度が1100℃である以外は実施例1と同様に行い、得られた微粒子の走査電子顕微鏡(SEM)観察、合金元素品位と酸素品位の分析、、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。
(Comparative Example 1)
Except that the temperature of the molten copper alloy is 1100 ° C., it is carried out in the same manner as in Example 1, observation of the obtained fine particles by scanning electron microscope (SEM), analysis of alloy element quality and oxygen quality, measurement of BET diameter, Measurement of the oxidation start temperature, measurement of increase in heating at 300 ° C., and measurement of volatilization rate were performed. The results are shown in Table 1.

(比較例2)
合金元素を含まない純銅を用いた以外は実施例1と同様に行い、得られた微粒子の走査電子顕微鏡(SEM)観察、合金元素品位と酸素品位の分析、、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。
(Comparative Example 2)
Except that pure copper containing no alloy element was used, the same procedure as in Example 1 was performed. Observation of the obtained fine particles by scanning electron microscope (SEM), analysis of alloy element quality and oxygen quality, measurement of BET diameter, oxidation start temperature , Measurement of increase in heating at 300 ° C. and measurement of volatilization rate. The results are shown in Table 1.

(比較例3)
アンモニア吹きつけ量を1.8リットル/分(溶融金属単位面積当たり0.01リットル/cm・分)とした以外は実施例1と同様に行い、得られた微粒子の合金元素品位と酸素品位の分析、BET径の測定、酸化開始温度の測定及び300℃昇温時増量の測定と揮発速度の測定を行った。結果を表1に示す。
(Comparative Example 3)
The same procedure as in Example 1 was carried out except that the amount of ammonia sprayed was 1.8 liter / min (0.01 liter / cm 2 · min per molten metal unit area). Analysis, measurement of BET diameter, measurement of oxidation start temperature, measurement of increase at 300 ° C. temperature rise, and measurement of volatilization rate. The results are shown in Table 1.

Figure 2006169559
Figure 2006169559

表1から明らかなように、実施例1〜3では、銅合金を用いて本発明の方法に従って行われたので、原料合金とほぼ等しい組成で、BET径が1〜2μm、酸素品位が0.1〜0.6%、酸化開始温度が190℃以上、及び300℃昇温時増量が低い耐酸化性に優れた真球状銅合金微粒子が得られることが分かる。これに対して、比較例1又は2では、熔融状態の銅合金の温度あるいは原料組成がこれらの条件に合わないので、BET径あるいは酸化開始温度及び300℃昇温時増量で示される耐酸化性によって満足すべき結果が得られないことが分かる。   As is apparent from Table 1, in Examples 1 to 3, since the process was performed using a copper alloy according to the method of the present invention, the composition was almost the same as that of the raw material alloy, the BET diameter was 1 to 2 μm, and the oxygen quality was 0.1. It turns out that the spherical copper alloy fine particle excellent in oxidation resistance with 1 to 0.6%, oxidation start temperature of 190 degreeC or more, and low increase at 300 degreeC temperature rise is obtained. On the other hand, in Comparative Example 1 or 2, since the temperature or raw material composition of the molten copper alloy does not meet these conditions, the oxidation resistance indicated by the BET diameter or the oxidation start temperature and the increase in temperature when heated to 300 ° C. It can be seen that satisfactory results cannot be obtained.

本発明の銅合金微粒子とその製造方法は、BET径が3μm以下で分散性の良い真球状粒子で耐酸化性に優れた回路形成用や積層コンデンサ用の導電ペーストに用いられる導電性金属粉末材料として極めて有用な銅合金微粒子とその効率的な製造方法である。   The copper alloy fine particles of the present invention and the method for producing the same are conductive metal powder materials used in conductive pastes for circuit formation and multilayer capacitors having BET diameters of 3 μm or less and excellent dispersibility and excellent oxidation resistance. As an extremely useful copper alloy fine particle and its efficient production method.

実施例1で得られた銅−銀合金微粒子のSEM像である。2 is a SEM image of copper-silver alloy fine particles obtained in Example 1. FIG. 実施例2で得られた銅−ニッケル合金微粒子のSEM像である。2 is a SEM image of copper-nickel alloy fine particles obtained in Example 2. FIG. 実施例3で得られた銅−スズ合金微粒子のSEM像である。4 is a SEM image of copper-tin alloy fine particles obtained in Example 3. FIG.

Claims (6)

BET径が3μm以下、真球状で、かつ酸化開始温度が190℃以上であることを特徴とする銅合金微粒子。   Copper alloy fine particles having a BET diameter of 3 μm or less, a spherical shape, and an oxidation start temperature of 190 ° C. or higher. さらに、酸素含有量が0.6重量%以下であることを特徴とする請求項1に記載の銅合金微粒子。   Furthermore, oxygen content is 0.6 weight% or less, The copper alloy fine particle of Claim 1 characterized by the above-mentioned. 銅合金が銅を基としてニッケル、銀、又はスズから選ばれる少なくとも1種を含むことを特徴とする請求項1又は2に記載の銅合金微粒子。   The copper alloy fine particles according to claim 1 or 2, wherein the copper alloy contains at least one selected from nickel, silver, or tin based on copper. 導電ペースト材料として使用されることを特徴とする請求項1〜3に記載の銅合金微粒子。   The copper alloy fine particles according to claim 1, wherein the copper alloy fine particles are used as a conductive paste material. 溶融状態の銅合金にアンモニアを含むガスを吹きあてる工程を含む、請求項1〜4のいずれかに記載の銅合金微粒子を製造する方法であって、
熔融状態の銅合金の温度を1120℃以上に保持しながら、溶融状態の銅合金単位面積当たり少なくとも0.015リットル/cm・分の流量でアンモニアを含むガスを吹きあてることを特徴とする銅合金微粒子の製造方法。
The method for producing copper alloy fine particles according to any one of claims 1 to 4, comprising a step of blowing a gas containing ammonia to a molten copper alloy,
A copper characterized by blowing a gas containing ammonia at a flow rate of at least 0.015 liter / cm 2 · min per unit area of the molten copper alloy while maintaining the temperature of the molten copper alloy at 1120 ° C. or higher. Manufacturing method of alloy fine particles.
前記アンモニアを含むガスが、アンモニアガス単独、又はアンモニアガスと非酸化性ガスあるいは不活性ガスとの混合ガスであることを特徴とする請求項5に記載の銅合金微粒子の製造方法。   6. The method for producing copper alloy fine particles according to claim 5, wherein the gas containing ammonia is ammonia gas alone or a mixed gas of ammonia gas and non-oxidizing gas or inert gas.
JP2004360798A 2004-12-14 2004-12-14 Copper alloy fine-particle and method for producing the same Pending JP2006169559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360798A JP2006169559A (en) 2004-12-14 2004-12-14 Copper alloy fine-particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360798A JP2006169559A (en) 2004-12-14 2004-12-14 Copper alloy fine-particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006169559A true JP2006169559A (en) 2006-06-29

Family

ID=36670619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360798A Pending JP2006169559A (en) 2004-12-14 2004-12-14 Copper alloy fine-particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006169559A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035573A1 (en) * 2008-09-26 2010-04-01 京セラ株式会社 Nickel-copper alloy powder, process for producing the nickel-copper alloy powder, conductive paste, and electronic component
JP2013196954A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
JP2013196953A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
WO2015008628A1 (en) * 2013-07-16 2015-01-22 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and process for producing same
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
JP2015196906A (en) * 2014-04-02 2015-11-09 オーシーアイ カンパニー リミテッドOCI Company Ltd. Non-homogeneous copper-nickel composite and method for synthesizing said composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020809A (en) * 2000-05-02 2002-01-23 Shoei Chem Ind Co Method for manufacturing metal powder
JP2003168321A (en) * 2001-12-04 2003-06-13 Kawatetsu Mining Co Ltd Copper alloy powder for conductive paste
JP2004124257A (en) * 2002-09-11 2004-04-22 Sumitomo Metal Mining Co Ltd Metal copper particulate, and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020809A (en) * 2000-05-02 2002-01-23 Shoei Chem Ind Co Method for manufacturing metal powder
JP2003168321A (en) * 2001-12-04 2003-06-13 Kawatetsu Mining Co Ltd Copper alloy powder for conductive paste
JP2004124257A (en) * 2002-09-11 2004-04-22 Sumitomo Metal Mining Co Ltd Metal copper particulate, and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035573A1 (en) * 2008-09-26 2010-04-01 京セラ株式会社 Nickel-copper alloy powder, process for producing the nickel-copper alloy powder, conductive paste, and electronic component
JP2010077501A (en) * 2008-09-26 2010-04-08 Kyocera Corp Nickel-copper alloy powder, method for producing the same, conductive paste and electronic component
JP2013196954A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
JP2013196953A (en) * 2012-03-21 2013-09-30 Kyoto Elex Kk Thermosetting conductive paste composition
WO2015008628A1 (en) * 2013-07-16 2015-01-22 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and process for producing same
JP2015021137A (en) * 2013-07-16 2015-02-02 Dowaエレクトロニクス株式会社 Silver-coated copper alloy powder and method for producing the same
WO2015122251A1 (en) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 Copper powder
CN105705276A (en) * 2014-02-14 2016-06-22 三井金属矿业株式会社 Copper powder
CN105705276B (en) * 2014-02-14 2018-01-19 三井金属矿业株式会社 Copper powder
JP2015196906A (en) * 2014-04-02 2015-11-09 オーシーアイ カンパニー リミテッドOCI Company Ltd. Non-homogeneous copper-nickel composite and method for synthesizing said composite

Similar Documents

Publication Publication Date Title
KR100545821B1 (en) Highly crystalline metal powder, manufacturing method thereof, ceramic paste containing the metal powder and ceramic laminated electronic component using conductor paste
KR101745030B1 (en) Nickel powder and production method thereof
TW201132426A (en) Fine nickel powder and production method thereof
WO2009032984A1 (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
TW506869B (en) Method for preparing metal powder
KR19990037964A (en) Metal Powder Manufacturing Method
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
CA3065687C (en) Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
JP2007211333A (en) Tungsten ultrafine powder and production method therefor
JP3812359B2 (en) Method for producing metal powder
KR20070105902A (en) Nickel powder manufacturing method
TW201719678A (en) Nickel powder and nickel paste
JP2006169559A (en) Copper alloy fine-particle and method for producing the same
Kim et al. Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis
TW201842989A (en) Nickel powder and nickel paste
JP5008377B2 (en) Method for producing true spherical tin fine powder
JP2008285700A (en) Molybdenum ultrafine powder, and method for producing the same
CA3045573C (en) Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
JP5354398B2 (en) True spherical fine powder
JP2008095183A (en) Oxide-coated copper fine particle and method for producing the same
JP2002180112A (en) Method for manufacturing high melting point metal powder material
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
JP5003668B2 (en) Method for producing oxide-coated copper fine particles
JP2005076074A (en) Titanium compound-coated nickel powder, and electrically conductive paste obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112