JP2011181193A - Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide - Google Patents

Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide Download PDF

Info

Publication number
JP2011181193A
JP2011181193A JP2010041376A JP2010041376A JP2011181193A JP 2011181193 A JP2011181193 A JP 2011181193A JP 2010041376 A JP2010041376 A JP 2010041376A JP 2010041376 A JP2010041376 A JP 2010041376A JP 2011181193 A JP2011181193 A JP 2011181193A
Authority
JP
Japan
Prior art keywords
nickel
electrolyte secondary
active material
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010041376A
Other languages
Japanese (ja)
Other versions
JP5464348B2 (en
Inventor
Kazuomi Ryoshi
一臣 漁師
Toshiyuki Osako
敏行 大迫
Ryuichi Kuzuo
竜一 葛尾
Katsuya Kase
克也 加瀬
Ryosuke Okamoto
遼介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010041376A priority Critical patent/JP5464348B2/en
Publication of JP2011181193A publication Critical patent/JP2011181193A/en
Application granted granted Critical
Publication of JP5464348B2 publication Critical patent/JP5464348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a nonaueous electrolyte secondary battery positive electrode active material with the charging density improved to attain further improved high energy density of the battery, and furthermore, to provide a high-density and substantially spherical nickel-cobalt composite hydroxide having a large particle size suitable for use as the nonaqueous electrolyte secondary battery positive electrode active material, and to provide an industrial manufacturing method thereof. <P>SOLUTION: The substantially spherical nickel-cobalt compound hydroxide having an average particle size of 15-50 μm is obtained by the manufacturing method including a reaction process of obtaining nickel-cobalt hydroxide primary reaction particles in a reaction tank, and a growth process of obtaining nickel-cobalt composite hydroxide particles by further reacting the primary reaction particles in a growth tank. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水系電解質二次電池正極活物質として好適に用いられるリチウムニッケル−コバルト複合酸化物に関するものであり、特に、該リチウムニッケル−コバルト複合酸化物の前駆体として用いられるニッケル−コバルト複合水酸化物およびその製造方法、ならびに該ニッケル−コバルト複合水酸化物を用いた非水系電解質二次電池正極活物質の製造方法に関する。   The present invention relates to a lithium nickel-cobalt composite oxide suitably used as a positive electrode active material for a non-aqueous electrolyte secondary battery, and in particular, a nickel-cobalt composite used as a precursor of the lithium nickel-cobalt composite oxide. The present invention relates to a hydroxide and a method for producing the same, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery using the nickel-cobalt composite hydroxide.

近年、電子技術の進歩に伴い、電子機器の小型化、軽量化が急速に進んでいる。特に、最近の携帯電話やノートパソコンなどのポータブル電子機器の普及と高機能化により、これらに使用されるポータブル用電源として、高いエネルギー密度を有し、小型で、かつ軽量な電池の開発が強く望まれている。   In recent years, with the advancement of electronic technology, electronic devices are rapidly becoming smaller and lighter. In particular, as portable electronic devices such as mobile phones and notebook PCs have become popular and highly functional, the development of small, lightweight batteries with high energy density has become strong as portable power sources used in these devices. It is desired.

非水系電解質二次電池は、小型で高いエネルギーを有することから、ポータブル電子機器の電源としてすでに利用されている。また、かかる用途に限られず、リチウムイオン二次電池について、ハイブリッド自動車や電気自動車などの大型電源としての利用を目指した研究開発も進められている。   Non-aqueous electrolyte secondary batteries are already used as power sources for portable electronic devices because they are small and have high energy. In addition to such applications, research and development aimed at using lithium-ion secondary batteries as large-scale power sources such as hybrid vehicles and electric vehicles are being promoted.

非水系電解質二次電池であるリチウムイオン二次電池の正極活物質には、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)が使用されているが、リチウムコバルト複合酸化物の原料には、希産で高価なコバルト化合物が用いられるため、正極活物質のコストアップの原因となっている。正極活物質のコストを下げ、より安価な非水系電解質二次電池の製造を実現することは、現在普及しているポータブル電子機器の低コスト化や将来の大型電源への非水系電解質二次電池の搭載を可能とすることから、工業的に大きな意義を有しているといえる。 Lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, is used as the positive electrode active material of the lithium ion secondary battery that is a non-aqueous electrolyte secondary battery. Is a rare and expensive cobalt compound, which increases the cost of the positive electrode active material. Lowering the cost of the positive electrode active material and realizing the manufacture of cheaper non-aqueous electrolyte secondary batteries can be achieved by reducing the cost of portable electronic devices that are currently popular and non-aqueous electrolyte secondary batteries for future large-scale power supplies Therefore, it can be said that it has significant industrial significance.

非水系電解質二次電池用の正極活物質として適用できる他の正極材料として、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。 Other positive electrode materials applicable as a positive electrode active material for non-aqueous electrolyte secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide using nickel. Product (LiNiO 2 ).

リチウムマンガン複合酸化物は原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であると言えるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まる非水系電解質二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。また、45℃以上では、自己放電が激しく、充放電寿命も低下するという欠点も有している。   Lithium-manganese composite oxides are inexpensive materials and have excellent thermal stability, especially safety in terms of ignition. Since it is only about half of the complex oxide, it has a drawback that it is difficult to meet the demand for higher capacity of non-aqueous electrolyte secondary batteries that are increasing year by year. Moreover, at 45 degreeC or more, it has the fault that self-discharge is intense and a charge / discharge lifetime also falls.

一方、リチウムニッケル複合酸化物は、現在主流のリチウムコバルト複合酸化物と比べて、高容量であって、原料であるニッケルがコバルトと比べて安価で、かつ、安定して入手可能であるといった利点を有していることから、次世代の正極材料として期待され、リチウムニッケル複合酸化物について、活発に研究および開発が続けられている。   On the other hand, the lithium-nickel composite oxide has an advantage that it has a higher capacity than the current mainstream lithium-cobalt composite oxide, and the nickel as a raw material is cheaper and more stable than cobalt. Therefore, it is expected as a next-generation positive electrode material, and research and development of lithium-nickel composite oxides are being continued actively.

しかしながら、リチウムニッケル複合酸化物は、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いて非水系電解質二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣
るという問題点がある。リチウムニッケル複合酸化物は、その結晶構造がリチウムを脱離するに伴って六方晶から単斜晶、さらに再び六方晶へと変化していくが、この結晶構造の変化が可逆性に乏しく、充放電反応を繰り返すうちにリチウムを挿入・脱離できるサイトが徐々に失われてしまうことが原因と考えられている。
However, the lithium nickel composite oxide does not replace nickel with other elements, and when a non-aqueous electrolyte secondary battery is manufactured using a lithium nickel composite oxide that is purely composed of nickel as a positive electrode active material, There exists a problem that cycling characteristics are inferior compared with lithium cobalt complex oxide. Lithium-nickel composite oxide changes its crystal structure from hexagonal to monoclinic and then again hexagonal as lithium is desorbed. This is thought to be due to the gradual loss of sites where lithium can be inserted and removed during repeated discharge reactions.

これを解決する方法として、ニッケルの一部をコバルトで置換することが提案されている(例えば特許文献1〜3)。コバルトによる置換でリチウムの脱離に伴う結晶構造の相転移が抑制され、コバルト置換量が大きくなるほど結晶相がより安定化し、サイクル特性が改善される。   As a method for solving this, it has been proposed to replace a part of nickel with cobalt (for example, Patent Documents 1 to 3). Substitution with cobalt suppresses the phase transition of the crystal structure that accompanies the elimination of lithium, and as the amount of cobalt substitution increases, the crystal phase becomes more stable and the cycle characteristics are improved.

このように、コバルトの添加は、結晶構造内のニッケルを置換することによる結晶相の安定化にその目的があるから、コバルトとニッケルは原子レベルで均一に混合されている必要がある。これを実現する正極活物質の原料としてニッケル源とコバルト源とを共沈で作成した水酸化物を用いる方法が有効である。例えば、特許文献4にはニッケルコバルト共沈水酸化物の粒子形状、粒子径、比表面積、タップ密度、細孔の空間体積、細孔の占有率を制御することにより、サイクル劣化を防止すると共に、良好な充放電特性を有する電池を得ることができると報告されており、実際このような方法で一定の特性を得ることができている。   Thus, since the addition of cobalt has the purpose of stabilizing the crystal phase by substituting nickel in the crystal structure, cobalt and nickel must be uniformly mixed at the atomic level. A method using a hydroxide prepared by coprecipitation of a nickel source and a cobalt source is effective as a raw material of the positive electrode active material for realizing this. For example, in Patent Document 4, by controlling the particle shape, particle diameter, specific surface area, tap density, pore volume, pore occupancy of nickel cobalt coprecipitated hydroxide, cycle deterioration is prevented, It has been reported that a battery having good charge / discharge characteristics can be obtained, and in fact, certain characteristics can be obtained by such a method.

しかしながら、近年はポータブル機器の付加価値が大きくなるにしたがって電池に要求される性能は高まる一方であり、限られた体積の中に正極活物質をできるだけ多く詰め込み、より高いエネルギー密度を持つ電池が要求されるようになってきた。   However, in recent years, the performance required of batteries has been increasing as the added value of portable devices increases, and batteries with higher energy density are required by packing as much positive electrode active material as possible in a limited volume. It has come to be.

電池の電極として成型した際に充填密度を上げるには、正極活物質の粒径を大きくすることが一つの有効な方法である。リチウムコバルト複合酸化物のように高い焼成温度で合成することによって一つ一つの粒子(一次粒子)を大きくすることができるものは充填密度を上げやすいが、リチウムニッケル複合酸化物は、焼成温度が850℃以下と低いために一次粒子を大きくできず、充填密度を上げにくい。   Increasing the particle size of the positive electrode active material is one effective method for increasing the packing density when molded as a battery electrode. Although it is easy to increase the packing density when the particles (primary particles) can be enlarged by synthesizing at a high firing temperature, such as lithium cobalt composite oxide, the firing temperature of lithium nickel composite oxide is high. Since it is as low as 850 degrees C or less, a primary particle cannot be enlarged and it is hard to raise a packing density.

そこで、細かい一次粒子が多数集合して略球状の二次粒子を形成した活物質とすることで充填密度を維持することが行われる(例えば特許文献5)。一方で、リチウムニッケル複合酸化物の粉体特性は、基本的に原料に用いるニッケル化合物の粉体特性に大きく影響される。したがって、原料のニッケル化合物の粉体特性を制御することが、リチウムニッケル複合酸化物の充填密度の向上に重要である。   Therefore, the packing density is maintained by using an active material in which a large number of fine primary particles gather to form substantially spherical secondary particles (for example, Patent Document 5). On the other hand, the powder characteristics of the lithium nickel composite oxide are largely influenced by the powder characteristics of the nickel compound used as a raw material. Therefore, controlling the powder characteristics of the raw material nickel compound is important for improving the packing density of the lithium nickel composite oxide.

しかしながら、サイクル特性の改善を目的として用いられている前述したようなニッケル源とコバルト源とを共沈させて水酸化物を合成するこれまでの方法では、平均粒径で15μm以上に大きくすることが難しく、更なる高充填性を実現するのが困難であった。   However, in the conventional methods of synthesizing hydroxide by coprecipitation of the nickel source and the cobalt source used for the purpose of improving the cycle characteristics, the average particle size should be increased to 15 μm or more. However, it was difficult to realize further high filling properties.

特開昭63−114063号公報JP-A-63-114063 特開昭63−211565号公報JP 63-2111565 A 特開平8−213015号公報Japanese Patent Laid-Open No. 8-213015 特開平9−270258号公報JP-A-9-270258 特開2000−30693号公報JP 2000-30893 A

本発明は、このような問題点に着目してなされたものであり、充填密度を向上させて電池の更なる高エネルギー密度化を図ることのできる、非水系電解質二次電池正極活物質の
製造方法を提供することを目的とするものである。さらに、前記非水系電解質二次電池正極活物質の前駆体として好適な粒径が大きく高密度で略球状のニッケル-コバルト複合水酸化物と量産性を犠牲にすることのない工業的なその製造方法を提供することを目的とするものである。
The present invention has been made paying attention to such problems, and can produce a positive electrode active material for a non-aqueous electrolyte secondary battery that can improve the packing density and further increase the energy density of the battery. It is intended to provide a method. Further, the nickel-cobalt composite hydroxide having a large particle size, a high density and a substantially spherical shape suitable as a precursor of the non-aqueous electrolyte secondary battery positive electrode active material, and its industrial production without sacrificing mass productivity It is intended to provide a method.

本発明者は、上記目的を達成するために、非水系電解質二次電池正極活物質の前駆体として用いられるニッケル−コバルト複合水酸化物について鋭意研究を重ねた結果、ニッケル−コバルト複合水酸化物を生成する工程を、ニッケル−コバルト水酸化物一次反応粒子を得る反応工程と該一次反応粒子を成長させてニッケル−コバルト複合水酸化物粒子を得る成長工程に分離するとともに、反応工程と成長工程の晶析条件を特定範囲に制御することにより、粒径が大きく高密度で略球状のニッケル−コバルト複合水酸化物が工業的に効率よく得られることを見出した。   In order to achieve the above object, the present inventor has conducted extensive research on nickel-cobalt composite hydroxide used as a precursor of a non-aqueous electrolyte secondary battery positive electrode active material. Are separated into a reaction step of obtaining nickel-cobalt hydroxide primary reaction particles and a growth step of growing the primary reaction particles to obtain nickel-cobalt composite hydroxide particles, and a reaction step and a growth step. It was found that by controlling the crystallization conditions in the above specific range, a nickel-cobalt composite hydroxide having a large particle size, a high density and a substantially spherical shape can be obtained industrially efficiently.

さらに、得られたニッケル−コバルト複合水酸化物粒子を原料として用いたところ、充填密度が高く、電池としてきわめて高容量が期待できる非水系電解質二次電池正極活物質が得られることを見出し、本発明を完成した。   Further, when the obtained nickel-cobalt composite hydroxide particles were used as raw materials, it was found that a positive active material for a non-aqueous electrolyte secondary battery that can be expected to have a high packing density and a very high capacity as a battery was obtained. Completed the invention.

すなわち、本発明の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法は、一般式:Ni1−x−yCo(OH)(0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表されるニッケル−コバルト複合水酸化物の製造方法であって、ニッケル塩およびコバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、反応槽に供給して反応させ、ニッケル−コバルト水酸化物一次反応粒子を得る反応工程、成長槽中の該一次反応粒子を含む水溶液に、更に前記混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを供給して反応させることにより、ニッケル−コバルト複合水酸化物粒子を得る成長工程を含み、上記反応工程および成長工程を下記条件(A)および(B)を満たすように制御することを特徴とする。
(A)前記反応工程のpHを11.0〜13.0、前記成長工程のpHを10.5〜12.5の範囲に保持するとともに、成長工程のpHを反応工程以下に制御する。
(B)前記反応工程の温度を20〜70℃、前記成長工程の温度を30〜70℃、反応工程および成長工程のアンモニウムイオン濃度を5〜20g/Lの範囲に保持するとともに、成長工程の温度およびアンモニウムイオン濃度を反応工程以上に制御する。
上記反応工程および成長工程においては、前記混合水溶液と、アンモニウムイオン供給体を含む水溶液とを定量的に連続供給するとともに、苛性アルカリ水溶液の添加量を調整してpHおよびアンモニウムイオン濃度を保持することが好ましく、前記反応工程における反応槽をオーバーフローさせることにより、前記ニッケル−コバルト水酸化物一次反応粒子を前記成長工程の成長槽に連続して供給することが好ましい。
That is, the non-aqueous electrolyte secondary battery cathode active material for the nickel of the invention - method for manufacturing cobalt composite hydroxide is represented by the general formula: Ni 1-x-y Co x M y (OH) 2 (0.05 ≦ x ≦ 0.95, 0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is one or more selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W A mixed aqueous solution containing a nickel salt and a cobalt salt, an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution in a reaction vessel. A reaction step of supplying and reacting to obtain primary reaction particles of nickel-cobalt hydroxide; an aqueous solution containing the primary reaction particles in the growth tank; and the mixed aqueous solution, an aqueous solution containing an ammonium ion supplier, and a caustic alkali Water soluble And a growth step for obtaining nickel-cobalt composite hydroxide particles, and the reaction step and the growth step are controlled so as to satisfy the following conditions (A) and (B): And
(A) The pH of the reaction step is maintained in the range of 11.0 to 13.0, the pH of the growth step is in the range of 10.5 to 12.5, and the pH of the growth step is controlled below the reaction step.
(B) The temperature of the reaction step is 20 to 70 ° C., the temperature of the growth step is 30 to 70 ° C., and the ammonium ion concentration in the reaction step and the growth step is kept in the range of 5 to 20 g / L. Control the temperature and ammonium ion concentration more than the reaction step.
In the reaction step and the growth step, the mixed aqueous solution and the aqueous solution containing the ammonium ion supplier are quantitatively continuously supplied, and the pH and ammonium ion concentration are maintained by adjusting the addition amount of the caustic aqueous solution. It is preferable to continuously supply the nickel-cobalt hydroxide primary reaction particles to the growth tank of the growth step by overflowing the reaction vessel in the reaction step.

また、前記成長工程で得られたニッケル−コバルト複合水酸化物粒子の表面をM水酸化物で被覆することが好ましい。   Moreover, it is preferable to coat the surfaces of the nickel-cobalt composite hydroxide particles obtained in the growth step with M hydroxide.

さらに、前記ニッケル塩およびコバルト塩は、硫酸塩、硝酸塩または塩化物の少なくとも1種であることが好ましく、前記アンモニウムイオン供給体は、アンモニア水、硫酸アンモニウムまたは塩化アンモニウムの少なくとも1種であることが好ましい。
本発明の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物は、上記製造方法によって得られたものであって、一般式:Ni1−x−yCo(OH)(0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表
され、略球状で平均粒径15〜50μmであることを特徴とする。
Furthermore, the nickel salt and cobalt salt are preferably at least one of sulfate, nitrate, or chloride, and the ammonium ion supplier is preferably at least one of aqueous ammonia, ammonium sulfate, or ammonium chloride. .
Non-aqueous electrolyte secondary battery cathode active material for the nickel of the present invention - cobalt composite hydroxide, there is obtained by the above production method, the general formula: Ni 1-x-y Co x M y (OH) 2 (0.05 ≦ x ≦ 0.95, 0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, W And one or more elements selected from the group consisting of: substantially spherical and having an average particle size of 15 to 50 μm.

また、本発明が提供する非水系電解質二次電池正極活物質の製造方法は、上記非水系電解質二次電池用ニッケル−コバルト複合水酸化物とリチウム化合物とを、混合して焼成することを特徴とするものであり、前記リチウム化合物を前記ニッケル−コバルト複合水酸化物中のリチウム以外の金属元素に対して0.95〜1.15の比で混合することが好ましい。   The present invention also provides a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the nickel-cobalt composite hydroxide for a non-aqueous electrolyte secondary battery and a lithium compound are mixed and fired. The lithium compound is preferably mixed in a ratio of 0.95 to 1.15 with respect to a metal element other than lithium in the nickel-cobalt composite hydroxide.

さらに、上記非水系電解質二次電池正極活物質の製造方法は、得られる非水系電解質二次電池正極活物質が、一般式:LiNi1−x−yCo(0.95≦t≦1.15、0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表される層状構造を有する六方晶系リチウム含有複合酸化物により構成され、略球状で平均粒径15〜50μmであるリチウムニッケル-コバルト複合酸化物からなることが好ましい。 Furthermore, in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, the positive electrode active material for the obtained non-aqueous electrolyte secondary battery has a general formula: Li t Ni 1-xy Co x M y O 2 (0. 95 ≦ t ≦ 1.15, 0.05 ≦ x ≦ 0.95, 0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is Mg, Al, Ca, Ti, V, Cr, Mn, Zr Lithium nickel having a spherical shape and an average particle diameter of 15 to 50 μm, comprising a hexagonal lithium-containing composite oxide having a layered structure represented by Nb, Mo, or W) It is preferable to consist of cobalt complex oxide.

本発明によれば、粒径が大きく高密度で略球状の非水系電解質二次電池正極活物質用ニッケル-コバルト複合水酸化物を用いて、充填密度が高く、電池の更なる高エネルギー密度化を図ることのできる非水系電解質二次電池正極活物質を得ることができる。また、その製造方法は、量産性を犠牲にすることのないものであり、工業的価値が極めて大きい。   According to the present invention, the nickel-cobalt composite hydroxide for the positive electrode active material of the non-aqueous electrolyte secondary battery having a large particle size, high density, and substantially spherical shape is used, the packing density is high, and the battery is further increased in energy density. Thus, a positive electrode active material for a non-aqueous electrolyte secondary battery capable of achieving the above can be obtained. Moreover, the manufacturing method does not sacrifice mass productivity and has an extremely high industrial value.

実施例1で得られた非水系電解質二次電池正極活物質用ニッケル-コバルト複合水酸化物の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a nickel-cobalt composite hydroxide for a non-aqueous electrolyte secondary battery positive electrode active material obtained in Example 1. FIG. 実施例2で得られた非水系電解質二次電池正極活物質用ニッケル-コバルト複合水酸化物の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a nickel-cobalt composite hydroxide for a non-aqueous electrolyte secondary battery positive electrode active material obtained in Example 2. FIG.

[非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物]
本発明の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物(以下、単にニッケル−コバルト複合水酸化物と記載することがある。)は、上記ニッケル−コバルト複合水酸化物の製造方法によって得られたものであって、一般式:Ni1−x−yCo(OH)(0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、略球状で平均粒径15〜50μmであることを特徴とする。
[Nickel-cobalt composite hydroxide for positive electrode active material of non-aqueous electrolyte secondary battery]
The nickel-cobalt composite hydroxide for the non-aqueous electrolyte secondary battery positive electrode active material of the present invention (hereinafter sometimes simply referred to as nickel-cobalt composite hydroxide) is the above-mentioned nickel-cobalt composite hydroxide. be those obtained by the manufacturing method, the general formula: Ni 1-x-y Co x M y (OH) 2 (0.05 ≦ x ≦ 0.95,0 ≦ y ≦ 0.15, x + y ≦ 0 .95, M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W) and is substantially spherical and has an average particle diameter of 15 to 50 μm. It is characterized by being.

上記一般式においてニッケルとコバルトの割合を示すxは0.05〜0.95であり、0.1〜0.9が好ましく、0.1〜0.3がより好ましい。すなわち、xが0.95を超えるとCoの割合が多いため原料コストが増加する。一方、xが0.05未満であると、本発明のニッケル−コバルト複合水酸化物を用いた正極活物質の熱安定性や充放電サイクル特性が悪化する。   In the above general formula, x indicating the ratio of nickel and cobalt is 0.05 to 0.95, preferably 0.1 to 0.9, and more preferably 0.1 to 0.3. That is, when x exceeds 0.95, the raw material cost increases because the ratio of Co is large. On the other hand, when x is less than 0.05, the thermal stability and charge / discharge cycle characteristics of the positive electrode active material using the nickel-cobalt composite hydroxide of the present invention deteriorate.

上記ニッケル−コバルト複合水酸化物においては、熱安定性と出力特性をさらに改善するために、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の添加元素であるMを、上記一般式におけるyとして0.15以下添加することができる。yが0.15を超えると、ニッケルと置換されるM元素の量が多くなり過ぎ、得られる正極活物質の電池容量が低下する。   The nickel-cobalt composite hydroxide is selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W in order to further improve the thermal stability and output characteristics. M which is an additional element of seeds or more can be added as 0.15 or less as y in the above general formula. When y exceeds 0.15, the amount of the M element substituted for nickel becomes excessive, and the battery capacity of the obtained positive electrode active material decreases.

本発明のニッケル−コバルト複合水酸化物は、略球状であり、その平均粒径は15〜5
0μmである。ニッケル−コバルト複合水酸化物の形骸は、非水系電解質二次電池正極活物質まで維持されるため、略球状で平均粒径15〜50μmとすることにより、本発明のニッケル−コバルト複合水酸化物を用いて得られた非水系電解質二次電池正極活物質の充填密度を高くすることができる。ここで、略球状とは、表面に微細な凹凸を有する真球状、楕円回転体形状を含むものであるが、高充填密度を達成するためには、可能な限り真球状に近似させることが好ましい。
The nickel-cobalt composite hydroxide of the present invention is substantially spherical and has an average particle size of 15-5.
0 μm. Since the nickel-cobalt composite hydroxide is maintained up to the positive electrode active material of the non-aqueous electrolyte secondary battery, the nickel-cobalt composite hydroxide of the present invention is formed by making it approximately spherical and having an average particle size of 15 to 50 μm. The packing density of the positive electrode active material of the nonaqueous electrolyte secondary battery obtained by using can be increased. Here, the term “substantially spherical” includes a true spherical shape having a fine unevenness on the surface, and an elliptical rotating body shape. However, in order to achieve a high packing density, it is preferable to approximate the spherical shape as much as possible.

[非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法]
本発明のニッケル−コバルト複合水酸化物の製造方法は、上記一般式で表されるニッケル−コバルト複合水酸化物の製造方法であって、ニッケル塩およびコバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、反応槽に供給して反応させ、ニッケル−コバルト水酸化物一次反応粒子を得る反応工程、成長槽中の該一次反応粒子を含む水溶液に、更に前記混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを供給して反応させることにより、ニッケル−コバルト複合水酸化物粒子を得る成長工程を含み、上記反応工程および成長工程を下記条件(A)および(B)を満たすように制御することを特徴とする。
(A)前記反応工程のpHを11.0〜13.0、前記成長工程のpHを10.5〜12.5の範囲に保持するとともに、成長工程のpHを反応工程以下に制御する。
(B)前記反応工程の温度を20〜70℃、前記成長工程の温度を30〜70℃、反応工程および成長工程のアンモニウムイオン濃度を5〜20g/Lの範囲に保持するとともに、成長工程の温度およびアンモニウムイオン濃度を反応工程以上に制御する。
[Method for producing nickel-cobalt composite hydroxide for positive electrode active material of non-aqueous electrolyte secondary battery]
The method for producing a nickel-cobalt composite hydroxide of the present invention is a method for producing a nickel-cobalt composite hydroxide represented by the above general formula, wherein a mixed aqueous solution containing a nickel salt and a cobalt salt, and an ammonium ion supply An aqueous solution containing a body and a caustic aqueous solution are supplied to the reaction vessel and reacted to obtain a nickel-cobalt hydroxide primary reaction particle, an aqueous solution containing the primary reaction particle in the growth vessel, and A growth step of obtaining nickel-cobalt composite hydroxide particles by supplying and reacting a mixed aqueous solution, an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution, and the reaction step and the growth step are performed under the following conditions: Control is performed so as to satisfy (A) and (B).
(A) The pH of the reaction step is maintained in the range of 11.0 to 13.0, the pH of the growth step is in the range of 10.5 to 12.5, and the pH of the growth step is controlled below the reaction step.
(B) The temperature of the reaction step is 20 to 70 ° C., the temperature of the growth step is 30 to 70 ° C., and the ammonium ion concentration in the reaction step and the growth step is kept in the range of 5 to 20 g / L. Control the temperature and ammonium ion concentration more than the reaction step.

ここで、ニッケル−コバルト複合水酸化物を生成する工程を反応工程と成長工程に分離すること、反応工程と成長工程の晶析条件を特定範囲で制御することが、平均粒径15μm以上の粒子を定常的に得るために重要な意義を持つ。   Here, separating the process of producing the nickel-cobalt composite hydroxide into a reaction process and a growth process, and controlling the crystallization conditions of the reaction process and the growth process within a specific range are particles having an average particle diameter of 15 μm or more. It has an important significance for constantly obtaining.

粒径の大きな粒子を得るためには、反応系における晶析条件を新たな核生成が起こりにくい条件にして系内に滞留する粒子数を少なくし、消費される粒子当たりのモノマー量を増加させる必要がある。そのための方法のとして、ニッケル源及びコバルト源の供給速度を低下させることが考えられるが、供給速度の低下は生産性の悪化を招くため工業的に好ましくない。生産性を犠牲にしない方法としては、ニッケル及びコバルトの溶解度を上昇させることが考えられ、具体的にはpHの低下、アンモニウムイオン濃度の上昇、温度の上昇といった手段が考えられる。   In order to obtain large particles, the crystallization conditions in the reaction system are set so that new nucleation is unlikely to occur, the number of particles staying in the system is reduced, and the amount of monomer per consumed particle is increased. There is a need. As a method therefor, it is conceivable to reduce the supply rates of the nickel source and the cobalt source, but a decrease in the supply rate is unfavorable industrially because it causes a deterioration in productivity. As a method not sacrificing productivity, it is conceivable to increase the solubility of nickel and cobalt, and specifically, means such as a decrease in pH, an increase in ammonium ion concentration, and an increase in temperature are conceivable.

一般的にオーバーフロー槽を用いた場合には、生成した粒子が連続的に系外に排出されるため、反応系内における核生成を抑制することで系内の粒子数を一定とすることができる。しかし、系内の粒子数が一定値以下になると、モノマーの供給量に対して粒子の成長によるモノマー消費量が小さくなりすぎ、供給されるモノマーのほとんどが核生成に消費されることとなる。その結果、Cycling現象と言われる核の異常発生が起こり、槽内の粒子の粒径はほとんど成長しなり、粒径の大きな粒子は得られない。   In general, when an overflow tank is used, the generated particles are continuously discharged out of the system, so that the number of particles in the system can be made constant by suppressing nucleation in the reaction system. . However, when the number of particles in the system is below a certain value, the monomer consumption due to particle growth becomes too small relative to the monomer supply, and most of the monomer supplied is consumed for nucleation. As a result, a nuclear abnormality called a Cycling phenomenon occurs, the particle size of the particles in the tank almost grows, and particles with a large particle size cannot be obtained.

本発明者は、ニッケル−コバルト複合水酸化物を生成する工程を反応工程と成長工程に分離することで、粒子の生成段階である反応工程と粒子の成長段階である成長工程におけるニッケル及びコバルトの溶解度を個別に制御し、反応工程で生成した粒子を、成長工程において核生成を抑制する条件で成長させ、高い生産性で粒径の大きい粒子を得ることができることを見出した。   The present inventor separated the process of producing a nickel-cobalt composite hydroxide into a reaction process and a growth process, so that nickel and cobalt in the reaction process, which is a particle generation stage, and in the growth process, which is a grain growth stage, can be obtained. It has been found that particles having a large particle size can be obtained with high productivity by individually controlling the solubility and growing the particles produced in the reaction step under conditions that suppress nucleation in the growth step.

すなわち、上記製造方法において、反応工程と成長工程を分離するとともに、反応工程はpHを11.0〜13.0、好ましは11.5〜12.5に、成長工程はpHを10.5〜12.5、好ましくは10.5〜11.5に保持するとともに、成長工程のpHを反
応工程以下に制御する必要がある。
That is, in the above production method, the reaction step and the growth step are separated, the reaction step has a pH of 11.0 to 13.0, preferably 11.5 to 12.5, and the growth step has a pH of 10.5. It is necessary to control the pH of the growth step to be equal to or lower than that of the reaction step while maintaining it at ˜12.5, preferably 10.5 to 11.5.

反応工程のpHが11未満になると、反応工程における粒子数が少なくなり過ぎて、上記核の異常発生が起こる。反応工程のpHが12を超えると、定常的に多くの核が生成して系内の粒子数が増加するため、粒径が大きく成長しない。   When the pH of the reaction step is less than 11, the number of particles in the reaction step becomes too small, and the above-described abnormal nucleus occurs. When the pH of the reaction process exceeds 12, many nuclei are constantly generated and the number of particles in the system increases, so that the particle size does not grow greatly.

一方、成長工程のpHが10.5未満になると、ニッケル−コバルト水酸化物粒子がゲル化しやすくなり、また、ハロゲンや硫酸痕等を除去するための洗浄性が悪化する。成長工程のpHが12.5を超えると、成長工程で新たな核生成が顕著になるため粒子が大きく成長しない。   On the other hand, when the pH of the growth step is less than 10.5, the nickel-cobalt hydroxide particles are easily gelled, and the cleaning properties for removing halogen, sulfuric acid traces and the like are deteriorated. When the pH of the growth process exceeds 12.5, new nucleation becomes remarkable in the growth process, so that the particles do not grow greatly.

さらに、成長工程のpHを反応工程以下に制御することで、成長工程におけるニッケル溶解度を反応工程よりも高くすることができ、成長槽内における微粒子の発生を抑制することができる。   Furthermore, by controlling the pH of the growth step below the reaction step, the nickel solubility in the growth step can be made higher than in the reaction step, and the generation of fine particles in the growth tank can be suppressed.

また、上記各工程の温度およびアンモニウムイオン濃度を制御することも、ニッケル及びコバルトの溶解度を制御する上で重要である。すなわち、前記反応工程の温度を20〜70℃、前記成長工程の温度を30〜70℃、反応工程および成長工程のアンモニウムイオン濃度を5〜20g/Lの範囲に保持するとともに、成長工程の温度およびアンモニウムイオン濃度を反応工程以上に制御する必要がある。   In addition, controlling the temperature and ammonium ion concentration in each of the above steps is also important in controlling the solubility of nickel and cobalt. That is, the temperature of the reaction step is 20 to 70 ° C., the temperature of the growth step is 30 to 70 ° C., and the ammonium ion concentration in the reaction step and the growth step is maintained in the range of 5 to 20 g / L. It is necessary to control the ammonium ion concentration more than the reaction step.

反応工程の温度は20〜70℃、好ましくは40〜70℃とする。温度が20℃未満の場合、ニッケルの溶解度が低いため微粒が発生しやすい。また、季節変動による影響を排除するためにチラー等を導入する必要があり、設備コストが高くなる。温度が70℃を超えると、アンモニアの揮発が激しくなり、系内のアンモニウムイオン濃度の制御が困難になる。   The temperature of the reaction step is 20 to 70 ° C, preferably 40 to 70 ° C. When the temperature is less than 20 ° C., fine particles are likely to be generated because the solubility of nickel is low. In addition, it is necessary to introduce a chiller or the like in order to eliminate the influence of seasonal fluctuations, which increases the equipment cost. When the temperature exceeds 70 ° C., the volatilization of ammonia becomes intense and it becomes difficult to control the ammonium ion concentration in the system.

さらに、反応工程のアンモニウムイオン濃度は、5〜20g/L、好ましくは10〜15g/Lとする。アンモニウムイオン濃度が5g/L未満の場合、ニッケルの溶解度が低いため微粒が発生しやすく、粒径が小さくなる。また、粒子が成長する際も粒子内部までモノマーが供給されず粒子表面で析出反応が起きることから、低密度の水酸化物粒子しか得られず、それを原料として得られる正極材料もまた低密度となり体積あたりのエネルギー密度が低下する。アンモニウムイオン濃度が20g/Lを超えると液中に残留するニッケル濃度が高くなり、組成のずれやニッケルロス増加によるコスト増加につながるため好ましくない。
一 方、成長工程の温度は30〜70℃、好ましくは50〜70℃とする。温度が30℃未満となると、反応液中のニッケル溶解度が低くなり過ぎて、新たな核生成が顕著となるため粒子が大きく成長しない。温度が70℃を越えると、反応工程と同様にアンモニアの揮発が激しくなり、アンモニウムイオン濃度の制御が困難になる。
Further, the ammonium ion concentration in the reaction step is 5 to 20 g / L, preferably 10 to 15 g / L. When the ammonium ion concentration is less than 5 g / L, since the solubility of nickel is low, fine particles are easily generated, and the particle size becomes small. In addition, when the particles grow, the monomer is not supplied to the inside of the particles and a precipitation reaction occurs on the surface of the particles, so that only low-density hydroxide particles can be obtained. Thus, the energy density per volume decreases. If the ammonium ion concentration exceeds 20 g / L, the concentration of nickel remaining in the liquid increases, leading to an increase in cost due to compositional deviation and increased nickel loss.
On the other hand, the temperature of the growth step is 30 to 70 ° C, preferably 50 to 70 ° C. When the temperature is less than 30 ° C., the nickel solubility in the reaction solution becomes too low, and new nucleation becomes remarkable, so that the particles do not grow greatly. When the temperature exceeds 70 ° C., the volatilization of ammonia becomes intense as in the reaction step, and it becomes difficult to control the ammonium ion concentration.

また、成長工程のアンモニウムイオン濃度は5〜20g/L、好ましくは10〜15g/Lで維持する。アンモニウムイオン濃度が5g/L未満になると、ニッケルの溶解度が低いため微粒が発生しやすく粒径を大きく成長させることができない。アンモニウムイオン濃度が20g/Lを超えると、液中に残留するニッケル濃度が高くなり、組成のずれやニッケルロスが増加してコストが増加する。   Further, the ammonium ion concentration in the growth step is maintained at 5 to 20 g / L, preferably 10 to 15 g / L. When the ammonium ion concentration is less than 5 g / L, since the solubility of nickel is low, fine particles are likely to be generated, and the particle size cannot be increased. When the ammonium ion concentration exceeds 20 g / L, the concentration of nickel remaining in the liquid increases, resulting in an increase in compositional deviation and nickel loss, resulting in an increase in cost.

さらに、成長工程の温度およびアンモニウムイオン濃度を反応工程以上に制御することで、成長工程におけるニッケル溶解度を反応工程よりも高くすることができ、成長工程における微粒子の発生を抑制することができる。   Furthermore, by controlling the temperature and ammonium ion concentration in the growth step to be higher than that in the reaction step, nickel solubility in the growth step can be made higher than that in the reaction step, and generation of fine particles in the growth step can be suppressed.

上記反応工程および成長工程において、前記混合水溶液と、アンモニウムイオン供給体を含む水溶液とを定量的に連続供給するとともに、苛性アルカリ水溶液は添加量を調整して供給して、各工程におけるpHおよびアンモニウムイオン濃度を所定の値に保持しながら変動を抑制することが好ましい。該変動を抑制することで、反応工程と成長工程における粒子生成と粒子成長を、上記状態に精度よく制御することができる。また、各工程におけるpHおよびアンモニウムイオン濃度は、上記両工程で相対的な数値に制御する必要があることから、上記変動を抑制することで相対的な制御が容易となるため、連続的に供給することが好ましい。   In the reaction step and the growth step, the mixed aqueous solution and the aqueous solution containing the ammonium ion supplier are quantitatively continuously supplied, and the caustic aqueous solution is supplied by adjusting the addition amount. It is preferable to suppress fluctuations while maintaining the ion concentration at a predetermined value. By suppressing the fluctuation, particle generation and particle growth in the reaction step and the growth step can be accurately controlled to the above state. In addition, since the pH and ammonium ion concentration in each step must be controlled to relative numerical values in both steps, since the relative control is facilitated by suppressing the fluctuation, continuous supply is performed. It is preferable to do.

本発明の製造方法は、前記反応工程で得られたニッケル−コバルト水酸化物一次反応粒子(以下、単に一次反応粒子と記載することがある。)を、前記成長工程に供給して成長させることが本発明の特徴であり、単一槽で反応工程から成長工程の条件に切替えて成長させても良く、反応工程および成長工程でそれぞれ別のバッチ槽を使用して回分式のバッチ法で成長させても良い。   In the production method of the present invention, the nickel-cobalt hydroxide primary reaction particles obtained in the reaction step (hereinafter sometimes simply referred to as primary reaction particles) are supplied to the growth step and grown. Is a feature of the present invention, and may be grown by switching from the reaction process to the growth process conditions in a single tank, and growing in a batch-type batch method using separate batch tanks in the reaction process and the growth process. You may let them.

しかしながら、上記両工程でオーバーフロー槽を用いて反応工程から成長工程に一次反応粒子を連続して供給するとともに成長工程から得られた複合水酸化物粒子を連続的に排出することで、反応工程では系内に新たに生成した粒子数分を、成長工程では反応工程から供給された粒子数分を連続的に排出して系内の粒子数を保持できる。すなわち、各工程の系内に滞留する粒子数を少ない状態で一定に制御して、消費される粒子当たりのモノマー量を増加させることができる。したがって、前記反応工程における反応槽をオーバーフローさせることにより、該一次反応粒子を連続して前記成長工程の成長槽に供給することが好ましい。また、オーバーフローによる連続法は生産性もよいことから、コスト面でも有利である。なお、例えば、反応工程をオーバーフローによる連続法とし、成長工程をバッチ法とするなど連続法とバッチ法を組み合わせてもよい。
以下、本発明の製造方法を詳細に説明する。
However, in the reaction process, the primary reaction particles are continuously supplied from the reaction process to the growth process using the overflow tank in both the above processes and the composite hydroxide particles obtained from the growth process are continuously discharged. The number of particles newly generated in the system and the number of particles supplied from the reaction step can be continuously discharged in the growth step to maintain the number of particles in the system. That is, it is possible to increase the amount of monomer per particle consumed by controlling the number of particles staying in the system in each step to be constant in a small state. Therefore, it is preferable to continuously supply the primary reaction particles to the growth tank in the growth step by overflowing the reaction vessel in the reaction step. Moreover, since the continuous method by overflow has good productivity, it is advantageous in terms of cost. In addition, for example, the continuous method and the batch method may be combined such that the reaction step is a continuous method by overflow and the growth step is a batch method.
Hereinafter, the production method of the present invention will be described in detail.

上記製造方法において、ニッケル塩およびコバルト塩を含む混合水溶液は、ニッケル及びコバルトの供給源である。また、アンモニウムイオン供給体を含む水溶液は、錯形成剤として、生成するニッケル−コバルト水酸化物粒子の粒径と形状を制御する役割を担う。しかも、アンモニウムイオンは生成するニッケル−コバルト水酸化物粒子内に取り込まれないので、不純物の無いニッケル−コバルト複合水酸化物粒子を得るために好ましい錯形成剤である。また、苛性アルカリ水溶液は中和反応のpH調整剤である。   In the manufacturing method, the mixed aqueous solution containing nickel salt and cobalt salt is a supply source of nickel and cobalt. Moreover, the aqueous solution containing an ammonium ion supplier plays the role which controls the particle size and shape of the nickel-cobalt hydroxide particle to produce | generate as a complex formation agent. Moreover, since ammonium ions are not taken into the produced nickel-cobalt hydroxide particles, they are a preferable complexing agent for obtaining nickel-cobalt composite hydroxide particles free from impurities. Further, the caustic aqueous solution is a pH adjuster for the neutralization reaction.

上記混合水溶液中のニッケル及びコバルトの濃度は、特に限定されるものではないが、0.5〜2.2mol/Lとすることが好ましい。0.5mol/l未満では、各工程における液量が多くなり過ぎ生産性が低下するため好ましくない。2.2mol/lを超えると、気温が低下した場合に混合水溶液中でニッケル塩あるいはコバルト塩が再結晶化して配管等を詰まらせる虞がある。   The concentration of nickel and cobalt in the mixed aqueous solution is not particularly limited, but is preferably 0.5 to 2.2 mol / L. If it is less than 0.5 mol / l, the amount of liquid in each step increases so that productivity is lowered, which is not preferable. If it exceeds 2.2 mol / l, the nickel salt or cobalt salt may be recrystallized in the mixed aqueous solution and the pipes and the like may be clogged when the temperature drops.

一方、前記反応槽および成長槽へのニッケル及びコバルトの供給量は、特に限定されるものではないが、上記両槽中の液量に対してニッケル及びコバルトの合計で0.0005〜0.01mol/l・分とすることが好ましい。0.0005mol/l・分未満では、生産性が低下するため好ましくない。0.015mol/l・分を超えると、各工程において核生成が生じやすくなり、得られる水酸化物に混入する微粒子が増加する虞がある。ニッケル及びコバルトの供給量は、粒子の生成と成長を安定化するために、一定量を連続的に供給することが好ましい。   On the other hand, the supply amount of nickel and cobalt to the reaction vessel and the growth vessel is not particularly limited, but the total amount of nickel and cobalt is 0.0005 to 0.01 mol with respect to the liquid amount in the two vessels. / L · min is preferable. If it is less than 0.0005 mol / l · min, productivity is lowered, which is not preferable. If it exceeds 0.015 mol / l · min, nucleation is likely to occur in each step, and the fine particles mixed in the resulting hydroxide may increase. The supply amount of nickel and cobalt is preferably continuously supplied in order to stabilize the generation and growth of particles.

上記ニッケル塩およびコバルト塩は、硫酸塩、硝酸塩または塩化物の少なくとも1種であることが好ましく、ハロゲンによる汚染のない硫酸塩がより好ましい。例えば、硫酸マ
ンガン、硫酸ニッケルが好ましく用いられる。また、混合水溶液を調整する際に、ニッケル塩およびコバルト塩は、混合水溶液中に存在する金属イオンの原子数比で目的とする複合水酸化物中のニッケルとコバルトの原子数比と一致するように調整される。
The nickel salt and cobalt salt are preferably at least one of sulfates, nitrates or chlorides, more preferably sulfates free from contamination by halogen. For example, manganese sulfate and nickel sulfate are preferably used. Also, when preparing the mixed aqueous solution, the nickel salt and cobalt salt should match the atomic ratio of nickel and cobalt in the target composite hydroxide in the atomic ratio of metal ions present in the mixed aqueous solution. Adjusted to

上記アンモニウムイオン供給体を含む水溶液は、特に限定されるものではないが、アンモニア水、硫酸アンモニウム又は塩化アンモニウムの水溶液が好ましく、ハロゲンによる汚染のないアンモニア水、硫酸アンモニウム水溶液がより好ましい。また、アンモニウムイオン供給体の濃度は、特に限定されるものではなく、各工程におけるアンモニウムイオンの濃度が維持可能な範囲で調整すればよい。   The aqueous solution containing the ammonium ion supplier is not particularly limited, but aqueous ammonia, ammonium sulfate or ammonium chloride is preferable, and aqueous ammonia or ammonium sulfate free from halogen contamination is more preferable. The concentration of the ammonium ion supplier is not particularly limited, and may be adjusted within a range in which the ammonium ion concentration in each step can be maintained.

上記苛性アルカリ水溶液は、特に限定されるものではなく、例えば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。アルカリ金属水酸化物の場合、各工程におけるpH値制御の容易さから、水溶液として各工程の反応系に添加することが好ましい。   The aqueous caustic solution is not particularly limited, and an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used. In the case of an alkali metal hydroxide, it is preferable to add it as an aqueous solution to the reaction system in each step because of easy control of the pH value in each step.

本発明のニッケル−コバルト複合水酸化物においては、上記添加元素MとしてMg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素を添加することができる。M元素は、前記混合水溶液中にM元素の化合物として添加することができる。該M元素化合物としては、特に限定されるものではないが、例えば、硫酸マグネシウム、硝酸カルシウム、硝酸バリウム、硝酸ストロンチウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム等を用いることができる。   In the nickel-cobalt composite hydroxide of the present invention, one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W are added as the additional element M. can do. M element can be added to the mixed aqueous solution as a compound of M element. The M element compound is not particularly limited. For example, magnesium sulfate, calcium nitrate, barium nitrate, strontium nitrate, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, Chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, and the like can be used.

上記M元素化合物を混合水溶液中に添加する場合、混合水溶液の濃度および供給量は、上記条件に維持される。また、M元素の添加量は、混合水溶液中に存在する金属イオンの原子数比で目的とする複合水酸化物中の金属の原子数比と一致するように調整される。   When the M element compound is added to the mixed aqueous solution, the concentration and supply amount of the mixed aqueous solution are maintained under the above conditions. The amount of M element added is adjusted so that the atomic ratio of metal ions in the mixed aqueous solution matches the atomic ratio of metals in the target composite hydroxide.

一方、M元素は、必ずしも混合水溶液中に添加してニッケル−コバルト複合水酸化物粒子と共沈させる必要はなく、たとえば、ニッケルとコバルトを共沈させ、ニッケル−コバルト複合水酸化物粒子を得て、その後、ニッケル−コバルト複合水酸化物粒子の表面にM元素の水酸化物、あるいは酸化物等の化合物を湿式中和法により析出させてもよい。さらに、複数の種類のM元素を添加する場合、上記添加方法を組み合わせることにより、目的とするニッケル−コバルト複合水酸化物を得てもよい。   On the other hand, it is not always necessary to add M element to the mixed aqueous solution and coprecipitate with nickel-cobalt composite hydroxide particles. For example, nickel and cobalt are coprecipitated to obtain nickel-cobalt composite hydroxide particles. Then, a compound such as a hydroxide of M element or an oxide may be deposited on the surface of the nickel-cobalt composite hydroxide particles by a wet neutralization method. Furthermore, when adding several types of M element, you may obtain the target nickel- cobalt composite hydroxide by combining the said addition method.

上記製造方法において用いられる反応槽および成長槽は、特に限定されるものではないが、撹拌機、オーバーフロー口、及び温度制御手段を備える容器を用いることが好ましい。   The reaction vessel and the growth vessel used in the above production method are not particularly limited, but it is preferable to use a vessel equipped with a stirrer, an overflow port, and temperature control means.

上記製造方法によって、錯形成剤やハロゲン等の混入が無い、非水系電解質二次電池正極活物質用の前駆体として好適な組成を有する大粒径で高密度の略球状のニッケル−コバルト複合水酸化物を得ることができる。   By the above production method, a large-diameter, high-density, substantially spherical nickel-cobalt composite water having a composition suitable as a precursor for a positive electrode active material for a non-aqueous electrolyte secondary battery, free from complexation agents and halogens. An oxide can be obtained.

[非水系電解質二次電池正極活物質の製造方法]
本発明の非水系電解質二次電池正極活物質の製造方法は、上記ニッケル−コバルト複合水酸化物とリチウム化合物とを、混合して焼成することを特徴とする。
[Method for producing positive electrode active material of non-aqueous electrolyte secondary battery]
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the nickel-cobalt composite hydroxide and a lithium compound are mixed and fired.

ニッケル−コバルト複合水酸化物は、水酸化物の状態でリチウム化合物と混合してもよいが、該複合水酸化物を、非還元性雰囲気中で酸化焙焼してニッケル−コバルト複合酸化
物に転換した後、リチウム化合物と混合してもよい。前記酸化焙焼の条件は、特に限定されるものではなく、通常に用いられる条件とすることができる。例えば、大気雰囲気中で600〜900℃の範囲で上記複合水酸化物粒子の形骸が維持されるように酸化焙焼すればよい。また、用いられる装置も、通常に用いられるものでよく、電気炉、キルン、管状炉、プッシャー炉等が用いられる。
The nickel-cobalt composite hydroxide may be mixed with a lithium compound in the state of hydroxide, but the composite hydroxide is oxidized and roasted in a non-reducing atmosphere to form a nickel-cobalt composite oxide. After conversion, it may be mixed with a lithium compound. The conditions for the oxidative roasting are not particularly limited, and may be those normally used. For example, oxidation roasting may be performed so that the shape of the composite hydroxide particles is maintained in the range of 600 to 900 ° C. in an air atmosphere. Moreover, the apparatus used may also be a normally used apparatus, and an electric furnace, kiln, tubular furnace, pusher furnace, etc. are used.

上記混合は、前記リチウム化合物と前記ニッケル−コバルト複合水酸化物中のリチウム以外の金属元素に対して0.95〜1.15の比で混合することが好ましい。   The mixing is preferably performed at a ratio of 0.95 to 1.15 with respect to the metal compound other than lithium in the lithium compound and the nickel-cobalt composite hydroxide.

前記リチウム化合物は、特に限定されるものではなく、リチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩、硝酸塩及びハロゲン化物からなる群から選ばれる少なくとも1種が用いられる。ハロゲン等の不純物による汚染のないリチウムの水酸化物、オキシ水酸化物、酸化物、炭酸塩がより好ましい。   The lithium compound is not particularly limited, and at least one selected from the group consisting of lithium hydroxide, oxyhydroxide, oxide, carbonate, nitrate and halide is used. More preferred are lithium hydroxides, oxyhydroxides, oxides and carbonates free from contamination by impurities such as halogens.

混合方法としては、通常用いられる方法でよく、ニッケル−コバルト複合水酸化物もしくは複合酸化物とリチウム化合物を固体状のまま各種粉体混合機で混合する方法が用いられる。いずれの方法を用いてもよいが、シェーカーなどを用いて上記複合水酸化物粒子あるいは複合酸化物粒子の形骸が破壊されない程度で十分に混合してやればよい。   As a mixing method, a commonly used method may be used, and a method of mixing nickel-cobalt composite hydroxide or composite oxide and a lithium compound with various powder mixers in a solid state is used. Any method may be used, but it may be mixed sufficiently using a shaker or the like so that the composite hydroxide particles or composite oxide particles are not destroyed.

上記混合物を焼成することで、非水系電解質二次電池正極活物質が得られる。焼成は、通常用いられる条件によって行われ、例えば、焼成時の雰囲気としては、酸素を十分に供給するため、酸素濃度を60容量%以上とすることが好ましく、酸素は、窒素あるいは不活性ガスと混合することが好ましい。60容量%未満では、酸素分圧が不足し、前述のような酸素不足の状態となり、リチウムニッケル複合酸化物の生成が不十分となることがある。   By firing the mixture, a non-aqueous electrolyte secondary battery positive electrode active material is obtained. Firing is performed under conditions that are normally used. For example, as an atmosphere during firing, in order to sufficiently supply oxygen, the oxygen concentration is preferably 60% by volume or more, and oxygen is nitrogen or an inert gas. It is preferable to mix. If it is less than 60% by volume, the partial pressure of oxygen is insufficient, resulting in a state of insufficient oxygen as described above, and the formation of the lithium nickel composite oxide may be insufficient.

また、焼成温度としては、650〜800℃の範囲とすることが好ましい。650℃未満では、得られるリチウムニッケル複合酸化物の結晶成長が、十分でなく電池性能に悪影響を与えることがある。また、800℃を超えると、得られるリチウムニッケル複合酸化物が分解を開始し、正極活物質としてもちいたときの電池反応時に、リチウムイオンの移動を妨げる結晶が混入し始め、電池性能の低下を招くことがある。   Moreover, as a calcination temperature, it is preferable to set it as the range of 650-800 degreeC. If it is less than 650 degreeC, the crystal growth of the lithium nickel complex oxide obtained may not be enough, and may have a bad influence on battery performance. Further, when the temperature exceeds 800 ° C., the resulting lithium nickel composite oxide starts to decompose, and during the battery reaction when used as the positive electrode active material, crystals that prevent the movement of lithium ions begin to be mixed, resulting in a decrease in battery performance. You may be invited.

焼成に用いる炉は、雰囲気が制御できる各種の炉が使用可能であるが、排気ガスが発生することがない電気炉をもちいることが好ましく、工業的生産においては、特にプッシャー炉やローラーハース炉などのように、連続的に焼成可能な炉を使用することが好ましい。   As the furnace used for firing, various furnaces whose atmosphere can be controlled can be used, but it is preferable to use an electric furnace which does not generate exhaust gas. In industrial production, in particular, a pusher furnace or a roller hearth furnace. It is preferable to use a furnace that can be continuously fired.

上記非水系電解質二次電池正極活物質の製造方法によって、一般式:LiNi1−x−yCo(0.95≦t≦1.15、0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表される層状構造を有する六方晶系リチウム含有複合酸化物により構成され、略球状で平均粒径15〜50μmであるリチウムニッケル-コバルト複合酸化物からなる非水系電解質二次電池正極活物質が得られる。得られる非水系電解質二次電池正極活物質は、充填密度が高く、電池の更なる高エネルギー密度化を図ることができ、非水系電解質二次電池用として好適なものとなる。 By the manufacturing method of the nonaqueous electrolyte secondary battery positive electrode active material, the general formula: Li t Ni 1-x- y Co x M y O 2 (0.95 ≦ t ≦ 1.15,0.05 ≦ x ≦ 0 .95, 0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W Non-aqueous electrolyte secondary battery positive electrode active material composed of a lithium nickel-cobalt composite oxide having a spherical shape and an average particle diameter of 15 to 50 μm. Is obtained. The obtained non-aqueous electrolyte secondary battery positive electrode active material has a high packing density and can further increase the energy density of the battery, and is suitable for a non-aqueous electrolyte secondary battery.

以下に本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたニッケル−コバルト水酸化物の評価方法は、以下の通りである。   The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples. In addition, the evaluation method of the nickel-cobalt hydroxide used by the Example and the comparative example is as follows.

金属成分の分析:ICP発光分析法で行った。
アンモニウムイオン濃度の分析:JIS標準による蒸留法によって測定した。
平均粒径の測定:レーザー回折式粒度分布計(日機装株式会社製、マイクロトラックHRA)を用いて行った。
形態の観察:走査型電子顕微鏡(日本電子株式会社製、JSM−6360LA)を用いて、形状と外観の観察を行った。
Analysis of metal components: ICP emission analysis was performed.
Analysis of ammonium ion concentration: Measured by distillation method according to JIS standard.
Measurement of average particle diameter: Measurement was performed using a laser diffraction particle size distribution meter (manufactured by Nikkiso Co., Ltd., Microtrac HRA).
Observation of form: The shape and appearance were observed using a scanning electron microscope (JSM-6360LA, manufactured by JEOL Ltd.).

(実施例1)
硫酸ニッケル6水和物(工業用)と硫酸コバルト7水和物(工業用)を、ニッケル:コバルトがモル比で84:16となり、ニッケルとコバルトが合わせて2mol/lとなるように純水に溶解させて混合水溶液を調製した。
(Example 1)
Pure water so that nickel sulfate hexahydrate (industrial) and cobalt sulfate heptahydrate (industrial) have a molar ratio of nickel: cobalt of 84:16 and nickel and cobalt combined to 2 mol / l. A mixed aqueous solution was prepared by dissolving in the solution.

[反応工程]
オーバーフロー口までの容量が34lであるオーバーフロー反応槽に純水を上限まで入れ、槽内をウォーターバスにより50℃に加温した。反応槽内を撹拌しながら前記混合水溶液、25質量%アンモニア水(工業用)、25質量%水酸化ナトリウム水溶液(工業用)を連続的に反応槽内へ供給した。ここで、供給流量は混合水溶液60ml/分(0.00352mol/l・分)、アンモニア水4.8ml/分であった。また、槽内スラリーのpHは、反応槽内に設置したpHコントローラーを用い、上記水酸化ナトリウム水溶液の流量を調整して12.2となるように調整した。反応中は反応槽内に3.5l/分で窒素を導入し、槽内を不活性雰囲気に保持した。
[Reaction process]
Pure water was put to the upper limit in an overflow reaction tank having a capacity of 34 l to the overflow port, and the inside of the tank was heated to 50 ° C. by a water bath. While stirring the reaction vessel, the mixed aqueous solution, 25 mass% aqueous ammonia (industrial), and 25 mass% aqueous sodium hydroxide (industrial) were continuously fed into the reaction vessel. Here, the supply flow rates were 60 ml / min of mixed aqueous solution (0.00352 mol / l · min) and 4.8 ml / min of aqueous ammonia. The pH of the slurry in the tank was adjusted to 12.2 by adjusting the flow rate of the aqueous sodium hydroxide solution using a pH controller installed in the reaction tank. During the reaction, nitrogen was introduced into the reaction vessel at a rate of 3.5 l / min, and the inside of the vessel was maintained in an inert atmosphere.

この状態で32時間運転後、槽内のpHが12.2、温度が50℃、アンモニウムイオン濃度が10g/lで安定したことを確認し、その後、32時間後から60時間後まで反応槽に上記各水溶液を供給した。スラリーから回収したニッケル−コバルト水酸化物一次反応粒子は略球状で、平均粒径は13.5μmであった。   After operating for 32 hours in this state, it was confirmed that the pH in the tank was stable at 12.2, the temperature was 50 ° C., and the ammonium ion concentration was 10 g / l. Then, the reactor was kept in the reaction tank from 32 hours to 60 hours later. The above aqueous solutions were supplied. The nickel-cobalt hydroxide primary reaction particles recovered from the slurry were substantially spherical, and the average particle size was 13.5 μm.

[成長工程]
反応工程と同様のオーバーフロー槽である成長槽に純水を上限まで入れ、反応槽よりオーバーフローさせたニッケル−コバルト水酸化物一次反応粒子スラリーを成長槽内に導入した。ウォーターバスにより60℃に加温した成長槽内を撹拌しながら、上記混合水溶液、アンモニア水、水酸化ナトリウム水溶液を連続的に成長槽内へ供給した。
[Growth process]
Pure water was added to the upper limit of the growth tank which is the same overflow tank as in the reaction step, and nickel-cobalt hydroxide primary reaction particle slurry overflowed from the reaction tank was introduced into the growth tank. While stirring the inside of the growth tank heated to 60 ° C. with a water bath, the above mixed aqueous solution, ammonia water, and sodium hydroxide aqueous solution were continuously supplied into the growth tank.

ここで、供給量は、混合水溶液30ml/分(0.00176mol/l・分)、アンモニア水2.4ml/分であった。また、槽内スラリーのpHは、反応槽内に設置したpHコントローラーを用い、前記水酸化ナトリウム水溶液の流量を調整して11.8となるように調整した。反応中は、成長槽内に3.5l/分で窒素を導入し、槽内を不活性雰囲気に保持した。この状態で32時間運転後、槽内のpHが11.8、温度が60℃、アンモニウムイオン濃度が10g/lで安定したことを確認し、反応槽における反応時間が32時間後から60時間後まで成長槽から排出されるニッケル−コバルト複合水酸化物粒子をスラリーとして回収した。回収したスラリーを固液分離し、乾燥させてニッケル−コバルト複合水酸化物を得た。   Here, the supply amount was 30 ml / min (0.00176 mol / l · min) of the mixed aqueous solution and 2.4 ml / min of aqueous ammonia. The pH of the slurry in the tank was adjusted to 11.8 by adjusting the flow rate of the aqueous sodium hydroxide solution using a pH controller installed in the reaction tank. During the reaction, nitrogen was introduced into the growth tank at 3.5 l / min, and the inside of the tank was maintained in an inert atmosphere. After operating for 32 hours in this state, it was confirmed that the pH in the tank was stable at 11.8, the temperature was 60 ° C., and the ammonium ion concentration was 10 g / l, and the reaction time in the reaction tank was 32 hours to 60 hours later. The nickel-cobalt composite hydroxide particles discharged from the growth tank were recovered as a slurry. The recovered slurry was subjected to solid-liquid separation and dried to obtain a nickel-cobalt composite hydroxide.

得られたニッケル−コバルト複合水酸化物を走査型電子顕微鏡(以下、SEMと記載することがある。)で観察したところ、略球状でであり、平均粒径は30.1μmであった。得られたニッケル−コバルト複合水酸化物のSEM像を図1に示す。   When the obtained nickel-cobalt composite hydroxide was observed with a scanning electron microscope (hereinafter sometimes referred to as SEM), it was substantially spherical and the average particle size was 30.1 μm. The SEM image of the obtained nickel-cobalt composite hydroxide is shown in FIG.

(実施例2)
実施例1と同様にしてオーバーフロー型の反応槽で得られたニッケル−コバルト水酸化物
一次反応粒子を回収して固液分離した。乾燥重量で3kgの該ニッケル−コバルト水酸化物一次反応粒子を、を容量50lの邪魔板付きSUS製の成長槽(回分式)に入れ、純水を5.7l添加して槽内をウォーターバスにより60℃に加温した。槽内に10L/分の流量で30分間窒素ガスを流して窒素雰囲気とした後、25質量%アンモニア水(和光純薬製一級試薬)及び64質量%硫酸(和光純薬製一級試薬)を添加してアンモニウムイオン濃度を15g/lに、pHを11.3に調整した。
(Example 2)
In the same manner as in Example 1, nickel-cobalt hydroxide primary reaction particles obtained in an overflow type reaction vessel were recovered and subjected to solid-liquid separation. 3 kg of the nickel-cobalt hydroxide primary reaction particles in a dry weight are put into a 50-liter baffled SUS growth tank (batch type), 5.7 l of pure water is added, and the inside of the tank is water bathed. To 60 ° C. After flowing nitrogen gas in the tank at a flow rate of 10 L / min for 30 minutes to make a nitrogen atmosphere, 25 mass% ammonia water (Wako Pure Chemicals first grade reagent) and 64 mass% sulfuric acid (Wako Pure Chemicals first grade reagent) are added. Then, the ammonium ion concentration was adjusted to 15 g / l, and the pH was adjusted to 11.3.

次に、槽内を撹拌しながら、0.95mol/lの混合水溶液(実施例1の混合水溶液を純水で希釈)、前記アンモニア水、5質量%水酸化ナトリウム水溶液(上記25質量%水酸化ナトリウム水溶液を純水水で希釈)を連続的に反応槽内へ供給した。ここで、供給流量は混合水溶液70ml/分(0.00111mol/l・分)、アンモニア水10.3ml/分であった。また、槽内スラリーのpHは、反応槽内に設置したpHコントローラーを用い、上記5質量%水酸化ナトリウム水溶液の流量を調整して11.3となるように調整した。   Next, with stirring in the tank, a 0.95 mol / l mixed aqueous solution (the mixed aqueous solution of Example 1 was diluted with pure water), the aqueous ammonia, a 5% by mass sodium hydroxide aqueous solution (the above 25% by mass hydroxide). A sodium aqueous solution was diluted with pure water) was continuously fed into the reaction vessel. Here, the supply flow rate was 70 ml / min (0.00111 mol / l · min) of the mixed aqueous solution and 10.3 ml / min of aqueous ammonia. The pH of the slurry in the tank was adjusted to 11.3 by adjusting the flow rate of the 5 mass% sodium hydroxide aqueous solution using a pH controller installed in the reaction tank.

pHおよびアンモニウムイオン濃度を上記数値で一定に保ちながら、混合水溶液を16.8l供給した後、撹拌を止めて粒子を沈降させ、反応槽内の上澄液35lを排出した。排出後、撹拌を再開し、さらにpHおよびアンモニウムイオン濃度を一定に保ちながら、混合水溶液をさらに16.8l添加した。添加終了後、固液分離後し、乾燥させてニッケル−コバルト複合水酸化物を得た。   While maintaining the pH and ammonium ion concentration at the above values, 16.8 l of the mixed aqueous solution was supplied, and then the stirring was stopped to settle the particles, and 35 l of the supernatant in the reaction vessel was discharged. After discharging, stirring was resumed, and further 16.8 l of the mixed aqueous solution was added while keeping the pH and ammonium ion concentration constant. After completion of the addition, it was separated into solid and liquid and dried to obtain a nickel-cobalt composite hydroxide.

得られたニッケル−コバルト複合水酸化物は略球状であり、平均粒径は21.5μmであった。得られたニッケル−コバルト複合水酸化物のSEM像を図2に示す。   The obtained nickel-cobalt composite hydroxide was substantially spherical, and the average particle size was 21.5 μm. The SEM image of the obtained nickel-cobalt composite hydroxide is shown in FIG.

(比較例1)
成長槽内のpHを12.0、温度を50℃、アンモニウムイオン濃度を5g/lとした以外は実施例1と同様にしてニッケル−コバルト複合水酸化物を得た。得られたニッケル−コバルト複合水酸化物は略球状であったが、平均粒径は14.3μmであり、反応槽で得られた該ニッケル−コバルト水酸化物一次反応粒子と比較してほとんど成長しなかった。
(Comparative Example 1)
A nickel-cobalt composite hydroxide was obtained in the same manner as in Example 1 except that the pH in the growth tank was 12.0, the temperature was 50 ° C., and the ammonium ion concentration was 5 g / l. The obtained nickel-cobalt composite hydroxide was substantially spherical, but the average particle size was 14.3 μm, and it grew almost as compared with the nickel-cobalt hydroxide primary reaction particles obtained in the reaction vessel. I did not.

(比較例2)
成長槽内のpHを9.5とした以外は実施例1と同様にしてニッケル−コバルト複合水酸化物を得た。成長槽内の溶液はゲル化して固液分離が困難であった。また、得られたニッケル−コバルト複合水酸化物は粒子形状が不定形であり、非水系電解質二次電池正極活物質用の原料として好適な粒子を得ることはできなかった。
(Comparative Example 2)
A nickel-cobalt composite hydroxide was obtained in the same manner as in Example 1 except that the pH in the growth tank was 9.5. The solution in the growth tank was gelled and solid-liquid separation was difficult. Further, the obtained nickel-cobalt composite hydroxide had an indefinite particle shape, and particles suitable as a raw material for a non-aqueous electrolyte secondary battery positive electrode active material could not be obtained.

Claims (10)

一般式:Ni1−x−yCo(OH)(0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表されるニッケル−コバルト複合水酸化物の製造方法であって、ニッケル塩およびコバルト塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、反応槽に供給して反応させ、ニッケル−コバルト水酸化物一次反応粒子を得る反応工程、成長槽中の該一次反応粒子を含む水溶液に、更に前記混合水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを供給して反応させることにより、ニッケル−コバルト複合水酸化物粒子を得る成長工程を含み、上記反応工程および成長工程を下記条件(A)および(B)を満たすように制御することを特徴とする非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法。
(A)前記反応工程のpHを11.0〜13.0、前記成長工程のpHを10.5〜12.5の範囲に保持するとともに、成長工程のpHを反応工程以下に制御する。
(B)前記反応工程の温度を20〜70℃、前記成長工程の温度を30〜70℃、反応工程および成長工程のアンモニウムイオン濃度を5〜20g/Lの範囲に保持するとともに、成長工程の温度およびアンモニウムイオン濃度を反応工程以上に制御する。
General formula: Ni 1-x-y Co x M y (OH) 2 (0.05 ≦ x ≦ 0.95,0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is, Mg, Al, Ca 1 or more elements selected from Ti, V, Cr, Mn, Zr, Nb, Mo, and W), which are nickel-cobalt composite hydroxides, A mixed aqueous solution containing, an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution are supplied to the reaction vessel and reacted to obtain primary reaction particles of nickel-cobalt hydroxide, the primary reaction in the growth vessel Including a growth step of obtaining nickel-cobalt composite hydroxide particles by supplying the aqueous solution containing particles to the mixed aqueous solution, an aqueous solution containing an ammonium ion supplier, and reacting with an aqueous caustic solution. Reaction step and the growth step the following conditions (A) and a non-aqueous electrolyte secondary battery cathode active material for nickel and controls to meet the (B) - method for producing cobalt composite hydroxide.
(A) The pH of the reaction step is maintained in the range of 11.0 to 13.0, the pH of the growth step is in the range of 10.5 to 12.5, and the pH of the growth step is controlled below the reaction step.
(B) The temperature of the reaction step is 20 to 70 ° C., the temperature of the growth step is 30 to 70 ° C., and the ammonium ion concentration in the reaction step and the growth step is kept in the range of 5 to 20 g / L. Control the temperature and ammonium ion concentration more than the reaction step.
反応工程および成長工程において、前記混合水溶液と、アンモニウムイオン供給体を含む水溶液とを定量的に連続供給するとともに、苛性アルカリ水溶液の添加量を調整してpHおよびアンモニウムイオン濃度を保持することを特徴とする請求項1に記載の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法。 In the reaction step and the growth step, the mixed aqueous solution and the aqueous solution containing the ammonium ion supplier are quantitatively continuously supplied, and the addition amount of the caustic aqueous solution is adjusted to maintain the pH and ammonium ion concentration. 2. The method for producing a nickel-cobalt composite hydroxide for a positive electrode active material of a non-aqueous electrolyte secondary battery according to claim 1. 前記反応工程における反応槽をオーバーフローさせることにより、前記ニッケル−コバルト水酸化物一次反応粒子を前記成長工程の成長槽に連続して供給することを特徴とする請求項1または2に記載の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法。 The non-aqueous system according to claim 1 or 2, wherein the primary reaction particles of the nickel-cobalt hydroxide are continuously supplied to the growth tank of the growth step by overflowing the reaction vessel in the reaction step. The manufacturing method of the nickel-cobalt composite hydroxide for electrolyte secondary battery positive electrode active materials. 前記成長工程で得られたニッケル−コバルト複合水酸化物粒子の表面をM水酸化物で被覆することを特徴とする請求項1〜3のいずれかに記載の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法。 4. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the surface of the nickel-cobalt composite hydroxide particles obtained in the growth step is coated with M hydroxide. For producing a nickel-cobalt composite hydroxide for use. 前記ニッケル塩およびコバルト塩は、硫酸塩、硝酸塩または塩化物の少なくとも1種であることを特徴とする請求項1〜4のいずれかに記載の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物粒子の製造方法。 The nickel-cobalt for a positive electrode active material of a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the nickel salt and cobalt salt are at least one of sulfate, nitrate or chloride. A method for producing composite hydroxide particles. 前記アンモニウムイオン供給体は、アンモニア、硫酸アンモニウムまたは塩化アンモニウムの少なくとも1種であることを特徴とする請求項1〜5のいずれかに記載の非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物の製造方法。 The nickel-cobalt composite water for a non-aqueous electrolyte secondary battery positive electrode active material according to any one of claims 1 to 5, wherein the ammonium ion supplier is at least one of ammonia, ammonium sulfate, and ammonium chloride. Production method of oxide. 請求項1〜6のいずれかに記載の製造方法で得られたものであって、一般式:Ni1−x−yCo(OH)(0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、略球状で平均粒径15〜50μmであることを特徴とする非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物。 Be one obtained by the production method according to any of claims 1 to 6, the general formula: Ni 1-x-y Co x M y (OH) 2 (0.05 ≦ x ≦ 0.95, 0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W) A nickel-cobalt composite hydroxide for a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that it is substantially spherical and has an average particle size of 15 to 50 μm. 請求項7に記載の非水系電解質二次電池用ニッケル−コバルト複合水酸化物とリチウム化合物とを、混合して焼成することを特徴とする非水系電解質二次電池正極活物質の製造方法。 A nickel-cobalt composite hydroxide for a non-aqueous electrolyte secondary battery according to claim 7 and a lithium compound are mixed and fired, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. 前記リチウム化合物を前記ニッケル−コバルト複合水酸化物中のリチウム以外の金属元素に対して0.95〜1.15の比で混合することを特徴とする請求項8に記載の非水系電解質二次電池正極活物質の製造方法。 The non-aqueous electrolyte secondary according to claim 8, wherein the lithium compound is mixed in a ratio of 0.95 to 1.15 with respect to a metal element other than lithium in the nickel-cobalt composite hydroxide. Manufacturing method of battery positive electrode active material. 得られる非水系電解質二次電池正極活物質が、一般式:LiNi1−x−yCo(0.95≦t≦1.15、0.05≦x≦0.95、0≦y≦0.15、x+y≦0.95、Mは、Mg、Al、Ca、Ti、V、Cr、Mn、Zr、Nb、Mo、Wから選択される1種以上の元素)で表される層状構造を有する六方晶系リチウム含有複合酸化物により構成され、略球状で平均粒径15〜50μmであるリチウムニッケル-コバルト複合酸化物からなることを特徴とする請求項8または9に記載の非水系電解質二次電池正極活物質の製造方法。 Non-aqueous electrolyte secondary battery positive electrode active material obtained has the general formula: Li t Ni 1-x- y Co x M y O 2 (0.95 ≦ t ≦ 1.15,0.05 ≦ x ≦ 0.95 0 ≦ y ≦ 0.15, x + y ≦ 0.95, M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Mn, Zr, Nb, Mo, and W) 10. The lithium nickel-cobalt composite oxide, which is composed of a hexagonal lithium-containing composite oxide having a layered structure and is substantially spherical and has an average particle size of 15 to 50 μm. The manufacturing method of the non-aqueous electrolyte secondary battery positive electrode active material of description.
JP2010041376A 2010-02-26 2010-02-26 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide Active JP5464348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041376A JP5464348B2 (en) 2010-02-26 2010-02-26 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041376A JP5464348B2 (en) 2010-02-26 2010-02-26 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide

Publications (2)

Publication Number Publication Date
JP2011181193A true JP2011181193A (en) 2011-09-15
JP5464348B2 JP5464348B2 (en) 2014-04-09

Family

ID=44692531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041376A Active JP5464348B2 (en) 2010-02-26 2010-02-26 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide

Country Status (1)

Country Link
JP (1) JP5464348B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800857A (en) * 2012-09-11 2012-11-28 贵州红星发展股份有限公司 Method for preparing ternary positive material precursor
JP2013171743A (en) * 2012-02-21 2013-09-02 Sumitomo Metal Mining Co Ltd Nickel cobalt complex hydroxide, and method for manufacturing the same
JP2013246983A (en) * 2012-05-25 2013-12-09 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel-cobalt composite hydroxide
JP2015072801A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2015115547A1 (en) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2015173122A (en) * 2015-05-22 2015-10-01 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
KR101748999B1 (en) * 2016-08-01 2017-06-20 (주)이엠티 Method for Preparing Cathode Active Material Precursor for Secondary Battery
WO2017119451A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
WO2017119459A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive electrode active material precursor for non aqueous electrolyte secondary cell, positive electrode active material for non aqueous electrolyte secondary cell, method for manufacturing positive electrode active material precursor for non aqueous electrolyte secondary cell, and method for manufacturing positive electrode active material for non aqueous electrolyte secondary cell
WO2017119457A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive electrode active material precursor for non aqueous electrolyte secondary cell, positive electrode active material for non aqueous electrolyte secondary cell, method for manufacturing positive electrode active material precursor for non aqueous electrolyte secondary cell, and method for manufacturing positive electrode active material for non aqueous electrolyte secondary cell
CN107394201A (en) * 2016-05-09 2017-11-24 日亚化学工业株式会社 The manufacture method of nickel cobalt complex hydroxide and the manufacture method of positive electrode active material for nonaqueous electrolyte secondary battery
WO2018123995A1 (en) * 2016-12-26 2018-07-05 住友金属鉱山株式会社 Nonaqueous electrolyte positive electrode active material precursor
CN109850912A (en) * 2019-02-12 2019-06-07 武汉理工大学 A kind of alkaline aqueous electrolyte system cell positive material of bimetal composite boride and preparation method thereof
JP2020119679A (en) * 2019-01-21 2020-08-06 Jx金属株式会社 Oxide-based positive electrode active material for all-solid lithium ion battery, production method thereof, and all-solid lithium ion battery
CN114261997A (en) * 2021-12-28 2022-04-01 广西中伟新能源科技有限公司 Nickel-cobalt hydroxide and preparation method thereof, nickel-cobalt oxide, lithium ion battery positive electrode material, positive electrode, battery and electric equipment
CN115210187A (en) * 2020-03-27 2022-10-18 株式会社田中化学研究所 Method for producing nickel-containing hydroxide
WO2023106309A1 (en) * 2021-12-08 2023-06-15 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784927A (en) 2019-10-02 2021-12-10 株式会社Lg化学 Method for preparing precursor of positive electrode active material for lithium secondary battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH1027611A (en) * 1996-07-12 1998-01-27 Tanaka Kagaku Kenkyusho:Kk Lithium-containing compound oxide for lithium ion secondary battery and its manufacture
JPH1029820A (en) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Nickel-cobalt multiple hydroxide, its production and stock of active material of positive electrode for lithium secondary battery
JPH11246225A (en) * 1997-10-30 1999-09-14 Samsung Display Devices Co Ltd Lithium multiple oxide, its production and lithium secondary cell having positive electrode containing that lithium multiple oxide as active material
JP2002170562A (en) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd Positive electrode material for lithium secondary battery and method for manufacturing the same
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
JP2008130287A (en) * 2006-11-17 2008-06-05 Matsushita Battery Industrial Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2009137834A (en) * 2007-11-12 2009-06-25 Toda Kogyo Corp Li-Ni-BASED COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2009298679A (en) * 2008-06-17 2009-12-24 Sumitomo Metal Mining Co Ltd Production method of aluminum-containing nickel hydroxide particle
WO2011067937A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
JP2011116583A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Manganese compound hydroxide particle and method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery
JP2011119092A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Active material particles, and use of same
JP2011116582A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel manganese compound hydroxide particle and method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339806A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH1027611A (en) * 1996-07-12 1998-01-27 Tanaka Kagaku Kenkyusho:Kk Lithium-containing compound oxide for lithium ion secondary battery and its manufacture
JPH1029820A (en) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Nickel-cobalt multiple hydroxide, its production and stock of active material of positive electrode for lithium secondary battery
JPH11246225A (en) * 1997-10-30 1999-09-14 Samsung Display Devices Co Ltd Lithium multiple oxide, its production and lithium secondary cell having positive electrode containing that lithium multiple oxide as active material
JP2002170562A (en) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd Positive electrode material for lithium secondary battery and method for manufacturing the same
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
JP2008130287A (en) * 2006-11-17 2008-06-05 Matsushita Battery Industrial Co Ltd Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2009137834A (en) * 2007-11-12 2009-06-25 Toda Kogyo Corp Li-Ni-BASED COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2009298679A (en) * 2008-06-17 2009-12-24 Sumitomo Metal Mining Co Ltd Production method of aluminum-containing nickel hydroxide particle
WO2011067937A1 (en) * 2009-12-02 2011-06-09 住友金属鉱山株式会社 Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
JP2011116583A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Manganese compound hydroxide particle and method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery
JP2011119092A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Active material particles, and use of same
JP2011116582A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel manganese compound hydroxide particle and method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2011116580A (en) * 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171743A (en) * 2012-02-21 2013-09-02 Sumitomo Metal Mining Co Ltd Nickel cobalt complex hydroxide, and method for manufacturing the same
JP2013246983A (en) * 2012-05-25 2013-12-09 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel-cobalt composite hydroxide
CN102800857A (en) * 2012-09-11 2012-11-28 贵州红星发展股份有限公司 Method for preparing ternary positive material precursor
JP2015072801A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2015115547A1 (en) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN105934409A (en) * 2014-01-31 2016-09-07 住友金属矿山株式会社 Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2015115547A1 (en) * 2014-01-31 2017-03-23 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US10236507B2 (en) 2014-01-31 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide particles, method for producing same, cathode active material for non-aqueous electrolyte secondary batteries, method for producing same, and non-aqueous electrolyte secondary battery
JP2015173122A (en) * 2015-05-22 2015-10-01 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
US11217790B2 (en) 2016-01-06 2022-01-04 Sumitomo Metal Mining Co., Ltd. Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
WO2017119459A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive electrode active material precursor for non aqueous electrolyte secondary cell, positive electrode active material for non aqueous electrolyte secondary cell, method for manufacturing positive electrode active material precursor for non aqueous electrolyte secondary cell, and method for manufacturing positive electrode active material for non aqueous electrolyte secondary cell
WO2017119457A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive electrode active material precursor for non aqueous electrolyte secondary cell, positive electrode active material for non aqueous electrolyte secondary cell, method for manufacturing positive electrode active material precursor for non aqueous electrolyte secondary cell, and method for manufacturing positive electrode active material for non aqueous electrolyte secondary cell
US10790509B2 (en) 2016-01-06 2020-09-29 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
US11949102B2 (en) 2016-01-06 2024-04-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active material precursor for nonaqueous electrolyte secondary battery and method for manufacturing positive electrode active material precursor for nonaqueous electrolyte secondary battery
JPWO2017119451A1 (en) * 2016-01-06 2018-10-25 住友金属鉱山株式会社 Cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery, method for producing cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery Manufacturing method
US11482703B2 (en) 2016-01-06 2022-10-25 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material precursor for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery
WO2017119451A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
CN107394201A (en) * 2016-05-09 2017-11-24 日亚化学工业株式会社 The manufacture method of nickel cobalt complex hydroxide and the manufacture method of positive electrode active material for nonaqueous electrolyte secondary battery
KR101748999B1 (en) * 2016-08-01 2017-06-20 (주)이엠티 Method for Preparing Cathode Active Material Precursor for Secondary Battery
JPWO2018123995A1 (en) * 2016-12-26 2018-12-27 住友金属鉱山株式会社 Positive electrode active material precursor for non-aqueous electrolyte secondary battery
CN110114917B (en) * 2016-12-26 2020-06-16 住友金属矿山株式会社 Positive electrode active material precursor for nonaqueous electrolyte secondary battery
CN110114917A (en) * 2016-12-26 2019-08-09 住友金属矿山株式会社 Nonaqueous electrolyte positive active material presoma
US11316155B2 (en) 2016-12-26 2022-04-26 Sumitomo Metal Mining Co., Ltd. Cathode active material precursor for non-aqueous electrolyte secondary battery
JP6443589B2 (en) * 2016-12-26 2018-12-26 住友金属鉱山株式会社 Positive electrode active material precursor for non-aqueous electrolyte secondary battery
WO2018123995A1 (en) * 2016-12-26 2018-07-05 住友金属鉱山株式会社 Nonaqueous electrolyte positive electrode active material precursor
JP2020119679A (en) * 2019-01-21 2020-08-06 Jx金属株式会社 Oxide-based positive electrode active material for all-solid lithium ion battery, production method thereof, and all-solid lithium ion battery
CN109850912A (en) * 2019-02-12 2019-06-07 武汉理工大学 A kind of alkaline aqueous electrolyte system cell positive material of bimetal composite boride and preparation method thereof
CN109850912B (en) * 2019-02-12 2022-07-22 武汉理工大学 Alkaline aqueous solution electrolyte system battery positive electrode material of composite bimetal boride and preparation method thereof
CN115210187A (en) * 2020-03-27 2022-10-18 株式会社田中化学研究所 Method for producing nickel-containing hydroxide
CN115210187B (en) * 2020-03-27 2024-02-13 株式会社田中化学研究所 Method for producing nickel hydroxide
WO2023106309A1 (en) * 2021-12-08 2023-06-15 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN114261997A (en) * 2021-12-28 2022-04-01 广西中伟新能源科技有限公司 Nickel-cobalt hydroxide and preparation method thereof, nickel-cobalt oxide, lithium ion battery positive electrode material, positive electrode, battery and electric equipment

Also Published As

Publication number Publication date
JP5464348B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
US11876222B2 (en) Nickel composite hydroxide and manufacturing method thereof, cathode active material for nonaqueos-electrolyte secondary battery and manufacturing method thereof, and nonaqueous-electrolyte secondary battery
JP5614334B2 (en) Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide
KR102161044B1 (en) Nickel-cobalt composite hydroxide and process for manufacturing same
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
KR101694086B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
US10236504B2 (en) Nickel-cobalt-manganese composite hydroxide, and production method therefor
KR101644258B1 (en) Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
US9941515B2 (en) Nickel-cobalt-manganese composite hydroxide and method for producing same
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP2017533571A (en) Positive electrode active material for lithium battery having porous structure and production method
JP6895105B2 (en) A method for producing nickel-manganese composite hydroxide particles and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP5754416B2 (en) Method for producing nickel cobalt composite hydroxide
JP2006089364A (en) Nickel hydroxide particle containing aluminum and its manufacturing method
KR20130096224A (en) Process for preparing lithium mixed metal oxides and their use as cathode material
JP2016031854A (en) Transition metal complex hydroxide particle and manufacturing method thereof, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries with the same
JP2015038878A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7255386B2 (en) Method for producing transition metal composite hydroxide
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5799849B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP6876600B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2015173122A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5464348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150