JP2012188309A - 多孔質炭素及びその製造方法 - Google Patents

多孔質炭素及びその製造方法 Download PDF

Info

Publication number
JP2012188309A
JP2012188309A JP2011051830A JP2011051830A JP2012188309A JP 2012188309 A JP2012188309 A JP 2012188309A JP 2011051830 A JP2011051830 A JP 2011051830A JP 2011051830 A JP2011051830 A JP 2011051830A JP 2012188309 A JP2012188309 A JP 2012188309A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon
mesopores
present
carbon according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011051830A
Other languages
English (en)
Other versions
JP5860600B2 (ja
Inventor
Takahiro Morishita
隆広 森下
Hironori Origasa
広典 折笠
Makoto Tatsumi
誠 辰巳
Naoto Ota
直人 太田
Masaki Okada
雅樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011051830A priority Critical patent/JP5860600B2/ja
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to TW105113608A priority patent/TW201628969A/zh
Priority to PCT/JP2012/056075 priority patent/WO2012121363A1/ja
Priority to US14/002,425 priority patent/US11584651B2/en
Priority to KR1020137026477A priority patent/KR101916979B1/ko
Priority to CN201280012309.1A priority patent/CN103429531B/zh
Priority to TW101108126A priority patent/TWI542537B/zh
Priority to EP12754345.2A priority patent/EP2684843A4/en
Publication of JP2012188309A publication Critical patent/JP2012188309A/ja
Application granted granted Critical
Publication of JP5860600B2 publication Critical patent/JP5860600B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】結晶質の炭素であっても比表面積が極めて高い多孔質炭素及びその製造方法を提供することを目的としている。
【解決手段】メソ孔4とこのメソ孔4の外郭を構成する炭素質壁3とを備えた多孔質炭素であって、上記炭素質壁3には層状構造を成す部分が存在することを特徴とするものである。その製造方法は、炭素前駆体としてのポリアミック酸樹脂1と、鋳型粒子としての酸化マグネシウム2とを混合するステップと、この混合物を窒素雰囲気中1000℃で1時間熱処理してポリアミック酸樹脂を熱分解させるステップと、得られた試料を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを溶出させるステップと、この非晶質の多孔質炭素を、窒素雰囲気中2500℃で熱処理するステップと、を有することを特徴とする。
【選択図】図1

Description

本発明は多孔質炭素及びその製造方法に関し、特に、メソ孔を備えた多孔質炭素及びその製造方法に関するものである。
多孔質炭素の製造方法としては、木材パルプ、のこ屑、ヤシ殻、綿実殻、もみ殻等のセルロース質や、粟、稗、とうもろこし等の澱粉質、リグニン等の植物性原料、石炭やタール、石油ピッチ等の鉱物性原料、更にはフェノール樹脂やポリアクリロニトリル等の合成樹脂等を原料とし、これを非酸化性雰囲気下で加熱して炭素化する方法が周知であり、また、これらの炭素化物(活性炭)を薬剤で処理して賦活化する方法もよく知られている。
また最近では、賦活用の薬剤として水酸化カリウムを使用し、これを有機質樹脂と混合して非酸化性雰囲気下で加熱すれば、3000m/gにも達する高い比表面積の活性炭が得られることが確認され、注目を集めている(下記特許文献1参照)。
ところが、この方法では、有機質樹脂に対して4倍量以上の賦活剤を必要とすること、そのためカリウムの回収再利用が試みられているものの回収率が低くてコスト高となること、しかも、賦活のための加熱工程でアルカリ金属が揮発して加熱炉を汚染乃至損傷し、且つ各種工業材料として使用する際にも浸食を起こす原因になること、更にはアルカリ金属化合物で処理した活性炭は可燃性が高く発火し易いこと等、工業的規模での実用化には多くの問題を残している。
このようなことを考慮して、有機質樹脂を、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種と混合し、非酸化性雰囲気で加熱焼成する工程を含む活性炭の製造方法が提案されている(下記特許文献2参照)。
上記のように多孔質炭素は種々の方法により製造されるが、特性を改良するために、この多孔質炭素のさらなる加熱処理が試みられている。しかしながら、上記のような多孔質炭素を加熱処理した場合、結晶性が向上しないばかりか、比表面積が小さくなり、期待していた特性の改良どころか、もともとの特性よりも悪くなるという課題を有していた。
特開平9−86914号公報 特開2006−062954号公報
そこで本発明は、結晶質の炭素であっても比表面積が極めて高い多孔質炭素及びその製造方法を提供することを目的としている。
上記目的を達成するために本発明は、メソ孔とこのメソ孔の外郭を構成する炭素質壁とを備えた多孔質炭素であって、上記炭素質壁には層状構造を成す部分が存在することを特徴とする。
炭素質壁における層状構造を成す部分は、結晶質が発達してきているといえる。この層状構造は、通常、炭素材をある温度以上で加熱処理することにより生成される。しかしながら、炭素材は加熱処理中に収縮を起こすため、炭素材における孔が潰れて、比表面積が小さくなってしまい、結晶質でありながら比表面積の高い多孔質炭素を得ることは困難であった。本発明の多孔質炭素は、メソ孔とこのメソ孔の外郭を構成する炭素質壁を有しているため、加熱処理中の収縮に耐え、この炭素質壁において層状構造を形成することができると考えられる。つまり、本発明の多孔質炭素にはメソ孔が存在しているので、比表面積が小さくなるのを抑制できる。このように、比表面積がある程度大きな状態で結晶質部分が発達しているので、本発明の多孔質炭素は多様な分野(例えば、ガス吸着材料、非水電解質電池の負極材料、キャパシタの電極材料等)で用いることができる。
尚、炭素質壁の全ての部分が層状構造となっている必要はなく、一部に非晶質部分が存在していても良い。また、本発明の多孔質炭素において、メソ孔は必須であるがミクロ孔は必須ではない。したがって、ミクロ孔は存在していても、存在していなくても良い。
ここで、本明細書においては、細孔径が2nm未満のものをミクロ孔、細孔径が2〜50nmのものをメソ孔と称することとする。
上記炭素質壁は3次元網目構造を成すことが望ましい。
炭素質壁が3次元網目構造を成していれば、多孔質炭素の用途が弾力性を必要とする場合にも、本発明の多孔質炭素を適用することができる。また、本発明の多孔質炭素をガス吸着剤として用いる場合には、ガスの流れを阻害しないので、ガス吸着能が向上し、更に、本発明の多孔質炭素を非水電解質電池の負極材料や、キャパシタの電極材料として用いる場合には、リチウムイオン等が円滑に移動する。
比表面積は200m/g以上であることが望ましい。
比表面積が200m/g未満であると、三次元網目構造を形成し難いという問題があり、気孔の形成量が不十分で、ガス吸着能が低下することがある。一方、比表面積は1500m/g以下であることが望ましい。比表面積が1500m/gを超えると、炭素質壁の形状が保てなくなることがあり、メソ孔を十分形成できない可能性がある。
上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが望ましい。
上記構成であれば、本発明の多孔質炭素をガス吸着剤として用いた場合に、ガスの流れが円滑になるので、よりガスを補足し易くなる。また、非水電解質電池の負極材料や、キャパシタの電極材料として用いる場合には、リチウムイオン等が円滑に移動する。
上記メソ孔の容量は0.2ml/g以上であることが望ましい。
メソ孔の容量が0.2ml/g未満であると、比表面積を確保することが困難であり、また、相対圧力が高い場合のガス吸着能が低下する可能性があるからである。
嵩密度は0.1g/cc以上1.0g/cc以下であることが望ましい。
嵩密度が0.1g/cc未満であると、比表面積を確保することが困難であり、炭素質壁の形状が保てなくなることがある一方、嵩密度が1.0g/cc以下を超えると、三次元網目構造を形成し難いという問題があり、メソ孔の形成が不十分で、ガス吸着能が低下することがある。
上記層状構造を成す部分の厚みは1nm以上100nm以下であることが望ましい。
隣接する層の層間距離は0.33nm程度であり、多数の層が形成されると、層状構造を成す部分の厚みは大きくなる一方、少数の層しか形成されないと、層状構造を成す部分の厚みは小さくなる。ここで、多孔質炭素を作成する場合に、鋳型粒子の量を減少させると、炭素質壁の厚みが大きくなって、多数の層が形成されるので、層状構造を成す部分の厚みは大きくなる一方、鋳型粒子の量を増加させると、炭素質壁の厚みが小さくなって、少数の層しか形成されないので、層状構造を成す部分の厚みは小さくなる。層状構造の厚みが1nm未満である場合には、結晶質部分の発達が不十分である可能性がある。一方、100nmを超える場合には加熱処理の時間を延ばす、加熱温度を上げる等の処理を行う必要があるため、製造することが困難であり、本発明の多孔質炭素の他の特性の低下につながる可能性がある。
また、上記目的を達成するために本発明は、メソ孔を有する炭素質焼成体を、非酸化雰囲気或いは減圧雰囲気で、非晶質の炭素が結晶化する温度以上で熱処理することを特徴とする。
前記メソ孔を有する炭素質焼成体を、有機質樹脂を含む流動性材料と、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種から成る鋳型粒子と、を混合して混合物を作製するステップと、上記混合物を非酸化性雰囲気で加熱焼成して焼成物を作製するステップと、上記焼成物中の上記鋳型粒子を除去するステップとで製造することが望ましい。
このような製造方法によれば、メソ孔を有する炭素質焼成体を熱処理した場合、比表面積の低下を招くことなく、結晶質を有する多孔質炭素を製造することができる。比表面積の低下は、熱処理中における炭素の収縮に起因するものと推測されるが、熱処理前の炭素質焼成体がメソ孔を有しているため、炭素の収縮に耐え比表面積の低下が抑制されるものと推測される。
また、当該方法で作製した場合、非晶質の炭素が結晶化する温度以上で熱処理しているので、本発明の多孔質炭素が高温雰囲気で用いられる場合(例えば、高温雰囲気でガス吸着部材として用いられる場合)に、当該温度が非晶質の炭素が結晶化する温度未満の温度であれば、多孔質炭素が変質するのを防止できる。この結晶化する温度以上とは、800℃以上が好ましく、より好ましくは約2000℃以上である。特に2000℃以上で多孔質炭素を用いる場面は少ないと考えられ、したがって、様々な用途に本発明の多孔質炭素を用いることができる。
ここで、鋳型粒子の径や有機質樹脂の種類を変えることによって、細孔の径、多孔質炭素の細孔分布、及び、炭素質壁の厚みを調整することができる。したがって、鋳型粒子の径と有機質樹脂の種類とを適宜選択することによって、より均一な細孔径を有し、より大きな細孔容量を有する多孔質炭素を作製することも可能となる。更に、炭素源に有機質樹脂を含む流動性材料を用い、しかも、賦活処理工程を経ることなく多孔質炭素を作製できるので、得られた多孔質炭素は非常に高純度なものとなる。
尚、アルカリ土類金属化合物を鋳型粒子として用いるのは、アルカリ土類金属化合物は弱酸或いはお湯により除去することができる(即ち、強酸を用いることなく鋳型粒子を取り除くことができる)ので、鋳型粒子を除去するステップにおいて、多孔質炭素自体の性状が変化するのを抑制することができるからである。尚、弱酸を用いた場合には、除去スピードが早くなるという利点がある一方、お湯を用いた場合には、酸が残留して不純物となるという不都合を防止できるという利点がある。また、鋳型粒子を除去するステップにおいて、溶出した酸化物溶液は再び原料として使用が可能であり、多孔質炭素の製造コストを低減できる。
上記流動性材料の炭素収率が40%以上85%以下で、上記鋳型粒子の径が略同径となっていることが望ましい。
上記の如く鋳型粒子の径が略同径となっていれば、鋳型粒子はマトリックス中(焼成物中)に均一に分散されるので、鋳型粒子間の間隔のバラツキが小さくなる。したがって、炭素質壁の厚みが均一に近い三次元網目構造となる。但し、流動性材料の炭素収率が余り小さかったり大きかったりすると(具体的には、流動性材料の炭素収率が40%未満であったり、85%を超えていると)三次元網目構造が保持されない炭素粉末となるが、上記の如く、炭素収率を40%以上85%以下に限定すれば、鋳型粒子を除去した後には、鋳型粒子が存在した場所が連続孔となる三次元網目構造を有する多孔質炭素を得ることができる。また、鋳型粒子の径が略同径となっていれば、同一サイズの連続孔が形成されるので、スポンジ状且つ略籠伏の多孔質炭素を作製することができる。
ここで、上記流動性材料として、200℃以下の温度で流動性を生じるものを用いることが望ましく、具体的には、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミド、フェノール樹脂、及びピッチからなる群から選択される少なくとも1種が例示される。
但し、流動性材料としては、200℃以下の温度で流動性を生じるものに限定するものではなく、200℃以下の温度で流動性が生じなくても、水或いは有機溶媒に可溶な高分子材料であれば本発明に使用できる。
上記鋳型粒子を除去するステップにおいて、除去後の鋳型粒子の残留率が0.5%以下となるように規制することが望ましい。
除去後の鋳型粒子の残留率が0.5%を超えると、メソ孔内に残る鋳型粒子が多くなって、細孔としての役割を発揮できない部位が広く生じるからである。
本発明によれば、層状構造を有する炭素であっても比表面積が極めて高い多孔質炭素を提供できるといった優れた効果を奏する。
本発明の製造工程を示す図であって、同図(a)はポリアミック酸樹脂と酸化マグネシウムとを混合した状態を示す説明図、同図(b)は混合物を熱処理した状態を示す説明図、同図(c)は多孔質炭素を示す説明図である。 本発明炭素A1のSTEM(走査透過電子顕微鏡)写真。 本発明炭素A2のSTEM写真。 本発明炭素A4のSTEM写真。 本発明炭素A1〜A4の相対圧力とN吸着量との関係を示すグラフ。 本発明炭素A1の細孔径とその割合との関係を示すグラフ。 本発明炭素A2の細孔径とその割合との関係を示すグラフ。 本発明炭素A4の細孔径とその割合との関係を示すグラフ。 本発明炭素A1及び本発明炭素A4のX線回折図。
以下、本発明の実施形態を以下に説明する。
本発明の多孔質炭素は、有機質樹脂を、酸化物(鋳型粒子)と溶液または粉末状態において湿式もしくは乾式混合し、混合物を非酸化雰囲気或いは減圧雰囲気で、たとえば500℃以上の温度で炭化した後、洗浄処理することで酸化物を取り除いて非晶質の多孔質炭素(炭素質焼成体)を作製し、しかる後、この非晶質の多孔質炭素を、非酸化雰囲気或いは減圧雰囲気で、非晶質の多孔質炭素が結晶化する温度以上(例えば、2000℃)で熱処理することにより得られる。
前記非晶質多孔質炭素は、大きさが略同等である多数のメソ孔を有しており、このメソ孔間に形成された炭素質壁におけるメソ孔に臨む位置には、ミクロ孔が形成されるような構造となっていることが好ましい。この非晶質の多孔質炭素の熱処理においては、多数のメソ孔が存在した状態は維持されており、しかも、炭素部分(炭素質壁)の少なくとも一部は層状構造を形成する。したがって、この熱処理により、結晶性の発達した多孔質炭素が得られることになる。
上記有機質樹脂としては、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドもしくは炭素化収率が40重量%以上85重量%以下の樹脂、例えばフェノール樹脂やピッチが好ましく用いられる。
ここで、上記単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
前記ジアミンとしては、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン〔2,2−Bis(4−aminophenyl)hexafluoropropane〕、2,2−ビス(トリフルオロメチル)−ベンジジン〔2,2’−Bis(trifluoromethyl)−benzidine〕、4,4’−ジアミノオクタフルオロビフェニルや、3,3’−ジフルオロ−4,4’−ジアミノジフェニルメタン,3,3’−ジフルオロ−4,4’−ジアミノジフェニルエーテル、3,3’−ジ(トリフルオロメチル)−4,4’−ジアミノジフェニルエーテル、3,3’−ジフルオロ−4,4’−ジアミノジフェニルプロパン、3,3’−ジフルオロ−4,4’−ジアミノジフェニルヘキサフルオロプロパン、3,3’−ジフルオロ−4,4’−ジアミノベンゾフェノン、3,3’,5,5’−テトラフルオロ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラ(トリフルオロメチル)−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラフルオロ−4,4’−ジアミノジフェニルプロパン、3,3’,5,5’−テトラ(トリフルオロメチル)−4,4’−ジアミノジフェニルプロパン、3,3’,5,5’−テトラフルオロ−4,4−ジアミノジフェニルヘキサフルオロプロパン、1,3−ジアミノ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−メチル−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−2,4,6−トリフロオロー5−(パ−フルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−プブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−メチル−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−3,4,6−トリフルオロ−5−(パーフルオロノネニルオキシ)ヘンゼン、1,2−ジアミノ−4−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2一ジアミノ−4−ブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−3−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2−メチル−5−(パーフルオロノネニルオキシ)ペンセン、1,4−ジアミノ−2−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2,3,6−トリフルオロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4一ジアミノ−2−プブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−2,4,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−ブロモ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−3,4,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−ブロモ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−3−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2,3,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−プロモ−5−(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp−フェニレンジアミン(PPD)、ジオキシジアニリン等の芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。
一方、酸成分としては、フッ素原子を含む4,4−ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、およびフッ素原子を含まない3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N−メチル−2−ピロリドン、ジメチルホルムアミド等が挙げられる。
イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
更に、ポリイミド以外の樹脂としては、石油系タールピッチ、アクリル樹脂等40%以上の炭素収率を持つものが使用できる。
一方、上記酸化物として用いる原料はアルカリ土類金属酸化物(酸化マグネシウム、酸化カルシウム等)の他に、熱処理により熱分解過程で酸化マグネシウムへと状態が変化する、金属有機酸(クエン酸マグネシウム、シュウ酸マグネシウム、クエン酸カルシウム、シュウ酸カルシウム等)を使用することもできる。
また、酸化物を取り除く洗浄液としては、塩酸、硫酸、硝酸、クエン酸、酢酸、ギ酸など一般的な無機酸を使用し、2mol/l以下の希酸として用いるのが好ましい。また、80℃以上の熱水を使用することも可能である。
更に、前記混合物の炭化は、非酸化雰囲気或いは減圧雰囲気で、500℃以上、1500℃以下の温度で炭化することが好ましい。高炭素収率の樹脂は高分子であるため、500℃未満では炭素化が不十分で細孔の発達が十分ではない場合がある一方、1500℃以上では収縮が大きく、酸化物が焼結し粗大化するため、細孔サイズが小さくなって比表面積が小さくなるからである。非酸化性雰囲気とは、アルゴン雰囲気或いは窒素雰囲気等であり、減圧雰囲気とは133Pa(1torr)以下の雰囲気である。
前記非晶質の多孔質炭素を熱処理する場合、非酸化性雰囲気又は減圧雰囲気で行う必要があるが、この場合の非酸化性雰囲気とは、上記と同様、アルゴン雰囲気或いは窒素雰囲気等であり、減圧雰囲気とは、上記と同様、133Pa(1torr)以下の雰囲気をいう。更に、熱処理温度は、非晶質の炭素が結晶化する温度以上であれば問題ないが、円滑且つ短時間で層状構造を形成するには、800℃以上が好ましく、2000℃以上の温度であることがより望ましい。但し、余り温度が高いとエネルギーの無駄が生じるので、熱処理温度は2500℃以下で行うのが好ましい。
(実施例1)
先ず、図1(a)に示すように、炭素前駆体としてのポリアミック酸樹脂(イミド系樹脂)1と、鋳型粒子としての酸化マグネシウム(MgO、平均結晶子径は100nm)2とを、90:10の重量比で混合した。次に、図1(b)に示すように、この混合物を窒素雰囲気中1000℃で1時間熱処理して、ポリアミック酸樹脂を熱分解させることにより炭素質壁3を備えた焼成物を得た。次いで、図1(c)に示すように、得られた焼成物を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを完全に溶出させることにより多数のメソ孔4を有する非晶質の多孔質炭素5を得た。最後に、この非晶質の多孔質炭素を、窒素雰囲気中2500℃で1時間熱処理して、多孔質炭素を得た。
このようにして作製した多孔質炭素を、以下、本発明炭素A1と称する。
本発明炭素A1のSTEM(走査透過電子顕微鏡)写真を図2に示す。図2から明らかなように、本発明炭素A1の炭素部分の少なくとも一部は層状を成しており、これによって、炭素部分の少なくとも一部の結晶性が発達していることがわかる。つまり、本発明炭素A1は、炭素質壁3の少なくとも一部の結晶性が発達していることがわかる。尚、隣接する層の層間距離は0.33nm程度であるので、11層構造であれば、層状を成す炭素部分の厚みは3.3nm(0.33nm×〔11−1〕)となる。また、本発明炭素A1は3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが認められた。
(実施例2)
非晶質の多孔質炭素を熱処理する際の温度を2000℃とした他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、本発明炭素A2と称する。
本発明炭素A2のSTEM写真を図3に示す。図3から明らかなように、本発明炭素A2の炭素部分の少なくとも一部は層状を成しており、これによって、炭素部分の少なくとも一部の結晶性が発達していることがわかる。また、本発明炭素A2は3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが認められた。
(実施例3)
非晶質の多孔質炭素を熱処理する際の温度を1400℃とした他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、本発明炭素A3と称する。
(実施例4)
非晶質の多孔質炭素を熱処理する際の温度を900℃とした他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、本発明炭素A4と称する。
本発明炭素A4のSTEM(走査透過電子顕微鏡)写真を図4に示す。図4から明らかなように、本発明炭素A4の炭素部分の少なくとも一部は層状を成しており、これによって、炭素部分の少なくとも一部の結晶性が発達していることがわかる。また、本発明炭素A4は3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが認められた。
(比較例1)
熱処理前の炭素材料として、非晶質の多孔質炭素に代えて活性炭(和光純薬工業株式会社製試薬)を用い、且つ、その活性炭を2000℃で熱処理した他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、比較炭素Z1と称する。
(比較例2)
熱処理前の炭素材料として、非晶質の多孔質炭素に代えて活性炭(和光純薬工業株式会社製試薬)を用い、且つ、その活性炭を1400℃で熱処理した他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、比較炭素Z2と称する。
(比較例3)
熱処理前の炭素材料として、非晶質の多孔質炭素に代えて活性炭(和光純薬工業株式会社製試薬)を用い、且つ、その活性炭を熱処理しなかった他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、比較炭素Z3と称する。
(実験1)
上記本発明炭素A1〜A4における相対圧力とN吸着量との関係(吸着等温線)を調べたので、その結果を図5に示す
本実験は、比表面積測定装置(Bellsorp 18、(株)日本ベル)を用い、窒素吸着法により測定した。試料は、約0.1gをセルに採取して装置の試料前処理部で、300℃で約5時間脱ガス処理をした後に測定した。
図5から明らかなように、相対圧力が0〜0.1の範囲においては、本発明炭素A3、A4ではNガス吸着量が多くなっているのに対して、本発明炭素A2では本発明炭素A3、A4と比べてNガス吸着量が減少し、本発明炭素A1では殆どNガスを吸着していないことが認められる。一方、相対圧力が0.1を超える範囲では、本発明炭素A1、A2は本発明炭素A3、A4に比べてNガス吸着量は少ないものの、十分にNガスを吸着していることが認められる。このような実験結果となった理由を調べるべく、下記実験2を行った。
(実験2)
上記本発明炭素A1〜A4について、BET比表面積と、メソ孔容量と、ミクロ孔容量とを求めたので、その結果を表1に示す。尚、BET比表面積は、吸着等温線の結果からBET法を用いて算出した。また、メソ孔容量はBJH(Berret−Joyner−Halenda)法で調べた。更に、ミクロ孔容量はHK(Horbath-Kawazoe)法で調べた。
表1から明らかなように、熱処理前の炭素材料として多孔質炭素を用い、これを900℃又は1400℃で熱処理した本発明炭素A3、A4では、相対圧力が高い場合のガス吸着能が高いメソ孔と、このメソ孔に臨む位置に配置され相対圧力が低い場合のガス吸着能が高いミクロ孔との容量が、共に大きい。したがって、本発明炭素A3、A4では、相対圧力の高低に関わらずガス吸着能が高くなる。
これに対して、熱処理前の炭素材料として多孔質炭素を用い、これを2000℃で熱処理した本発明炭素A2では、本発明炭素A3、A4と比べて、メソ孔とミクロ孔との容量が若干小さくなっているので、相対圧力の高低に関わらずガス吸着能が若干低下する。また、熱処理前の炭素材料として多孔質炭素を用い、これを2500℃で熱処理した本発明炭素A1では、本発明炭素A3、A4のみならず本発明炭素A2と比べても、メソ孔とミクロ孔との容量が小さくなっており、特に、ミクロ孔との容量が著しく小さくなっている。したがって、相対圧力の高低に関わらずガス吸着能が低下し、特に、ミクロ孔の容量が著しく小さくなっているので、相対圧力が低い場合のガス吸着能が特に低下する。
さらに、比較炭素Z1、Z2と、比較炭素Z3を比べてみると、熱処理により、ミクロ孔が著しく減少していることがわかる。これに対して、本発明炭素A2、A3、A4を比べてみれば、メソ孔を有していることにより、熱処理温度が上昇しても、ミクロ孔の減少が抑制されていることがわかる。ただし、熱処理温度を2500℃まで上げた本発明炭素A1ではミクロ孔の減少が認められる。
以上の理由により、実験1のような結果となったものと考えられる。
以上の如く、本発明炭素A1、A2は本発明炭素A3、A4と比べてガス吸着能が低下するが、熱処理前の炭素材料として活性炭を用い、これを熱処理した場合と比べるとガス吸着能は格段に高くなると考えられる。なぜなら、熱処理前の炭素材料として活性炭を用い、これを2000℃で熱処理した比較炭素Z1ではメソ孔とミクロ孔との容量が極めて小さくなっているので、ガス吸着能は著しく低くなると考えられるからである。
以上のことから、本発明炭素A1、A2では、少なくとも一部の炭素を結晶化したにも関わらず、メソ孔を有していることにより多孔質状態が維持されるので、ガス吸着能等の炭素が有する利点をより十分に発揮することができると考えられる。
尚、本発明炭素A2では、本発明炭素A3、A4と比べて、メソ孔とミクロ孔との容量が若干小さくなっているので、BET比表面積も若干小さくなっている。また、本発明炭素A1では、メソ孔とミクロ孔との容量が更に小さくなっているので、BET比表面積も一層小さくなっている。但し、メソ孔とミクロ孔との容量が極めて小さな比較炭素Z1と比べると、本発明炭素A1、A2はBET比表面積が格段に大きくなっている。
加えて、ガス吸着能の向上等を図るためには、メソ孔容量は大きいことが望ましいが、本発明炭素A1の0.55ml/g以上に限定されるものではなく、0.2ml/g以上であれば良い。尚、このように小さなメソ孔容量となるのは、多孔質炭素を2500℃を超える温度で熱処理した場合であると考えられる。
(実験3)
本発明炭素A1、A2、A4の嵩密度について調べたので、その結果を表2に示す。
表2から明らかなように、本発明炭素A1、A2は本発明炭素A4に比べて、嵩密度が大きくなっていることが認められ、特に、本発明炭素A1の嵩密度が大きくなっていることが認められる。これは、上述の如く、本発明炭素A1、A2は本発明炭素A4に比べて、メソ孔とミクロ孔との容量が小さくなり(炭素部分の容積が大きくなり)、特に、本発明炭素A1ではメソ孔とミクロ孔との容量が非常に小さくなるということに起因するものと考えられる。
(実験4)
本発明炭素A1、A2、A4の気孔サイズ分布(メソ孔のサイズ分布)をBJH法で調べたので、その結果を図6〜図8(図6は本発明炭素A1、図7は本発明炭素A2、図8は本発明炭素A4)に示す。
図6〜図8から明らかなように、本発明炭素A1、A2、A4におけるメソ孔のサイズのピークは3〜5nmであることから、熱処理温度の違いによって、メソ孔のサイズのピークは変化しないことがわかる。
(実験5)
上記本発明炭素A1〜A4及び比較炭素Z1〜Z3における比抵抗を調べたので、その結果を表3に示す。実験は、各炭素とバインダーとしてのポリテトラフルオロエチレン(デュポン社製テフロン(登録商標)6J)とを重量比で80:20の割合で物理的に混合したものに、溶剤としてのアセトンを添加し、シート状へと加工した。溶媒を乾燥させるため120℃で5時間乾燥させることにより100mm×100mm×1mmのシートを作製した。そして、このシートの比抵抗を、四端子法を用いて測定した。
表3から明らかなように、熱処理前の炭素材料として多孔質炭素を用いた場合について考察すると、熱処理温度が2000℃以上の本発明炭素A1、A2では比抵抗が2.0〜3.1×10Ω・cmであるのに対して、熱処理温度が2000℃未満の本発明炭素A3、A4では比抵抗が1.0×10〜3.5×10Ω・cmとなっていることが認められる。したがって、本発明炭素A1、A2は本発明炭素A3、A4に比べて、比抵抗が格段に小さくなっていることがわかる。
一方、熱処理前の炭素材料として活性炭を用いた場合について考察すると、熱処理温度が2000℃以上の比較炭素Z1では比抵抗が8.0×10Ω・cmであるのに対して、熱処理温度が2000℃未満の比較炭素Z2、Z3では比抵抗が3.8×10〜2.4×10Ω・cmとなっていることが認められる。したがって、比較炭素Z1は比較炭素Z2、Z3に比べて、比抵抗が小さくなっている。但し、本発明炭素A1、A2と比較すると比抵抗が大きいことがわかる。この理由は定かではないが、本発明炭素A1、A2ではメソ孔が十分に存在し、層状構造が発達するのに対して、比較炭素Z1ではメソ孔が殆ど無く、層状構造が殆ど発達しないことに起因するものと考えられる。
尚、比抵抗は小さいほど好ましいが、3.1×10Ω・cm以下となっている必要はなく、1.0×10Ω・cm以下であれば多様な分野で使用することができる。
(実験6)
本発明炭素A1と本発明炭素A4とのX線回折(線源はCuKα)を行ったので、その結果を図9に示す。
図9から明らかなように、本発明炭素A1では、ブラッグ角度(2θ±0.2°)=26.45°において、黒鉛のピーク(002面)が顕著にみられるのに対して、本発明炭素A4では、ブラッグ角度=26.45°において、黒鉛のピーク(002面)がみられないことが認められる。したがって、本発明炭素A1では炭素が黒鉛化しているが、本発明炭素A4では炭素が黒鉛化していないことがわかる。
尚、X線回折結果のピークの半値幅からシェラーの式を用いて微結晶サイズを求めたところ、微結晶径は約30nmであった。
本発明はガス吸着材料、非水電解質電池の負極材料、キャパシタの電極材料等として用いることができる。
1:ポリアミック酸樹脂(イミド系樹脂)
2:酸化マグネシウム
3:炭素質壁
4:メソ孔
5:多孔質炭素

Claims (13)

  1. メソ孔とこのメソ孔の外郭を構成する炭素質壁とを備えた多孔質炭素であって、
    上記炭素質壁には層状構造を成す部分が存在することを特徴とする多孔質炭素。
  2. 上記炭素質壁は3次元網目構造を成す、請求項1に記載の多孔質炭素。
  3. 比表面積が200m/g以上である、請求項1又は2に記載の多孔質炭素。
  4. 上記メソ孔は開気孔であって、気孔部分が連続するような構成となっている、請求項1〜3の何れか1項に記載の多孔質炭素。
  5. 上記メソ孔の容量は0.2ml/g以上である、請求項1〜4の何れか1項に記載の多孔質炭素。
  6. 嵩密度は0.1g/cc以上1.0g/cc以下である、請求項1〜5の何れか1項に記載の多孔質炭素。
  7. 上記層状構造を成す部分の厚みは1nm以上100nm以下である、請求項1〜6の何れか1項に記載の多孔質炭素。
  8. メソ孔を有する炭素質焼成体を、非酸化雰囲気或いは減圧雰囲気で、非晶質の炭素が結晶化する温度以上で熱処理することを特徴とする多孔質炭素の製造方法。
  9. 前記メソ孔を有する多孔質炭素を、
    有機質樹脂を含む流動性材料と、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種から成る鋳型粒子と、を混合して混合物を作製するステップと、
    上記混合物を非酸化性雰囲気で加熱焼成して焼成物を作製するステップと、
    上記焼成物中の上記鋳型粒子を除去するステップと、
    により製造する、請求項8に記載の多孔質炭素の製造方法。
  10. 上記流動性材料の炭素収率が40%以上85%以下で、上記鋳型粒子の径が略同径となっている、請求項9に記載の多孔質炭素の製造方法。
  11. 上記流動性材料として、200℃以下の温度で流動性を生じるものを用いる、請求項9又は10に記載の多孔質炭素の製造方法。
  12. 上記流動性材料として、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミド、フェノール樹脂、及びピッチからなる群から選択される少なくとも1種である、請求項9〜11のいずれか1項に記載の多孔質炭素の製造方法。
  13. 上記鋳型粒子を除去するステップにおいて、除去後の鋳型粒子の残留率が0.5%以下となるように規制する、請求項9〜12の何れか1項に記載の多孔質炭素の製造方法。
JP2011051830A 2011-03-09 2011-03-09 多孔質炭素 Active JP5860600B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011051830A JP5860600B2 (ja) 2011-03-09 2011-03-09 多孔質炭素
PCT/JP2012/056075 WO2012121363A1 (ja) 2011-03-09 2012-03-09 多孔質炭素及びその製造方法
US14/002,425 US11584651B2 (en) 2011-03-09 2012-03-09 Porous carbon and method of manufacturing same
KR1020137026477A KR101916979B1 (ko) 2011-03-09 2012-03-09 다공질 탄소 및 그 제조 방법
TW105113608A TW201628969A (zh) 2011-03-09 2012-03-09 多孔質碳薄片
CN201280012309.1A CN103429531B (zh) 2011-03-09 2012-03-09 多孔碳及其制造方法
TW101108126A TWI542537B (zh) 2011-03-09 2012-03-09 Porous carbon and a method for producing the same
EP12754345.2A EP2684843A4 (en) 2011-03-09 2012-03-09 POROUS CARBON AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051830A JP5860600B2 (ja) 2011-03-09 2011-03-09 多孔質炭素

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015213462A Division JP6216359B2 (ja) 2015-10-29 2015-10-29 多孔質炭素

Publications (2)

Publication Number Publication Date
JP2012188309A true JP2012188309A (ja) 2012-10-04
JP5860600B2 JP5860600B2 (ja) 2016-02-16

Family

ID=47081888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051830A Active JP5860600B2 (ja) 2011-03-09 2011-03-09 多孔質炭素

Country Status (1)

Country Link
JP (1) JP5860600B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150126636A (ko) 2013-03-07 2015-11-12 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 전기 이중층 캐패시터 전극용 활성탄 및 그 제조 방법
JP2016046287A (ja) * 2014-08-20 2016-04-04 株式会社リコー 非水電解液蓄電素子
JP2016044116A (ja) * 2014-08-27 2016-04-04 東レ株式会社 多孔質炭素材料
JP2016163023A (ja) * 2015-03-05 2016-09-05 株式会社豊田中央研究所 蓄電デバイス及び炭素多孔体の製造方法
KR20170030545A (ko) * 2014-07-15 2017-03-17 도레이 카부시키가이샤 금속 공기 전지용 전극 재료
JPWO2015198920A1 (ja) * 2014-06-23 2017-04-20 東レ株式会社 多孔質炭素材料
JPWO2016002668A1 (ja) * 2014-07-03 2017-04-27 東レ株式会社 多孔質炭素材料及び多孔質炭素材料の製造方法
JP2017224585A (ja) * 2016-06-08 2017-12-21 株式会社リコー 非水電解液蓄電素子
JP2017228514A (ja) * 2016-06-15 2017-12-28 株式会社リコー 非水電解液蓄電素子
JP2018152519A (ja) * 2017-03-14 2018-09-27 株式会社リコー 非水系蓄電素子
JP2019151525A (ja) * 2018-03-02 2019-09-12 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
CN113277509A (zh) * 2021-05-26 2021-08-20 中国科学技术大学 一种多孔碳纳米材料及其制备方法
CN113314349A (zh) * 2021-06-24 2021-08-27 北华大学 一种聚丙烯腈/木质基衍生碳多孔材料及其制备与应用
WO2022255249A1 (ja) * 2021-06-03 2022-12-08 フタムラ化学株式会社 ペルフルオロアルキル化合物吸着活性炭

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071321A1 (ja) 2020-09-29 2022-04-07 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
US20230335760A1 (en) 2020-09-29 2023-10-19 N.E. Chemcat Corporation Catalyst for electrodes, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347864A (ja) * 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc メソポーラスカーボンの製造方法およびメソポーラスカーボン
JP2008260678A (ja) * 2002-11-29 2008-10-30 Asahi Kasei Corp 炭素フィルム又は炭素繊維又はメソ孔炭素材料及びその製法
JP2009221050A (ja) * 2008-03-17 2009-10-01 National Institute Of Advanced Industrial & Technology 自立メソポーラスカーボン薄膜。
JP2010208887A (ja) * 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260678A (ja) * 2002-11-29 2008-10-30 Asahi Kasei Corp 炭素フィルム又は炭素繊維又はメソ孔炭素材料及びその製法
JP2006347864A (ja) * 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc メソポーラスカーボンの製造方法およびメソポーラスカーボン
JP2009221050A (ja) * 2008-03-17 2009-10-01 National Institute Of Advanced Industrial & Technology 自立メソポーラスカーボン薄膜。
JP2010208887A (ja) * 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150126636A (ko) 2013-03-07 2015-11-12 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 전기 이중층 캐패시터 전극용 활성탄 및 그 제조 방법
US10008337B2 (en) 2013-03-07 2018-06-26 Power Carbon Technology Co., Ltd. Activated carbon for an electric double-layer capacitor electrode and manufacturing method for same
JPWO2015198920A1 (ja) * 2014-06-23 2017-04-20 東レ株式会社 多孔質炭素材料
JPWO2016002668A1 (ja) * 2014-07-03 2017-04-27 東レ株式会社 多孔質炭素材料及び多孔質炭素材料の製造方法
KR102380372B1 (ko) * 2014-07-15 2022-03-31 도레이 카부시키가이샤 금속 공기 전지용 전극 재료
KR20170030545A (ko) * 2014-07-15 2017-03-17 도레이 카부시키가이샤 금속 공기 전지용 전극 재료
JP2016046287A (ja) * 2014-08-20 2016-04-04 株式会社リコー 非水電解液蓄電素子
JP2016044116A (ja) * 2014-08-27 2016-04-04 東レ株式会社 多孔質炭素材料
JP2016163023A (ja) * 2015-03-05 2016-09-05 株式会社豊田中央研究所 蓄電デバイス及び炭素多孔体の製造方法
JP2017224585A (ja) * 2016-06-08 2017-12-21 株式会社リコー 非水電解液蓄電素子
JP2017228514A (ja) * 2016-06-15 2017-12-28 株式会社リコー 非水電解液蓄電素子
JP2018152519A (ja) * 2017-03-14 2018-09-27 株式会社リコー 非水系蓄電素子
JP2019151525A (ja) * 2018-03-02 2019-09-12 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
JP2021178772A (ja) * 2018-03-02 2021-11-18 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
JP7283704B2 (ja) 2018-03-02 2023-05-30 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
JP7301294B2 (ja) 2018-03-02 2023-07-03 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
CN113277509A (zh) * 2021-05-26 2021-08-20 中国科学技术大学 一种多孔碳纳米材料及其制备方法
WO2022255249A1 (ja) * 2021-06-03 2022-12-08 フタムラ化学株式会社 ペルフルオロアルキル化合物吸着活性炭
CN113314349A (zh) * 2021-06-24 2021-08-27 北华大学 一种聚丙烯腈/木质基衍生碳多孔材料及其制备与应用

Also Published As

Publication number Publication date
JP5860600B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5860600B2 (ja) 多孔質炭素
WO2012121363A1 (ja) 多孔質炭素及びその製造方法
WO2010104102A1 (ja) 多孔質炭素及びその製造方法
JP5636171B2 (ja) 多孔質炭素及びその製造方法
JP5860602B2 (ja) 多孔質炭素
JP5695147B2 (ja) 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池
JP5860601B2 (ja) 多孔質炭素
JP6216359B2 (ja) 多孔質炭素
JP2015057373A (ja) 多孔質炭素及びその製造方法
JP6426582B2 (ja) 多孔質炭素
JP2012218999A (ja) 多孔質炭素及びその製造方法
WO2015137106A1 (ja) 多孔質炭素、その製造方法、及び多孔質炭素を用いた吸着/脱離装置
WO2014038005A1 (ja) 多孔質炭素及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250