JP2010263104A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2010263104A
JP2010263104A JP2009113422A JP2009113422A JP2010263104A JP 2010263104 A JP2010263104 A JP 2010263104A JP 2009113422 A JP2009113422 A JP 2009113422A JP 2009113422 A JP2009113422 A JP 2009113422A JP 2010263104 A JP2010263104 A JP 2010263104A
Authority
JP
Japan
Prior art keywords
film
groove
semiconductor device
silica
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009113422A
Other languages
English (en)
Inventor
Junichiro Nishitani
純一郎 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2009113422A priority Critical patent/JP2010263104A/ja
Publication of JP2010263104A publication Critical patent/JP2010263104A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】シリカ系SOD膜を用いて微細で緻密なSTIを形成する。
【解決手段】半導体基板1に形成した溝内にシリコン酸化膜を含む素子分離絶縁膜で素子分離された半導体装置であって、該素子分離絶縁膜は、溝の側面に設けた耐酸化性のサイドウォール膜5と、該サイドウォール膜5で囲まれた溝の下部に配された、熱酸化法で形成した酸化シリコン膜8と、前記サイドウォール膜で囲まれた溝の上部に充填したシリカ系SOD膜7とを備える。
【選択図】図6

Description

本発明は、半導体装置及びその製造方法に関し、特に浅溝素子分離(STI:Shallow Trench Isoration)領域にスピン塗布により絶縁膜を形成した半導体装置及びその製造方法に関する。
近年、微細化した半導体装置の製造に際して、素子分離として、半導体基板に形成した溝内に絶縁膜を埋め込んだSTIが一般的に用いられている。
微細化の進展に伴い、STIを形成するための溝のアスペクト比が大きくなるため、通常のCVD法で形成した絶縁膜では、溝内を完全に充填することが困難となる。このため、スピンコート法によって溝内に充填することが可能なポリシラザン等の材料を用いることが提案されている(特許文献1)。
ポリシラザンはシラザン型重合体とも呼ばれ、−(SiH2−NH)−を基本構造とする高分子材料であり、溶媒(キシレン、ジ−n−ブチルエーテル等)に溶かして利用される。シラザン型重合体には、水素がメトキシ基など他の官能基によって置換された物質も含まれる。また、官能基・修飾基の付加されていない重合体は、ペルヒドロポリシラザンと呼ばれている。
以下、ポリシラザン等のスピンコート法で形成するシリカ系絶縁膜を、シリカ系SOD(Spin On Dielectric)膜と記載する。なお、シリカ系SOD膜はスピンオングラス(Spin On Glass:SOG)とも呼ばれている。本明細書では、スピンコート法で形成したポリシラザン等の前駆体膜を水蒸気等で酸化シリコンに改質した膜をシリカ系SOD膜と呼ぶ。
シリカ系SOD膜を用いてSTIを形成するには、ポリシラザン系溶液等をスピンコート法にて塗布した後に、熱処理を行い、固体の絶縁膜に改質する必要がある。すなわち、高温の水蒸気雰囲気中でポリシラザン膜を加熱処理することにより、塗布したポリシラザン膜中の窒素は水と反応してアンモニアとなり離脱する。これにより、Si−N結合がSi−O結合に置換されて、酸化シリコン(SiO)を主成分とする膜に改質される。
ポリシラザン膜を水蒸気雰囲気で熱処理する際には、酸化のダメージが半導体基板に及ばないように、窒化シリコン(Si)等の耐酸化性を備えた膜(ライナー膜)を溝内壁全面に形成した後、ポリシラザン膜を塗布する方法が提案されている(特許文献2)。
ここで、スピンコート法で形成するシリカ系SOD膜としては、前駆体として水素化シリコンよりも体積収縮の小さい上記のポリシラザンが好ましいとされているが、それでも体積収縮に伴うクラック等が皆無となるわけではない。そこで、特許文献3,4では、窒化シリコン等のライナー膜上にCVD法によりポリシリコンをさらに積層し、形成される空隙部分にスピンコートによりポリシラザン等の前駆体膜を形成して、水蒸気雰囲気で熱処理することで、ポリシラザンが酸化シリコンに改質されると同時に、ポリシリコンが酸化シリコンに酸化されることで体積膨張し、シリカ系SOD膜の体積収縮に伴うクラックを防止する方法が開示されている。
特許第3178412号公報 特開2005−340446号公報 特開2004−273519号公報 特開2005−347636号公報
例えば、60nm以下の設計ルールでDRAM素子を形成しようとする場合には、メモリセル部に形成するSTI用の溝の開口幅は設計ルールと同程度であり、アスペクト比は4〜6程度となる。このような微細形状の溝内に窒化シリコンのライナー膜を介してポリシラザン膜を充填し、水蒸気雰囲気中で改質を行おうとすると、表面近傍のポリシラザン膜は十分に改質されて緻密な酸化シリコンとなるが、溝内部のポリシラザン膜では改質が十分に進行しなかった。これは、ライナー膜である窒化シリコンの表面からアンモニア(NH)の脱ガスが発生し、このアンモニアが、ポリシラザン膜中のSi−N結合がSi−O結合に置換されるのを阻害するためと推測される。
このように、改質の不十分な絶縁膜は、STI形成のCMP(Chemical Mechanical Polishing)処理で表面を研磨した後に半導体基板表面に露出してしまうため、その後の湿式エッチングの工程等で大きくえぐれてしまうことがあった。これは、ポリシラザン膜等の改質の際の体積収縮に伴い、膜質が疎になりエッチングレートが大きくなるためと考えられる。このため、段差に起因した配線層の短絡を引き起こす原因となり、製造歩留まりが低下するという問題があった。
特許文献3,4のように、ライナー膜上にポリシリコンを積層した場合、ライナー膜である窒化シリコンの表面からの脱ガスの問題は改善されると予想されるが、上記のように素子の高集積度化がさらに進むと、素子分離領域の溝幅がさらに狭くなり、このような狭い溝内に複数の膜を形成することは溝の開口を狭める、すなわち、アスペクト比をさらに大きくすることとなり、スピンコートによるSOD膜形成が困難となる。一方、開口幅をある程度保持するように、ポリシリコン層を薄く形成した場合、ポリシリコン層が酸化シリコンに変化する際の体積膨張による圧縮効果が少なくなり、シリカ系SOD膜の緻密化が十分に達成されない。また、特許文献4では、窒化シリコンライナー膜の一部をも酸化する程度の高温(900〜1200℃)で水蒸気を含む雰囲気中で熱処理する方法が開示されているが、ライナー膜からの脱ガスが多くなり、ポリシラザンの改質にも影響する。
本発明では、素子分離(STI)を形成する溝の側面に設けた耐酸化性を有するサイドウォール膜と、該サイドウォール膜で囲まれた溝の下部に設けた熱酸化シリコン層と、前記サイドウォール膜で囲まれた溝内のシリコン層の上部を充填されたシリカ系SOD膜とを備えた素子分離を有する半導体装置が提供される。
また、本発明では、サイドウォール膜で囲まれた溝の底部に露出する半導体基板(シリコン基板)表面に選択的エピタキシャル成長によりシリコン層を溝深さの半分まで形成した後、シリカ系SOD前駆体膜を溝の上部に充填し、高温の水蒸気雰囲気中で熱処理することにより、前駆体膜を酸化シリコン膜を主成分とするシリカ系SOD膜に改質すると共に、溝下部のシリコン層の少なくとも一部を酸化シリコンに変化させる方法が提供される。
シリカ系SOD膜を用いて微細なSTIを形成する際に、溝内を充填したポリシラザン等の前駆体膜を緻密な膜質の酸化シリコンに改質することが可能となる。このため、平坦な構造のSTIを容易に形成することが可能となる。製造歩留まりの低下を防止し、微細な半導体装置の製造を行うことが可能となる。
本発明の一実施形態に係るSTIの形成方法を説明するフローチャートである。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。 本発明の一実施形態に係る半導体装置の製造方法を説明する工程断面図である。
以下、図面を参照して本発明を実施するための実施例を説明するが、本発明はこれらの実施例のみに限定されるものではなく、本発明の範囲を逸脱しない範囲で適宜変更等が加えられても良いものである。
(実施例1)
図1は、本実施形態に係るSTI形成方法を説明するフローチャートであり、図2〜8は、本発明の一実施例に係る半導体装置の製造方法を説明する工程断面図である。
まず、半導体基板(シリコン基板)1にSTI用の溝を形成するため、ハードマスクとして熱酸化法で形成した酸化シリコン膜2とCVD法で形成した窒化シリコン膜3を積層し、公知のフォトリソグラフィ技術を用いて、窒化シリコン膜3と酸化シリコン膜2のパターニングを行い、半導体基板1表面を露出させる開口部(4a)を形成する(図2)。
次に、窒化シリコン膜3をマスクとしてシリコンの異方性エッチングを行い、素子分離溝(溝パターン4)を形成する(図1:S1)。溝パターン4の表面に熱酸化法で酸化シリコンの薄膜(図示せず)を形成する(図1:S2)。この熱酸化はエッチングダメージを回復するために行われる。その後、溝パターン4の内部を完全には充填しない膜厚で窒化シリコン膜を、CVD法等の公知の方法で堆積し(図1:S3)、異方性エッチングを行うことで、窒化シリコン膜からなるサイドウォール膜5を形成する(図1:S4)。この時、溝パターン4の底部の半導体基板1表面は露出する(図3)。
次に、選択エピタキシャル成長法にて、溝パターン4の底部に露出する半導体基板上にシリコン層6を形成する(図1:S5)。半導体基板1の表面(シリコン)が露出していない部分(溝側面及びハードマスク表面)にはシリコン層は形成されない。シリコン層6の膜厚は、この例では、溝パターン4の深さ(ハードマスク部分を含む)の半分程度となるように調節する(図4)。この結果、例えば、シリコン層形成前のアスペクト比が4〜6の溝パターンは、アスペクト比2〜3の溝パターンとなる。シリコン層の膜厚は、形成すべきSTIのサイズにより一概に限定できないが、100nm以上であることが好ましい。また、膜厚の上限は、シリコン層上部に充填するシリカ系SOD膜が、シリコン層の酸化及びCMP等の平坦化工程を経ても残存する膜厚であればよい。
SOD前駆体として、ポリシラザン溶液(より具体的には、ペルヒドロポリシラザンのジ−n−ブチルエーテル溶液)をスピンコート法により塗布し、150℃程度のベークを行うことにより溶媒を揮発させ、溝パターン4の内部を充填すると共に、窒化シリコン膜3の上面を覆うポリシラザン膜を形成する(図1:S6)。塗布したポリシラザン膜は、その後に、400〜600℃程度の温度の水蒸気雰囲気中での酸化処理(スチーム酸化)を行う(図1:S7)。これにより、ポリシラザン膜がシリカ系SOD膜7(酸化シリコン膜)に改質されると共に、シリコン層6も酸化されて、熱酸化シリコン膜8となる。窒化シリコンで形成したサイドウォール膜5は耐酸化性を備えているので、溝パターン4の側面は酸化されない(図5)。なお、本明細書においては、シリコンを熱酸化したものを熱酸化シリコン膜と称し、ポリシラザン等の前駆体を改質して形成した酸化シリコン(シリカ系SOD膜)と区別するものとする。
本発明では、溝パターンの下部にシリコン層6を設けたことにより、以下の2つの効果を奏する。
第1に、溝パターン開口4のアスペクト比が低減されるので、シリカ系SOD膜7(ポリシラザン膜)の塗布による開口充填が容易になると共に、SOD前駆体膜の酸化処理による改質が促進される。これは溝内を充填するSOD前駆体膜の膜厚(溝の深さ)が小さくなることに加えて、溝底部には窒化シリコン膜が存在しないので、SOD前駆体膜の改質を阻害するアンモニアの発生が低減されるためである。
第2に、シリコン層6が酸化される際に体積が膨張するため、上部に位置するシリカ系SOD膜への圧縮効果が生じる。一般的にSOD前駆体膜をシリカ系SOD膜に改質する際には収縮傾向を示すため、微細な溝部を埋め込んだ場合には、収縮によって疎な膜質となりやすい。本発明では下方からの圧縮効果によって、シリカ系SOD膜が収縮によって疎な膜質となるのを抑制し、緻密な膜質のシリカ系SOD膜(酸化シリコン)へと改質することができる。
その後、公知の方法により半導体基板表面を露出させる。具体的には、図6に示すように、CMP法により、窒化シリコン膜3の上面が露出するまで研磨を行い、表面を平坦化する。次に、図7に示すように、湿式エッチングにより、窒化シリコン膜3、酸化シリコン膜2を除去すると共に、シリカ系SOD膜7の半導体基板1の上面よりも突出している部分を除去する(図1:S8)。これによりSTIによる素子分離が形成される。
本発明では、ポリシラザン膜が緻密なシリカ系SOD膜7(酸化シリコン)に改質されているので、湿式エッチングの工程に際して、シリカ系SOD膜の除去量の制御が容易となる。従って、シリカ系SOD膜が大きくえぐれてしまうことを防止でき、平坦な素子分離を容易に形成することが可能となる。
このようにSTIによる素子分離が形成された半導体基板上には、公知の方法により半導体装置の構成要素であるトランジスタ等を形成することができる。例えば、図8に示すように、熱酸化法により、ゲート絶縁膜10を形成する。多結晶シリコンとタングステン(W)等の金属との積層膜を用いて、ゲート電極11を形成する。イオン注入法にて、砒素(As)またはホウ素(B)等の不純物を半導体基板1に導入し、不純物拡散層12を形成する。不純物拡散層12はMOSトランジスタのソース・ドレイン電極として機能する。この後に、層間絶縁膜、各電極に接続するコンタクトプラグ、上層の配線層等を形成すれば半導体装置が完成する。
(変形例)
図5のスチーム酸化処理の工程において、必ずしもシリコン層6をすべて熱酸化シリコン膜8に変化させる必要は無い。図9に示したように、溝パターン4の底部にシリコン層6が残存した構造となってもよい。また、図10に示したように、サイドウォール膜5下の半導体基板1の一部まで酸化が進んだ状態となってもよい。この場合は、サイドウォール膜5で覆われていない半導体基板1も酸化され、熱酸化シリコン膜8となる。
シリコン層6をどの程度まで酸化するかは、素子分離に必要な能力(隣接素子へのリーク電流の抑制能力)と溝パターンの深さとを考慮して、最適となるように選択すればよい。
また、シリカ系SOD膜の前駆体としては、スピン塗布等の塗布法により溝に充填でき、高温の水蒸気雰囲気での処理により酸化シリコン膜への改質が可能な材料であれば、ポリシラザン以外の公知の材料でも使用可能である。特に本発明では、溝下部に形成したエピタキシャル成長シリコン層が酸化させる際の圧縮効果が大きいため、ポリシラザンよりも体積収縮の大きい前駆体を用いた場合にも緻密な膜質のシリカ系SOD膜を得ることができる。
サイドウォール膜は耐酸化性(酸素非透過性)を備えた膜であればよく、窒化シリコン膜と他の膜(例えば酸窒化シリコン膜SiON等)との積層膜でもよい。
1 半導体基板
2 酸化シリコン膜
3 窒化シリコン膜
4 溝パターン
4a 開口
5 サイドウォール膜
6 シリコン層
7 シリカ系SOD膜
8 熱酸化シリコン膜
10 ゲート絶縁膜
11 ゲート電極
12 不純物拡散層

Claims (13)

  1. 半導体基板に形成した溝内にシリコン酸化膜を含む素子分離絶縁膜で素子分離された半導体装置であって、
    該素子分離絶縁膜は、
    溝の側面に設けた耐酸化性のサイドウォール膜と、
    該サイドウォール膜で囲まれた溝の下部に配された、熱酸化法で形成した熱酸化シリコン膜と、
    前記サイドウォール膜で囲まれた溝の上部に充填したシリカ系SOD膜と
    を備えた半導体装置。
  2. 耐酸化性のサイドウォール膜は、窒化シリコン膜を含む請求項1に記載の半導体装置。
  3. 前記サイドウォール膜で囲まれた溝の下部に配された、熱酸化法で形成した熱酸化シリコン膜は、前記耐酸化性のサイドウォール膜の形成された溝底に半導体基板を露出させた後、エピタキシャル成長させたシリコン層の少なくとも一部を、該シリコン層上部に充填したシリカ系前駆体膜をシリカ系SOD膜に改質すると同時に熱酸化したものである請求項1又は2に記載の半導体装置。
  4. 前記サイドウォール膜で囲まれた溝の底部にエピタキシャル成長させたシリコン層を有する請求項3に記載の半導体装置。
  5. 前記素子分離絶縁膜は、前記サイドウォール膜下の半導体基板の一部が熱酸化されて形成された絶縁層を含む請求項1乃至3のいずれか1項に記載の半導体装置。
  6. 前記シリカ系SOD膜は、ポリシラザン系塗布溶液を塗布し、溶媒除去後、水蒸気改質して形成されたものである請求項1乃至5のいずれか1項に記載の半導体装置。
  7. 半導体基板表面に素子分離のための溝を形成する工程、
    前記溝の側面に耐酸化性のサイドウォール膜を形成する工程、
    前記溝の底面に露出する半導体基板上にエピタキシャル成長によりシリコン層を形成する工程、
    前記シリコン層上の溝内にシリカ系前駆体膜を充填する工程、
    水蒸気雰囲気中で熱処理することにより、前記シリカ系前駆体膜をシリカ系SOD膜に改質すると共に、溝下部のシリコン層の少なくとも一部を熱酸化シリコン膜に変化させる工程、
    とを備える半導体装置の製造方法。
  8. 耐酸化性のサイドウォール膜は、窒化シリコン膜を含む請求項7に記載の半導体装置の製造方法。
  9. 前記シリカ系前駆体膜はポリシラザン系の膜である請求項7又は8に記載の半導体装置の製造方法。
  10. 溝下部の前記シリコン層の一部が酸化シリコンに酸化され、溝底部のシリコン層が残存する条件で水蒸気雰囲気中で熱処理する請求項7乃至9のいずれか1項に記載の半導体装置の製造方法。
  11. 溝下部の前記シリコン層の全部が酸化シリコンに酸化される条件で水蒸気雰囲気中で熱処理する請求項7乃至9のいずれか1項に記載の半導体装置の製造方法。
  12. さらに、前記シリコン層下の半導体基板の一部まで酸化される条件で水蒸気雰囲気中で熱処理する請求項11に記載の半導体装置の製造方法。
  13. 素子分離のために形成された溝のアスペクト比が4〜6であり、エピタキシャル成長によりシリコン層を形成した後の溝のアスペクト比が2〜3である請求項7乃至12のいずれか1項に記載の半導体装置の製造方法。
JP2009113422A 2009-05-08 2009-05-08 半導体装置及びその製造方法 Pending JP2010263104A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113422A JP2010263104A (ja) 2009-05-08 2009-05-08 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113422A JP2010263104A (ja) 2009-05-08 2009-05-08 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010263104A true JP2010263104A (ja) 2010-11-18

Family

ID=43360952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113422A Pending JP2010263104A (ja) 2009-05-08 2009-05-08 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010263104A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041910A1 (ja) * 2012-09-12 2014-03-20 住友電気工業株式会社 炭化珪素半導体装置の製造方法
WO2014041878A1 (ja) * 2012-09-12 2014-03-20 住友電気工業株式会社 炭化珪素半導体装置の製造方法
US8685832B2 (en) 2011-08-25 2014-04-01 Tokyo Electron Limited Trench filling method and method of manufacturing semiconductor integrated circuit device
US9343527B2 (en) 2011-12-05 2016-05-17 Renesas Electronics Corporation Semiconductor device including an isolation film buried in a groove
US9679986B2 (en) 2012-09-12 2017-06-13 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685832B2 (en) 2011-08-25 2014-04-01 Tokyo Electron Limited Trench filling method and method of manufacturing semiconductor integrated circuit device
US9343527B2 (en) 2011-12-05 2016-05-17 Renesas Electronics Corporation Semiconductor device including an isolation film buried in a groove
WO2014041910A1 (ja) * 2012-09-12 2014-03-20 住友電気工業株式会社 炭化珪素半導体装置の製造方法
WO2014041878A1 (ja) * 2012-09-12 2014-03-20 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP2014056914A (ja) * 2012-09-12 2014-03-27 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
US8927368B2 (en) 2012-09-12 2015-01-06 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
CN104584220A (zh) * 2012-09-12 2015-04-29 住友电气工业株式会社 用于制造碳化硅半导体器件的方法
US9087693B2 (en) 2012-09-12 2015-07-21 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US9543412B2 (en) 2012-09-12 2017-01-10 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device
US9679986B2 (en) 2012-09-12 2017-06-13 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
CN104584220B (zh) * 2012-09-12 2017-07-11 住友电气工业株式会社 用于制造碳化硅半导体器件的方法

Similar Documents

Publication Publication Date Title
US8580649B2 (en) Method for manufacturing semiconductor device
JP4607613B2 (ja) 半導体装置の製造方法
US7682927B2 (en) Method of manufacturing semiconductor device
US7442620B2 (en) Methods for forming a trench isolation structure with rounded corners in a silicon substrate
JP4672400B2 (ja) 過水素化ポリシラザン溶液およびそれを用いた半導体装置の製造方法
JP2008103645A (ja) 半導体装置の製造方法
US20060151855A1 (en) Semiconductor device and method of manufacturing the same
JP2003045957A (ja) 半導体装置の素子分離方法
JP2010098293A (ja) 半導体装置
JP4417882B2 (ja) 半導体装置の製造方法
JP2009099909A (ja) 半導体装置の製造方法
JP2010263104A (ja) 半導体装置及びその製造方法
KR100513801B1 (ko) 갭필을 위한 유동성 절연막을 구비하는 반도체 소자의제조 방법
JP2008177277A (ja) フラッシュメモリ及びフラッシュメモリの製造方法
US7371657B2 (en) Method for forming an isolating trench with a dielectric material
JP4331133B2 (ja) 半導体装置の製造方法
JP2007019191A (ja) 半導体装置とその製造方法
KR100973223B1 (ko) 반도체 소자의 소자 분리막 형성 방법
KR100505447B1 (ko) 유동성 절연막의 치밀도를 향상시킨 반도체 소자의 제조방법
TWI579959B (zh) 淺溝槽隔離結構暨其形成方法
JP2004193205A (ja) 半導体装置および半導体装置の製造方法
JP2007142311A (ja) 半導体装置及びその製造方法
JP2006269766A (ja) 半導体装置及びその製造方法
KR100344771B1 (ko) 반도체장치의 소자격리방법
JP2014212230A (ja) 半導体装置の製造方法