JP2010137183A - Method for manufacturing particle and conductive particle obtained from the same - Google Patents

Method for manufacturing particle and conductive particle obtained from the same Download PDF

Info

Publication number
JP2010137183A
JP2010137183A JP2008317524A JP2008317524A JP2010137183A JP 2010137183 A JP2010137183 A JP 2010137183A JP 2008317524 A JP2008317524 A JP 2008317524A JP 2008317524 A JP2008317524 A JP 2008317524A JP 2010137183 A JP2010137183 A JP 2010137183A
Authority
JP
Japan
Prior art keywords
particles
mother liquor
raw material
strong dispersion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008317524A
Other languages
Japanese (ja)
Other versions
JP5155840B2 (en
Inventor
Akinori Kumagai
彰記 熊谷
Takahiko Sakagami
貴彦 坂上
Koichi Kawaratani
浩一 瓦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2008317524A priority Critical patent/JP5155840B2/en
Publication of JP2010137183A publication Critical patent/JP2010137183A/en
Application granted granted Critical
Publication of JP5155840B2 publication Critical patent/JP5155840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily manufacturing particles with high dispersibility and suppressed agglomeration at high productivity. <P>SOLUTION: In the method of manufacturing the particles, the particles are produced by: circulating a mother liquid containing a first raw material substance and at the same time supplying a second raw material substance to a forcible dispersion apparatus installed in a part of a circulation path; and causing reaction of the first raw material substance with the second raw material substance in the state that the mother liquid is forcibly dispersed in the forcible dispersion apparatus. It is preferable that a plurality of forcible dispersion apparatuses are arranged in parallel or in series in the circulation path. Also, the supply amount and/or concentration of the second raw material substance is preferable to be gradually decreased with the lapse of time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高い分散性を有する粒子を製造する方法に関する。また本発明は、この方法によって製造された粒子を原料とする導電性粒子に関する。   The present invention relates to a method for producing particles having high dispersibility. Moreover, this invention relates to the electroconductive particle which uses the particle | grains manufactured by this method as a raw material.

本出願人は先に、芯材粒子の表面に酸化錫層が形成された導電性粉末及びその製造方法を提案した(特許文献1参照)。同文献で提案されている製造方法は、以下の工程を含むものである。先ず芯材を水中に分散させたスラリーが仕込まれた反応槽中に水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行う。これによって、芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を、反応槽中に生成させる。この前駆体を含むスラリーの少なくとも一部を、中和の際又は中和の後に、反応槽とは別に設置した強分散装置において強分散処理し、強分散処理した液を反応槽のスラリー中に戻す。その後、スラリー中の前駆体を洗浄・乾燥した後、非酸化性雰囲気中200〜1200℃で焼成する。これによって目的とする酸化錫層が形成された導電性粉末が得られる。   The present applicant has previously proposed a conductive powder having a tin oxide layer formed on the surface of core material particles and a method for producing the same (see Patent Document 1). The manufacturing method proposed in this document includes the following steps. First, a water-soluble tin compound is added to a reaction tank in which a slurry in which a core material is dispersed in water is added, and then a neutralization reaction is performed using an acid or an alkali. Thereby, the conductive powder precursor in which the coating layer made of tin oxide hydrate is formed on the surface of the core material is generated in the reaction vessel. At least a part of the slurry containing the precursor is subjected to strong dispersion treatment in a strong dispersion apparatus installed separately from the reaction tank during or after neutralization, and the strongly dispersed liquid is put into the slurry of the reaction tank. return. Thereafter, the precursor in the slurry is washed and dried, and then fired at 200 to 1200 ° C. in a non-oxidizing atmosphere. As a result, a conductive powder in which a target tin oxide layer is formed is obtained.

上述の方法で製造された導電性粉末は、導電性が高く、また分散性に優れ、良好な白色度を有するものとなる。したがって、この導電性粉末を、例えば紙、プラスチック、ゴム、樹脂、塗料等に配合することで、これらの材料からなる製品に導電性を容易に付与することができる。しかも、これらの材料の色が損なわれることもない。   The conductive powder produced by the above method has high conductivity, excellent dispersibility, and good whiteness. Therefore, by adding this conductive powder to, for example, paper, plastic, rubber, resin, paint, etc., conductivity can be easily imparted to products made of these materials. Moreover, the color of these materials is not impaired.

しかし、上述の方法は、芯材粒子の表面に導電層を設けた粒子からなる導電層被覆粒子粉末が得られるに過ぎない。   However, the above-described method only provides a conductive layer-coated particle powder composed of particles in which a conductive layer is provided on the surface of core material particles.

特開2005−108734号公報JP 2005-108734 A

本発明の目的は、前述した従来技術の粒子よりも凝集が更に抑制され、分散性が更に向上した粒子を製造し得る方法、及び該粒子を原料とする導電性粒子を提供することにある。   An object of the present invention is to provide a method capable of producing particles that are further suppressed in agglomeration and further improved in dispersibility as compared with the aforementioned prior art particles, and conductive particles using the particles as raw materials.

本発明は、第1の原料物質を含む母液を循環させつつ、循環経路の一部に設けられた強分散装置に第2の原料物質を供給し、
該強分散装置において該母液を強分散させた状態下に第1の原料物質と第2の原料物質とを反応させて、粒子を生成させることを特徴とする、粒子の製造方法を提供するものである。
The present invention supplies the second raw material to the strong dispersion device provided in a part of the circulation path while circulating the mother liquor containing the first raw material.
Provided is a method for producing particles, characterized in that particles are produced by reacting a first raw material and a second raw material in a state where the mother liquor is strongly dispersed in the strongly dispersing apparatus. It is.

また本発明は、第1の原料物質を含む母液を循環させつつ、循環経路の一部に設けられた超音波反応装置に第2の原料物質を供給し、
該超音波反応装置において該母液を強分散させた状態下に第1の原料物質と第2の原料物質とを反応させて、粒子を生成させることを特徴とする、粒子の製造方法を提供するものである。
Further, the present invention supplies the second raw material to the ultrasonic reaction apparatus provided in a part of the circulation path while circulating the mother liquor containing the first raw material.
Provided is a method for producing particles, characterized in that particles are produced by reacting a first raw material and a second raw material in a state in which the mother liquor is strongly dispersed in the ultrasonic reaction device. Is.

更に本発明は、前記の製造方法によって得られた粒子を含む反応終了後のスラリーを、洗浄及び乾燥させた後に焼成して得られたことを特徴とする導電性粒子を提供するものである。   The present invention further provides conductive particles obtained by washing and drying a slurry after completion of the reaction containing particles obtained by the above production method, followed by firing.

本発明によれば、凝集が抑制され、高い分散性を有する粒子を高い量産性で容易に製造することができる。   According to the present invention, aggregation is suppressed and particles having high dispersibility can be easily produced with high mass productivity.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。本発明の一実施形態として、以下の説明においては、水酸化錫粒子を製造する方法を例に挙げる。この粒子は、その後の工程で焼成されて、最終目的物の導電性粒子として酸化錫粒子となる。図1には、水酸化錫粒子の製造に好適に用いられる製造装置の一例の模式図が示されている。   The present invention will be described below based on preferred embodiments with reference to the drawings. As an embodiment of the present invention, in the following description, a method for producing tin hydroxide particles will be described as an example. These particles are baked in the subsequent process to become tin oxide particles as conductive particles of the final target product. FIG. 1 shows a schematic diagram of an example of a production apparatus suitably used for producing tin hydroxide particles.

図1に示す製造装置10は、母液槽11、母液槽11の底部から延びる第1循環配管12、第1循環配管12の出口側に接続された強分散装置13、強分散装置13の出口側に接続され、且つ母液槽11へ帰還する第2循環配管14とを備えている。これらの部材によって、装置10には循環経路が形成される。第1循環配管12の途中には第1ポンプ15が設置されている。また第2循環配管14の途中には第2ポンプ16が設置されている。   1 includes a mother liquor tank 11, a first circulation pipe 12 extending from the bottom of the mother liquor tank 11, a strong dispersion apparatus 13 connected to the outlet side of the first circulation pipe 12, and an outlet side of the strong dispersion apparatus 13. And a second circulation pipe 14 that returns to the mother liquor tank 11. These members form a circulation path in the device 10. A first pump 15 is installed in the middle of the first circulation pipe 12. A second pump 16 is installed in the middle of the second circulation pipe 14.

母液槽11内には攪拌翼11aが設置されている。攪拌翼11aはシャフト11bを介して槽外に設置されたモータ11cに接続している。攪拌翼11aは、モータ11cを駆動源として一定方向に回転するようになっている。   A stirring blade 11 a is installed in the mother liquor tank 11. The stirring blade 11a is connected to a motor 11c installed outside the tank through a shaft 11b. The stirring blade 11a rotates in a fixed direction using the motor 11c as a drive source.

強分散装置13内には、攪拌部13aが設置されている。攪拌部13aはシャフト13bを介してモータ13cに接続している。攪拌部13aは、モータ13cを駆動源として一定方向に回転するようになっている。更に強分散装置13には、被覆層形成用の反応物を供給する供給部13dが設けられている。強分散装置13としてはその容積が、母液層11の容積よりも十分に小さいものが用いられる。   A stirring unit 13 a is installed in the strong dispersion device 13. The stirring unit 13a is connected to a motor 13c through a shaft 13b. The stirring unit 13a rotates in a fixed direction using the motor 13c as a drive source. Further, the strong dispersion device 13 is provided with a supply unit 13d for supplying a reactant for forming the coating layer. As the strong dispersion device 13, a device whose volume is sufficiently smaller than the volume of the mother liquor layer 11 is used.

以上の装置10を用いた粒子の製造方法について説明すると、先ず母液槽11内に母液20を充填する。母液20は、第1の原料物質及び媒体を含むものである。媒体としては、第1の原料物質の種類に応じて適切な液体が選択される。一般的には第1の原料物質の溶解が可能なものが用いられる。例えば水酸化錫粒子を製造する場合であれば、第1の原料物質として水溶性の錫化合物を用いることができ、媒体として水を用いればよい。以下の説明においては、水溶性錫化合物を用いた例について述べるが、第1の原料物質としては、単一の原材料を用いてもよく、あるいは最終的に得られる導電性粒子の特性改善等を目的として、複数の原材料を用いてもよい。   The particle production method using the above apparatus 10 will be described. First, the mother liquor tank 11 is filled with the mother liquor 20. The mother liquor 20 contains the first raw material and medium. As the medium, an appropriate liquid is selected according to the type of the first raw material. In general, a material capable of dissolving the first raw material is used. For example, in the case of producing tin hydroxide particles, a water-soluble tin compound can be used as the first raw material, and water may be used as the medium. In the following description, an example using a water-soluble tin compound will be described. However, as the first raw material, a single raw material may be used, or the properties of the conductive particles finally obtained can be improved. For the purpose, a plurality of raw materials may be used.

母液20中には水溶性錫化合物が添加されている。水溶性錫化合物は、本実施形態における目的物である水酸化錫の粒子を形成するための反応物の一つである。水溶性錫化合物としては、後述する第2の原料物質と反応して水酸化錫の粒子を形成し得るものが用いられる。そのような水溶性錫化合物としては、錫酸ナトリウム及び四塩化錫等が挙げられる。これらの水溶液錫化合物は水への溶解が容易なので好適に用いられる。   A water-soluble tin compound is added to the mother liquor 20. The water-soluble tin compound is one of reactants for forming particles of tin hydroxide, which is the target product in this embodiment. As the water-soluble tin compound, those capable of reacting with a second raw material described later to form tin hydroxide particles are used. Examples of such water-soluble tin compounds include sodium stannate and tin tetrachloride. These aqueous tin compounds are preferably used because they are easily dissolved in water.

母液20中における水溶性錫化合物の水溶液濃度は、Snに換算して1〜20重量%、特に3〜10重量%であることが好ましい。水溶液濃度がこの範囲内にあると、水酸化錫の粒子が容易に形成されるからである。   The aqueous solution concentration of the water-soluble tin compound in the mother liquor 20 is preferably 1 to 20% by weight, particularly 3 to 10% by weight in terms of Sn. This is because when the aqueous solution concentration is within this range, tin hydroxide particles are easily formed.

母液槽11内に所定量の母液20が充填されたら、母液槽11の攪拌翼11aの回転を開始する。次いで、第1ポンプ15、強分散装置13及び第2ポンプ16を起動して、装置10に形成された循環経路内に母液20を通し、これを循環させる。   When the mother liquid tank 11 is filled with a predetermined amount of the mother liquid 20, the rotation of the stirring blade 11a of the mother liquid tank 11 is started. Next, the first pump 15, the strong dispersion device 13, and the second pump 16 are activated to pass the mother liquor 20 through the circulation path formed in the device 10 and circulate it.

循環経路内での母液20の循環が安定したら、強分散装置13の供給部13dを通じて強分散装置13内に、第2の原料物質を供給する。強分散装置13内に供給する第2の原料物質として、本実施形態においては酸又はアルカリを用いる。酸及びアルカリは、母液20に添加されている水溶性錫化合物を中和させて、水酸化錫の粒子を生成させる。   When the circulation of the mother liquor 20 in the circulation path is stabilized, the second raw material is supplied into the strong dispersion device 13 through the supply unit 13 d of the strong dispersion device 13. In the present embodiment, acid or alkali is used as the second raw material substance supplied into the strong dispersion device 13. The acid and alkali neutralize the water-soluble tin compound added to the mother liquor 20 to produce tin hydroxide particles.

酸又はアルカリによる水溶性錫化合物の中和反応は、非常に迅速に進行する。したがって、例えば非常に大容量の反応槽を用い、これに水溶性錫化合物の水溶液を充填しておき、その中に酸又はアルカリを添加して中和反応を起こさせようとすると、反応槽内を攪拌したとしても、酸又はアルカリを添加した部分において中和反応が局所的に生じてしまい、均一な粒径の粒子を得ることができない。また、水酸化錫は軟質の物質なので、中和反応の最中に粒子どうしが付着して凝集が起こってしまう。これに対して本実施形態によれば、強分散装置13は、上述のとおり母液槽11よりもはるかに小容量のものであり、しかも母液20を高速攪拌するものであるから、局所的な中和反応が生ずることが防止され、均一な粒径の水酸化錫の粒子を形成することができる。また、粒子が極めて分散した状態になるので、粒子の凝集を効果的に防止することができる。このことは、特に凝集の起こりやすい小粒径の粒子(例えば粒径が0.01〜1μmのもの)を生成させる場合に有効である。しかも母液20は、循環経路内を循環しているので、強分散装置13に供給する酸又はアルカリの量及び/又は濃度を低くして中和反応を徐々に行うことができる。以上の作用によって、均一な粒径の水酸化錫の粒子を生成させることができるのみならず、粒子の凝集を防止することができる。   The neutralization reaction of the water-soluble tin compound with acid or alkali proceeds very rapidly. Therefore, for example, when a very large capacity reaction tank is used and an aqueous solution of a water-soluble tin compound is filled therein, and an acid or alkali is added therein to cause a neutralization reaction, Even if the mixture is stirred, a neutralization reaction locally occurs in the portion where the acid or alkali is added, and particles having a uniform particle size cannot be obtained. In addition, since tin hydroxide is a soft substance, particles adhere to each other during the neutralization reaction, causing aggregation. On the other hand, according to the present embodiment, the strong dispersion device 13 has a much smaller volume than the mother liquor tank 11 as described above, and stirs the mother liquor 20 at a high speed. A sum reaction is prevented from occurring, and tin hydroxide particles having a uniform particle diameter can be formed. Further, since the particles are in a very dispersed state, the aggregation of the particles can be effectively prevented. This is particularly effective when particles having a small particle size (for example, particles having a particle size of 0.01 to 1 μm) that easily aggregate are generated. Moreover, since the mother liquor 20 circulates in the circulation path, the amount and / or concentration of the acid or alkali supplied to the strong dispersion device 13 can be lowered and the neutralization reaction can be performed gradually. With the above-described action, not only tin hydroxide particles having a uniform particle diameter can be generated, but also particle aggregation can be prevented.

背景技術の項で述べた本出願人の先の出願に係る特開2005−108734号公報においては、本実施形態と異なり、母液槽に芯材粒子、水溶性錫化合物、及び酸又はアルカリを添加して中和反応を起こさせ、中和後の液を強分散装置で分散させている。この中和反応は、上述のとおり非常に迅速に進行するので、強分散装置を使用する時点で中和反応が既に完結している。したがって、粒子の生成プロセスが相違するのみならず、凝集を確実に防止することは容易でない。また、母液槽中に強分散装置を設置し、該強分散装置によって液を強分散しながら該母液槽中で中和反応を行った場合であっても、一般に強分散装置の容積に比して母液槽の容積の方が非常に大きいので、反応は不均一に進行し、粒子の凝集を確実に防止することはやはり容易でない。要するに、本実施形態においては母液槽とは独立した強分散装置が設置された容器内において中和反応が行われるのに対し、前記の特開2005−108734号公報に記載の技術は、母液槽において中和反応を行う点で、本実施形態と全く相違するものである。   In Japanese Patent Application Laid-Open No. 2005-108734 related to the earlier application of the present applicant described in the background art section, unlike this embodiment, core material particles, a water-soluble tin compound, and an acid or an alkali are added to a mother liquor tank. Thus, a neutralization reaction is caused, and the neutralized liquid is dispersed with a strong dispersion device. Since the neutralization reaction proceeds very rapidly as described above, the neutralization reaction has already been completed when the strong dispersion apparatus is used. Therefore, not only is the particle production process different, but it is not easy to reliably prevent agglomeration. Even if a strong dispersion apparatus is installed in the mother liquor tank and the neutralization reaction is carried out in the mother liquor tank while strongly dispersing the liquid with the strong dispersion apparatus, it is generally compared with the volume of the strong dispersion apparatus. Since the volume of the mother liquor is much larger, the reaction proceeds non-uniformly and it is still not easy to reliably prevent the particles from aggregating. In short, in the present embodiment, the neutralization reaction is performed in a container provided with a strong dispersion device independent of the mother liquor tank, whereas the technique described in the above-mentioned Japanese Patent Application Laid-Open No. 2005-108734 uses the mother liquor tank. This is completely different from the present embodiment in that a neutralization reaction is performed.

水溶性錫化合物と酸又はアルカリとの反応は強分散装置13において瞬時に完了するので、強分散装置13に供給された酸又はアルカリが未反応のまま循環経路中に流出することや、循環する母液中に酸又はアルカリが蓄積して、強分散装置13以外の箇所において中和反応が生ずることはほとんど起こり得ないか、又は起こったとしても、目的物の品質に影響を及ぼさない程度でしかない。つまり、水溶性錫化合物と酸又はアルカリとの反応は、実質的に強分散装置13のみにおいて生じる。   Since the reaction between the water-soluble tin compound and the acid or alkali is instantaneously completed in the strong dispersion device 13, the acid or alkali supplied to the strong dispersion device 13 flows out into the circulation path without being reacted or circulates. Acid or alkali accumulates in the mother liquor and a neutralization reaction hardly occurs at a place other than the strong dispersion device 13, or even if it occurs, it does not affect the quality of the target product. Absent. That is, the reaction between the water-soluble tin compound and the acid or alkali substantially occurs only in the strong dispersion device 13.

局所的な中和反応が生じることを効果的に防止する観点から、強分散装置13の容積はできるだけ小さいことが好ましい。一方、十分な処理量を確保する観点からは、強分散装置13の容積V2は大きいことが好ましい。これらのバランスを考慮すると、強分散装置13の容積V2は1〜1000cm3、特に10〜500cm3であることが好ましい。 From the viewpoint of effectively preventing a local neutralization reaction from occurring, the volume of the strong dispersion device 13 is preferably as small as possible. On the other hand, from the viewpoint of securing a sufficient processing amount, the volume V2 of the strong dispersion device 13 is preferably large. Considering these balances, the volume V2 of the strong dispersion device 13 is preferably 1 to 1000 cm 3 , particularly preferably 10 to 500 cm 3 .

同様の観点から、強分散装置13における攪拌部13aによる攪拌速度は5000rpm以上、特に10000rpm以上であることが好ましい。攪拌部13aによる攪拌速度の上限値に特に制限はなく高ければ高いほど好ましいが、16000rpm程度に高速攪拌すれば、局所的な中和反応が生じることを効果的に防止することができる。   From the same viewpoint, the stirring speed by the stirring unit 13a in the strong dispersion device 13 is preferably 5000 rpm or more, particularly preferably 10,000 rpm or more. Although there is no restriction | limiting in particular in the upper limit of the stirring speed by the stirring part 13a, it is so preferable that it is high, but if high-speed stirring is carried out to about 16000 rpm, it can prevent effectively that local neutralization reaction arises.

上述の容積及び攪拌速度を有する強分散装置13として好ましいものとしては、ホモジナイザやビーズミル等が挙げられる。これらのうちホモジナイザは、低コストで実設備に組み込み易いので特に好ましい。   Preferable examples of the strong dispersion device 13 having the above volume and stirring speed include a homogenizer and a bead mill. Among these, the homogenizer is particularly preferable because it is easy to incorporate into a real facility at a low cost.

強分散装置13内における母液20及び酸又はアルカリの滞留時間は、短ければ短いほど、局所的な中和反応の防止の観点から好ましい。具体的には、母液槽11から流出し強分散装置13に流入する母液20の流速をS1(cm3/min)とし、強分散装置13に供給される酸又はアルカリの速度をS3(cm3/min)とした場合、強分散装置13の容積V2(cm3)との関係で、V2/(S1+S3)の値が1〜60秒、特に30〜60秒であることが好ましい。 The shorter the residence time of the mother liquor 20 and the acid or alkali in the strong dispersion device 13 is, the shorter is preferable from the viewpoint of preventing a local neutralization reaction. Specifically, the flow rate of the mother liquor 20 flowing out from the mother liquor tank 11 and flowing into the strong dispersion device 13 is S1 (cm 3 / min), and the rate of acid or alkali supplied to the strong dispersion device 13 is S3 (cm 3 / Min), the value of V2 / (S1 + S3) is preferably 1 to 60 seconds, particularly preferably 30 to 60 seconds, in relation to the volume V2 (cm 3 ) of the strong dispersion device 13.

強分散装置13に流入する母液の量と酸又はアルカリの量との割合は、強分散装置13における局所的な中和反応の防止に関連している。具体的には、強分散装置13に供給される酸又はアルカリの速度S3と、母液槽11から流出し強分散装置13に流入する母液20の流速S1との比であるS3/S1が0.01〜0.05、特に0.03〜0.05となるように両者の速度を調整することが好ましい。換言すれば、単位時間当たりの母液20の供給量に対して、酸又はアルカリの供給量を圧倒的に少なくすることが好ましい。酸又はアルカリの供給量を少なくすることは、局所的な中和反応の防止の点からは非常に有効であるが、その反面、水酸化錫の粒子の生成速度の観点からはマイナスに作用する。このマイナスの点を、本実施形態においては、母液20を循環することで解決している。   The ratio of the amount of mother liquor flowing into the strong dispersion device 13 and the amount of acid or alkali is related to the prevention of local neutralization reaction in the strong dispersion device 13. Specifically, S3 / S1, which is a ratio of the acid or alkali speed S3 supplied to the strong dispersion apparatus 13 and the flow rate S1 of the mother liquor 20 flowing out of the mother liquor tank 11 and flowing into the strong dispersion apparatus 13, is 0. It is preferable to adjust both speeds to be 01 to 0.05, particularly 0.03 to 0.05. In other words, it is preferable that the supply amount of acid or alkali is overwhelmingly smaller than the supply amount of the mother liquor 20 per unit time. Reducing the supply amount of acid or alkali is very effective from the viewpoint of preventing local neutralization reaction, but on the other hand, it acts negatively from the viewpoint of the formation rate of tin hydroxide particles. . This minus point is solved by circulating the mother liquor 20 in this embodiment.

処理量にもよるが、母液20の流速S1が例えば10〜1000cm3/minである場合には、酸又はアルカリの速度S3は0.3〜50cm3/minであることが好ましい。 Although depending on the amount of treatment, when the flow rate S1 of the mother liquor 20 is, for example, 10 to 1000 cm 3 / min, the acid or alkali speed S3 is preferably 0.3 to 50 cm 3 / min.

強分散装置13における局所的な中和反応を防止する観点からは、酸又はアルカリの供給量を少なくすることに代えて、又はそれに加えて、供給する酸又はアルカリの濃度を低くすることも有効である。この観点から、酸又はアルカリの濃度は、母液20に含まれる水溶性錫化合物の濃度が上述の範囲であることを条件として、規定度で表して1〜25N、特に5〜20Nであることが好ましい。   From the viewpoint of preventing local neutralization reaction in the strong dispersion device 13, it is also effective to reduce the concentration of the acid or alkali to be supplied instead of or in addition to reducing the amount of acid or alkali to be supplied. It is. From this point of view, the acid or alkali concentration is 1 to 25 N, particularly 5 to 20 N expressed in terms of normality, provided that the concentration of the water-soluble tin compound contained in the mother liquor 20 is in the above range. preferable.

強分散装置13に供給される酸としては、例えば硫酸、硝酸、酢酸などの水溶液が用いられる。アルカリとしては、例えば水酸化ナトリウム水溶液やアンモニア水などが用いられる。   As the acid supplied to the strong dispersion device 13, for example, an aqueous solution of sulfuric acid, nitric acid, acetic acid or the like is used. As the alkali, for example, an aqueous sodium hydroxide solution or ammonia water is used.

強分散装置13に供給される酸及びアルカリは連続的でもよく、或いは断続的でもよい。一層均一な粒径の水酸化錫の粒子を形成する観点からは、酸又はアルカリを連続供給することが好ましい。供給には、例えばプランジャーポンプ等を用いることができる。   The acid and alkali supplied to the strong dispersion device 13 may be continuous or intermittent. From the viewpoint of forming tin hydroxide particles having a more uniform particle diameter, it is preferable to continuously supply acid or alkali. For the supply, for example, a plunger pump or the like can be used.

酸又はアルカリは、循環の時間経過と共にその供給量(供給速度)及び/又は濃度を変化(例えば漸増又は漸減)させてもよい。例えば、供給量を変化させる場合には、容積が数百cm3〜数m3の母液槽11を用いたときには該供給量を0.1〜10L/minの範囲で漸増又は漸減させることができる。一方、濃度を変化させる場合には、1〜50重量%の範囲で漸増又は漸減させることができる。この操作によって、反応の終期における局所的な中和反応を効果的に防止することができる。 The acid or alkali may change (for example, gradually increase or decrease) its supply amount (supply rate) and / or concentration over time. For example, when changing the supply amount, when the mother liquor tank 11 having a volume of several hundred cm 3 to several m 3 is used, the supply amount can be gradually increased or decreased in the range of 0.1 to 10 L / min. . On the other hand, when the concentration is changed, it can be gradually increased or decreased in the range of 1 to 50% by weight. By this operation, a local neutralization reaction at the end of the reaction can be effectively prevented.

母液の循環時間に特に制限はなく、所望の粒径の粒子が形成されるまで循環を行えばよい。本発明者らの検討の結果、循環開始から循環終了までの時間をT(min)としたとき、上述のS1及びV1との関係で、S1T/V1の値が5以上、特に10以上となるように循環を行うことで、満足すべき粒径の粒子が形成されることが判明した。S1T/V1の上限値は、数百程度であれば満足すべき結果が得られる。   There is no particular limitation on the circulation time of the mother liquor, and circulation may be performed until particles having a desired particle size are formed. As a result of the study by the present inventors, when the time from the start of circulation to the end of circulation is defined as T (min), the value of S1T / V1 is 5 or more, particularly 10 or more in relation to S1 and V1 described above. Thus, it was found that particles having a satisfactory particle diameter were formed by circulation. If the upper limit of S1T / V1 is about several hundreds, satisfactory results can be obtained.

本実施形態の変形例として、図2(a)及び(b)に示す実施形態が挙げられる。図2(a)に示す実施形態は、図1に示す装置10において、強分散装置13を複数個用い、それらを循環流路に対して並列に設けた例である。この実施形態によれば処理量の増大を図れる。したがって、この実施形態は、各強分散装置13の容積V2が小さい場合に特に有効である。   As a modification of the present embodiment, the embodiment shown in FIGS. 2A and 2B can be cited. The embodiment shown in FIG. 2A is an example in which a plurality of strong dispersion devices 13 are used in the device 10 shown in FIG. According to this embodiment, the amount of processing can be increased. Therefore, this embodiment is particularly effective when the volume V2 of each strong dispersion device 13 is small.

図2(b)に示す実施形態は、図1に示す装置10における、強分散装置13を複数個用い、それらを循環流路に対して直列に設けた例である。この実施形態によれば、母液の強分散の増強を図ることができるので、母液20の循環の回数を減らすことが可能になる。   The embodiment shown in FIG. 2B is an example in which a plurality of strong dispersion devices 13 are used in the device 10 shown in FIG. According to this embodiment, since the strong dispersion of the mother liquor can be enhanced, the number of circulations of the mother liquor 20 can be reduced.

更に本実施形態においては、強分散装置13に加えて、又は強分散装置13に代えて、超音波反応装置を用いて母液20と酸又はアルカリとを強分散させることができる。例えば図3に示すように、強分散装置13に加えて、母液槽11内に超音波反応装置17Aを設置することができる。この場合、第2の原料物質である酸又はアルカリは、強分散装置13に供給される。また、図4に示すように、強分散装置13を用いず、循環経路の一部である循環配管に超音波反応装置17Bを設置し、かつ母液槽11内に超音波反応装置17Aを設置することができる。この場合には、超音波反応装置17Bに酸又はアルカリが供給される。図4に示す実施形態においては、超音波反応装置17Bの体積やそこに供給される酸又はアルカリの量を、上述した強分散装置13の場合と同様にすることが好ましい。これらの図に示す実施形態を採用することによっても、凝集が抑制され、高い分散性を有する粒子を高い量産性で容易に製造することが可能となる。   Furthermore, in this embodiment, the mother liquor 20 and acid or alkali can be strongly dispersed using an ultrasonic reaction device in addition to or instead of the strong dispersion device 13. For example, as shown in FIG. 3, in addition to the strong dispersion device 13, an ultrasonic reaction device 17 </ b> A can be installed in the mother liquor tank 11. In this case, the acid or alkali as the second raw material is supplied to the strong dispersion device 13. Further, as shown in FIG. 4, without using the strong dispersion device 13, the ultrasonic reaction device 17 </ b> B is installed in the circulation pipe that is a part of the circulation path, and the ultrasonic reaction device 17 </ b> A is installed in the mother liquor tank 11. be able to. In this case, acid or alkali is supplied to the ultrasonic reaction device 17B. In the embodiment shown in FIG. 4, it is preferable that the volume of the ultrasonic reaction device 17B and the amount of acid or alkali supplied thereto are the same as those in the strong dispersion device 13 described above. Also by adopting the embodiments shown in these figures, aggregation can be suppressed and particles having high dispersibility can be easily produced with high mass productivity.

超音波反応装置17A,17Bは、1又は2以上の振動子(超音波ホーン)を備えている。振動子を循環配管12,14や母液槽11内に設置し、これを超音波振動させることで、母液20と酸又はアルカリとを強分散させる。超音波反応装置17A,17Bとしては、例えば新科産業有限会社から販売されている超音波反応装置SR40L型等を用いることができる。   The ultrasonic reaction devices 17A and 17B include one or two or more vibrators (ultrasonic horns). The vibrator is installed in the circulation pipes 12 and 14 and the mother liquor tank 11 and is ultrasonically vibrated to strongly disperse the mother liquor 20 and the acid or alkali. As the ultrasonic reaction devices 17A and 17B, for example, the ultrasonic reaction device SR40L type sold by Shinshin Sangyo Co., Ltd. can be used.

超音波反応装置17A,17Bにおける振動子の運転条件としては、例えば超音波周波数を10〜40kHzとし、超音波出力を300〜2000Wとすることが好ましい。   As operating conditions of the vibrator in the ultrasonic reaction devices 17A and 17B, for example, it is preferable that the ultrasonic frequency is 10 to 40 kHz and the ultrasonic output is 300 to 2000 W.

以上の方法によって、水酸化錫からなる粒子が得られる。この粒子においては、粒径が均一になっている。また凝集した粒子の数が極めて少なくなっている。その結果、この粒子は、その粒度分布がシャープなものになっている。具体的には、粒度分布の指標であるD50/D90の値が好ましくは0.5〜1、特に0.6〜1となる。なお、本明細書においてD50及びD90の値は、レーザー回折散乱法で求められる。 By the above method, particles made of tin hydroxide are obtained. These particles have a uniform particle size. Also, the number of aggregated particles is extremely small. As a result, the particles have a sharp particle size distribution. Specifically, the value of D 50 / D 90 that is an index of the particle size distribution is preferably 0.5 to 1, particularly 0.6 to 1. In the present specification, the values of D 50 and D 90 are determined by a laser diffraction scattering method.

このようにして得られた粒子は、反応系から分離され、洗浄及び乾燥工程を経た後に焼成工程に付される。それによって酸化錫からなる導電性粒子が得られる。その後、必要に応じて粉砕工程に付され、所望の粒径に調整される。この酸化錫の粒子においては、焼成前の粒子のシャープな粒度分布が維持されており、凝集が少なくなっている。具体的には、酸化錫の粒子は、粒度分布の指標であるD50/D90の値が、焼成前と同様に、好ましくは0.5〜1、特に0.6〜1となる。 The particles thus obtained are separated from the reaction system and subjected to a firing step after washing and drying steps. Thereby, conductive particles made of tin oxide are obtained. Thereafter, it is subjected to a pulverization step as necessary, and adjusted to a desired particle size. In the tin oxide particles, the sharp particle size distribution of the particles before firing is maintained, and aggregation is reduced. Specifically, the tin oxide particles have a value of D 50 / D 90 which is an index of particle size distribution, preferably 0.5 to 1, particularly 0.6 to 1, as before firing.

前記の焼成工程は、非酸化性雰囲気中で行うことが好ましい。非酸化性雰囲気としては、例えば窒素雰囲気、水素を含有した窒素雰囲気、アルゴン雰囲気等が挙げられる。これらのうち、水素を含有した窒素雰囲気は安価なので、工業的観点から好ましい。また、水素を含有した窒素雰囲気を用いる場合、水素の含有量は、好ましくは0.1〜10体積%、更に好ましくは1〜3体積%である。水素の含有量がこの範囲内にあると、錫を金属に還元させることなく、酸素欠損を有する導電性の酸化錫の被覆層を形成しやすいからである。   The firing step is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere, a nitrogen atmosphere containing hydrogen, and an argon atmosphere. Among these, a nitrogen atmosphere containing hydrogen is preferable from an industrial viewpoint because it is inexpensive. Moreover, when using nitrogen atmosphere containing hydrogen, content of hydrogen becomes like this. Preferably it is 0.1-10 volume%, More preferably, it is 1-3 volume%. This is because, when the hydrogen content is within this range, it is easy to form a conductive tin oxide coating layer having oxygen vacancies without reducing tin to metal.

前記の焼成工程における焼成温度は、好ましくは200〜1200℃、更に好ましくは400〜600℃である。焼成時間は、好ましくは5〜180分、更に好ましくは10〜120分である。焼成温度及び時間がこれらの範囲内にあると、酸素欠損を生じさせるのに十分であり、且つ凝集を起こし難いからである。この焼成工程を行うことにより導電性粒子が得られる。   The firing temperature in the firing step is preferably 200 to 1200 ° C, more preferably 400 to 600 ° C. The firing time is preferably 5 to 180 minutes, more preferably 10 to 120 minutes. This is because if the firing temperature and time are within these ranges, it is sufficient to cause oxygen vacancies and hardly cause aggregation. Conductive particles are obtained by performing this firing step.

このようにして得られた導電性粒子は、例えば紙、プラスチック、ゴム、樹脂、塗料等に添加してこれらに導電性を付与する導電性フィラーとして使用される。また、電池等の電極改質剤として使用される。   The conductive particles thus obtained are used, for example, as a conductive filler that is added to paper, plastic, rubber, resin, paint, etc. to impart conductivity to them. It is also used as an electrode modifier for batteries and the like.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記の実施形態で用いられた製造装置10に代えて、図5に示す装置10’を用いることもできる。図5に示す装置10’においては、母液槽11の底部に強分散装置13が直接取り付けられている。同図に示す装置10’を用いても、図1に示す装置10と同様の有利な効果が奏される。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, instead of the manufacturing apparatus 10 used in the above-described embodiment, an apparatus 10 ′ shown in FIG. 5 can be used. In the apparatus 10 ′ shown in FIG. 5, a strong dispersion apparatus 13 is directly attached to the bottom of the mother liquor tank 11. Even when the apparatus 10 'shown in the figure is used, the same advantageous effects as the apparatus 10 shown in FIG.

また前記実施形態は、本発明を、水酸化錫からなる粒子を生成させる方法に適用した例であるが、本発明はこれ以外の粒子の製造方法にも同様に適用できる。例えば、水溶性金属塩を酸又はアルカリで中和して得られる金属水酸化物の粒子の製造方法に本発明を適用することができる。具体的には、水酸化亜鉛粒子を生成させる方法に、本発明を適用することもできる。この場合には、母液中に塩化亜鉛等の亜鉛源となる水溶性亜鉛化合物を含有させておき、強分散装置に水酸化ナトリウム等のアルカリを供給すればよい。このようにして得られた粒子を大気中で焼成することによって、酸化亜鉛粒子を得ることができる。更に、インジウム及び錫の水酸化物粒子を生成させる方法に、本発明を適用することもできる。この場合には、母液中に硝酸インジウム等のインジウム源となる水溶性インジウム化合物及び塩化錫等の錫源となる水溶性錫化合物を含有させておき、強分散装置に水酸化ナトリウム等のアルカリを供給すればよい。このようにして得られた粒子を還元雰囲気中で焼成することによって、インジウム及び錫の複合酸化物(ITO)粒子を得ることができる。別法として、無電解還元法によって金属粒子を生成させる方法に本発明を適用することができる。この場合には、母液中に無電解還元の金属源となる化合物を含有させておき、強分散装置に還元剤を供給すればよい。   Moreover, although the said embodiment is an example which applied this invention to the method of producing | generating the particle | grains which consist of tin hydroxide, this invention is applicable similarly to the manufacturing method of other particle | grains. For example, the present invention can be applied to a method for producing metal hydroxide particles obtained by neutralizing a water-soluble metal salt with an acid or an alkali. Specifically, the present invention can be applied to a method of generating zinc hydroxide particles. In this case, a water-soluble zinc compound serving as a zinc source such as zinc chloride may be contained in the mother liquor, and an alkali such as sodium hydroxide may be supplied to the strong dispersion device. Zinc oxide particles can be obtained by firing the particles thus obtained in the air. Furthermore, the present invention can also be applied to a method for producing indium and tin hydroxide particles. In this case, the mother liquor contains a water-soluble indium compound serving as an indium source such as indium nitrate and a water-soluble tin compound serving as a tin source such as tin chloride, and an alkali such as sodium hydroxide is added to the strong dispersion device. What is necessary is just to supply. By firing the particles thus obtained in a reducing atmosphere, composite oxide (ITO) particles of indium and tin can be obtained. Alternatively, the present invention can be applied to a method of generating metal particles by an electroless reduction method. In this case, the mother liquor may contain a compound that becomes an electroless reduction metal source, and the reducing agent may be supplied to the strong dispersion device.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
図1に示す装置を用い、水酸化錫粒子を製造した。母液槽中に純水9000cm3を投入し、そこに1600gの錫酸ナトリウムを投入して5パス循環させた。このようにして母液を得た。この母液を、母液槽から流出する流速S1が200cm3となるように循環させながら、強分散装置としてのホモジナイザ(IKAジャパン株式会社製のT50(商品名))に20%硫酸を供給した。供給速度S3は9.2cm3/minであった。ホモジナイザの容積は500cm3、攪拌速度は16000rpmであった。循環を15分間行い、その間硫酸を連続的にホモジナイザに供給した。このようにして、水酸化錫粒子を得た。
[Example 1]
Tin hydroxide particles were produced using the apparatus shown in FIG. 9000 cm 3 of pure water was put into the mother liquor tank, and 1600 g of sodium stannate was put therein and circulated for 5 passes. A mother liquor was thus obtained. While this mother liquor was circulated so that the flow rate S1 flowing out of the mother liquor was 200 cm 3 , 20% sulfuric acid was supplied to a homogenizer (T50 (trade name) manufactured by IKA Japan Co., Ltd.) as a strong dispersion device. The supply speed S3 was 9.2 cm 3 / min. The volume of the homogenizer was 500 cm 3 and the stirring speed was 16000 rpm. Circulation was carried out for 15 minutes, during which time sulfuric acid was continuously fed to the homogenizer. In this way, tin hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を1体積%H2/N2雰囲気下で450℃、30分間還元焼成した。これによって、酸化錫粒子を得た。 The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 30 minutes in a 1% by volume H 2 / N 2 atmosphere. Thereby, tin oxide particles were obtained.

〔実施例2〕
図5に示す装置を用い、水酸化錫粒子を製造した。母液槽中に純水9000を投入し、そこに900gの錫酸ナトリウムを投入して5パス循環させた。このようにして母液を得た。この母液を、母液槽から流出する流速S1が200cm3となるように循環させながら、強分散装置としてのホモジナイザ(IKAジャパン株式会社製のmagic LAB(商品名))に20%硫酸を供給した。供給速度S3は9.2cm3/minであった。ホモジナイザの容積は20cm3、攪拌速度は16000rpmであった。循環を15分間行い、その間硫酸を連続的にホモジナイザに供給した。このようにして、水酸化錫粒子を得た。
[Example 2]
Tin hydroxide particles were produced using the apparatus shown in FIG. Pure water 9000 was charged into the mother liquor, and 900 g of sodium stannate was charged therein for circulation in 5 passes. A mother liquor was thus obtained. While this mother liquor was circulated so that the flow rate S1 flowing out from the mother liquor was 200 cm 3 , 20% sulfuric acid was supplied to a homogenizer (magic LAB (trade name) manufactured by IKA Japan Co., Ltd.) as a strong dispersion device. The supply speed S3 was 9.2 cm 3 / min. The volume of the homogenizer was 20 cm 3 and the stirring speed was 16000 rpm. Circulation was carried out for 15 minutes, during which time sulfuric acid was continuously fed to the homogenizer. In this way, tin hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を1体積%H2/N2雰囲気下で450℃、30分間還元焼成した。これによって、酸化錫粒子を得た。 The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 30 minutes in a 1% by volume H 2 / N 2 atmosphere. Thereby, tin oxide particles were obtained.

〔実施例3〕
図1に示す装置を用い、水酸化亜鉛粒子を製造した。母液槽中に純水9000cm3を投入し、そこに1000gの無水塩化亜鉛を投入して5パス循環させた。このようにして母液を得た。この母液を、母液槽から流出する流速S1が10L/minとなるように循環させながら、強分散装置としてのホモジナイザ(IKAジャパン株式会社製のT50(商品名))に20%水酸化ナトリウム水溶液を供給した。供給速度S3は9.2cm3/minであった。pHは5.0とした。ホモジナイザの容積は500cm3、攪拌速度は16000rpmであった。循環を15分間行い、その間硫酸を連続的にホモジナイザに供給した。このようにして、水酸化亜鉛粒子を得た。
Example 3
Using the apparatus shown in FIG. 1, zinc hydroxide particles were produced. 9000 cm 3 of pure water was put into the mother liquor tank, 1000 g of anhydrous zinc chloride was put therein and circulated for 5 passes. A mother liquor was thus obtained. While this mother liquor is circulated so that the flow rate S1 flowing out from the mother liquor is 10 L / min, a 20% aqueous sodium hydroxide solution is added to a homogenizer (T50 (trade name) manufactured by IKA Japan Co., Ltd.) as a strong dispersion device. Supplied. The supply speed S3 was 9.2 cm 3 / min. The pH was 5.0. The volume of the homogenizer was 500 cm 3 and the stirring speed was 16000 rpm. Circulation was carried out for 15 minutes, during which time sulfuric acid was continuously fed to the homogenizer. In this way, zinc hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を大気中、450℃で、45分還元焼成した。これによって、酸化亜鉛粒子を得た。   The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 45 minutes in the air. Thus, zinc oxide particles were obtained.

〔実施例4〕
図1に示す装置を用い、インジウム及び錫の水酸化物粒子を製造した。母液槽中に純水9000cm3を投入し、そこに5gの塩化スズ塩酸溶液(44%)及び976gの硝酸インジウム水溶液(100g/1000cm3、比重1.6g/cm3)の錫酸ナトリウムを投入して5パス循環させた。このようにして母液を得た。この母液を、母液槽から流出する流速S1が10L/minとなるように循環させながら、強分散装置としてのホモジナイザ(IKAジャパン株式会社製のT50(商品名))に20%水酸化ナトリウムを供給した。供給速度S3は9.2cm3/minであった。pHは3.0とした。ホモジナイザの容積は500cm3、攪拌速度は16000rpmであった。循環を15分間行い、その間硫酸を連続的にホモジナイザに供給した。このようにして、インジウム及び錫の水酸化物粒子を得た。
Example 4
Indium and tin hydroxide particles were produced using the apparatus shown in FIG. 9000 cm 3 of pure water was put into the mother liquor, and 5 g of tin chloride hydrochloric acid solution (44%) and 976 g of indium nitrate aqueous solution (100 g / 1000 cm 3 , specific gravity 1.6 g / cm 3 ) of sodium stannate were put into it. Then, 5 passes were circulated. A mother liquor was thus obtained. While this mother liquor is circulated so that the flow rate S1 flowing out from the mother liquor tank is 10 L / min, 20% sodium hydroxide is supplied to a homogenizer (T50 (trade name) manufactured by IKA Japan Co., Ltd.) as a strong dispersion device. did. The supply speed S3 was 9.2 cm 3 / min. The pH was 3.0. The volume of the homogenizer was 500 cm 3 and the stirring speed was 16000 rpm. Circulation was carried out for 15 minutes, during which time sulfuric acid was continuously fed to the homogenizer. In this way, indium and tin hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を1体積%H2/N2雰囲気下で450℃、45分還元焼成した。これによって、インジウム及び錫の複合酸化物(ITO)粒子を得た。 The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 45 minutes in a 1% by volume H 2 / N 2 atmosphere. Thus, indium and tin composite oxide (ITO) particles were obtained.

〔実施例5〕
図3に示す装置を用い、水酸化錫粒子を製造した。母液槽中に純水9000cm3を投入し、そこに1600gの錫酸ナトリウムを投入して5パス循環させた。このようにして母液を得た。この母液を、母液槽から流出する流速S1が200cm3となるように循環させながら、強分散装置としてのホモジナイザ(IKAジャパン株式会社製のT50(商品名))に20%硫酸を供給した。供給速度S3は9.2cm3/minであった。ホモジナイザの容積は500cm3、攪拌速度は16000rpmであった。また、超音波反応装置17Aとして新科産業有限会社製のSR40L型を用いた。この装置の運転条件は、2000W、25kHzとした。循環を15分間行い、その間硫酸を連続的にホモジナイザに供給した。このようにして、水酸化錫粒子を得た。
Example 5
Tin hydroxide particles were produced using the apparatus shown in FIG. 9000 cm 3 of pure water was put into the mother liquor tank, and 1600 g of sodium stannate was put therein and circulated for 5 passes. A mother liquor was thus obtained. While this mother liquor was circulated so that the flow rate S1 flowing out of the mother liquor was 200 cm 3 , 20% sulfuric acid was supplied to a homogenizer (T50 (trade name) manufactured by IKA Japan Co., Ltd.) as a strong dispersion device. The supply speed S3 was 9.2 cm 3 / min. The volume of the homogenizer was 500 cm 3 and the stirring speed was 16000 rpm. In addition, SR40L manufactured by Shinshin Sangyo Co., Ltd. was used as the ultrasonic reaction device 17A. The operating conditions of this device were 2000 W and 25 kHz. Circulation was carried out for 15 minutes, during which time sulfuric acid was continuously fed to the homogenizer. In this way, tin hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を1体積%H2/N2雰囲気下で450℃、30分間還元焼成した。これによって、酸化錫粒子を得た。 The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 30 minutes in a 1% by volume H 2 / N 2 atmosphere. Thereby, tin oxide particles were obtained.

〔実施例6〕
図4に示す装置を用い、水酸化錫粒子を製造した。母液槽中に純水9000cm3を投入し、そこに1600gの錫酸ナトリウムを投入して5パス循環させた。このようにして母液を得た。この母液を、母液槽から流出する流速S1が200cm3となるように循環させながら、強分散装置としての超音波反応装置17B(新科産業有限会社製のSRT40−01Type)に20%硫酸を供給した。供給速度S3は9.2cm3/minであった。超音波反応装置17Bの容積は500cm3であった。運転条件は、1000W、40kHzであった。また、超音波反応装置17Aとして新科産業有限会社製のSR40L型を用いた。この装置の運転条件は、2000W、25kHzとした。循環を15分間行い、その間硫酸を連続的に超音波反応装置17Bに供給した。このようにして、水酸化錫粒子を得た。
Example 6
Tin hydroxide particles were produced using the apparatus shown in FIG. 9000 cm 3 of pure water was put into the mother liquor tank, and 1600 g of sodium stannate was put therein and circulated for 5 passes. A mother liquor was thus obtained. While this mother liquor was circulated so that the flow rate S1 flowing out of the mother liquor was 200 cm 3 , 20% sulfuric acid was supplied to the ultrasonic reaction device 17B (SRT40-01Type manufactured by Shinshin Sangyo Co., Ltd.) as a strong dispersion device. . The supply speed S3 was 9.2 cm 3 / min. The volume of the ultrasonic reactor 17B was 500 cm 3 . The operating conditions were 1000 W and 40 kHz. In addition, SR40L manufactured by Shinshin Sangyo Co., Ltd. was used as the ultrasonic reaction device 17A. The operating conditions of this device were 2000 W and 25 kHz. Circulation was performed for 15 minutes, during which time sulfuric acid was continuously supplied to the ultrasonic reactor 17B. In this way, tin hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を1体積%H2/N2雰囲気下で450℃、30分間還元焼成した。これによって、酸化錫粒子を得た。 The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 30 minutes in a 1% by volume H 2 / N 2 atmosphere. Thereby, tin oxide particles were obtained.

〔実施例7〕
実施例6において超音波反応装置17Aを用いなかった。また超音波反応装置17Bの運転条件として1000W、40kHzを採用した。これら以外は実施例6と同様にして酸化錫粒子を得た。
Example 7
In Example 6, the ultrasonic reaction device 17A was not used. Moreover, 1000 W and 40 kHz were employ | adopted as the operating conditions of the ultrasonic reaction apparatus 17B. Except for these, tin oxide particles were obtained in the same manner as in Example 6.

〔比較例1〕
攪拌槽中に純水9000cm3を投入し、そこに930gの錫酸ナトリウムを投入して40℃で1時間攪拌した。このスラリーを70℃に昇温した後、20%硫酸を1300cm3供給し、スラリーのpHを3にした。その後、更に1時間攪拌を行った。このようにして水酸化錫粒子を得た。
[Comparative Example 1]
9000 cm 3 of pure water was put into a stirring tank, and 930 g of sodium stannate was put therein and stirred at 40 ° C. for 1 hour. After raising the temperature of the slurry to 70 ° C., 1300 cm 3 of 20% sulfuric acid was supplied to adjust the pH of the slurry to 3. Thereafter, the mixture was further stirred for 1 hour. In this way, tin hydroxide particles were obtained.

得られた粒子を含むスラリーを、その導電率が600μS/cm以下となるまでリパルプ洗浄した後、ヌッチェ濾過を行い、ケーキを得た。このケーキを大気中、150℃で10時間乾燥させた。次いで乾燥ケーキを粉砕し、その粉砕粉を1体積%H2/N2雰囲気下で450℃、30分間還元焼成した。これによって、酸化錫粒子を得た。 The slurry containing the obtained particles was repulp washed until the conductivity became 600 μS / cm or less, and then subjected to Nutsche filtration to obtain a cake. This cake was dried in air at 150 ° C. for 10 hours. Next, the dried cake was pulverized, and the pulverized powder was reduced and fired at 450 ° C. for 30 minutes in a 1% by volume H 2 / N 2 atmosphere. Thereby, tin oxide particles were obtained.

〔比較例2〕
母液槽中にホモジナイザ(IKAジャパン製 T−50)を取り付けた装置を用い、水酸化錫粒子を製造した。母液槽中に純水3510cm3を投入し、次にホモジナイザを用いて水を強分散しながら錫酸ナトリウム576gを投入し、これを溶解させた。Snの濃度は41%であった。引き続きホモジナイザにて強分散処理しながら、20%硫酸を液のpHが2.5になるまで添加して中和した。中和を開始してから終了するまで98分間にわたり強分散処理を行い続けた。この間、ホモジナイザは4500rpmで攪拌させた。このようにして水酸化錫粒子を得た。その後は実施例1と同様にして、酸化錫粒子を得た。
[Comparative Example 2]
Tin hydroxide particles were produced using an apparatus equipped with a homogenizer (T-50 manufactured by IKA Japan) in the mother liquor tank. 3510 cm 3 of pure water was charged into the mother liquor, and then 576 g of sodium stannate was charged while strongly dispersing the water using a homogenizer to dissolve it. The concentration of Sn was 41%. Subsequently, while strongly dispersing with a homogenizer, 20% sulfuric acid was added until the pH of the solution reached 2.5 to neutralize. The strong dispersion treatment was continued for 98 minutes from the start to the end of neutralization. During this time, the homogenizer was stirred at 4500 rpm. In this way, tin hydroxide particles were obtained. Thereafter, in the same manner as in Example 1, tin oxide particles were obtained.

〔評価〕
実施例及び比較例について、反応後でかつ洗浄前の粒子について、粒度分布(D50、D90)を以下の方法で測定した。また、焼成後の導電性粒子についても、粒度分布(D50、D90)を測定した。更に焼成後の導電性粒子について、比表面積及び体積抵抗を以下の方法で測定した。それらの結果を以下の表1に示す。
[Evaluation]
For Examples and Comparative Examples, the reaction after the and before washing the particles, the particle size distribution (D 50, D 90) were measured by the following method. As for the conductive particles after firing was measured particle size distribution (D 50, D 90). Furthermore, the specific surface area and volume resistance of the conductive particles after firing were measured by the following methods. The results are shown in Table 1 below.

〔粒度分布の測定〕
200cm3のサンプル容器に試料約0.1gを採り、これに0.2g/lのヘキサメタリン酸ソーダを10cm3添加混合し、引き続き純水90cm3を添加した。日本精機株式会社製の超音波分散機であるUS−300Tを用いて試料を10分間分散しサンプル液を調製した。このサンプル液を用い、日機装株式会社製マイクロトラックHRAを用いて分散粒度D50及びD90を測定した。
(Measurement of particle size distribution)
About 0.1 g of a sample was placed in a 200 cm 3 sample container, and 10 cm 3 of 0.2 g / l sodium hexametaphosphate was added and mixed thereto, followed by addition of 90 cm 3 of pure water. A sample solution was prepared by dispersing the sample for 10 minutes using US-300T, an ultrasonic disperser manufactured by Nippon Seiki Co., Ltd. Using this sample solution, the dispersed particle sizes D 50 and D 90 were measured using Microtrac HRA manufactured by Nikkiso Co., Ltd.

〔比表面積の測定〕
ユアサアイオニクス株式会社製モノソーブを用い、BET比表面積を測定した。
[Measurement of specific surface area]
The BET specific surface area was measured using a monosorb manufactured by Yuasa Ionics Co., Ltd.

〔体積抵抗率の測定〕
三菱化学株式会社製ロレスタPAPD−41を用い、試料を500kgf/cm2に加圧した状態下に、同社製ロレスタAPを用い体積抵抗率を測定した。
(Measurement of volume resistivity)
Using a Loresta PAPD-41 manufactured by Mitsubishi Chemical Corporation, the volume resistivity was measured using Loresta AP manufactured by the same company under the condition that the sample was pressurized to 500 kgf / cm 2 .

Figure 2010137183
Figure 2010137183

表1に示す結果から明らかなように、実施例で得られた粒子は、粒度分布がシャープであり、粒子の凝集の程度が低いことが判る。また、体積抵抗が低く、粒子の分散性が良好であることが判る。特に、ホモジナイザと超音波反応装置とを併用した実施例5においては、焼成前の粒子はそのD50/D90の値が大きくなり、シャープな粒度分布を有していることが判る。 As is apparent from the results shown in Table 1, the particles obtained in the examples have a sharp particle size distribution and a low degree of particle aggregation. Moreover, it turns out that volume resistance is low and the dispersibility of particle | grains is favorable. In particular, in Example 5 in which a homogenizer and an ultrasonic reaction device are used in combination, the particle before firing has a large D 50 / D 90 value, which indicates that it has a sharp particle size distribution.

本発明の製造方法に好適に用いられる装置を示す模式図である。It is a schematic diagram which shows the apparatus used suitably for the manufacturing method of this invention. 図1に示す装置の変形例を示す模式図である。It is a schematic diagram which shows the modification of the apparatus shown in FIG. 本発明の製造方法に好適に用いられる別の装置を示す模式図である。It is a schematic diagram which shows another apparatus used suitably for the manufacturing method of this invention. 本発明の製造方法に好適に用いられる別の装置を示す模式図である。It is a schematic diagram which shows another apparatus used suitably for the manufacturing method of this invention. 本発明の製造方法に好適に用いられる別の装置を示す模式図である。It is a schematic diagram which shows another apparatus used suitably for the manufacturing method of this invention.

符号の説明Explanation of symbols

10 製造装置
11 母液槽
12 第1循環配管
13 強分散装置
14 第2循環配管
20 母液
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus 11 Mother liquor tank 12 1st circulation piping 13 Strong dispersion apparatus 14 2nd circulation piping 20 Mother liquid

Claims (8)

第1の原料物質を含む母液を循環させつつ、循環経路の一部に設けられた強分散装置に第2の原料物質を供給し、
該強分散装置において該母液を強分散させた状態下に第1の原料物質と第2の原料物質とを反応させて、粒子を生成させることを特徴とする、粒子の製造方法。
While circulating the mother liquor containing the first source material, supplying the second source material to the strong dispersion device provided in a part of the circulation path,
A method for producing particles, characterized in that particles are produced by reacting a first raw material and a second raw material in a state where the mother liquor is strongly dispersed in the strong dispersion apparatus.
複数の前記強分散装置が、前記循環経路に対して並列に又は直列に設けられている請求項1記載の粒子の製造方法。   The method for producing particles according to claim 1, wherein a plurality of the strong dispersion devices are provided in parallel or in series with the circulation path. 時間の経過と共に第2の原料物質の供給量及び/又は濃度を変化させる請求項1又は2記載の粒子の製造方法。   The method for producing particles according to claim 1 or 2, wherein the supply amount and / or concentration of the second raw material is changed over time. 前記母液中に第1の原料物質として、1)水溶性錫化合物、2)水溶性亜鉛化合物、又は3)水溶性インジウム化合物及び水溶性錫化合物が含まれており、
第2の原料物質が酸又はアルカリである請求項1ないし3の何れかに記載の粒子の製造方法。
The mother liquor contains 1) a water-soluble tin compound, 2) a water-soluble zinc compound, or 3) a water-soluble indium compound and a water-soluble tin compound as the first raw material,
The method for producing particles according to any one of claims 1 to 3, wherein the second raw material is an acid or an alkali.
前記循環経路の一部に設置された母液槽内に超音波反応装置を更に設けて反応を行う請求項1ないし4のいずれかに記載の粒子の製造方法。   The method for producing particles according to any one of claims 1 to 4, wherein the reaction is performed by further providing an ultrasonic reaction device in a mother liquor tank installed in a part of the circulation path. 第1の原料物質を含む母液を循環させつつ、循環経路の一部に設けられた超音波反応装置に第2の原料物質を供給し、
該超音波反応装置において該母液を強分散させた状態下に第1の原料物質と第2の原料物質とを反応させて、粒子を生成させることを特徴とする、粒子の製造方法。
While circulating the mother liquor containing the first source material, supplying the second source material to the ultrasonic reaction device provided in a part of the circulation path,
A method for producing particles, characterized in that particles are produced by reacting a first raw material and a second raw material in a state where the mother liquor is strongly dispersed in the ultrasonic reaction device.
請求項1ないし6のいずれかに記載の製造方法によって得られた粒子を含む反応終了後のスラリーを、洗浄及び乾燥させた後に焼成して得られたことを特徴とする導電性粒子。   Conductive particles obtained by firing the slurry after completion of the reaction containing the particles obtained by the production method according to claim 1 after washing and drying. 粒度分布D50/D90の値が0.5〜1である請求項7記載の導電性粒子。 Conductive particles according to claim 7, wherein the value of the particle size distribution D 50 / D 90 is 0.5 to 1.
JP2008317524A 2008-12-12 2008-12-12 Method for producing metal hydroxide particles Expired - Fee Related JP5155840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317524A JP5155840B2 (en) 2008-12-12 2008-12-12 Method for producing metal hydroxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317524A JP5155840B2 (en) 2008-12-12 2008-12-12 Method for producing metal hydroxide particles

Publications (2)

Publication Number Publication Date
JP2010137183A true JP2010137183A (en) 2010-06-24
JP5155840B2 JP5155840B2 (en) 2013-03-06

Family

ID=42347783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317524A Expired - Fee Related JP5155840B2 (en) 2008-12-12 2008-12-12 Method for producing metal hydroxide particles

Country Status (1)

Country Link
JP (1) JP5155840B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098948A1 (en) * 2011-01-19 2012-07-26 三井金属鉱業株式会社 Tin oxide particles and method for producing same
JP2013151383A (en) * 2012-01-24 2013-08-08 Tsukishima Kikai Co Ltd Method for manufacturing aggregated particle of metal, method for manufacturing positive electrode active material for lithium ion battery, method for manufacturing lithium ion battery, and lithium ion battery
JP2014125415A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp ITO powder
JP6142295B1 (en) * 2016-06-07 2017-06-07 株式会社田中化学研究所 Positive electrode active material for secondary battery
EP3327508A1 (en) 2016-11-24 2018-05-30 Konica Minolta, Inc. Electrophotographic photoreceptor
WO2022202489A1 (en) 2021-03-26 2022-09-29 月島機械株式会社 Crystallization device, crystallization system, and crystallization method
WO2022230420A1 (en) * 2021-04-28 2022-11-03 月島機械株式会社 Crystallization method, crystallization device, and crystallization system
WO2023176146A1 (en) * 2022-03-15 2023-09-21 月島機械株式会社 Crystallization system and crystallization method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136904A (en) * 1980-03-31 1981-10-26 Toshiba Corp Production of platinum group particle
JPH04154605A (en) * 1990-10-16 1992-05-27 Agency Of Ind Science & Technol Inorganic uniform fine sphere and preparation thereof
JPH08318153A (en) * 1995-05-24 1996-12-03 Nikki Kagaku Kk Precipitate forming method adjusting precipitate particle diameter
JP2003119023A (en) * 2001-10-12 2003-04-23 Mitsui Mining & Smelting Co Ltd Method for producing ito powder, and ito powder
JP2003164745A (en) * 2001-11-29 2003-06-10 Yamatake Corp Microreactor
JP2004533912A (en) * 2001-03-07 2004-11-11 アンシャン ユニバーシティ オブ サイエンス アンド テクノロジー Method for producing nanometer-sized fine particles
JP2005036316A (en) * 2003-06-23 2005-02-10 Mitsubishi Materials Corp Metal particulate and production method therefor
JP2005506174A (en) * 2001-10-17 2005-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Rotor stator apparatus and method for particle formation
JP2005108734A (en) * 2003-09-30 2005-04-21 Mitsui Mining & Smelting Co Ltd Conductive powder and its producing method
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
JP2006297379A (en) * 2005-03-25 2006-11-02 Asahi Kasei Chemicals Corp Ultrasonic reactor apparatus
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle
JP2007204298A (en) * 2006-01-31 2007-08-16 Ymc Co Ltd Apparatus for producing fine particle and microchannel substrate
JP2007291515A (en) * 2006-03-31 2007-11-08 Taiyo Nippon Sanso Corp Particulate, and method and apparatus for producing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136904A (en) * 1980-03-31 1981-10-26 Toshiba Corp Production of platinum group particle
JPH04154605A (en) * 1990-10-16 1992-05-27 Agency Of Ind Science & Technol Inorganic uniform fine sphere and preparation thereof
JPH08318153A (en) * 1995-05-24 1996-12-03 Nikki Kagaku Kk Precipitate forming method adjusting precipitate particle diameter
JP2004533912A (en) * 2001-03-07 2004-11-11 アンシャン ユニバーシティ オブ サイエンス アンド テクノロジー Method for producing nanometer-sized fine particles
JP2003119023A (en) * 2001-10-12 2003-04-23 Mitsui Mining & Smelting Co Ltd Method for producing ito powder, and ito powder
JP2005506174A (en) * 2001-10-17 2005-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Rotor stator apparatus and method for particle formation
JP2003164745A (en) * 2001-11-29 2003-06-10 Yamatake Corp Microreactor
JP2005036316A (en) * 2003-06-23 2005-02-10 Mitsubishi Materials Corp Metal particulate and production method therefor
JP2005108734A (en) * 2003-09-30 2005-04-21 Mitsui Mining & Smelting Co Ltd Conductive powder and its producing method
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles
JP2006297379A (en) * 2005-03-25 2006-11-02 Asahi Kasei Chemicals Corp Ultrasonic reactor apparatus
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle
JP2007204298A (en) * 2006-01-31 2007-08-16 Ymc Co Ltd Apparatus for producing fine particle and microchannel substrate
JP2007291515A (en) * 2006-03-31 2007-11-08 Taiyo Nippon Sanso Corp Particulate, and method and apparatus for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098948A1 (en) * 2011-01-19 2012-07-26 三井金属鉱業株式会社 Tin oxide particles and method for producing same
JP2012148928A (en) * 2011-01-19 2012-08-09 Mitsui Mining & Smelting Co Ltd Tin oxide particle, and method for producing the same
US8916070B2 (en) 2011-01-19 2014-12-23 Mitsui Mining & Smelting Co., Ltd. Tin oxide particles and method for producing same
JP2013151383A (en) * 2012-01-24 2013-08-08 Tsukishima Kikai Co Ltd Method for manufacturing aggregated particle of metal, method for manufacturing positive electrode active material for lithium ion battery, method for manufacturing lithium ion battery, and lithium ion battery
JP2014125415A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp ITO powder
JP2017220359A (en) * 2016-06-07 2017-12-14 株式会社田中化学研究所 Positive electrode active material for secondary battery
JP6142295B1 (en) * 2016-06-07 2017-06-07 株式会社田中化学研究所 Positive electrode active material for secondary battery
EP3327508A1 (en) 2016-11-24 2018-05-30 Konica Minolta, Inc. Electrophotographic photoreceptor
WO2022202489A1 (en) 2021-03-26 2022-09-29 月島機械株式会社 Crystallization device, crystallization system, and crystallization method
KR20230162609A (en) 2021-03-26 2023-11-28 츠키시마 기카이 가부시키가이샤 Crystallization apparatus, crystallization system, and crystallization method
WO2022230420A1 (en) * 2021-04-28 2022-11-03 月島機械株式会社 Crystallization method, crystallization device, and crystallization system
JP2022170211A (en) * 2021-04-28 2022-11-10 月島機械株式会社 Crystallization method, crystallization device and crystallization system
JP7214782B2 (en) 2021-04-28 2023-01-30 月島機械株式会社 Crystallization method, crystallizer, and crystallizer system
WO2023176146A1 (en) * 2022-03-15 2023-09-21 月島機械株式会社 Crystallization system and crystallization method

Also Published As

Publication number Publication date
JP5155840B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5155840B2 (en) Method for producing metal hydroxide particles
KR101510369B1 (en) Process for producing copper powder and copper powder
JP5144022B2 (en) Copper powder manufacturing method and copper powder obtained by the manufacturing method
TWI574761B (en) Silver powder and its manufacturing method
JP6201875B2 (en) Silver powder and method for producing the same
WO2013133103A1 (en) Silver powder and method for producing same
JP5438956B2 (en) Method for producing particles having coating layer
JP5344099B2 (en) Silver powder and method for producing the same
KR20100024431A (en) Spherical copper fine powder and process for production of the same
JP5857703B2 (en) Silver powder
JP2006045655A (en) Silver nanoparticle and production method therefor
JP4540091B2 (en) Conductive powder and method for producing the same
JP6252275B2 (en) Silver powder and method for producing the same
JP2015228352A (en) Conductive particle
WO2014087728A1 (en) Silver powder
JP2009256776A (en) Method for producing silver fine particle
JP6115405B2 (en) Silver powder manufacturing method
US20130272949A1 (en) Transition metal compound particles and methods of production
JP5053925B2 (en) Silver oxide powder
US20100048741A1 (en) Fabrication Method of CaCO3 Nanoparticles Using Beads Milling
JP2018053342A (en) Production method of silver powder and production apparatus of silver powder
JP2011137189A (en) Silver particulate having high sphericity, and method for producing the same
JP2016138310A (en) Silver powder and production method therefor, and photosensitive silver paste
WO2019135306A1 (en) Copper nano ink production method and copper nano ink
JP5884708B2 (en) Silver powder manufacturing method and manufacturing apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees