JP2012098036A - 試料流入装置、試料流入チップ及び試料流入方法 - Google Patents

試料流入装置、試料流入チップ及び試料流入方法 Download PDF

Info

Publication number
JP2012098036A
JP2012098036A JP2010243270A JP2010243270A JP2012098036A JP 2012098036 A JP2012098036 A JP 2012098036A JP 2010243270 A JP2010243270 A JP 2010243270A JP 2010243270 A JP2010243270 A JP 2010243270A JP 2012098036 A JP2012098036 A JP 2012098036A
Authority
JP
Japan
Prior art keywords
sample
flow path
fluid
cells
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243270A
Other languages
English (en)
Other versions
JP5659698B2 (ja
Inventor
Yoichi Katsumoto
洋一 勝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010243270A priority Critical patent/JP5659698B2/ja
Priority to US13/277,699 priority patent/US9211548B2/en
Priority to CN2011103238427A priority patent/CN102564921A/zh
Publication of JP2012098036A publication Critical patent/JP2012098036A/ja
Application granted granted Critical
Publication of JP5659698B2 publication Critical patent/JP5659698B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/005Dielectrophoresis, i.e. dielectric particles migrating towards the region of highest field strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1023Microstructural devices for non-optical measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】細胞が流路内で停留してしまうことを防止することができる試料流入装置等の技術を提供すること。
【解決手段】誘電サイトメトリ装置100(試料流入装置)は、流路2と、投入部3と、測定部4と、分取部5と、細胞取出部6、7と、圧力調整部110とを有する。投入部3へは、例えば、血液などの試料流体Sが投入される。投入部3は、搬送流体Fが流通する流路2に連通する狭窄孔1を有する。狭窄孔1の径は、試料流体Sに含まれる細胞Cが単一で通過することが可能な程度の大きさとされる。試料流体Sは、狭窄孔1を介して流路2内に引き込まれ、試料流体Sの細胞Cは、狭窄孔1を個々に通過する。狭窄孔1は、搬送流体Fが流通する流路2の内部に設けられていないので、搬送流体Fが流路2を流通する流量が狭作孔1の径の制限を受けない。これにより、細胞Cが流路2内で沈降し、流路2内で停滞してしまうことを防止することができる。
【選択図】図1

Description

本発明は、細胞を搬送する搬送流体が流通する流路内に、患者等からサンプリングされた、細胞を含む試料流体を流入させる試料流入装置等の技術に関する。
生命科学、医学研究の分野、あるいは臨床検査等の医療分野において、フローサイトメトリという分析方法が用いられている。フローサイトメトリは、個々に遊離した細胞を含む溶液を試料とする。この試料は、希薄化されて流路内を流通される。流路の途中で細胞の信号検出が実行される。この信号を分析することで、試料に含まれる細胞種を識別したり、細胞の数を測定したりすることができる。
下記特許文献1には、細胞の複素誘電率に基づいて細胞を分析する誘電サイトメトリ装置が開示されている。この誘電サイトメトリ装置は、水流形成系ユニットと、測定系ユニットと、分種系ユニットと、制御系ユニットとを含む。
水流系ユニットは、流路に細胞を含む溶液を噴出する。測定系ユニットは、流路を流れる細胞の複素誘電率を求め、複素誘電率から誘電パラメータを算出する。誘電パラメータは、細胞の種類ごとに異なるので、溶液中に含まれる細胞種を識別したり、細胞の数を算出したりすることができる。分種系ユニットは、測定系ユニットの流路から流出される溶液を、廃液と、標的細胞含有液とに分別する。制御系ユニットは、入力インターフェイスを介して入力された設定情報に基づいて、水流系ユニット、測定系ユニット及び分種系ユニットに対して、各種の設定値を設定する。
測定系ユニットは、流入流路部と、流出流路部と、流入流路部及び流出流路部との間に設けられた狭窄部とを有する流路デバイスを含む。流入流路部及び流出流路部には、それぞれ電極が配置されている。流入口を介して流入流路部へ流入した細胞は、狭窄部を個々に通過し、流出流路部を流れて流出口へ向かう。測定系ユニットは、一対の電極を流れる電流を測定し、測定結果に基づいて、狭窄部を通過する個々の細胞ごとに複素誘電率を算出し、複素誘電率から誘電パラメータを算出する。
特開2010−181399号公報(段落[0041]〜[0048]、[0065]〜[0071]図3、図4)
特許文献1に記載の誘電サイトメトリ装置の狭窄部は、流路の内部に設けられている。このように、狭窄部が流路の内部に設けられている場合、細胞を含む溶液が狭窄部を通過する流量が小さいために、細胞が流路内で沈降してしまい、流路内で細胞が停留してしまうといった問題がある。
以上のような事情に鑑み、本発明の目的は、細胞が流路内で停留してしまうことを防止することができる試料流入装置等の技術を提供することにある。
上記目的を達成するため、本発明の一形態に係る試料流入装置は、流路と、狭窄孔とを具備する。
前記流路は、細胞を搬送する搬送流体を流通させる。
前記狭窄孔は、前記流路に連通し、単一の細胞が通過可能であり、前記細胞を含む試料流体を前記流路に流入させる。
この試料流入装置では、狭窄孔は、搬送流体が流通する流路の内部に設けられていない。従って、搬送流体が流路を流通する流量が狭窄孔の径の制限を受けない。これにより、細胞が流路内で沈降し、流路内で停留してしまうことを防止することができる。
上記試料流入装置は、圧力調整部をさらに具備していてもよい。
前記圧力調整部は、前記搬送流体を流通させるための圧力を調整することで、前記搬送流体が前記流路を流通する流量と、前記試料流体が前記狭窄孔を介して前記流路に流入される流量とを調整する。
この試料流入装置では、搬送流体が流路を流通する流量(主流流量)と、試料流体が狭窄孔を介して前記流路に流入される流量(試料流入流量)とを任意に調整することができる。
上記試料流入装置は、第1の電極対を有する測定部をさらに具備していてもよい。
前記第1の電極対は、前記狭窄孔の位置に交流電場を形成する。
前記測定部は、前記第1の電極対に交流電圧を印加して前記交流電場を形成することにより、前記狭窄孔を通過する前記細胞ごとに、前記細胞に依存する複素誘電率を測定する。
測定部により測定された複素誘電率は、例えば、異常細胞を検出したり、後に細胞を分取したりする等の様々な用途に用いられる。ここで、上記したように、試料流入装置では、試料流体が狭窄孔を介して流路に流入される流量が調整可能である。これにより、単一の細胞が狭窄孔を通過する際に、複素誘電率を測定するための適切な速度で狭窄孔を通過させることができる。
上記試料流入装置において、前記流路は、前記狭窄孔の位置より下流側に設けられ、前記細胞を分取するための分岐路を有していてもよい。
この場合、上記試料流入装置は、第2の電極対を有する分取部をさらに具備していてもよい。
前記第2の電極対は、前記狭窄孔の位置より下流側であって前記分岐路より上流側の前記流路に電場を形成する。
前記分取部は、前記測定部により測定された前記複素誘電率に基づいて、前記第2の電極対に電圧を印加して前記電場を形成することにより、前記分岐路を利用して前記細胞を分取する。
この試料流入装置では、狭窄孔を介して流路内に流入された細胞を、測定部によって測定された複素誘電率に基づいて、分取部によって分取することができる。ここで、上記したように、試料流入装置は、主流流量と、試料流入流量とを任意に調整することが可能である。この主流流量と、試料流入流量とを調整することで、第2の電極対により電場が形成される位置での細胞の位置のばらつきを抑制したり、分取速度を任意に調整したりすることができる。
上記試料流入装置は、前記狭窄孔を介して前記流路に流入する前の、前記狭窄孔上の前記試料流体を攪拌する攪拌部をさらに具備していてもよい。
この試料流入装置では、攪拌部により、試料流体内の細胞を攪拌することができるので、細胞が試料流体内で沈降してしまうことを防止することができる。
上記試料流入装置において、前記攪拌部は、前記試料を攪拌する気流を発生させてもよい。
本発明の一形態に係る試料流入チップは、基板と、流路と、狭窄孔とを具備する。
前記流路は、前記基板に設けられ、細胞を搬送する搬送流体を流通させる。
前記狭窄孔は、前記基板に設けられ、前記流路に連通し、単一の細胞が通過可能であり、前記細胞を含む試料流体を前記流路に流入させる。
本発明の一形態に係る試料流入方法は、細胞を搬送する搬送流体を流路に流通させることを含む。
前記流路に連通する、単一の細胞が通過可能な狭窄孔を介して、前記細胞を含む試料流体が前記流路に流入される。
以上説明したように、本発明の一形態によれば、細胞が流路内で停留してしまうことを防止することができる試料流入装置等の技術を提供することができる。
本発明の一実施形態に係る誘電サイトメトリ装置(試料流入装置)を示す概念図である。 誘電サイトメトリ装置の圧力調整部及びマイクロ流路チップ(試料流入チップ)を示す図である。 マイクロ流路チップを示す斜視図である。 マイクロ流路チップの投入部近傍の断面図である。 流入部及び流出部の搬送流体の圧力FP1、FP2の差圧と、主流流量Qとの関係を示す図である。 狭窄孔の直下位置sの静圧Psと、試料流入流量Qsとの関係を示す図である。
以下、図面を参照しながら、本発明の実施形態を説明する。
<誘電サイトメトリ装置の全体構成>
図1は、本発明の一実施形態に係る誘電サイトメトリ装置100(試料流入装置)を示す概念図である。
図1に示すように、誘電サイトメトリ装置100は、マイクロ流路2(以下、単に「流路2」)と、投入部3と、測定部4と、分取部5と、細胞取出部6、7と、圧力調整部110と有する。
流路2は、細胞Cを搬送する搬送流体Fが流通される。搬送流体Fは、典型的には、投入部3へ投入される試料流体Sの媒質と同様の性質を有する流体とされる。流路2は、搬送流体Fが流入される流入部9と、搬送流体F(細胞Cを含む)が分岐される分岐流路2a、2bと、搬送流体Fが流出される流出部10とを有している。
流入部9へは、圧力調整部110の高圧流体タンク113a(図2参照)内に貯留された搬送流体Fが流入される。流出部10から流出した搬送流体Fは、流路2の下流側に配置された、圧力調整部110の低圧流体タンク113b(図2参照)へ貯留される。
投入部3へは、例えば、患者などからサンプリングされた血液などの試料流体S(細胞懸濁液)がピペット8(図4参照)等により滴下されて投入される。投入部3は、搬送流体Fが流通する流路2に連通する狭窄孔1を有する。狭窄孔1の径は、試料流体Sに含まれる細胞C(例えば、赤血球、白血球等)が単一で通過することが可能な程度の大きさとされる。流路2は、狭窄孔1において大気に開放されているが、その他の部分では、大気には開放されていない。
試料流体Sが投入部3に投入されると、試料流体Sは、狭窄孔1を介して、搬送流体Fが流れる流路2内に引き込まれる。このとき、試料流体Sに含まれる細胞Cは、狭窄孔1を個々に通過する。
図1に示すように、狭窄孔1は、搬送流体Fが流通する流路2の内部に設けられていない。従って、搬送流体Fが流路2を流通する流量が狭窄孔1の径の制限を受けない。これにより、細胞Cが流路2内で沈降し、流路2内で停留してしまうことを防止することができる。
測定部4は、第1の電極対4b、4cと、測定制御部4aとを有する。第1の電極対4b、4cは、投入部3において狭窄孔1を挟み込む位置に配置される。第1の電極対4b、4cのうち、一方の電極4bは、流路2の内部に配置され、他方の電極4cは、流路2の外部に配置される。なお、このように2つの電極4b、4cが、狭窄孔1を挟み込んで狭窄孔1の上下方向に配置されることで、狭窄孔1の位置に集中して電位差を発生させることができる。
図1では、図面を見やすく表示するため、狭窄孔1の大きさと、第1の電極対4b、4cとの大きさ(面積)の比率が、実際の比率と異なって表示されている。実際には、第1の電極対対4b、4cの大きさ(面積)は、狭窄孔1に比べて十分に大きく設定されている。なお、後述の図4においても同様である。
測定制御部4aは、第1の電極対4b、4cに交流電圧を印加することで、狭窄孔1の位置に交流電場を形成する。この場合、測定制御部4aは、狭窄孔1を通過する一個一個の細胞Cに対して、細胞Cの誘電緩和現象が起こる周波数範囲(例えば0.1 MHzから50 MHz)の多点周波数(3点以上、典型的には10から20点程度)に亘って交流電圧の周波数を変化させる。
そして、測定制御部4aは、第1の電極対4b、4cに流れる電流を測定することで、電極間の複素抵抗を得て、この複素抵抗から、多周波数点での細胞Cの複素誘電率を求める。なお、複素誘電率を求める方法は、どのような方法が用いられてもよい。測定された複素誘電率は、例えば、細胞Cを分取したり、異常細胞Cを検出したり、誘電スペクトルを表示したりする等の様々な用途に用いられる。
分取部5は、狭窄孔1を介して流路2内に流入した複数種類の細胞Cのうち、所望とする細胞Cを細胞取出部6に、それ以外の細胞Cを細胞取出部7に分取する。分取部5は、第2の電極対5b、5cと、分取制御部5aとを有する。第2の電極対5b、5cは、流路2を挟み込む位置に設けられる。第2の電極対5b、5cは、狭窄孔1が設けられた位置よりも下流側であって、分岐流路2a、2bよりも上流側の位置に配置される。
分取制御部5aは、測定部4により測定された複素誘電率に基づいて、分取すべき細胞Cかを判断する。そして、分取制御部5aは、分取すべき細胞Cの場合には、第2の電極対5b、5cが配置された位置をその細胞Cが通過するタイミングで、第2の電極対5b、5cに電圧を印加し、流路2内に電場を発生させる。
第2の電極対5b、5cにより電場が印加されている状態で、第2の電極対5b、5cが配置された位置を通過した細胞Cは、分岐流路2aを通り細胞取出部6に流れる。一方、第2の電極対5b、5cにより電場が印加されていない状態で、第2の電極対5b、5cが配置された位置を通過した細胞Cは、分岐流路2bを通り細胞取出部7に流れる。
圧力調整部110は、搬送流体Fの圧力を調整する圧力調整機構112と、圧力調整機構112を制御する圧力制御部111とを有する。圧力調整部110は、搬送流体Fを流通させるための圧力を調整することで、搬送流体Fが流路2を流通する流量と、試料流体Sが狭窄孔1を介して流路2に流入される流量とを調整する。
<圧力調整部及びマイクロ流路チップ>
次に、誘電サイトメトリ装置100の圧力調整部110及びマイクロ流路チップ11(試料流入チップ)について説明する。
図2は、誘電サイトメトリ装置100の圧力調整部110及びマイクロ流路チップ11を示す図である。図2には、誘電サイトメトリ装置100の各箇所でのゲージ圧も示されている。図3は、マイクロ流路チップ11を示す斜視図である。図4は、マイクロ流路チップ11の投入部3近傍の断面図である。
図2に示すように、誘電サイトメトリ装置100は、搬送流体Fを流路2内で流通させるための圧力を調整する圧力調整部110と、誘電サイトメトリ装置100から着脱可能なマイクロ流路チップ11(以下、単に「流路チップ11」)とを有する。
圧力調整部110は、流路2の上流側で搬送流体Fの圧力を調整する第1の圧力調整機構112aと、流路2の下流側で搬送流体Fの圧力を調整する第2の圧力調整機構112bとを有する。また、圧力調整部110は、第1の圧力調整機構112a及び第2の圧力調整機構112bを制御する圧力制御部111とを有する。
第1の圧力調整機構112aは、高圧流体タンク113aと、第1のコンプレッサ115aと、高圧流体タンク113a及び第1のコンプレッサ115aの間に配置された第1のエアーバルブ116aとを含む。同様に、第2の圧力調整機構112bは、低圧流体タンク113bと、第2のコンプレッサ115bと、低圧流体タンク113b及び第2のコンプレッサ115bの間に配置された第2のエアーバルブ116bとを含む。第1のエアーバルブ116a及び第2のエアーバルブ116bは、図2に示す例では、3ポート2位置方向電磁弁とされている。
高圧流体タンク113aは、流路2に搬送流体Fを供給するために内部に搬送流体Fを貯留している。低圧流体タンク113bは、流路2から排出された搬送流体Fを内部に貯留する。高圧流体タンク113a及び低圧流体タンク113bには、それぞれ内部の気圧を検出する気圧センサ114a、114bが設けられている。
高圧流体タンク113aの下流側には、第1のバルブ117aが設けられており、低圧流体タンク113bの上流側には、第2のバルブ117bが設けられている。第1のバルブ117a及び第2のバルブ117bは、図2に示す例では、3ポート2位置方向電磁弁とされている。
第1のバルブ117aの下流側には、流量計118が設けられている。また、流路チップ11の流入部9及び流出部10には、搬送流体Fの圧力を検出する圧力センサ119a、119bが設けられている。
圧力制御部111は、ターミナルブロック121及びA/Dコンバータ122を介して、圧力調整機構112に含まれる各部や、流量計118、圧力センサ119a、119b等と電気的に接続されている。
圧力制御部111は、第1のコンプレッサ115aの駆動を制御したり、第1のエアーバルブ116aの位置を制御(バルブの開閉を制御)したりすることで、高圧流体タンク113a内の気圧を制御する。同様に、圧力制御部111は、第2のコンプレッサ115bの駆動を制御したり、第2のエアーバルブ116bの位置を制御(バルブの開閉を制御)したりすることで、低圧流体タンク113b内の気圧を制御する。これにより、流路2の上流側及び下流側において、搬送流体Fの圧力が調整される。
また、圧力制御部111は、第1のバルブ117a及び第2のバルブ117bの位置を制御(バルブの開閉を制御)することで、高圧流体タンク113aからの搬送流体Fの流出と、低圧流体タンク113bへの搬送流体Fの流入とを制御する。第1のバルブ117a及び第2のバルブ117bは、流路チップ11が誘電サイトメトリ装置100から着脱される場合等、必要に応じて切り替えられる。
流路チップ11は、図示しないチップ格納治具に対して着脱可能に形成されており、これにより、流路チップ11は、誘電サイトメトリ装置100に対して着脱可能とされる。流路チップ11は、測定対象とされる細胞Cの大きさや、チップ洗浄等、必要に応じて取り替えることができる。
図3及び図4を参照して、流路チップ11は、基板12及び高分子膜等からなるシート状の部材13を有する。基板12には、流入部9、流路2、分岐流路2a、2b、細胞取出部6、7、流出部10が設けられている。これらは、基板12の表面に溝などを形成し、その表面をシート状の部材13で覆うことで構成される。
投入部3は、シート状の部材13の表面において、他の部分よりも一段低く形成されている。これにより、血液などの試料流体Sがピペット8(図4参照)等により投入部3へ投入されたときに、試料流体Sが投入部3からはみ出してしまうことを防止することができる。
狭窄孔1は、投入部3の略中央に設けられる。狭窄孔1は、シート状の部材13に、上下方向に貫通する微細孔を形成することで形成される。
誘電サイトメトリ装置100は、投入部3へ投入された試料流体Sを攪拌する攪拌部(図示せず)を有していてもよい。攪拌部は、気流を発生し、発生した気流を、狭窄孔1を通過する前の試料流体Sに対して吹きつける(図4参照)。これにより、試料流体Sに含まれる細胞Cが気流により攪拌されるので、細胞Cが試料流体S内で沈降してしまうことを防止することができる。
測定部4の第1の電極対4b、4cは、投入部3において狭窄孔1を挟み込む位置に配置される。第1の電極対4b、4cのうち、一方の電極4bがシート状の部材13の裏面に設けられ、他方の電極4cはシート状の部材13の表面に設けられる。
第1の電極対4b、4cは、配線17及び電極パッド14を介して、測定制御部4aと電気的に接続される。第1の電極対4b、4cは、測定制御部4aの制御に応じて狭窄孔1の位置に交流電場を形成する。
分取部5の第2の電極対5b、5cは、シート状の部材13の裏面に設けられており、2つの電極5b、5cは、流路2の幅方向で流路2を挟み込む位置に配置される。第2の電極対5b、5cは、配線18及び電極パット15を介して、分取制御部5aと電気的に接続される。第2の電極対5b、5cは、分取制御部5aの制御に応じて流路2内に電場を形成し、搬送流体Fによって流路2を搬送される細胞Cに誘電泳動力を発生させて、所望の細胞Cを細胞取出部6側に流す。
細胞取出部6、7はその上部がシート状の部材13により覆われているが、シート状の部材13にピペット8を刺しこむことで、ピペット8を介して細胞Cを取り出すことが可能とされている。
流路チップ11には、流路チップ11を上下方向に貫通する複数の穴26が形成されている。この穴26は、流路チップ11をチップ格納治具に着脱する際の位置決め用の穴26である。
(搬送流体Fの圧力の調整による、主流流量及び試料流入流量の調整)
次に、搬送流体Fの圧力の調整による、主流流量Q及び試料流入流量Qsの調整について説明する。主流流量Qは、搬送流体Fが流路2を流通する流量であり、試料流入流量Qsは、試料流体Sが狭窄孔1を介して流路2内に流入する流量である。なお、ここでの説明では、主に上述の図2及び図4を参照して説明する。
まず、投入部3に試料流体Sが投入されておらず、狭窄孔1の上方(大気側)に試料流体Sが存在しない場合を想定する。高圧流体タンク113a、低圧流体タンク113b内の圧力がそれぞれAP1、AP2(AP1>AP2)に保持されると、搬送流体Fは、高圧流体タンク113aから流出し、流路2を通過して低圧流体タンク113bへと流入する。このときの搬送流体Fの流量が主流流量Qである。
流路チップ11の流入部9及び流出部10において測定される圧力をFP1、FP2とする。この圧力FP1、FP2から、狭窄孔1の直下位置sにおける静圧Psが決定される。この静圧Psは、流路チップ11内の流路2の形状を反映した管路抵抗に起因する圧力損失を基に決定される。
なお、このとき、静圧Psの大きさが比較的小さい範囲では、狭窄孔1の上方(大気側)に試料流体Sが存在しない限り、表面張力のために搬送流体Fは狭窄孔1からは流出しない。また、流路2内部への気体の流入もない。
ここで、血液等の試料流体S(細胞懸濁液)が、投入部3へ10μL程度滴下された場合を想定する。この場合、試料流体Sは大気に依然として接しており、かつその高さは、1mm程度であるために、狭窄孔1の上方にある試料流体Sの静圧は、大気圧と同じくゼロであるとみなせる。また、狭窄孔1での表面張力は最早存在しない。そのため、狭窄孔1の直下位置sの静圧はPsであるから、(0−Ps)の圧力差によって試料流体Sは、流路2内に流入する。狭窄孔1の直下位置sの静圧Psを負に保てば、試料流体Sは、流路チップ11の流路2内に引き込まれる。
ここで、静圧Psは、一般に管路抵抗の関数であるため、以下の式(1)が成立する。
Ps=f(FP1、FP2)・・・(1)
従って、試料流入流量Qsは、レイノルズ数が十分小さい限り、Rsを比例定数として以下の式(2)で表わすことができる。
Qs=Rsf(FP1−FP2)・・・(2)
なお、流路チップ11内の流路2について、狭窄孔1の直下位置sを境に上流側、下流側が流体力学的対称に作成された場合、位置sでの静圧Psは簡略化され、以下の式(3)で表される。
Ps=(FP1+FP2)/2・・・(3)
また、この場合、試料流入流量Qsは、以下の式(4)で表される。
Qs=Rs(FP1+FP2)/2・・・(4)
また、主流流量Qも、FP1及びFP2から、主流に関する管路抵抗Rを用いて、以下の式(5)によって表される。
Q=R(FP1−FP2)・・・(5)
以上より、高圧流体タンク113a内の圧力AP1及び低圧流体タンク113b内の圧力AP2を調整し、流路2の上流側及び下流側で搬送流体Fの圧力(FP1、FP2)を適切に調整することで、主流流量Q及び試料流入流量Qsを任意に制御可能であることが分かる。また、AP1及びAP2の調整によるFP1及びFP2の調整により、主流流量Q及び試料流入流量Qsをそれぞれ独立して制御可能であることが分かる。
本発明者らは、流路2の中央に狭窄孔1を有する流路チップ11を作成した。そして、本発明者らは、高圧流体タンク113a内の圧力AP1及び低圧流体タンク113b内の圧力AP2を調整することで、流入部9及び流出部10での搬送流体Fの圧力FP1、FP2を調整しながら、主流流量Q及び試料流入流量Qsを測定した。なお、流路チップ11の流路2の長さは、22mmとされ、幅は、200μmとされ、高さは100μmとされた。また、搬送流体F及び試料流体Sは、代用として純水が使用された。
図5及び図6は、そのときの実験結果を示す図である。図5には、FP1及びFP2の差圧と、主流流量Qとの関係が示されている。図6には、狭窄孔1の直下位置sの静圧Psと、試料流入流量Qsとの関係が示されている。
図5に示すように、FP1及びFP2の差と、主流流量Qとの間には、実際に線形性が確認された。また、図6に示すように、狭窄孔1の直下位置sの静圧Psと、試料流入流量Qsとの間には、実際に線形性が確認された。なお、図5及び図6に示す実験では、FP1及びFP2を調整することで、実際に、主流流量Q及び試料流入流量Qsを独立して制御することができた。
図2には、流路2内での搬送流体Fのゲージ圧が示されている。実線のグラフでは、FP1及びFP2の差が適切であり、かつ、Psの大きさが適切であることから、主流流量Q及び試料流入流量Qsが適切である場合が示されている。一方、一点鎖線のグラフでは、Psが適切であるものの、FP1及びFP2の差が不適切であるため、主流流量Qが小さすぎる(主流の流速が遅すぎる)場合が示されている。また、二点鎖線のグラフでは、FP1及びFP2の差が適切であるものの、Psが大きすぎるため、試料流入流量Qsが大きすぎる(試料流体Sの流入速度が速すぎる)場合が示されている。
なお、図2からも、流路2の上流側及び下流側で搬送流体Fの圧力(FP1、FP2)を適切に制御することで、主流流量Q及び試料流入流量Qsを任意に、独立して制御可能であることが分かる。
ここで、狭窄孔1を介して流路2内に進入した細胞Cは、方向を代えて流出部10の方向へ向かう。このとき、流路2内に進入した細胞Cが、流路2の幅方向で整列する度合は、主流流量Q及び試料流入流量Qsによって決定される。本発明者らは、図5及び図6の実験で使用した流路チップ11を用いて、流路2内に進入した細胞Cの幅方向での整列度を測定した。この実験では、細胞Cの代わりに、直径10μmのポリスチレンビーズが用いられた。本発明者らは、流路2内に進入したビーズが100個/sの速度で流路2を通過し、分取部5において100個/sの分取速度となるように、主流流量Q及び試料流入流量Qsを調整した。そして、本発明者らは、狭窄孔1の位置から流出部10側に0mm、5mmの各箇所で、ビーズの幅方向での整列度を測定した。その結果、0mm、5mmのいずれの箇所においても、ビーズは、幅方向で±10μmの範囲にその中心を保っていた。
<作用等>
以上説明したように、本実施形態では、狭窄孔1は、搬送流体Fが流通する流路2の内部に設けられていない。従って、搬送流体Fが流路2を流通する流量が狭窄孔1の径の制限を受けない。これにより、細胞Cが流路2内で沈降し、流路2内で停留してしまうことを防止することができる。
ここで、比較例として、流路2の内部に狭窄路を形成した場合を想定する。この場合、流路2内での細胞Cの沈降を防止するために、高速液クロマトグラフィー等を使用する方法も考えられる。この場合、試料流体Sと搬送流体Fとの間に異種流体(例えば、空気)が挟み込まれて、異種流体界面(空気の場合、気液界面)が形成され、搬送流体Fにより試料流体S(細胞C)が搬送される。
しかしながら、この場合、試料流体Sと搬送流体Fとの間に異種流体界面を形成するために、液送シーケンスが複雑化し、誘電サイトメトリ装置100の構造が複雑化するといった問題がある。また、異種流体として空気を用いた場合、流路2内に気泡が停留する可能性があり、この気泡が狭窄路に存在すると、細胞Cの複素誘電率が正確に測定することができないといった問題も生じる。
一方、本実施形態では、搬送流体Fが流通する流路2に連通する狭窄孔1を形成することで、流路2内での細胞Cの沈降を防止することができる。このように、本実施形態では、単純な構造であるため、液送シーケンスが複雑化することもなく、コストも削減される。また、気泡が狭窄孔1に存在するようなこともないので、細胞Cの複素誘電率を正確に測定することができる。
本実施形態では、搬送流体Fの圧力(FP1、FP2)を調整することで、試料流入流量Qsを任意に調整することができる。これにより、狭窄孔1を1つずつ通過する細胞Cの速度を任意に調整することができるので、狭窄孔1において、多周波数点で細胞Cの複素誘電率を測定するために、適切な速度で細胞Cを通過させることができる。
本実施形態では、搬送流体Fの圧力(FP1、FP2)を調整することで、主流流量Qを任意に調整することができる。これにより、流路2内へ流れ込んだ細胞Cの流速を任意に調整することができる。これにより、分取部5による分取速度を任意に調整することができる。
本実施形態では、搬送流体Fの圧力(FP1、FP2)を調整し、主流流量Q及び試料流入流量Qsを調整することで、狭窄孔1を介して流路2内に進入した細胞Cのバラつきを抑制することができる。また、本実施形態では、主流流量Q及び試料流入流量Qsを調整することにより、細胞Cの分取速度と、細胞Cの整列度とを個別に最適化可能である。
C…細胞
F…搬送流体
S…試料流体
Q…主流流量
Qs…試料流入流量
1…狭窄孔
2…流路
3…投入部
4…測定部
5…分取部
11…マイクロ流路チップ
100…誘電サイトメトリ装置
110…圧力調整部

Claims (8)

  1. 細胞を搬送する搬送流体を流通させる流路と、
    前記流路に連通し、単一の細胞が通過可能であり、前記細胞を含む試料流体を前記流路に流入させる狭窄孔と
    を具備する試料流入装置。
  2. 請求項1に記載の試料流入装置であって、
    前記搬送流体を流通させるための圧力を調整することで、前記搬送流体が前記流路を流通する流量と、前記試料流体が前記狭窄孔を介して前記流路に流入される流量とを調整する圧力調整部をさらに具備する
    試料流入装置。
  3. 請求項2に記載の試料流入装置であって、
    前記狭窄孔の位置に交流電場を形成する第1の電極対を有し、前記第1の電極対に交流電圧を印加して前記交流電場を形成することにより、前記狭窄孔を通過する前記細胞ごとに、前記細胞に依存する複素誘電率を測定する測定部をさらに具備する
    分析装置。
  4. 請求項3に記載の試料流入装置であって、
    前記流路は、前記狭窄孔の位置より下流側に設けられ、前記細胞を分取するための分岐路を有し、
    前記試料流入装置は、前記狭窄孔の位置より下流側であって前記分岐路より上流側の前記流路に電場を形成する第2の電極対を有し、前記測定部により測定された前記複素誘電率に基づいて、前記第2の電極対に電圧を印加して前記電場を形成することにより、前記分岐路を利用して前記細胞を分取する分取部をさらに具備する
    試料流入装置。
  5. 請求項1に記載の試料流入装置であって、
    前記狭窄孔を介して前記流路に流入する前の、前記狭窄孔上の前記試料流体を攪拌する攪拌部をさらに具備する
    試料流入装置。
  6. 請求項5に記載の試料流入装置であって、
    前記攪拌部は、前記試料を攪拌する気流を発生させる
    試料流入装置。
  7. 基板と、
    前記基板に設けられ、細胞を搬送する搬送流体を流通させる流路と、
    前記基板に設けられ、前記流路に連通し、単一の細胞が通過可能であり、前記細胞を含む試料流体を前記流路に流入させる狭窄孔と
    を具備する試料流入チップ。
  8. 細胞を搬送する搬送流体を流路に流通させ、
    前記流路に連通する、単一の細胞が通過可能な狭窄孔を介して、前記細胞を含む試料流体を前記流路に流入させる
    試料流入方法。
JP2010243270A 2010-10-29 2010-10-29 試料流入装置、試料流入チップ及び試料流入方法 Expired - Fee Related JP5659698B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010243270A JP5659698B2 (ja) 2010-10-29 2010-10-29 試料流入装置、試料流入チップ及び試料流入方法
US13/277,699 US9211548B2 (en) 2010-10-29 2011-10-20 Apparatus for sample introduction, chip for sample introduction, and method for sample introduction
CN2011103238427A CN102564921A (zh) 2010-10-29 2011-10-21 样本引入装置、样本引入基片和样本引入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243270A JP5659698B2 (ja) 2010-10-29 2010-10-29 試料流入装置、試料流入チップ及び試料流入方法

Publications (2)

Publication Number Publication Date
JP2012098036A true JP2012098036A (ja) 2012-05-24
JP5659698B2 JP5659698B2 (ja) 2015-01-28

Family

ID=45995445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243270A Expired - Fee Related JP5659698B2 (ja) 2010-10-29 2010-10-29 試料流入装置、試料流入チップ及び試料流入方法

Country Status (3)

Country Link
US (1) US9211548B2 (ja)
JP (1) JP5659698B2 (ja)
CN (1) CN102564921A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250229A (ja) * 2012-06-04 2013-12-12 Sony Corp 微小粒子分取用マイクロチップ、該微小粒子分取用マイクロチップが搭載された微小粒子分取装置、並びに微小粒子の分取方法
JP2014039534A (ja) * 2012-07-24 2014-03-06 Sony Corp 微小粒子分取方法
JP2014178119A (ja) * 2013-03-13 2014-09-25 Sony Corp 分取装置及び分取方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242335A (ja) * 1987-03-07 1988-10-07 ヘキスト・アクチエンゲゼルシヤフト 徴量滴定板における容器の温度制御と容器内容物の混合のための装置
JPH02131569A (ja) * 1988-11-11 1990-05-21 Hitachi Ltd マイクロチャンバープレート、これを利用した細胞検出方法、処理方法および装置ならびに細胞
JPH0639266A (ja) * 1992-07-04 1994-02-15 Kyowa Medex Co Ltd 液体攪拌方法及びその装置
JP2001517789A (ja) * 1997-09-19 2001-10-09 アクレイラ バイオサイエンシズ,インコーポレイティド 液体移送装置および液体移送方法
JP2002233792A (ja) * 2000-12-08 2002-08-20 Minolta Co Ltd 粒子分離機構
JP2002333442A (ja) * 2001-05-09 2002-11-22 Hiromi Nanba 血漿成分分離装置および血漿成分分離方法
JP2003511699A (ja) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン 液体環境内にある細胞の測定を行なう方法および装置
JP2003302330A (ja) * 2002-04-12 2003-10-24 Asahi Kasei Corp 平板状フローセル装置
JP2005024409A (ja) * 2003-07-02 2005-01-27 National Traffic Safety & Environment Laboratory 排気ガス中の微粒子計測装置および計測方法
JP2005049273A (ja) * 2003-07-30 2005-02-24 Aisin Seiki Co Ltd マイクロ流体制御システム
JP2005524831A (ja) * 2002-04-17 2005-08-18 サイトノーム インコーポレーテッド 粒子を選別する方法および装置
US20070095669A1 (en) * 2005-10-27 2007-05-03 Applera Corporation Devices and Methods for Optoelectronic Manipulation of Small Particles
WO2009069417A1 (ja) * 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. 血液流動性計測システム及び血液流動性計測方法
JP2010025911A (ja) * 2008-06-16 2010-02-04 Sony Corp マイクロチップ及びマイクロチップにおける送流方法
JP2010181399A (ja) * 2009-01-09 2010-08-19 Sony Corp 流路デバイス、複素誘電率測定装置及び誘電サイトメトリー装置
WO2010115167A2 (en) * 2009-04-03 2010-10-07 The Regents Of The University Of California Methods and devices for sorting cells and other biological particulates

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682649B1 (en) * 1999-10-01 2004-01-27 Sophion Bioscience A/S Substrate and a method for determining and/or monitoring electrophysiological properties of ion channels
US6932893B2 (en) * 2000-10-02 2005-08-23 Sophion Bioscience A/S System for electrophysiological measurements
US20020115163A1 (en) * 2000-11-13 2002-08-22 Genoptix Methods for sorting particles by size and elasticity
US7250775B1 (en) * 2003-11-12 2007-07-31 The Regents Of The University Of California Microfluidic devices and methods based on measurements of electrical admittance
US20070020146A1 (en) * 2005-06-29 2007-01-25 Young James E Nanopore structure and method using an insulating substrate
US7964078B2 (en) * 2005-11-07 2011-06-21 The Regents Of The University Of California Microfluidic device for cell and particle separation
CN100552422C (zh) * 2006-12-30 2009-10-21 清华大学 一种对单一颗粒物进行多功能检测的微流控芯片装置
JP4661942B2 (ja) * 2008-05-13 2011-03-30 ソニー株式会社 マイクロチップとその流路構造

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242335A (ja) * 1987-03-07 1988-10-07 ヘキスト・アクチエンゲゼルシヤフト 徴量滴定板における容器の温度制御と容器内容物の混合のための装置
JPH02131569A (ja) * 1988-11-11 1990-05-21 Hitachi Ltd マイクロチャンバープレート、これを利用した細胞検出方法、処理方法および装置ならびに細胞
JPH0639266A (ja) * 1992-07-04 1994-02-15 Kyowa Medex Co Ltd 液体攪拌方法及びその装置
JP2001517789A (ja) * 1997-09-19 2001-10-09 アクレイラ バイオサイエンシズ,インコーポレイティド 液体移送装置および液体移送方法
JP2003511699A (ja) * 1999-10-08 2003-03-25 エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン 液体環境内にある細胞の測定を行なう方法および装置
JP2002233792A (ja) * 2000-12-08 2002-08-20 Minolta Co Ltd 粒子分離機構
JP2002333442A (ja) * 2001-05-09 2002-11-22 Hiromi Nanba 血漿成分分離装置および血漿成分分離方法
JP2003302330A (ja) * 2002-04-12 2003-10-24 Asahi Kasei Corp 平板状フローセル装置
JP2005524831A (ja) * 2002-04-17 2005-08-18 サイトノーム インコーポレーテッド 粒子を選別する方法および装置
JP2005024409A (ja) * 2003-07-02 2005-01-27 National Traffic Safety & Environment Laboratory 排気ガス中の微粒子計測装置および計測方法
JP2005049273A (ja) * 2003-07-30 2005-02-24 Aisin Seiki Co Ltd マイクロ流体制御システム
US20070095669A1 (en) * 2005-10-27 2007-05-03 Applera Corporation Devices and Methods for Optoelectronic Manipulation of Small Particles
WO2009069417A1 (ja) * 2007-11-28 2009-06-04 Konica Minolta Opto, Inc. 血液流動性計測システム及び血液流動性計測方法
JP2010025911A (ja) * 2008-06-16 2010-02-04 Sony Corp マイクロチップ及びマイクロチップにおける送流方法
JP2010181399A (ja) * 2009-01-09 2010-08-19 Sony Corp 流路デバイス、複素誘電率測定装置及び誘電サイトメトリー装置
WO2010115167A2 (en) * 2009-04-03 2010-10-07 The Regents Of The University Of California Methods and devices for sorting cells and other biological particulates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250229A (ja) * 2012-06-04 2013-12-12 Sony Corp 微小粒子分取用マイクロチップ、該微小粒子分取用マイクロチップが搭載された微小粒子分取装置、並びに微小粒子の分取方法
JP2014039534A (ja) * 2012-07-24 2014-03-06 Sony Corp 微小粒子分取方法
JP2014178119A (ja) * 2013-03-13 2014-09-25 Sony Corp 分取装置及び分取方法

Also Published As

Publication number Publication date
CN102564921A (zh) 2012-07-11
US9211548B2 (en) 2015-12-15
US20120103814A1 (en) 2012-05-03
JP5659698B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
JP7354368B2 (ja) マイクロ流体チャネルを使用してマイクロ粒子のバルク選別を行う方法及び装置
JP3830904B2 (ja) ミクロ流体装置と流体内の粒子を選別する方法
US20210069698A1 (en) Microfluidic reporter cell assay methods and kits thereof
JP5018879B2 (ja) 成分分離デバイス
KR101099290B1 (ko) 면역자기 분리법을 이용하여 생물학적 입자를 분리하는미세유체 시스템
JP2008122396A (ja) 粒子を選別する方法および装置
Schoendube et al. Single-cell printing based on impedance detection
Reale et al. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape
US20050072677A1 (en) Dielectric particle focusing
JPS61137062A (ja) 微粒子を分類する方法及びその装置
JP2019509016A (ja) マイクロ流体デバイスを用いたマルチステージ標的細胞富化
CN108458963B (zh) 一种基于纳米-微米通道组合进行颗粒和细胞顺序分离和计数的微流控芯片装置和方法
JP2012098075A (ja) 細胞分取装置、細胞分取チップ及び細胞分取方法
JP5659698B2 (ja) 試料流入装置、試料流入チップ及び試料流入方法
US20170122861A1 (en) Method and apparatus for particle sorting
JP2006242849A (ja) 試料液流の位置制御方法および装置
JP2006263693A (ja) 微粒子の連続分離機構及び装置
Bao et al. Microfluidic electroporation for selective release of intracellular molecules at the single‐cell level
JP2005205387A (ja) 連続粒子分級方法
JP2012095550A (ja) 細胞分取装置、細胞分取チップ及び細胞分取方法
JP2017129545A (ja) フローセル、粒子分析装置および粒子分析方法
JP2008116428A (ja) 粒子位置の制御方法および構造
US20210069713A1 (en) Systems and Methods for Electronic Surface Antigen Expression Analysis Using Magnetophoresis
US20130330828A1 (en) Miniaturized magnetic flow cytometry
JP2006226753A (ja) 成分分離機構と成分分離方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees