WO2023176146A1 - Crystallization system and crystallization method - Google Patents

Crystallization system and crystallization method Download PDF

Info

Publication number
WO2023176146A1
WO2023176146A1 PCT/JP2023/001874 JP2023001874W WO2023176146A1 WO 2023176146 A1 WO2023176146 A1 WO 2023176146A1 JP 2023001874 W JP2023001874 W JP 2023001874W WO 2023176146 A1 WO2023176146 A1 WO 2023176146A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallizer
stirring blade
crystallization system
reaction
liquid
Prior art date
Application number
PCT/JP2023/001874
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 津崎
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Publication of WO2023176146A1 publication Critical patent/WO2023176146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/51Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is circulated through a set of tubes, e.g. with gradual introduction of a component into the circulating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/94Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary cylinders or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons

Definitions

  • the present invention relates to a crystallization system and method. This application claims priority based on Japanese Patent Application No. 2022-040318 filed in Japan on March 15, 2022, the contents of which are incorporated herein.
  • Crystallizers described in Patent Documents 1 to 4 are known as crystallizers that mix multiple raw material solutions and obtain particles derived from the raw materials in the raw material solutions within a certain particle size range. .
  • stirring is promoted by rotating a stirring blade provided in a mixed liquid of a plurality of raw material solutions to apply shear force to the mixed liquid.
  • stirring blades are rotated at high speed in the reaction field, where multiple raw material solutions come into contact with each other and the reaction that generates particles takes place. It is important to efficiently transmit the generated shear force to promote the reaction.
  • attempts have been made to minimize the clearance between the stirring blade, which is a rotor, and the reaction tank, reaction liquid supply nozzle, and the like, which are stators.
  • Non-Patent Document 1 a retention tank is provided, and by retaining the fine particles crystallized in the crystallizer in the retention tank, the crystals can be divided into a certain range. The residence time necessary for growth to particle size is secured.
  • the present invention was developed against this background, and allows fine particles precipitated in a crystallizer to be retained until they grow to a certain particle size range without requiring a retention tank, making it easy to control retention conditions.
  • the purpose of this invention is to provide a crystallization system and method.
  • a first aspect of the present invention includes a crystallizer that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions, and a crystallizer that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions; a circulation pipe that flows a slurry containing the particles and circulates the slurry from an inlet of the crystallizer into the crystallizer; and a circulation pipe that circulates the slurry between the crystallizer and the circulation pipe.
  • the crystallization system is equipped with a circulation pump that allows the crystallization system to move, and the circulation pipe has a meandering bent portion.
  • the flow rate of the circulation pump can be controlled without the need for complicated flow analysis. This makes it easy to completely and uniformly mix the slurry in the crystallization system.
  • the inner diameter of the circulation pipe is constant.
  • the slurry discharged from the crystallizer flows through the circulation pipe having a constant inner diameter, it is possible to control the flow rate of the circulation pump without requiring complicated flow analysis. , can easily mix the slurry completely homogeneously in the crystallization system.
  • a third aspect of the present invention is the first aspect in which a plurality of the bent portions are provided.
  • the third aspect of the present invention since a plurality of bent portions are provided, even when the volume of slurry is large, crystallization can be easily performed by controlling the flow rate of the circulation pump without requiring complicated flow analysis.
  • the slurry in the analysis system can be thoroughly mixed.
  • a fourth aspect of the present invention is that in the first aspect, at least a portion of the bent portion is provided in the temperature adjustment tank.
  • the slurry in the crystallization system can be easily and completely uniformly mixed by controlling the flow rate of the circulation pump. It is possible to adjust the amount of heat of the slurry.
  • the bent portion is composed of a plurality of separable straight tube portions and a plurality of bent tube portions.
  • the flow path length of the bent portion can be adjusted by changing the number of the plurality of straight pipe portions and the plurality of bent pipe portions, so that complicated flow analysis is possible.
  • the flow path length of the bent portion By adjusting the flow path length of the bent portion, the residence time of the slurry can be adjusted without the need for.
  • the crystallizer includes a stirring blade that is provided with a plurality of holes penetrating in the radial direction and is rotatable around a central axis, and a stirring blade that is arranged concentrically.
  • a cylindrical reaction tank with a bottom that can be accommodated inside the reaction tank; the introduction port that is provided in the reaction tank and is capable of supplying a first reaction liquid into the reaction tank;
  • a liquid supply unit capable of supplying the second reaction liquid into the inside of the reaction tank is provided.
  • the second reaction liquid is supplied from the liquid supply section provided on the stirring blade, which requires high manufacturing costs as in the case where the reaction liquid supply nozzle and the stirring blade are separately provided.
  • the second reaction liquid can be supplied within a short distance, for example within 2 mm, from the inner and outer peripheries of the stirring blade where the shearing force is highest, without requiring precision.
  • the stirring blade is equipped with a plurality of holes penetrating in the radial direction, the mixed liquid of the first reaction liquid and the second reaction liquid passes through the holes toward the outside in the radial direction of the stirring blade due to the influence of centrifugal force.
  • the stirring blade in the fifth aspect, includes a cylindrical cylindrical part, a disc-shaped disc part whose outer edge is fixed to an inner circumferential surface of the cylindrical part, and a rotating shaft extending upwardly along the central axis from the center of the disc part in a plan view, the second reaction liquid can flow through the interior of the disc part and the rotating shaft, and the second reaction liquid can flow inside the disc part and the rotating shaft;
  • the liquid supply section is provided at the outer edge.
  • the second reaction liquid is supplied at a close distance, for example, within 2 mm from the inner and outer periphery of the stirring blade having the highest shearing force. , can be supplied in a range of .
  • the liquid supply section opens downward.
  • the second reaction liquid is supplied at a close distance, for example, within 2 mm, from the inner and outer periphery of the stirring blade where the shear force is highest. Can be supplied to a range.
  • the liquid supply portion opens radially outward and penetrates the cylindrical portion.
  • the second reaction liquid is supplied from the inner and outer periphery of the stirring blade where the shear force is highest. It can be supplied to a close range, for example within 2 mm.
  • a tenth aspect of the present invention includes a crystallization step of mixing a plurality of raw material solutions and growing particles derived from a plurality of raw materials in the plurality of raw material solutions in a crystallizer, and an exhausting of the crystallizer.
  • This crystallization method includes a circulation step of circulating the slurry containing the particles discharged from the outlet to the inlet of the crystallizer by flowing the circulation pipe having a meandering bent portion.
  • the slurry discharged from the crystallizer flows through the circulation pipe, so the residence time of the slurry can be adjusted without the need for complicated flow analysis.
  • FIG. 1 is a schematic diagram of a crystallization system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a crystallization system according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a crystallization system according to a third embodiment of the present invention. It is a schematic diagram of the 1st modification of the crystallization system of 1st Embodiment based on this invention. It is a schematic diagram of the 2nd modification of the crystallization system of 1st Embodiment based on this invention. It is a schematic diagram of the third modification of the crystallization system of the first embodiment according to the present invention.
  • the crystallization system 10A includes a crystallizer 4 that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions, and a crystallizer 4 that is provided downstream of the crystallizer 4 and that mixes a plurality of raw material solutions.
  • a circulation pipe Po that circulates the slurry D1 discharged from the discharge port 6 of the crystallizer 4 to the inlet 5a of the crystallizer 4, and a circulation pipe that circulates the slurry D1 between the crystallizer 4 and the circulation pipe Po.
  • a pump 30 is provided.
  • the circulation pipe Po includes a bent portion Pp that is a meandering pipe. Further, the circulation pipe Po includes a pipe 22 that connects the crystallizer 4 and the bent part Pp, a pipe 23 that connects the circulation pump 30 and the bent part Pp, and a pipe 23 that connects the circulation pump 30 and the crystallizer 4. A piping 24 is provided. Note that the bent portion Pp is not limited to a meandering shape, but may have a spiral shape.
  • the circulation pump 30 is a circulation pump that has a function of circulating the slurry D1 between the crystallizer 4 and the bending part Pp in an adjustable flow rate.
  • the device is not necessarily limited to a circulation pump as long as it has a similar function; for example, an impeller whose rotation speed can be controlled may be provided in the piping 23 or the piping 24.
  • the crystallizer 4 includes a cylindrical reaction tank 1 with a bottom and a central axis O1 facing in the vertical direction, and a cylindrical stirring blade Wc.
  • the stirring blade Wc is rotatable around a hollow rotating shaft 3 that extends upward from the center of the stirring blade Wc in plan view along the central axis O1, and rotates around the inside of the reaction tank 1 with the central axis O1 as the same central axis. is housed in.
  • the rotating shaft 3 is rotated by a rotational force supplied via a belt from a prime mover (not shown) provided outside the crystallizer 4 .
  • the prime mover is not particularly limited as long as it is a device that generates rotational power, such as a motor or an engine.
  • the belt for transmitting the rotational force to the rotating shaft 3 is not particularly limited as long as it can transmit rotational force, such as a chain or a gear.
  • the bottom surface of the reaction tank 1 may have a cone shape that is convex downward, instead of being flat as shown in the figure.
  • a discharge port 6 is provided in the upper part of the reaction tank 1 to allow the slurry containing particles (crystals) generated in the reaction tank 1 to be discharged to the next process.
  • a pressure indication controller (PIC) is provided in the pipe 22 to maintain or adjust the pressure of the slurry D1 discharged from the discharge port 6 into the pipe 22.
  • an introduction port 5a is provided to which the first reaction liquid L1 and the slurry D1 flowing through the circulation pipe Po are supplied.
  • the first reaction liquid L1 is generated by supplying and mixing the auxiliary raw materials S A and SB from an unillustrated tank that stores the external auxiliary raw materials S A and SB .
  • the flow rates of the auxiliary raw materials S A and SB of the first reaction liquid L1 are maintained or adjusted by fuel indication controllers (FICs) FIC 2 and FIC 3 .
  • a desired amount of the first reaction liquid L1 is supplied to the reaction tank 1 from the inlet 5a.
  • the amount of the first reaction liquid L1 supplied from the inlet 5a can be adjusted to a desired amount by adjusting the rotation speed of the circulation pump 30, for example.
  • a pressure gauge (PI:Pressure Indicator) PI 1 is provided in the pipe 24 through which the first reaction liquid L1 flows, if necessary. Further, the second reaction liquid L2 is supplied into the reaction tank 1 from the liquid supply part 5b provided on the stirring blade Wc. The second reaction liquid L2 is supplied from an external tank storing the main raw material SM . The flow rate of the second reaction liquid L2 is maintained or adjusted by a fuel indicator controller FIC1 . The first reaction liquid L1 and the second reaction liquid L2 supplied into the reaction tank 1 react to generate crystallized fine particles. Slurry D1 is a fluid containing these fine particles.
  • the bent portion Pp includes a plurality of straight pipe portions (Po1, Po2, Po3, Po4, Po5, Po6) with an inner diameter of r2 , which are arranged at intervals and facing substantially the same direction, and a plurality of adjacent straight pipe portions.
  • a plurality of curved pipe parts C (C 1 , C 2 , C 3 , C 4 , C 5 ) with an inner diameter r 3 that connect parts Po1, Po2 , Po3, Po4 , Po5, and Po6 in a separable or detachable manner.
  • a fixing plate 21 for fixing a plurality of straight pipe sections.
  • the plurality of curved pipe sections C are separable if they are provided so as to connect the straight pipe sections Po5 and Po6, like the curved pipe section C5 indicated by the dotted line in Fig. 1. This means that the curved pipe portion C5 can be separated from the straight pipe portions Po5 and Po6.
  • the flange section (not shown) is attached to both ends of the bent pipe section C5 and the left end of the straight pipe sections Po5 and Po6.
  • the bent pipe portion C5 may be attached to and removed from the straight pipe portion Po5 and the straight pipe portion Po6 by tightening or loosening the flange portion using bolts, nuts, etc.
  • the attachment/detachment method is not limited to this, and as long as it is detachable, for example, it is not limited to the method of using a flange part, and both ends of the curved pipe part C5 can be screwed to the left end parts of the straight pipe part Po5 and the straight pipe part Po6. You can put it on and take it off by letting it go.
  • the fixing plate 21 has a rectangular shape in FIG. 1, the material and shape of the fixing plate 21 can be Not particularly limited. As mentioned above, since the plurality of straight pipe parts and the plurality of curved pipe parts C can be separated, the inner circumferential surfaces of the straight pipe parts and the curved pipe parts C can be easily cleaned by separating them. The maintainability of the crystallization system 10A can be improved.
  • the straight pipe section is composed of six straight pipe sections: straight pipe section Po1, straight pipe section Po2, straight pipe section Po3, straight pipe section Po4, straight pipe section Po5, and straight pipe section Po6.
  • the curved pipe section C is composed of five curved pipe sections: a curved pipe section C 1 , a curved pipe section C 2 , a curved pipe section C 3 , a curved pipe section C 4 , and a curved pipe section C 5 . It is not limited to this example.
  • the straight pipe portion Po may be composed of six or more straight pipe parts Po, or may be composed of six or less straight pipe parts Po.
  • the number of curved pipe parts C also increases or decreases in accordance with the number of straight pipe parts Po. For example, in the example of FIG.
  • the second end of the curved pipe portion C2 whose first end is connected to the right end portion of the straight pipe portion Po3, may be connected to the left end portion of the pipe 22.
  • the curved tube portion C 2 may be provided with a bellows portion that can be expanded and contracted, so that the curved tube portion C 2 can be expanded and contracted.
  • the pipe length of the bent portion Pp that is, the total length of the straight pipe portion and the bent pipe portion C (the number of the straight pipe portion and the bent pipe portion C) is such that the slurry D1 is kept for the desired residence time. It can be adjusted as desired to achieve retention. That is, when a longer residence time is desired, it is desirable to increase the number of straight pipe sections and bent pipe sections C to lengthen the pipe length of the bent section Pp, and when a shorter residence time is desired, It is desirable to reduce the number of straight pipe portions and bent pipe portions C to shorten the pipe length of the bent portion Pp.
  • the flow rate of the slurry D1 is determined by the specific gravity and diameter of the particles that make up the slurry D1. That is, since the settling speed of the particles making up the slurry D1 is determined by the specific gravity and diameter of the particles making up the slurry D1, the flow rate of the slurry D1 is determined so that the slurry D1 flows through the pipe without settling. Therefore, the pipe length of the bent portion Pp can be determined from the desired residence time of the slurry D1 and the flow rate of the slurry D1 to prevent the slurry D1 from settling.
  • the crystallizer 4 and the bent portion Pp are connected by a pipe 22 having an inner diameter r1 .
  • the bent portion Pp and the circulation pump 30 are connected by a pipe 23 having an inner diameter r4 .
  • the circulation pump 30 and the crystallizer 4 are connected by a pipe 24 having an inner diameter r5 .
  • the inner diameter of the circulation pipe Po that is, the inner diameter r 1 of the pipe 22, the inner diameter r 2 of the straight pipe portions Po1, Po2, Po3, Po4, Po5, Po6, the curved pipe portions C 1 , C 2 ,
  • the inner diameter r 3 of C 3 , C 4 , and C 5 , the inner diameter r 4 of the pipe 23, and the inner diameter r 5 of the pipe 24 are the same.
  • the cross-sectional areas of the pipe 22, the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6, the curved pipe parts C1 , C2 , C3 , C4 , C5 , the pipe 23, and the pipe 24 are constant. Therefore, flow analysis of the slurry D1 flowing through the pipe becomes easy.
  • the example is not limited to the above example, and the inner diameter of the circulation pipe Po, that is, the inner diameter r 1 of the pipe 22, the inner diameter r 2 of the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6, the curved pipe portion C 1 , C2 , C3 , C4 , and C5 , the inner diameter r4 of the pipe 23, and the inner diameter r5 of the pipe 24 may be different from each other. In that case, flow analysis may be performed taking different inner diameters into consideration.
  • a pipe line connected to a second circulation pump 31 driven by a motor M is connected to the pipe 23 through which the slurry D1 discharged from the bent portion Pp flows. This pipe line pulls out the slurry D1 from the pipe 23 and accumulates it to form a product.
  • a fuel flow indication controller FIC 4 is provided between the motor M and the second circulation pump 31, and maintains or adjusts the flow rate of the slurry D1 drawn out of the crystallization system 10A.
  • the second circulation pump 31, like the circulation pump 30, is a slurry discharge pump that has a function of circulating the slurry with an adjustable flow rate.
  • the device is not necessarily limited to the slurry discharge pump as long as it has the function of drawing out the slurry D1 from the pipe 23, and for example, an impeller whose rotation speed can be controlled may be provided in the pipe.
  • the pressure of the slurry D1 in the pipe 23 immediately after the slurry D1 is pulled out is monitored by a pressure indicator PI 2 as necessary.
  • the slurry D1 containing particles generated in the crystallizer 4 can be easily and completely uniformly mixed by controlling the flow rate of the circulation pump 30. can do. Furthermore, by adjusting the pipe length of the bent portion Pp, the slurry D1 containing particles generated in the crystallizer 4 can be retained for a desired time without requiring a retention tank. Therefore, the residence time of the slurry D1 at the bent portion Pp can be adjusted without performing complicated flow analysis of the slurry D1, which is required when using a residence tank. Note that a retention tank (not shown) may be added to the crystallization system 10A.
  • the crystallization system 10B differs from the crystallization system 10A of the first embodiment in that a second bent portion Ppa is provided in addition to the bent portion Pp (first bent portion).
  • the second bent portion Ppa has the same configuration as the first bent portion Pp.
  • a pipe 22a extends from the middle of the pipe 22 and branches toward the second bent portion Ppa. Further, the slurry D1 discharged from the second bent portion Ppa passes through the pipe 23a and joins the pipe 23 through which the slurry D1 discharged from the first bent portion Pp flows.
  • a valve V1 and a valve V2 are provided at the inlet of the pipe 22a and the outlet of the pipe 23a.
  • the slurry D1 can flow into both the first bent portion Pp and the second bent portion Ppa.
  • the valves V1 and V2 it is possible to flow the slurry D1 only through the first bent portion Pp, and it is possible to have the same configuration as the crystallization system 10A of the first embodiment.
  • the slurry D1 can be made to flow not only to the first bent portion Pp but also to the second bent portion Ppa depending on the flow rate of the slurry D1.
  • the crystallization system 10C differs from the crystallization system 10A of the first embodiment in that at least a portion of the bent portion Pp is provided in the temperature adjustment tank 13.
  • the temperature adjustment tank 13 is a member that maintains a state in which a refrigerant CW such as cold water flows in one direction inside the temperature adjustment tank 13 by a pump (not shown) or the like.
  • a refrigerant CW such as cold water flows in one direction inside the temperature adjustment tank 13 by a pump (not shown) or the like.
  • the refrigerant collides with the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6 of the bent portion Pp.
  • the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6 are formed between the slurry D1 and the refrigerant CW flowing through the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6 of the bent part Pp. Heat exchange takes place through the members. Therefore, the slurry D1 can be cooled or heated.
  • the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6 are provided approximately perpendicularly to the flow direction of the refrigerant CW, but they are not necessarily provided in the flow direction of the refrigerant CW.
  • the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6 do not need to be provided substantially vertically, and may be provided at an angle that is not perpendicular.
  • heat exchange with the refrigerant CW may be performed in the bent pipe portion C of the bent portion Pp, or heat exchange with the refrigerant CW may be performed in both the straight pipe portion and the bent pipe portion C of the bent portion Pp. It's okay.
  • the temperature adjustment ability for slurry D1 can be adjusted. For example, if the heat amount Q1 is transferred to the refrigerant CW by heat exchange from the slurry D1 having the heat amount Q flowing through the straight pipe portion Po1, the heat amount Q2 is transferred from the slurry D1 having the heat amount (Q-Q1) flowing through the straight pipe portion Po2. The refrigerant is transferred to CW by exchange.
  • the heat amount Q3 from the slurry D1 having the heat amount (Q-(Q1+Q2)) flowing through the straight pipe portion Po3 is transferred to the refrigerant CW by heat exchange, the heat amount of the slurry D1 flowing through the straight pipe portion Po4 becomes (Q-(Q1+Q2+Q3) ).
  • the amount of heat of the slurry D1 can be reduced, so that the slurry D1 can be cooled by a desired amount. The same applies when heating the slurry D1.
  • the pipe length of the bent part Pp where heat exchange is performed with the refrigerant CW that is, the pipe length or number of the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6.
  • slurry D1 can be cooled or heated by a desired amount.
  • a crystallization system 10A1 according to the first modification differs from the crystallizer 4 in that the crystallizer 4a includes a stirring blade W.
  • the stirring blade W includes a cylindrical part 2 and a disc-shaped disc part 8 whose outer edge is fixed to the inner peripheral surface 2i of the cylindrical part 2.
  • the disk portion 8 is provided at a position where the height of the cylindrical portion 2 is approximately half, but is not limited to this example, and may be provided below or above approximately half the height of the cylindrical portion 2. .
  • the rotating shaft 3 is fixed to the center of the disk portion 8 in plan view.
  • the hollow interior of the rotating shaft 3 is defined as a conduit P1.
  • a plurality of conduits P2 extend radially from the center toward the outer edge.
  • the conduit P1 of the rotating shaft 3 and the conduit P2 of the disk portion 8 are in communication.
  • the second reaction liquid L2 is supplied to the rotating shaft 3 of the stirring blade W from a tank (not shown) provided outside the crystallizer 4 and storing the main raw material SM .
  • the second reaction liquid L2 is supplied to the hollow pipe line P1 of the rotating shaft 3 via the rotary joint R, and then to the pipe line P2 of the disc part 8.
  • the tip of the pipe P2 on the outside in the radial direction of the reaction tank 1 is opened downward and serves as a liquid supply section 5b from which the second reaction liquid L2 is discharged. Therefore, the disk portion 8 is provided with a plurality of liquid supply portions 5b at intervals in the circumferential direction of the disk portion. For example, eight liquid supply parts 5b are provided. Although the number of liquid supply parts 5b is not limited, it is desirable to provide them symmetrically with respect to the central axis O1.
  • the distance between the inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W and the center of the liquid supply portion 5b is 2 mm or less.
  • the distance (clearance) between the outer peripheral surface 2o of the cylindrical part 2 of the stirring blade W and the inner peripheral surface 1i of the reaction tank 1 is L3, and the height along the central axis O1 of the stirring blade W (cylindrical part 2) is H.
  • H/L3, which is the ratio of H to L3, is 10 or more.
  • H/L3 is 25 or more. Therefore, even if a device of a different size from this embodiment is used, a similar device can be manufactured based on this ratio.
  • the stirring blade W rotates at a circumferential speed of 5 m/sec or more and 50 m/sec or less.
  • the H/L3 ratio may differ from the above ratio depending on the purpose. For example, if it is desired to suppress crystal crushing, the ratio may be lowered from the above value.
  • the cylindrical portion 2 of the stirring blade W is provided with a plurality of holes h that penetrate in the radial direction of the cylindrical portion 2.
  • the first reaction liquid L1, the second reaction liquid L2, or a mixture thereof can flow through these holes h. Therefore, the first reaction liquid L1, the second reaction liquid L2, or a mixture thereof can be moved from the inside to the outside of the stirring blade W or from the outside to the inside of the stirring blade W through the plurality of holes h. .
  • a plurality of holes 9 may be provided in the disk portion 8 to penetrate in the direction of the central axis O1.
  • the first reaction liquid L1, the second reaction liquid L2, or a mixture thereof can be passed from the inside of the stirring blade W to the outside through the hole 9 in addition to the plurality of holes h, or from the outside of the stirring blade W. Can be moved inward.
  • a desired amount of the first reaction liquid L1 is supplied to the reaction tank 1 from the inlet 5a.
  • the amount of the first reaction liquid L1 supplied may be enough to fill the reaction tank 1 (full liquid state), or the first reaction liquid L1 may be supplied to the center of the reaction tank 1 when the stirring blade W rotates.
  • the first reaction liquid L1 is pressed against the inner peripheral surface 1i of the reaction tank 1 by the centrifugal force generated in the first reaction liquid L1 by performing a circular motion around the axis O1, and the first reaction liquid L1 is pressed against the inner peripheral surface 1i of the reaction tank 1. It may be supplied to such an extent that a liquid film of L1 is formed.
  • the supply of the first reaction liquid L1 may be stopped and then the reaction may be carried out in the reaction tank 1.
  • the reaction in the reaction tank 1 may be continuously carried out while maintaining the first reaction liquid L1 at a flow rate sufficient to reach the above-mentioned full liquid state or liquid film forming state.
  • an opening adjustment valve (not shown) in the discharge port 6 and adjusting the opening of this opening adjustment valve, the reaction tank 1 can be adjusted between a full liquid state and a liquid film state in which a liquid film is formed. You can choose either one.
  • the stirring blade W is rotated and the second reaction liquid L2 is supplied from the liquid supply part 5b to the inner peripheral surface 2i of the cylindrical part 2 of the stirring blade W.
  • the second reaction liquid L2 is supplied into the reaction tank 1.
  • the second reaction liquid L2 discharged from the liquid supply part 5b along the inner circumferential surface 2i of the cylindrical part 2 of the stirring blade W enters the reaction tank 1 filled with the first reaction liquid L1. It comes into contact with the first reaction liquid L1 that is rotating with the rotation of the stirring blade W near the inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W. In this way, the first reaction liquid L1 and the second reaction liquid L2 come into contact with each other, whereby a reaction occurs and particles are generated.
  • the second reaction liquid L2 is supplied to the first reaction liquid L1 from the liquid supply part 5b of the stirring blade W rotating at a circumferential speed of 5 m/sec to 50 m/sec.
  • the reaction liquid L2 can be uniformly mixed with the first reaction liquid L1.
  • the first reaction liquid L1 that is rotating with the rotation of the stirring blade W is discharged from the liquid supply part 5b of the stirring blade W that is rotating at a circumferential speed of 5 m/sec to 50 m/sec.
  • the centrifugal force generated in the second reaction liquid L2 and the mixed liquid causes the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid (hereinafter sometimes referred to collectively as the mixed liquid) moves radially outward of the cylindrical portion 2 of the stirring blade W, passes through the plurality of holes h provided in the cylindrical portion 2 of the stirring blade W, and collides with the inner circumferential surface 1i of the reaction tank 1, and then 1 in the vertical direction along the inner circumferential surface 1i.
  • the mixed liquid that has mainly moved downward is drawn by the radially outward flow caused by the centrifugal force generated by the rotation of the stirring blade W, and passes through the plurality of holes h provided in the cylindrical part 2 of the stirring blade W again.
  • the particles collide with the inner peripheral surface 1i of the reaction tank 1, and then move in the vertical direction along the inner peripheral surface 1i of the reaction tank 1, thereby generating convection.
  • the mixed liquid passes through the plurality of holes h, the mixed liquid is accelerated radially outward due to the effect of the throttle channel, so the flow velocity of the mixed liquid outward in the radial direction is highest in Further, between the outer circumferential surface 2o and inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W rotating at a circumferential speed of 5 m/sec or more and 50 m/sec or less and the inner circumferential surface 1i of the fixed reaction tank 1.
  • a shearing force is applied to the existing mixed liquid in the circumferential direction. The closer the shearing force applied to the mixed liquid is to the inner circumferential surface 2i and outer circumferential surface 2o of the cylindrical portion 2 of the stirring blade W, the greater it is.
  • the shearing force applied to the liquid mixture is a major factor in determining the particle size and uniformity of the resulting particles. In particular, the larger the applied shearing force, the more fine the particles can be obtained.
  • the liquid supply section 5b is provided at the outer edge of the disk section 8. Specifically, as described above, the distance between the inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W and the center of the liquid supply portion 5b is 2 mm or less. Therefore, the second reaction liquid L2 discharged from the liquid supply part 5b along the inner peripheral surface 2i of the cylindrical portion 2 of the stirring blade W, and the second reaction liquid L2 discharged from the liquid supply portion 5b along the inner peripheral surface 2i of the cylindrical portion 2 of the stirring blade W At the reaction start point where the first reaction liquid L1, which is rotating with the rotation of Maximum shear force is applied. Therefore, the region where the applied shearing force is the largest can be set as the reaction initiation point.
  • the reaction start point can be formed in a region within a close distance, for example, within 2 mm, from the inner circumferential surface 2i and outer circumferential surface 2o of the cylindrical portion 2 of the stirring blade W.
  • the mixed liquid can move from the inner circumferential side to the outer circumferential side of the cylindrical portion 2 through the plurality of holes h described above. Therefore, stirring of the first reaction liquid L1 and the second reaction liquid L2 at the reaction starting point is promoted by the shear force. Therefore, the more uniform mixing of the first reaction liquid L1 and the second reaction liquid L2 is started from the reaction start point, and the mixing and reaction are performed in the reaction field where the reaction occurs along the flow of the mixed liquid. By doing so, it is possible to produce particles with fine and uniform diameters.
  • the reaction initiation point refers to the area where the reaction starts
  • the reaction field refers to the entire area where the reaction occurs. Therefore, the reaction initiation point is included in the reaction field.
  • a baffle (not shown) may be provided on the inner peripheral surface of the reaction tank 1 corresponding to the upper part of the stirring blade W.
  • the baffle has the effect of suppressing the generation of vortices and promoting stirring of the mixed liquid when the reaction tank 1 is full of liquid.
  • the baffle is not an essential component and may not be provided.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4a is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • a crystallization system 10A2 according to a second modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 5.
  • the crystallizer 4b of the second modification is different from the crystallizer 4a of the first modification in that the stirring blade W is a stirring blade Wa.
  • the stirring blade Wa differs from the stirring blade W in that a liquid supply portion 5b provided at the outer edge of the disk portion 8 penetrates the cylindrical portion 2 and opens radially outward.
  • the second reaction liquid L2 is discharged from the liquid supply part 5b that opens radially outward, so that the second reaction liquid L2, the first reaction liquid L1, and the second reaction are mixed.
  • the mixed liquid with liquid L2 has high dispersibility in the radial direction (horizontal direction).
  • a plurality of holes 9 may be provided in the disk portion 8 to penetrate in the direction of the central axis O1.
  • Such a plurality of holes 9 allows a portion of the mixed liquid to flow between the lower side and the upper side of the stirring blade W through the plurality of holes 9, thereby reducing the dynamic load on the stirring blade W. Although it has the effect of reducing The effectiveness of producing uniform and fine particles is reduced. Therefore, the application of the holes 9 can be selected depending on the desired particle quality and the required power.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4b is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • the crystallizer 4c of the third modification differs in that the stirring blade Wa in the second modification is replaced by a stirring blade Wb.
  • the stirring blade Wb has a plurality of holes h penetrating in the radial direction in the cylindrical part 2 above the disk part 8 of the stirring blade Wa (which are closed), and an outer edge part on the inner circumferential surface 2i of the cylindrical part 8.
  • a second disk portion 15 to which is fixed is provided at the upper end of the cylindrical portion 2.
  • the second disc part 15 is a disc-shaped member, and has a hole in the center of the second disc part 15, through which the rotating shaft 3 passes. There are no holes that pass through the second disk portion 15 in the direction of the central axis O1, except for the hole that the rotating shaft 3 passes through. Therefore, the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid thereof do not enter the inside of the second disk portion 15.
  • the plurality of holes h penetrating in the radial direction are not provided in the cylindrical part 2 above the disk part 8, and the outer edge part is fixed to the inner circumferential surface 2i of the cylindrical part 8.
  • a second disk portion 15 is provided at the upper end of the cylindrical portion 2. Therefore, the resistance force of the stirring blade Wb when the stirring blade Wb rotates is reduced, and the stirring blade Wb can be operated with less power than the stirring blade Wa.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4c is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • the stirring blade Wc has a plurality of holes h penetrating in the radial direction in the cylindrical portion 2 above the disk portion 8 of the stirring blade W (which are closed), and the cylindrical portion 8
  • a second disk portion 15 whose outer edge portion is fixed to the inner circumferential surface 2i of the cylinder portion 2 is provided at the upper end portion of the cylindrical portion 2.
  • the second disc part 15 is a disc-shaped member, and has a hole in the center of the second disc part 15, through which the rotating shaft 3 passes. There are no holes that pass through the second disk portion 15 in the direction of the central axis O1, except for the hole that the rotating shaft 3 passes through. Therefore, the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid thereof do not enter the inside of the second disk portion 15.
  • the stirring blade Wc In such a stirring blade Wc, the plurality of holes h penetrating in the radial direction are not provided in the cylindrical part 2 above the disk part 8, and the outer edge part is fixed to the inner circumferential surface 2i of the cylindrical part 8. Since the second disk portion 15 is provided at the upper end of the cylindrical portion 2, the resistance force of the stirring blade Wc when the stirring blade Wc rotates is reduced. Therefore, the stirring blade Wc can be operated with less power than the stirring blade W.
  • the crystallization system 10A according to the first embodiment including such a crystallizer 4 shearing that affects particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4
  • the force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be individually adjusted, and the control performance of particle quality can be further improved.
  • a crystallization system 10A4 according to a fourth modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 7.
  • the crystallizer 4d of the fourth modification is different from the crystallizer 4a of the first modification in that the stirring blade W is a stirring blade Wd.
  • the stirring blade Wd differs from the stirring blade W in that the disk portion 8 is provided at the upper end of the cylindrical portion 2, as shown in FIG. Further, the height of the cylindrical portion 2 is approximately half the height of the cylindrical portion 2 of the stirring blade W.
  • the same effect as the crystallizer 4 provided with the stirring blade W can also be achieved by using the crystallizer 4d equipped with such a stirring blade Wd.
  • the stirring blade Wd can be made lighter than the stirring blade W.
  • the stirring blade Wd can have a simple structure, the stirring blade Wd can be operated with less power than the stirring blade W, resulting in energy saving of the crystallizer 4 and easier manufacturing of the stirring blade Wd. can be expected.
  • the crystallizer 4d can be downsized.
  • a plurality of holes 9 may be provided in the disk portion 8 to penetrate in the direction of the central axis O1. In that case, the same effects as in the case where the disk portion 8 of the stirring blade Wa is provided with a plurality of holes 9 penetrating in the direction of the central axis O1 can be expected.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4d is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • the stirring blade W is a stirring blade We.
  • the stirring blade We includes a cylindrical columnar section 20, a disk base 18 provided concentrically with the columnar section 20 at the upper end of the columnar section 20, and a center of the disk base 18 in a plan view.
  • the rotating shaft 3 extends upward along the central axis O1 from the center, and a cylindrical perforated plate 18P provided concentrically with the cylindrical portion 20 on the outside in the radial direction of the cylindrical portion 20.
  • the porous plate 18P is provided with a plurality of holes 18h that penetrate the porous plate 18P in the radial direction, and the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid flow through the plurality of holes 18h. It is possible.
  • the porous plate 18P extends downward from the outer edge of the disc base 18.
  • the second reaction liquid can flow through the pipes P1, P2, and P3 provided inside the rotating shaft 3, the disc base 18, and the cylindrical part 20, respectively.
  • the pipes P1, P2, and P3 are in communication with each other.
  • the pipe P2 extends radially outward from the lower end of the pipe P1 about the central axis O1.
  • the pipe P3 extends downward from the radially outer end of the pipe P2 along the central axis O1.
  • Pipe line P2 and pipe line P3 are formed inside the cylindrical part 20.
  • a plurality of liquid supply parts 50b are provided on the outer peripheral surface 20o of the columnar part 20 at intervals in the vertical direction.
  • the second reaction liquid L2 is supplied into the reaction tank 1 from the plurality of liquid supply parts 50b provided at intervals in the vertical direction on the outer peripheral surface 20o of the columnar part 20, and the second reaction liquid L2 is supplied into the reaction tank 1. It flows through the plurality of holes 18h of the porous plate 18P while mixing and reacting with the first reaction liquid L1 in the porous plate 18P. Therefore, the first reaction liquid L1 and the second reaction liquid L2 can be mixed more uniformly.
  • the mixed liquid that has passed through the plurality of holes 18h of the porous plate 18P collides with the inner circumference 1i of the reaction tank 1, and then moves in the vertical direction along the inner circumference 1i of the reaction vessel 1.
  • the mixed liquid that has moved downward is drawn by the radially outward flow caused by the centrifugal force generated by the rotation of the stirring blade We, and passes through the plurality of holes 18h of the perforated plate 18P of the stirring blade We again to the reaction tank 1. Convection is generated by colliding with the inner circumferential surface 1i and then moving vertically along the inner circumferential surface 1i of the reaction tank 1.
  • the mixed liquid passes through the plurality of holes 18h, the mixed liquid is accelerated radially outward due to the effect of the throttle channel, so the flow velocity of the mixed liquid outward in the radial direction is reduced near the plurality of holes 18h.
  • a shearing force is applied in the circumferential direction to the liquid mixture existing between the two.
  • the shearing force applied to the mixed liquid is greater as the shearing force is closer to the outer circumferential surface 2o of the cylindrical portion 20 of the stirring blade We and the inner and outer circumferential surfaces of the perforated plate 18P.
  • the shearing force applied to the liquid mixture is a major factor in determining the particle size and uniformity of the resulting particles.
  • the second reaction liquid L2 supplied from the liquid supply part 50b is at a close distance from the inner and outer circumferences of the stirring blade We having the highest shearing force, that is, the outer circumferential surface 20o of the columnar part 20 and the inner and outer circumferential surfaces of the perforated plate 18P, for example. It can be supplied within a range of 2 mm or less.
  • four liquid supply parts 50b are provided in the vertical direction of the columnar part 20, but the number of liquid supply parts 50b is not limited to the example of FIG. It may be increased or decreased.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4e is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • the stirring blade Wf includes a cylindrical columnar section 20, a rotating shaft 3 extending upward from the center of the columnar section 20 in plan view along the central axis O1, and a radial direction of the columnar section 20.
  • the porous plate 18P includes a cylindrical perforated plate 18P provided on the outside concentrically with the columnar part 20.
  • the porous plate 18P is provided with a plurality of holes 18h that penetrate the porous plate 18P in the radial direction, and the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid flow through the plurality of holes 18h. It is possible.
  • the porous plate 18P is fixed to the connecting rod 11 extending radially outward from the outer circumferential surface 2o of the cylindrical portion 20.
  • the second reaction liquid can flow through the pipes P1, P2, and P3 provided inside the rotating shaft 3 and the cylindrical portion 20, respectively.
  • the pipes P1, P2, and P3 are in communication with each other.
  • the pipe P2 extends radially outward from the lower end of the pipe P1 about the central axis O1.
  • the pipe P3 extends downward from the radially outer end of the pipe P2 along the central axis O1.
  • Pipe line P2 and pipe line P3 are formed inside the cylindrical part 20.
  • a plurality of liquid supply parts 50b are provided on the outer peripheral surface 20o of the columnar part 20 at intervals in the vertical direction.
  • the stirring blade Wf rotates, the rotating shaft 3, the cylindrical portion 20, the connecting rod 11, and the perforated plate 18P rotate together.
  • a plurality of connecting rods 11 are provided at equal intervals in the circumferential direction of the cylindrical portion 20 . It is preferable that two or more connecting rods 11 are provided.
  • the connecting rod 11 is provided at a position approximately half the height of the cylindrical portion 20, the connection rod 11 is not limited to this example, and may be provided above or below approximately half the height of the cylindrical portion 20. .
  • the second reaction liquid L2 is supplied into the reaction tank 1 from a plurality of liquid supply parts 50b provided at intervals in the vertical direction on the outer circumferential surface 20o of the columnar part 20, and the second reaction liquid L2 is supplied into the reaction tank 1. It flows through the plurality of holes 18h of the porous plate 18P while mixing and reacting with the first reaction liquid L1 in the porous plate 18P. Therefore, the first reaction liquid L1 and the second reaction liquid L2 can be mixed more uniformly.
  • the mixed liquid that has passed through the plurality of holes 18h of the porous plate 18P collides with the inner circumference 1i of the reaction tank 1, and then moves in the vertical direction along the inner circumference 1i of the reaction vessel 1.
  • the mixed liquid that has moved in the vertical direction is attracted by the flow directed outward in the radial direction due to the centrifugal force generated by the rotation of the stirring blade Wf, and passes through the plurality of holes 18h of the perforated plate 18P of the stirring blade Wf again to the reaction tank 1.
  • the reaction vessel 1 collides with the inner circumferential surface 1i of the reactor 1, and then moves vertically along the inner circumferential surface 1i of the reaction tank 1, thereby generating convection.
  • the mixed liquid passes through the plurality of holes 18h, the mixed liquid is accelerated radially outward due to the effect of the throttle channel, so the flow velocity of the mixed liquid outward in the radial direction is reduced near the plurality of holes 18h.
  • a shearing force is applied in the circumferential direction to the liquid mixture existing between the two.
  • the shearing force applied to the mixed liquid increases as the shearing force approaches the outer circumferential surface 2o of the cylindrical portion 20 of the stirring blade Wf and the inner and outer circumferential surfaces of the perforated plate 18P.
  • the shearing force applied to the liquid mixture is a major factor in determining the particle size and uniformity of the resulting particles. In particular, the greater the applied shearing force, the finer the particle size can be obtained.
  • the stirring blade Wf is used, the influence of shear force can be applied to more parts of the liquid mixture, so that uniform and fine particles can be produced.
  • the second reaction liquid L2 supplied from the liquid supply part 50b is at a close distance from the inner and outer circumferences of the stirring blade Wf having the highest shearing force, that is, the outer circumferential surface 20o of the columnar part 20 and the inner and outer circumferential surfaces of the perforated plate 18P, for example. It can be supplied within a range of 2 mm or less. In the example of FIG. 9, four liquid supply parts 50b are provided in the vertical direction of the columnar part 20, but the number of liquid supply parts 50b is not limited to the example of FIG. It may be increased or decreased.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4f is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • a crystallization system 10A7 according to a seventh modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 10.
  • the crystallizer 4g of the seventh modification is different from the crystallizer 4e of the fifth modification in that the stirring blade We is a stirring blade Wg.
  • the stirring blade Wg has a wider distance between the outer peripheral surface 20o of the columnar part 2 and the inner peripheral surface of the perforated plate 18P than the stirring blade We of the fifth modification.
  • an extension pipe 12 is provided that extends further radially outward from a liquid supply part 50b that opens radially outward in the stirring blade We, and the tip of the extension pipe 12 is the liquid supply part 50b.
  • a stirring blade Wg the distance between the outer circumferential surface 20o of the columnar part 20 and the inner circumferential surface of the perforated plate 18P can be widened, so that the first The reaction liquid L1, the second reaction liquid L2, and a mixed liquid thereof become easier to flow in. Therefore, circulation of the reaction solution can be promoted, and uniform and fine particles can be produced.
  • the second reaction liquid L2 supplied from the liquid supply part 50b is delivered to the inner and outer periphery of the stirring blade Wg having the highest shearing force, that is, within a close distance, for example, within 2 mm, from the inner and outer periphery of the perforated plate 18P. can be supplied.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4g is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • a crystallization system 10A8 according to an eighth modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 11.
  • the crystallizer 4h of the eighth modification is different from the crystallizer 4f of the sixth modification in that the stirring blade Wf is a stirring blade Wh.
  • the stirring blade Wh has a wider distance between the outer circumferential surface 20o of the columnar part 20 and the perforated plate 18P than the stirring blade Wf of the eighth modification.
  • an extension tube 12 is provided that extends further radially outward from a liquid supply section 50b that opens radially outward in the stirring blade Wf, and the tip of the extension tube 12 is the liquid supply section 50b.
  • a stirring blade Wh since the distance between the outer circumferential surface 20o of the columnar part 20 and the inner circumferential surface of the perforated plate 18P can be widened, the first The reaction liquid L1, the second reaction liquid L2, and a mixed liquid thereof become easier to flow in. Therefore, circulation of the reaction solution can be promoted, and uniform and fine particles can be produced.
  • the second reaction liquid L2 supplied from the liquid supply part 50b is delivered to the inner and outer periphery of the stirring blade Wg having the highest shearing force, that is, within a close distance, for example, within 2 mm, from the inner and outer periphery of the perforated plate 18P. can be supplied.
  • the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4h is affected.
  • the shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
  • the stirring blade Wc of the crystallizer 4 according to the first embodiment the stirring blade W of the crystallizer 4a according to the first modification, in which the liquid supply part 5b is open downward, Further, in the stirring blade Wd of the crystallizer 4d according to the fourth modification, the first reaction liquid L1 and the second reaction liquid L2 can be mixed more uniformly.
  • the crystallization system 10A of the first embodiment includes a crystallization step in which a plurality of raw material solutions are mixed and particles derived from a plurality of raw materials in the plurality of raw material solutions are grown in the crystallizer 4; a circulation step in which the slurry D1 containing particles discharged from the discharge port 6 of the crystallizer 4 is circulated to the inlet 5a of the crystallizer 4 by flowing the circulation pipe Po having a meandering bent portion Pp; It can be considered as a crystallization method including . According to such a crystallization method, effects similar to those of the crystallizer system 10A of the first embodiment can be obtained.
  • the crystallization system 10A of the first embodiment can be considered as a crystallization method in which the inner diameter of the circulation pipe Po is constant. According to such a crystallization method, effects similar to those of the crystallization system 10A of the first embodiment can be obtained.
  • the crystallization system 10B of the second embodiment can be considered as a crystallization method in which a plurality of bent portions Pp are provided in the crystallization system 10A. According to such a crystallization method, effects similar to those of the crystallization system 10B of the second embodiment can be obtained.
  • the crystallization system 10C of the third embodiment can be considered as a crystallization method in which at least a portion of the bent portion Pp is provided in the temperature control tank in the crystallization system 10A. According to such a crystallization method, effects similar to those of the crystallization system 10C of the third embodiment can be obtained.
  • the crystallization system 10A of the first embodiment can be regarded as a crystallization method in which the bent portion Pp is composed of a plurality of separable straight pipe portions and a plurality of bent pipe portions C. According to such a crystallization method, effects similar to those of the crystallization system 10A of the first embodiment can be obtained.
  • the crystallizer 4a is provided with a plurality of holes h penetrating in the radial direction, and a central A stirring blade W rotating around an axis O1, a cylindrical reaction tank 1 with a bottom that concentrically accommodates the stirring blade W, and an introduction for supplying a first reaction liquid L1 into the reaction tank 1.
  • the first reaction liquid L1 is supplied from the inlet 5a to the reaction tank 1.
  • This can be regarded as a crystallization method comprising a first liquid supply step of supplying the second reaction liquid L2 to the reaction tank 1 from the liquid supply part 5b. According to such a crystallization method, effects similar to those of the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment can be obtained.
  • the stirring blade W is connected to the cylindrical portion 2 and the inner periphery of the cylindrical portion 2. It further includes a disc-shaped disc part 8 whose outer edge is fixed to a surface, and a rotating shaft 3 extending upward from the center of the disc part 8 in plan view along the central axis O1, and the disc part 8 and the rotating shaft O1
  • the second reaction liquid L2 can flow through the inside of the disk, and the second liquid supply step can be considered as a crystallization method in which the second reaction liquid L2 is supplied downward from the outer edge of the disk part 8. . According to such a crystallization method, effects similar to those of the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment can be obtained.
  • the crystallization system 10A2 according to the second modification of the crystallization system 10A of the first embodiment has a stirring blade in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment.
  • W includes a cylindrical cylindrical part 2, a disc-shaped disc part 8 whose outer edge is fixed to the inner circumferential surface 2i of the cylindrical part 2, and a part W extending upward along the central axis from the center of the disc part 8 in a plan view.
  • the second reaction liquid L2 can flow through the interior of the disc part 8 and the rotating shaft O1, and in the second liquid supply step, the cylindrical part 2 is supplied from the outer edge of the disc part 8.
  • the crystallization system 10A of the first embodiment and the crystallization system 10A3 according to the third modification of the crystallization system 10A of the first embodiment are the first modification of the crystallization system 10A of the first embodiment.
  • the diameter A second disc part 15 is provided at the upper end of the cylindrical part 2, and the plurality of holes h penetrating in the direction are not (closed), and the outer edge part is fixed to the inner circumferential surface of the cylindrical part 2.
  • the crystallization system 10A5 according to the fifth modification of the crystallization system 10A of the first embodiment has a stirring blade in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment.
  • W extends upward along the central axis O1 from the center of the circular columnar part 20, the disk base 18 provided at the upper end of the circular column part 20 concentrically with the columnar part 20, and the disk base 18 in plan view. It includes an extending rotating shaft 3 and a cylindrical perforated plate 18P provided concentrically with the cylindrical part 20 on the outside in the radial direction of the cylindrical part 20, and the perforated plate 18P extends downward from the outer edge of the disc base 18.
  • the second reaction liquid L2 can flow through the interior of the rotating shaft O1, the disc base 18, and the cylindrical part 20, and in the second liquid supply step, the second reaction liquid L2 is formed on the outer circumferential surface 20o of the cylindrical part 20 at intervals in the vertical direction.
  • This can be considered as a crystallization method in which the second reaction liquid L2 is supplied radially outward from a plurality of provided liquid supply parts 50b. According to such a crystallization method, effects similar to those of the crystallization system 10A4 according to the fifth modification of the crystallization system 10A of the first embodiment can be obtained.
  • the crystallization system 10A6 according to the sixth modification of the crystallization system 10A of the first embodiment has a stirring blade in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment.
  • W is provided concentrically with the columnar section 20 on the radially outer side of the columnar section 20, and the rotating shaft 3 extending upward from the center of the columnar section 20 in plan view along the central axis O1.
  • the perforated plate 18P is fixed to a connecting rod 11 extending radially outward from the outer circumferential surface 20o of the cylindrical part 20, and the perforated plate 18P is fixed to a connecting rod 11 extending radially outward from the outer peripheral surface 20o of the cylindrical part 20.
  • the second reaction liquid L2 can flow, and in the second liquid supply step, the second reaction liquid L2 is distributed radially outward from a plurality of liquid supply parts 50b provided on the outer circumferential surface 20o of the columnar part 20 at intervals in the vertical direction.
  • This can be considered as a crystallization method for supplying the second reaction solution L2. According to such a crystallization method, the same effects as the crystallization system 10A6 according to the sixth modification of the crystallization system 10A of the first embodiment can be obtained.
  • the crystallization system 10A7 according to the seventh modification of the crystallization system 10A of the first embodiment is the crystallization system 10A5 according to the fifth modification of the crystallization system 10A of the first embodiment, or the first In a crystallization system 10A6 according to a sixth modification of the crystallization system 10A of the embodiment, extension pipes 12 extending radially outward from the plurality of liquid supply parts 50b are provided, and in the second liquid supply step, the extension pipes 12 are This can be considered as a crystallization method in which the second reaction liquid L2 is supplied from the tip of the tube 12. According to such a crystallization method, effects similar to those of the crystallization system 10A7 according to the seventh modification of the crystallization system 10A of the first embodiment and the crystallization system 10A8 according to the eighth modification can be obtained. I can do it.
  • the product was obtained by mixing two types of reaction liquids, the first reaction liquid L1 and the second reaction liquid L2, but three or more types of reaction liquids may be mixed. .
  • fine particles crystallized in a crystallizer can be retained without requiring a retention tank.

Abstract

A crystallization system (10A) comprises: a crystallizer (4) that mixes a plurality of raw material solutions to produce particles derived from a plurality of raw materials in the plurality of raw material solutions; a circulation pipeline (Po) for causing slurry (D1) containing the particles discharged from an outlet (6) of the crystallizer (4) to flow and circulating the slurry (D1) from an inlet (5a) of the crystallizer (4) into the crystallizer (4); and a circulation pump (30) that circulates the slurry (D1) between the crystallizer (4) and the circulation pipeline (Po). The circulation pipeline (Po) has a bend (Pp) that forms a meandering shape.

Description

晶析システムおよび晶析方法Crystallization system and method
 本発明は、晶析システムおよび晶析方法に関する。
 本願は、2022年3月15日に、日本に出願された特願2022-040318号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a crystallization system and method.
This application claims priority based on Japanese Patent Application No. 2022-040318 filed in Japan on March 15, 2022, the contents of which are incorporated herein.
 複数の原料溶液を混合し、原料溶液中の原料に由来する粒子を一定の粒径範囲内で得る晶析装置として、特許文献1から特許文献4に記載される晶析装置が知られている。 Crystallizers described in Patent Documents 1 to 4 are known as crystallizers that mix multiple raw material solutions and obtain particles derived from the raw materials in the raw material solutions within a certain particle size range. .
 上記のような晶析装置においては、複数の原料溶液の混合液中に設けられた撹拌翼を回転させて、混合液に剪断力を与えることで撹拌を促進させている。より粒子径が均一で高品質な微粒子を生成するためには、複数の原料溶液が互いに接触して粒子が生成する反応が行われる場である反応場に、撹拌翼を高速で回転して発生させた剪断力を効率的に伝達して反応を促進することが重要である。効率的な剪断力の伝達を達成するために、回転子である撹拌翼と、固定子である反応槽や反応液供給ノズルなどとのクリアランスを最小化する試みがなされている。
 上記のような晶析装置においては、非特許文献1に記載されるように、滞留槽が設けられ、晶析装置で結晶化された微粒子を滞留槽で滞留させることで、結晶を一定範囲の粒径までに成長させるのに必要な滞留時間を確保している。
In the crystallizer as described above, stirring is promoted by rotating a stirring blade provided in a mixed liquid of a plurality of raw material solutions to apply shear force to the mixed liquid. In order to generate high-quality fine particles with more uniform particle sizes, stirring blades are rotated at high speed in the reaction field, where multiple raw material solutions come into contact with each other and the reaction that generates particles takes place. It is important to efficiently transmit the generated shear force to promote the reaction. In order to achieve efficient transmission of shear force, attempts have been made to minimize the clearance between the stirring blade, which is a rotor, and the reaction tank, reaction liquid supply nozzle, and the like, which are stators.
In the above-mentioned crystallizer, as described in Non-Patent Document 1, a retention tank is provided, and by retaining the fine particles crystallized in the crystallizer in the retention tank, the crystals can be divided into a certain range. The residence time necessary for growth to particle size is secured.
 しかしながら、滞留槽を用いる場合、滞留槽の液レベルを調節することで、滞留槽での滞留時間を調整する必要があるが、滞留槽の液レベルを調節すると滞留槽内の流動状態が変化するため、複雑な流動解析が必要となり、粒径のコントロールが難しく、晶析装置が高価となる要因となる。 However, when using a retention tank, it is necessary to adjust the residence time in the retention tank by adjusting the liquid level in the retention tank, but adjusting the liquid level in the retention tank changes the flow state in the retention tank. Therefore, complicated flow analysis is required, particle size is difficult to control, and crystallization equipment becomes expensive.
日本国特開2010-137183号公報Japanese Patent Application Publication No. 2010-137183 日本国特開2010-022894号公報Japanese Patent Application Publication No. 2010-022894 日本国特許第3256801号公報Japanese Patent No. 3256801 日本国特開2016-87590号公報Japanese Patent Application Publication No. 2016-87590
 本発明は、このような背景の下になされ、滞留槽を必須とせずに、晶析装置で析出した微粒子を一定の粒径範囲に成長するまで滞留させることができ、滞留条件のコントールが容易な晶析システムおよび晶析方法を提供することを目的とする。 The present invention was developed against this background, and allows fine particles precipitated in a crystallizer to be retained until they grow to a certain particle size range without requiring a retention tank, making it easy to control retention conditions. The purpose of this invention is to provide a crystallization system and method.
 本発明の第1の態様は、複数の原料溶液を混合して前記複数の原料溶液の中の複数の原料に由来する粒子を生成させる晶析装置と、前記晶析装置の排出口から排出される前記粒子を含むスラリを流動させ前記晶析装置の導入口から前記晶析装置内に前記スラリを循環させる循環管路と、前記スラリを前記晶析装置と前記循環管路との間で循環させる循環ポンプとを備え、前記循環管路は、蛇行形状をなす屈曲部を有する晶析システムである。 A first aspect of the present invention includes a crystallizer that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions, and a crystallizer that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions; a circulation pipe that flows a slurry containing the particles and circulates the slurry from an inlet of the crystallizer into the crystallizer; and a circulation pipe that circulates the slurry between the crystallizer and the circulation pipe. The crystallization system is equipped with a circulation pump that allows the crystallization system to move, and the circulation pipe has a meandering bent portion.
 本発明の第1の態様によれば、晶析装置から排出されるスラリが循環管路を流量に応じた流速で流動するため、複雑な流動解析を必要とせずに、前記循環ポンプの流量制御により、容易に晶析システム内のスラリを完全均一混合することができる。 According to the first aspect of the present invention, since the slurry discharged from the crystallizer flows through the circulation pipe at a flow rate depending on the flow rate, the flow rate of the circulation pump can be controlled without the need for complicated flow analysis. This makes it easy to completely and uniformly mix the slurry in the crystallization system.
 本発明の第2の態様は、第1に態様において、前記循環管路の内径が一定である。 In a second aspect of the present invention, in the first aspect, the inner diameter of the circulation pipe is constant.
 本発明の第2の態様によれば、晶析装置から排出されるスラリが、内径が一定の循環管路を流動するため、複雑な流動解析を必要とせずに、前記循環ポンプの流量制御により、容易に晶析システム内のスラリを完全均一混合することができる。 According to the second aspect of the present invention, since the slurry discharged from the crystallizer flows through the circulation pipe having a constant inner diameter, it is possible to control the flow rate of the circulation pump without requiring complicated flow analysis. , can easily mix the slurry completely homogeneously in the crystallization system.
 本発明の第3の態様は、第1の態様において、前記屈曲部が複数設けられている。 A third aspect of the present invention is the first aspect in which a plurality of the bent portions are provided.
 本発明の第3の態様によれば、屈曲部が複数設けられているため、スラリの容量が多い場合でも、複雑な流動解析を必要とせずに、前記循環ポンプの流量制御により、容易に晶析システム内のスラリを完全均一混合することができる。 According to the third aspect of the present invention, since a plurality of bent portions are provided, even when the volume of slurry is large, crystallization can be easily performed by controlling the flow rate of the circulation pump without requiring complicated flow analysis. The slurry in the analysis system can be thoroughly mixed.
 本発明の第4の態様は、第1の態様において、前記屈曲部の少なくとも一部が温度調節槽の中に設けられている。 A fourth aspect of the present invention is that in the first aspect, at least a portion of the bent portion is provided in the temperature adjustment tank.
 本発明の第4の態様によれば、屈曲部の少なくとも一部が温度調節槽の中に設けられているため、前記循環ポンプの流量制御により、容易に晶析システム内のスラリを完全均一混合することができるとともにスラリの熱量を調整することができる。 According to the fourth aspect of the present invention, since at least a portion of the bent portion is provided in the temperature control tank, the slurry in the crystallization system can be easily and completely uniformly mixed by controlling the flow rate of the circulation pump. It is possible to adjust the amount of heat of the slurry.
 本発明の第5の態様は、第1の態様において、前記屈曲部が、分離可能な、複数の直管部と複数の曲管部と、から構成されている。 In a fifth aspect of the present invention, in the first aspect, the bent portion is composed of a plurality of separable straight tube portions and a plurality of bent tube portions.
 本発明の第5の態様によれば、前記複数の直管部と前記複数の曲管部の本数を変えることで、前記屈曲部の流路長を調節することができるので、複雑な流動解析を必要とせずに、前記屈曲部の流路長の調節により、スラリの滞留時間を調整することができる。 According to the fifth aspect of the present invention, the flow path length of the bent portion can be adjusted by changing the number of the plurality of straight pipe portions and the plurality of bent pipe portions, so that complicated flow analysis is possible. By adjusting the flow path length of the bent portion, the residence time of the slurry can be adjusted without the need for.
 本発明の第6の態様は、第1の態様において、前記晶析装置は、径方向に貫通する複数の孔を備えるとともに中心軸の回りに回転可能な撹拌翼と、前記撹拌翼を同心状に内部に収容可能な有底円筒状の反応槽と、前記反応槽に設けられるとともに前記反応槽の内部に第1の反応液を供給可能な前記導入口と、前記撹拌翼に設けられるとともに前記反応槽の内部に第2の反応液を供給可能な給液部と、を備える。 In a sixth aspect of the present invention, in the first aspect, the crystallizer includes a stirring blade that is provided with a plurality of holes penetrating in the radial direction and is rotatable around a central axis, and a stirring blade that is arranged concentrically. a cylindrical reaction tank with a bottom that can be accommodated inside the reaction tank; the introduction port that is provided in the reaction tank and is capable of supplying a first reaction liquid into the reaction tank; A liquid supply unit capable of supplying the second reaction liquid into the inside of the reaction tank is provided.
 本発明の第6の態様によれば、第2の反応液が、撹拌翼に設けられる給液部から供給されるため、反応液供給ノズルと撹拌翼とが別に設けられる場合のような高い製作精度を必要とせず、第2の反応液を剪断力が最も高い撹拌翼の内外周から至近距離、例えば2mm以内、の範囲に供給することができる。さらに、撹拌翼が径方向に貫通する複数の孔を備えるため、遠心力の影響により第1の反応液と第2の反応液との混合液が撹拌翼の径方向外側に向かって孔を通過して撹拌翼の外周側に移動しながら反応するため、剪断力が最も高い撹拌翼の内外周から至近距離、例えば2mm以内、の範囲での混合液の撹拌をさらに促進させることができる。 According to the sixth aspect of the present invention, the second reaction liquid is supplied from the liquid supply section provided on the stirring blade, which requires high manufacturing costs as in the case where the reaction liquid supply nozzle and the stirring blade are separately provided. The second reaction liquid can be supplied within a short distance, for example within 2 mm, from the inner and outer peripheries of the stirring blade where the shearing force is highest, without requiring precision. Furthermore, since the stirring blade is equipped with a plurality of holes penetrating in the radial direction, the mixed liquid of the first reaction liquid and the second reaction liquid passes through the holes toward the outside in the radial direction of the stirring blade due to the influence of centrifugal force. Since the reaction occurs while moving toward the outer periphery of the stirring blade, it is possible to further promote stirring of the liquid mixture within a close distance, for example, within 2 mm, from the inner and outer peripheries of the stirring blade where shearing force is highest.
 本発明の第7の態様は、第5の態様において、前記撹拌翼は、円筒状の円筒部と、前記円筒部の内周面に外縁部が固定される円盤状の円盤部と、前記円盤部の平面視の中心から前記中心軸に沿って上方に延びる回転軸と、を備え、前記円盤部と前記回転軸との内部を前記第2の反応液が流通可能であり、前記円盤部の前記外縁部に前記給液部が設けられている。 In a seventh aspect of the present invention, in the fifth aspect, the stirring blade includes a cylindrical cylindrical part, a disc-shaped disc part whose outer edge is fixed to an inner circumferential surface of the cylindrical part, and a rotating shaft extending upwardly along the central axis from the center of the disc part in a plan view, the second reaction liquid can flow through the interior of the disc part and the rotating shaft, and the second reaction liquid can flow inside the disc part and the rotating shaft; The liquid supply section is provided at the outer edge.
 本発明の第7の態様によれば、円盤部の外縁部に給液部が設けられているため、第2の反応液を剪断力が最も高い撹拌翼の内外周から至近距離、例えば2mm以内、の範囲に供給することができる。 According to the seventh aspect of the present invention, since the liquid supply part is provided at the outer edge of the disc part, the second reaction liquid is supplied at a close distance, for example, within 2 mm from the inner and outer periphery of the stirring blade having the highest shearing force. , can be supplied in a range of .
 本発明の第8の態様は、第6の態様において、前記給液部は下方に向けて開口している。 In an eighth aspect of the present invention, in the sixth aspect, the liquid supply section opens downward.
 本発明の第8の態様によれば、給液部は下方に向けて開口しているため、第2の反応液を剪断力が最も高い撹拌翼の内外周から至近距離、例えば2mm以内、の範囲に供給することができる。 According to the eighth aspect of the present invention, since the liquid supply part opens downward, the second reaction liquid is supplied at a close distance, for example, within 2 mm, from the inner and outer periphery of the stirring blade where the shear force is highest. Can be supplied to a range.
 本発明の第9の態様は、第6の態様において、前記給液部は径方向外側に向けて開口し前記円筒部を貫通している。 In a ninth aspect of the present invention, in the sixth aspect, the liquid supply portion opens radially outward and penetrates the cylindrical portion.
 本発明の第9の態様によれば、給液部は径方向外側に向けて開口し前記円筒部を貫通しているため、第2の反応液を剪断力が最も高い撹拌翼の内外周から至近距離、例えば2mm以内、の範囲に供給することができる。 According to the ninth aspect of the present invention, since the liquid supply part opens radially outward and penetrates the cylindrical part, the second reaction liquid is supplied from the inner and outer periphery of the stirring blade where the shear force is highest. It can be supplied to a close range, for example within 2 mm.
 本発明の第10の態様は、複数の原料溶液を混合して前記複数の原料溶液の中の複数の原料に由来する粒子を晶析装置で成長させる晶析ステップと、前記晶析装置の排出口から排出される前記粒子を含むスラリを、蛇行形状をなす屈曲部を有する循環管路を流動させることで前記晶析装置の導入口まで循環させる循環ステップと、を含む晶析方法である。 A tenth aspect of the present invention includes a crystallization step of mixing a plurality of raw material solutions and growing particles derived from a plurality of raw materials in the plurality of raw material solutions in a crystallizer, and an exhausting of the crystallizer. This crystallization method includes a circulation step of circulating the slurry containing the particles discharged from the outlet to the inlet of the crystallizer by flowing the circulation pipe having a meandering bent portion.
 本発明の第10の態様によれば、晶析装置から排出されるスラリが循環管路を流動するため、複雑な流動解析を必要とせずに、スラリの滞留時間を調整することができる。 According to the tenth aspect of the present invention, the slurry discharged from the crystallizer flows through the circulation pipe, so the residence time of the slurry can be adjusted without the need for complicated flow analysis.
 本発明によれば、滞留槽を必須とせずに、晶析装置で結晶化された微粒子を滞留させることができる晶析システムおよび晶析方法を得ることができる。 According to the present invention, it is possible to obtain a crystallization system and a crystallization method that can retain fine particles crystallized in a crystallizer without requiring a retention tank.
本発明に係る第1実施形態の晶析システムの概略図である。1 is a schematic diagram of a crystallization system according to a first embodiment of the present invention. 本発明に係る第2実施形態の晶析システムの概略図である。FIG. 2 is a schematic diagram of a crystallization system according to a second embodiment of the present invention. 本発明に係る第3実施形態の晶析システムの概略図である。FIG. 3 is a schematic diagram of a crystallization system according to a third embodiment of the present invention. 本発明に係る第1実施形態の晶析システムの第1の変形例の概略図である。It is a schematic diagram of the 1st modification of the crystallization system of 1st Embodiment based on this invention. 本発明に係る第1実施形態の晶析システムの第2の変形例の概略図である。It is a schematic diagram of the 2nd modification of the crystallization system of 1st Embodiment based on this invention. 本発明に係る第1実施形態の晶析システムの第3の変形例の概略図である。It is a schematic diagram of the third modification of the crystallization system of the first embodiment according to the present invention. 本発明に係る第1実施形態の晶析システムの第4の変形例の概略図である。It is a schematic diagram of the 4th modification of the crystallization system of 1st Embodiment based on this invention. 本発明に係る第1実施形態の晶析システムの第5の変形例の概略図である。It is a schematic diagram of the 5th modification of the crystallization system of 1st Embodiment based on this invention. 本発明に係る第1実施形態の晶析システムの第6の変形例の概略図である。It is a schematic diagram of the 6th modification of the crystallization system of 1st Embodiment based on this invention. 本発明に係る第1実施形態の晶析システムの第7の変形例の概略図である。It is a schematic diagram of the 7th modification of the crystallization system of 1st Embodiment based on this invention. 本発明に係る第1実施形態の晶析システムの第8の変形例の概略図である。It is a schematic diagram of the 8th modification of the crystallization system of 1st Embodiment based on this invention.
<第1実施形態>
 以下、第1実施形態に係る晶析システム10Aを、図1を参照しながら説明する。
 晶析システム10Aは、複数の原料溶液を混合して、これら複数の原料溶液の中の複数の原料に由来する粒子を生成させる晶析装置4と、晶析装置4の下流に設けられ、晶析装置4の排出口6から排出されるスラリD1を晶析装置4の導入口5aまで循環させる循環管路Poと、スラリD1を晶析装置4と循環管路Poとの間で循環させる循環ポンプ30と、を備える。
<First embodiment>
Hereinafter, a crystallization system 10A according to a first embodiment will be described with reference to FIG. 1.
The crystallization system 10A includes a crystallizer 4 that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions, and a crystallizer 4 that is provided downstream of the crystallizer 4 and that mixes a plurality of raw material solutions. A circulation pipe Po that circulates the slurry D1 discharged from the discharge port 6 of the crystallizer 4 to the inlet 5a of the crystallizer 4, and a circulation pipe that circulates the slurry D1 between the crystallizer 4 and the circulation pipe Po. A pump 30 is provided.
 循環管路Poは、蛇行形状の管路である屈曲部Ppを備えている。さらに、循環管路Poは、晶析装置4と屈曲部Ppとを接続する配管22と、循環ポンプ30と屈曲部Ppとを接続する配管23と、循環ポンプ30と晶析装置4とを接続する配管24と、を備えている。なお、屈曲部Ppは、蛇行形状に限定されず、螺旋形状をなしていても良い。 The circulation pipe Po includes a bent portion Pp that is a meandering pipe. Further, the circulation pipe Po includes a pipe 22 that connects the crystallizer 4 and the bent part Pp, a pipe 23 that connects the circulation pump 30 and the bent part Pp, and a pipe 23 that connects the circulation pump 30 and the crystallizer 4. A piping 24 is provided. Note that the bent portion Pp is not limited to a meandering shape, but may have a spiral shape.
 循環ポンプ30は、スラリD1を、晶析装置4と屈曲部Ppとの間で流量を調整可能に循環させる機能を有する循環ポンプである。しかしながら、同様の機能を有する装置であれば必ずしも循環ポンプに限定されず、例えば、回転数を制御可能な羽根車が配管23或いは配管24に設けられていても良い。 The circulation pump 30 is a circulation pump that has a function of circulating the slurry D1 between the crystallizer 4 and the bending part Pp in an adjustable flow rate. However, the device is not necessarily limited to a circulation pump as long as it has a similar function; for example, an impeller whose rotation speed can be controlled may be provided in the piping 23 or the piping 24.
 晶析装置4は、鉛直方向を向いた中心軸O1を備える有底円筒状の反応槽1と、円筒状の撹拌翼Wcと、を備える。撹拌翼Wcは、撹拌翼Wcの平面視の中心から中心軸O1に沿って上方に延びる中空の回転軸3を中心に回転可能であり、中心軸O1を同一の中心軸として反応槽1の内部に収容されている。回転軸3は、晶析装置4の外部に設けられる不図示の原動機からベルトを介して供給される回転力により回転する。なお、原動機はモータやエンジンなど回転動力を発生させる装置であれば特に限定されない。また、回転力を回転軸3に伝達するベルトはチェーンや歯車など回転力を伝達できれば特に限定されない。なお、反応槽1の底面は、図示されるような平面状である他に、下方に対して凸となるコーン形状であっても良い。反応槽1の上部には反応槽1で生成された粒子(結晶)を含むスラリを次工程に排出可能な排出口6が設けられている。排出口6から配管22に排出されたスラリD1の圧力を維持又は調節する圧力指示調整計(PIC:Pressure Indication Controller)が配管22に設けられている。 The crystallizer 4 includes a cylindrical reaction tank 1 with a bottom and a central axis O1 facing in the vertical direction, and a cylindrical stirring blade Wc. The stirring blade Wc is rotatable around a hollow rotating shaft 3 that extends upward from the center of the stirring blade Wc in plan view along the central axis O1, and rotates around the inside of the reaction tank 1 with the central axis O1 as the same central axis. is housed in. The rotating shaft 3 is rotated by a rotational force supplied via a belt from a prime mover (not shown) provided outside the crystallizer 4 . Note that the prime mover is not particularly limited as long as it is a device that generates rotational power, such as a motor or an engine. Further, the belt for transmitting the rotational force to the rotating shaft 3 is not particularly limited as long as it can transmit rotational force, such as a chain or a gear. The bottom surface of the reaction tank 1 may have a cone shape that is convex downward, instead of being flat as shown in the figure. A discharge port 6 is provided in the upper part of the reaction tank 1 to allow the slurry containing particles (crystals) generated in the reaction tank 1 to be discharged to the next process. A pressure indication controller (PIC) is provided in the pipe 22 to maintain or adjust the pressure of the slurry D1 discharged from the discharge port 6 into the pipe 22.
 反応槽1の下部には第1の反応液L1と循環管路Poを流動したスラリD1が供給される導入口5aが設けられている。第1の反応液L1は、外部の副原料SやSを貯蔵する不図示のタンクから副原料SやSが供給され混合されることで生成される。第1の反応液L1の副原料SやSの流量は、燃料指示調節計(FIC:Flow Indication Controller)FIC、FICで維持又は調節される。第1の反応液L1は、導入口5aから反応槽1に所望の量だけ供給される。第1の反応液L1の導入口5aからの供給量は、例えば循環ポンプ30の回転数を調節することで所望の量に調整することができる。第1の反応液L1が流れる配管24には必要に応じて圧力計(PI:Pressure Indicator)PIが設けられる。
 また、撹拌翼Wcに設けられる給液部5bから第2の反応液L2が反応槽1の中に供給される。第2の反応液L2は、外部の主原料Sを貯蔵するタンクから供給される。第2の反応液L2の流量は、燃料指示調節計FICで維持又は調節される。
 反応槽1の中に供給された第1の反応液L1と第2の反応液L2とが反応することで、結晶化された微粒子が生成される。スラリD1は、この微粒子を含んだ流体である。
At the lower part of the reaction tank 1, an introduction port 5a is provided to which the first reaction liquid L1 and the slurry D1 flowing through the circulation pipe Po are supplied. The first reaction liquid L1 is generated by supplying and mixing the auxiliary raw materials S A and SB from an unillustrated tank that stores the external auxiliary raw materials S A and SB . The flow rates of the auxiliary raw materials S A and SB of the first reaction liquid L1 are maintained or adjusted by fuel indication controllers (FICs) FIC 2 and FIC 3 . A desired amount of the first reaction liquid L1 is supplied to the reaction tank 1 from the inlet 5a. The amount of the first reaction liquid L1 supplied from the inlet 5a can be adjusted to a desired amount by adjusting the rotation speed of the circulation pump 30, for example. A pressure gauge (PI:Pressure Indicator) PI 1 is provided in the pipe 24 through which the first reaction liquid L1 flows, if necessary.
Further, the second reaction liquid L2 is supplied into the reaction tank 1 from the liquid supply part 5b provided on the stirring blade Wc. The second reaction liquid L2 is supplied from an external tank storing the main raw material SM . The flow rate of the second reaction liquid L2 is maintained or adjusted by a fuel indicator controller FIC1 .
The first reaction liquid L1 and the second reaction liquid L2 supplied into the reaction tank 1 react to generate crystallized fine particles. Slurry D1 is a fluid containing these fine particles.
 屈曲部Ppは、互いに間隔を空けて略同じ方向を向くように配置された内径rの複数の直管部(Po1、Po2、Po3、Po4、Po5、Po6)と、隣接する複数の直管部Po1、Po2、Po3、Po4、Po5、Po6同士を分離可能、或いは着脱可能に連結する内径rの複数の曲管部C(C、C、C、C、C)と、複数の直管部を固定する固定板21と、から構成されている。複数の曲管部Cが分離可能であるとは、図1に点線で表示された曲管部Cのように、直管部Po5及び直管部Po6とを接続するように設けられていた曲管部Cを、直管部Po5及び直管部Po6とから分離させることができることを意味する。
 曲管部Cと、直管部Po5及び直管部Po6との着脱方法としては、不図示のフランジ部が曲管部Cの両端部と、直管部Po5及び直管部Po6の左端部に設けられており、ボルトやナット等を用いてフランジ部を締め付けたり緩めたりすることで、直管部Po5及び直管部Po6に対して、曲管部Cを着脱しても良い。着脱方法はこれに限定されず、着脱自在であれば、例えば、フランジ部を使用する方法に限らず、直管部Po5及び直管部Po6の左端部に曲管部Cの両端を螺合させることで着脱しても良い。
 固定板21は、図1では矩形状となっているが、複数の直管部Po1、Po2、Po3、Po4、Po5、Po6が固定板21に固定された状態で保持できれば、その素材や形状は特に限定されない。
 上記のように、分離可能な、複数の直管部と複数の曲管部Cにおいては、分離させることで容易に直管部及び曲管部Cの内周面を清掃することができるので、晶析システム10Aのメンテナンス性を向上させることができる。
The bent portion Pp includes a plurality of straight pipe portions (Po1, Po2, Po3, Po4, Po5, Po6) with an inner diameter of r2 , which are arranged at intervals and facing substantially the same direction, and a plurality of adjacent straight pipe portions. A plurality of curved pipe parts C (C 1 , C 2 , C 3 , C 4 , C 5 ) with an inner diameter r 3 that connect parts Po1, Po2 , Po3, Po4 , Po5, and Po6 in a separable or detachable manner. , and a fixing plate 21 for fixing a plurality of straight pipe sections. The plurality of curved pipe sections C are separable if they are provided so as to connect the straight pipe sections Po5 and Po6, like the curved pipe section C5 indicated by the dotted line in Fig. 1. This means that the curved pipe portion C5 can be separated from the straight pipe portions Po5 and Po6.
As for how to attach and detach the bent pipe section C5 and the straight pipe sections Po5 and Po6, the flange section (not shown) is attached to both ends of the bent pipe section C5 and the left end of the straight pipe sections Po5 and Po6. The bent pipe portion C5 may be attached to and removed from the straight pipe portion Po5 and the straight pipe portion Po6 by tightening or loosening the flange portion using bolts, nuts, etc. The attachment/detachment method is not limited to this, and as long as it is detachable, for example, it is not limited to the method of using a flange part, and both ends of the curved pipe part C5 can be screwed to the left end parts of the straight pipe part Po5 and the straight pipe part Po6. You can put it on and take it off by letting it go.
Although the fixing plate 21 has a rectangular shape in FIG. 1, the material and shape of the fixing plate 21 can be Not particularly limited.
As mentioned above, since the plurality of straight pipe parts and the plurality of curved pipe parts C can be separated, the inner circumferential surfaces of the straight pipe parts and the curved pipe parts C can be easily cleaned by separating them. The maintainability of the crystallization system 10A can be improved.
 図1の例では、直管部は、直管部Po1、直管部Po2、直管部Po3、直管部Po4、直管部Po5、直管部Po6の6つの直管部により構成されており、曲管部Cは、曲管部C、曲管部C、曲管部C、曲管部C、曲管部Cの5つの曲管部から構成されているが、この例に限定されない。
 直管部Poは、6つ以上の直管部Poから構成されていても良いし、6つ以下の直管部Poから構成されていても良い。直管部Poの個数に合わせて、曲管部Cの個数も増減する。例えば、図1の例において、直管部Po3の右端部に第一端が接続されている曲管部Cの第二端を配管22の左端部に接続しても良い。この場合、曲管部Cに伸縮及び湾曲自在の蛇腹部が設けられていることにより、曲管部Cが伸縮自在であっても良い。
In the example of FIG. 1, the straight pipe section is composed of six straight pipe sections: straight pipe section Po1, straight pipe section Po2, straight pipe section Po3, straight pipe section Po4, straight pipe section Po5, and straight pipe section Po6. The curved pipe section C is composed of five curved pipe sections: a curved pipe section C 1 , a curved pipe section C 2 , a curved pipe section C 3 , a curved pipe section C 4 , and a curved pipe section C 5 . It is not limited to this example.
The straight pipe portion Po may be composed of six or more straight pipe parts Po, or may be composed of six or less straight pipe parts Po. The number of curved pipe parts C also increases or decreases in accordance with the number of straight pipe parts Po. For example, in the example of FIG. 1, the second end of the curved pipe portion C2 , whose first end is connected to the right end portion of the straight pipe portion Po3, may be connected to the left end portion of the pipe 22. In this case, the curved tube portion C 2 may be provided with a bellows portion that can be expanded and contracted, so that the curved tube portion C 2 can be expanded and contracted.
 このように、屈曲部Ppの管路長、即ち、直管部と曲管部Cの合計の長さ(直管部と曲管部Cの個数)は、スラリD1を所望の滞留時間だけ、滞留させることを目的に要望に応じて調節することができる。即ち、より長い滞留時間が望まれる場合には、直管部と曲管部Cの数を増して屈曲部Ppの管路長を長くすることが望ましく、より短い滞留時間が望まれる場合には、直管部と曲管部Cの数を減らして屈曲部Ppの管路長を短くすることが望ましい。 In this way, the pipe length of the bent portion Pp, that is, the total length of the straight pipe portion and the bent pipe portion C (the number of the straight pipe portion and the bent pipe portion C) is such that the slurry D1 is kept for the desired residence time. It can be adjusted as desired to achieve retention. That is, when a longer residence time is desired, it is desirable to increase the number of straight pipe sections and bent pipe sections C to lengthen the pipe length of the bent section Pp, and when a shorter residence time is desired, It is desirable to reduce the number of straight pipe portions and bent pipe portions C to shorten the pipe length of the bent portion Pp.
 ここで、スラリD1の流速は、スラリD1を構成する粒子の比重と径により決まる。即ち、スラリD1を構成する粒子の比重と径により、スラリD1を構成する粒子の沈降速度が決まるので、スラリD1が配管内で沈降することなく流通されるようにスラリD1の流速を決める。そのため、所望のスラリD1の滞留時間と、スラリD1を沈降させないためのスラリD1の流速とから、屈曲部Ppの管路長を求めることができる。 Here, the flow rate of the slurry D1 is determined by the specific gravity and diameter of the particles that make up the slurry D1. That is, since the settling speed of the particles making up the slurry D1 is determined by the specific gravity and diameter of the particles making up the slurry D1, the flow rate of the slurry D1 is determined so that the slurry D1 flows through the pipe without settling. Therefore, the pipe length of the bent portion Pp can be determined from the desired residence time of the slurry D1 and the flow rate of the slurry D1 to prevent the slurry D1 from settling.
 晶析装置4と屈曲部Ppは内径rの配管22により接続されている。屈曲部Ppと循環ポンプ30は内径rの配管23により接続されている。循環ポンプ30と晶析装置4は内径rの配管24により接続されている。
 図1の例では、循環管路Poの内径、即ち、配管22の内径r、直管部Po1、Po2、Po3、Po4、Po5、Po6の内径r、曲管部C、C、C、C、Cの内径r、配管23の内径r、配管24の内径rは、同一とされている。この場合、配管22、直管部Po1、Po2、Po3、Po4、Po5、Po6、曲管部C、C、C、C、C、配管23、配管24の断面積が一定となるため、管路を流れるスラリD1の流動解析が容易となる。しかしながら、上記の例に限定されず、循環管路Poの内径、即ち、配管22の内径r、直管部Po1、Po2、Po3、Po4、Po5、Po6の内径r、曲管部C、C、C、C、Cの内径r、配管23の内径r、配管24の内径rが互いに異なっていても良い。その場合、異なった内径を考慮して流動解析を行えばよい。
The crystallizer 4 and the bent portion Pp are connected by a pipe 22 having an inner diameter r1 . The bent portion Pp and the circulation pump 30 are connected by a pipe 23 having an inner diameter r4 . The circulation pump 30 and the crystallizer 4 are connected by a pipe 24 having an inner diameter r5 .
In the example of FIG. 1, the inner diameter of the circulation pipe Po, that is, the inner diameter r 1 of the pipe 22, the inner diameter r 2 of the straight pipe portions Po1, Po2, Po3, Po4, Po5, Po6, the curved pipe portions C 1 , C 2 , The inner diameter r 3 of C 3 , C 4 , and C 5 , the inner diameter r 4 of the pipe 23, and the inner diameter r 5 of the pipe 24 are the same. In this case, the cross-sectional areas of the pipe 22, the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6, the curved pipe parts C1 , C2 , C3 , C4 , C5 , the pipe 23, and the pipe 24 are constant. Therefore, flow analysis of the slurry D1 flowing through the pipe becomes easy. However, the example is not limited to the above example, and the inner diameter of the circulation pipe Po, that is, the inner diameter r 1 of the pipe 22, the inner diameter r 2 of the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6, the curved pipe portion C 1 , C2 , C3 , C4 , and C5 , the inner diameter r4 of the pipe 23, and the inner diameter r5 of the pipe 24 may be different from each other. In that case, flow analysis may be performed taking different inner diameters into consideration.
 屈曲部Ppから排出されるスラリD1が流れる配管23には、モータMで駆動される第2循環ポンプ31に接続される管路が接続されている。この管路が配管23からスラリD1を引き抜き、これを集積する事で製品となる。モータMと第2循環ポンプ31との間に燃料指示調節計(Flow Indication Controller)FICが設けられ、晶析システム10Aの外部に引き抜かれるスラリD1の流量の維持又は調節を行う。第2循環ポンプ31は、循環ポンプ30と同様に、流量を調整可能に循環させる機能を有するスラリ排出ポンプである。しかしながら、配管23からスラリD1を引き抜く機能を有する装置であれば必ずしもスラリ排出ポンプに限定されず、例えば、回転数を制御可能な羽根車が管路に設けられていても良い。
 スラリD1が外部に引き抜かれた直後の配管23におけるスラリD1の圧力を必要に応じて圧力計(Pressure Indicator)PIでモニターする。
A pipe line connected to a second circulation pump 31 driven by a motor M is connected to the pipe 23 through which the slurry D1 discharged from the bent portion Pp flows. This pipe line pulls out the slurry D1 from the pipe 23 and accumulates it to form a product. A fuel flow indication controller FIC 4 is provided between the motor M and the second circulation pump 31, and maintains or adjusts the flow rate of the slurry D1 drawn out of the crystallization system 10A. The second circulation pump 31, like the circulation pump 30, is a slurry discharge pump that has a function of circulating the slurry with an adjustable flow rate. However, the device is not necessarily limited to the slurry discharge pump as long as it has the function of drawing out the slurry D1 from the pipe 23, and for example, an impeller whose rotation speed can be controlled may be provided in the pipe.
The pressure of the slurry D1 in the pipe 23 immediately after the slurry D1 is pulled out is monitored by a pressure indicator PI 2 as necessary.
 このような屈曲部Ppを有する循環管路Poを備える晶析システム10Aによれば、晶析装置4において生成される粒子を含むスラリD1を、循環ポンプ30の流量制御により、容易に完全均一混合することができる。さらに、晶析装置4において生成される粒子を含むスラリD1を、屈曲部Ppの管路長を調節することで、滞留槽を必須とすることなく、所望の時間だけ滞留させることができる。従って、滞留槽を用いる場合に要求されたスラリD1の複雑な流動解析を行うことなく、屈曲部PpにおけるスラリD1の滞留時間を調節することができる。なお、不図示の滞留槽を晶析システム10Aに加えても良い。 According to the crystallization system 10A including the circulation pipe Po having such a bent portion Pp, the slurry D1 containing particles generated in the crystallizer 4 can be easily and completely uniformly mixed by controlling the flow rate of the circulation pump 30. can do. Furthermore, by adjusting the pipe length of the bent portion Pp, the slurry D1 containing particles generated in the crystallizer 4 can be retained for a desired time without requiring a retention tank. Therefore, the residence time of the slurry D1 at the bent portion Pp can be adjusted without performing complicated flow analysis of the slurry D1, which is required when using a residence tank. Note that a retention tank (not shown) may be added to the crystallization system 10A.
<第2実施形態>
 次に、第2実施形態に係る晶析システム10Bを、図2を参照しながら説明する。以下では、第1実施形態と異なる点のみ説明し、第1実施形態と同じ部材には同じ参照番号を付し説明を省略する。
<Second embodiment>
Next, a crystallization system 10B according to a second embodiment will be described with reference to FIG. 2. In the following, only the points different from the first embodiment will be explained, and the same reference numbers will be given to the same members as in the first embodiment, and the explanation will be omitted.
 晶析システム10Bは、屈曲部Pp(第1屈曲部)に加えて第2屈曲部Ppaが設けられている点で第1実施形態の晶析システム10Aと異なっている。 The crystallization system 10B differs from the crystallization system 10A of the first embodiment in that a second bent portion Ppa is provided in addition to the bent portion Pp (first bent portion).
 第2屈曲部Ppaは、第1屈曲部Ppと同様の構成を有する。配管22の途中から、第2屈曲部Ppaに向かって分岐する配管22aが延びている。また、第2屈曲部Ppaから排出されるスラリD1は、配管23aを経由して、第1屈曲部Ppから排出されるスラリD1が流通する配管23に合流する。 The second bent portion Ppa has the same configuration as the first bent portion Pp. A pipe 22a extends from the middle of the pipe 22 and branches toward the second bent portion Ppa. Further, the slurry D1 discharged from the second bent portion Ppa passes through the pipe 23a and joins the pipe 23 through which the slurry D1 discharged from the first bent portion Pp flows.
 図2に示されるように、配管22aの入り口と配管23aの出口には、弁V1と弁V2が設けられている。弁V1と弁V2とを開弁することで、第1屈曲部Ppと第2屈曲部Ppaの両方にスラリD1を流すことができる。一方、弁V1と弁V2とを閉弁することで、第1屈曲部PpのみにスラリD1を流すことができ、第1実施形態の晶析システム10Aと同様の構成とすることができる。 As shown in FIG. 2, a valve V1 and a valve V2 are provided at the inlet of the pipe 22a and the outlet of the pipe 23a. By opening the valves V1 and V2, the slurry D1 can flow into both the first bent portion Pp and the second bent portion Ppa. On the other hand, by closing the valves V1 and V2, it is possible to flow the slurry D1 only through the first bent portion Pp, and it is possible to have the same configuration as the crystallization system 10A of the first embodiment.
 このような晶析システム10Bによれば、スラリD1の流量に応じて、第1屈曲部Ppに加えて第2屈曲部PpaにもスラリD1を流すことができる。 According to such a crystallization system 10B, the slurry D1 can be made to flow not only to the first bent portion Pp but also to the second bent portion Ppa depending on the flow rate of the slurry D1.
<第3実施形態>
 次に、第3実施形態に係る晶析システム10Cを、図3を参照しながら説明する。以下では、第1実施形態と異なる点のみ説明し、第1実施形態と同じ部材には同じ参照番号を付し説明を省略する。
<Third embodiment>
Next, a crystallization system 10C according to a third embodiment will be described with reference to FIG. 3. In the following, only the points different from the first embodiment will be explained, and the same reference numbers will be given to the same members as in the first embodiment, and the explanation will be omitted.
 晶析システム10Cは、屈曲部Ppの少なくとも一部が温度調節槽13の中に設けられている点で第1実施形態の晶析システム10Aと異なっている。 The crystallization system 10C differs from the crystallization system 10A of the first embodiment in that at least a portion of the bent portion Pp is provided in the temperature adjustment tank 13.
 温度調節槽13は、不図示のポンプ等により、冷水等の冷媒CWが温度調節槽13の内部を一方向に流れる状態を維持している部材である。このような温度調節槽13の中に、屈曲部Ppの少なくとも一部を設けた場合、屈曲部Ppの直管部Po1、Po2、Po3、Po4、Po5、Po6に冷媒が衝突する。この場合、屈曲部Ppの直管部Po1、Po2、Po3、Po4、Po5、Po6を流れるスラリD1と冷媒CWとの間で、直管部Po1、Po2、Po3、Po4、Po5、Po6を構成する部材を介して熱交換が行われる。よって、スラリD1を冷却又は加熱することができる。
 ここで、図3の場合は、冷媒CWの流れ方向に対して直管部Po1、Po2、Po3、Po4、Po5、Po6が略垂直に設けられているが、必ずしも冷媒CWの流れ方向に対して直管部Po1、Po2、Po3、Po4、Po5、Po6が略垂直に設けられていなくとも良く、垂直ではない角度を付けて設けられていても良い。また、屈曲部Ppの曲管部Cにおいて冷媒CWとの熱交換が行われても良いし、屈曲部Ppの直管部と曲管部Cとの両方で冷媒CWとの熱交換が行われても良い。
The temperature adjustment tank 13 is a member that maintains a state in which a refrigerant CW such as cold water flows in one direction inside the temperature adjustment tank 13 by a pump (not shown) or the like. When at least a portion of the bent portion Pp is provided in such a temperature adjustment tank 13, the refrigerant collides with the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6 of the bent portion Pp. In this case, the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6 are formed between the slurry D1 and the refrigerant CW flowing through the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6 of the bent part Pp. Heat exchange takes place through the members. Therefore, the slurry D1 can be cooled or heated.
Here, in the case of FIG. 3, the straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6 are provided approximately perpendicularly to the flow direction of the refrigerant CW, but they are not necessarily provided in the flow direction of the refrigerant CW. The straight pipe portions Po1, Po2, Po3, Po4, Po5, and Po6 do not need to be provided substantially vertically, and may be provided at an angle that is not perpendicular. Further, heat exchange with the refrigerant CW may be performed in the bent pipe portion C of the bent portion Pp, or heat exchange with the refrigerant CW may be performed in both the straight pipe portion and the bent pipe portion C of the bent portion Pp. It's okay.
 ここで、屈曲部Ppのうち、直管部Po1、Po2、Po3、Po4、Po5、Po6の長さ、或いは直管部Po1、Po2、Po3、Po4、Po5、Po6の数を調節することで、スラリD1に対する温度調整能力を調整することができる。例えば、直管部Po1を流れる熱量Qを有するスラリD1から熱量Q1が熱交換により冷媒CWに移動したとすると、直管部Po2を流れる熱量(Q-Q1)を有するスラリD1から熱量Q2が熱交換により冷媒CWに移動する。さらに、直管部Po3を流れる熱量(Q-(Q1+Q2))を有するスラリD1から熱量Q3が熱交換により冷媒CWに移動すると、直管部Po4を流れるスラリD1の熱量は(Q-(Q1+Q2+Q3))となる。これを所望の回数繰り返すことで、スラリD1の熱量を低減させることができるので、スラリD1を所望の量だけ冷却することができる。スラリD1を加熱する場合も同様である。 Here, by adjusting the length of the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6 or the number of straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6 among the bent parts Pp, The temperature adjustment ability for slurry D1 can be adjusted. For example, if the heat amount Q1 is transferred to the refrigerant CW by heat exchange from the slurry D1 having the heat amount Q flowing through the straight pipe portion Po1, the heat amount Q2 is transferred from the slurry D1 having the heat amount (Q-Q1) flowing through the straight pipe portion Po2. The refrigerant is transferred to CW by exchange. Furthermore, when the heat amount Q3 from the slurry D1 having the heat amount (Q-(Q1+Q2)) flowing through the straight pipe portion Po3 is transferred to the refrigerant CW by heat exchange, the heat amount of the slurry D1 flowing through the straight pipe portion Po4 becomes (Q-(Q1+Q2+Q3) ). By repeating this a desired number of times, the amount of heat of the slurry D1 can be reduced, so that the slurry D1 can be cooled by a desired amount. The same applies when heating the slurry D1.
 このような晶析システム10Cによれば、冷媒CWと熱交換が行われる屈曲部Ppの管路長、即ち、直管部Po1、Po2、Po3、Po4、Po5、Po6の管路長、或いは数を調節することで、スラリD1を所望の量だけ冷却又は加熱することができる。 According to such a crystallization system 10C, the pipe length of the bent part Pp where heat exchange is performed with the refrigerant CW, that is, the pipe length or number of the straight pipe parts Po1, Po2, Po3, Po4, Po5, Po6. By adjusting the amount, slurry D1 can be cooled or heated by a desired amount.
<第1実施形態の第1の変形例>
 以下、第1実施形態に係る晶析システム10Aの第1の変形例に係る晶析システム10A1を、図4を参照して説明する。以下の説明では、第1実施形態に係る晶析システム10Aと異なる点のみ説明し、同じ部材には同じ参照番号を付し、その説明を省略する。
<First modification of the first embodiment>
Hereinafter, a crystallization system 10A1 according to a first modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 4. In the following description, only the points different from the crystallization system 10A according to the first embodiment will be explained, the same members will be given the same reference numbers, and the description thereof will be omitted.
 第1の変形例に係る晶析システム10A1では、晶析装置4aが撹拌翼Wを備えている点で晶析装置4と異なっている。 A crystallization system 10A1 according to the first modification differs from the crystallizer 4 in that the crystallizer 4a includes a stirring blade W.
 撹拌翼Wは、円筒部2と、円筒部2の内周面2iに外縁部が固定される円盤状の円盤部8と、を備えている。円盤部8は、円筒部2の高さが概ね半分となる位置に設けられるが、この例に限定されず、円筒部2の高さの概ね半分よりも下側や上側に設けられても良い。円盤部8の平面視の中心に回転軸3が固定されている。回転軸3の中空の内部は管路P1とされている。円盤部8の内部には複数の管路P2が中心から放射状に外縁部に向かって延びている。回転軸3の管路P1と円盤部8の管路P2とは連通している。撹拌翼Wの回転軸3には、晶析装置4の外部に設けられる主原料Sを貯蔵する不図示のタンクから第2の反応液L2が供給される。第2の反応液L2は、ロータリージョイントRを介して回転軸3の中空の管路P1に供給され、その後、円盤部8の管路P2に供給される。管路P2の反応槽1の径方向外側の先端は下方に向けて開口しており第2の反応液L2が排出される給液部5bとされている。従って、円盤部8には、給液部5bが円盤部の周方向に間隔を空けて複数設けられている。給液部5bの個数は例えば8個設けられている。給液部5bの個数は限定されないが、中心軸O1に対して対称に設けることが望ましい。 The stirring blade W includes a cylindrical part 2 and a disc-shaped disc part 8 whose outer edge is fixed to the inner peripheral surface 2i of the cylindrical part 2. The disk portion 8 is provided at a position where the height of the cylindrical portion 2 is approximately half, but is not limited to this example, and may be provided below or above approximately half the height of the cylindrical portion 2. . The rotating shaft 3 is fixed to the center of the disk portion 8 in plan view. The hollow interior of the rotating shaft 3 is defined as a conduit P1. Inside the disk portion 8, a plurality of conduits P2 extend radially from the center toward the outer edge. The conduit P1 of the rotating shaft 3 and the conduit P2 of the disk portion 8 are in communication. The second reaction liquid L2 is supplied to the rotating shaft 3 of the stirring blade W from a tank (not shown) provided outside the crystallizer 4 and storing the main raw material SM . The second reaction liquid L2 is supplied to the hollow pipe line P1 of the rotating shaft 3 via the rotary joint R, and then to the pipe line P2 of the disc part 8. The tip of the pipe P2 on the outside in the radial direction of the reaction tank 1 is opened downward and serves as a liquid supply section 5b from which the second reaction liquid L2 is discharged. Therefore, the disk portion 8 is provided with a plurality of liquid supply portions 5b at intervals in the circumferential direction of the disk portion. For example, eight liquid supply parts 5b are provided. Although the number of liquid supply parts 5b is not limited, it is desirable to provide them symmetrically with respect to the central axis O1.
 本変形例においては、撹拌翼Wの円筒部2の内周面2iと給液部5bの中心との距離は2mm以下とされている。また、撹拌翼Wの円筒部2の外周面2oと反応槽1の内周面1iとの距離(クリアランス)をL3、撹拌翼W(円筒部2)の中心軸O1に沿う高さをHとすると、HとL3との比であるH/L3が10以上であることが好ましい。また、H/L3が25以上であることがより好ましい。従って、この実施例と異なるサイズの装置を使用する場合であっても、この比を基に同様の装置を製作することができる。撹拌翼Wは、5m/秒以上50m/秒以下の周速で回転する。
 なお、H/L3の比率は、目的によって、上述の比率と異なる場合がある。例えば、結晶破砕を抑制したい場合には、比率を上記の値から下げても良い。
In this modification, the distance between the inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W and the center of the liquid supply portion 5b is 2 mm or less. Further, the distance (clearance) between the outer peripheral surface 2o of the cylindrical part 2 of the stirring blade W and the inner peripheral surface 1i of the reaction tank 1 is L3, and the height along the central axis O1 of the stirring blade W (cylindrical part 2) is H. Then, it is preferable that H/L3, which is the ratio of H to L3, is 10 or more. Moreover, it is more preferable that H/L3 is 25 or more. Therefore, even if a device of a different size from this embodiment is used, a similar device can be manufactured based on this ratio. The stirring blade W rotates at a circumferential speed of 5 m/sec or more and 50 m/sec or less.
Note that the H/L3 ratio may differ from the above ratio depending on the purpose. For example, if it is desired to suppress crystal crushing, the ratio may be lowered from the above value.
 撹拌翼Wの円筒部2には、円筒部2の径方向に貫通する複数の孔hが設けられている。これらの孔hは、第1の反応液L1、第2の反応液L2、或いはその混合液が流通可能とされている。そのため、第1の反応液L1、第2の反応液L2、或いはその混合液は、複数の孔hを通じて、撹拌翼Wの内側から外側に、又は撹拌翼Wの外側から内側に移動可能である。なお、孔hに加えて、円盤部8に中心軸O1方向に貫通する複数の不図示の孔9が設けられていても良い。この場合、第1の反応液L1、第2の反応液L2、或いはその混合液は、複数の孔hに加えて孔9を通じても撹拌翼Wの内側から外側に、又は撹拌翼Wの外側から内側に移動可能となる。 The cylindrical portion 2 of the stirring blade W is provided with a plurality of holes h that penetrate in the radial direction of the cylindrical portion 2. The first reaction liquid L1, the second reaction liquid L2, or a mixture thereof can flow through these holes h. Therefore, the first reaction liquid L1, the second reaction liquid L2, or a mixture thereof can be moved from the inside to the outside of the stirring blade W or from the outside to the inside of the stirring blade W through the plurality of holes h. . In addition to the hole h, a plurality of holes 9 (not shown) may be provided in the disk portion 8 to penetrate in the direction of the central axis O1. In this case, the first reaction liquid L1, the second reaction liquid L2, or a mixture thereof can be passed from the inside of the stirring blade W to the outside through the hole 9 in addition to the plurality of holes h, or from the outside of the stirring blade W. Can be moved inward.
 このような晶析装置4aにおいて、導入口5aから所望量の第1の反応液L1を反応槽1に供給する。供給される第1の反応液L1の量は、反応槽1を満たす程度(満液状態)でも良いし、或いは、撹拌翼Wが回転した際に第1の反応液L1が反応槽1の中心軸O1を中心として円運動を行うことにより第1の反応液L1に発生する遠心力により反応槽1の内周面1iに押し付けられて、反応槽1の内周面1iに第1の反応液L1の液膜が形成される程度に供給しても良い。以下では、第1の反応液L1が満液状態になる程度供給される場合を想定して説明する。また、第1の反応液L1を上述の満液状態または液膜形成状態となる程度に供給した後に第1の反応液L1の供給を止めてから反応槽1で反応をさせても良いし、第1の反応液L1を上述の満液状態または液膜形成状態となる程度の流量に維持しながら反応槽1での反応を継続的に行っても良い。
 例えば、排出口6に不図示の開度調整バルブを設け、この開度調整バルブの開度を調整することにより、反応槽1を、満液状態と液膜が形成される液膜状態とのいずれかに選択することができる。
In such a crystallizer 4a, a desired amount of the first reaction liquid L1 is supplied to the reaction tank 1 from the inlet 5a. The amount of the first reaction liquid L1 supplied may be enough to fill the reaction tank 1 (full liquid state), or the first reaction liquid L1 may be supplied to the center of the reaction tank 1 when the stirring blade W rotates. The first reaction liquid L1 is pressed against the inner peripheral surface 1i of the reaction tank 1 by the centrifugal force generated in the first reaction liquid L1 by performing a circular motion around the axis O1, and the first reaction liquid L1 is pressed against the inner peripheral surface 1i of the reaction tank 1. It may be supplied to such an extent that a liquid film of L1 is formed. The following description will be made on the assumption that the first reaction liquid L1 is supplied to the extent that it is in a full liquid state. Further, after the first reaction liquid L1 is supplied to the above-mentioned full liquid state or liquid film forming state, the supply of the first reaction liquid L1 may be stopped and then the reaction may be carried out in the reaction tank 1. The reaction in the reaction tank 1 may be continuously carried out while maintaining the first reaction liquid L1 at a flow rate sufficient to reach the above-mentioned full liquid state or liquid film forming state.
For example, by providing an opening adjustment valve (not shown) in the discharge port 6 and adjusting the opening of this opening adjustment valve, the reaction tank 1 can be adjusted between a full liquid state and a liquid film state in which a liquid film is formed. You can choose either one.
 反応槽1が第1の反応液L1で満たされた状態において、撹拌翼Wを回転させるとともに、第2の反応液L2を給液部5bから撹拌翼Wの円筒部2の内周面2iに沿って排出することで、第2の反応液L2を反応槽1内に供給する。こうすることで、給液部5bから撹拌翼Wの円筒部2の内周面2iに沿って排出された第2の反応液L2が、第1の反応液L1で満たされた反応槽1のうちで撹拌翼Wの円筒部2の内周面2i近傍で撹拌翼Wの回転に伴って回転している第1の反応液L1と接触する。こうして第1の反応液L1と第2の反応液L2とが接触することにより反応が発生して粒子が生成される。 While the reaction tank 1 is filled with the first reaction liquid L1, the stirring blade W is rotated and the second reaction liquid L2 is supplied from the liquid supply part 5b to the inner peripheral surface 2i of the cylindrical part 2 of the stirring blade W. By discharging along the line, the second reaction liquid L2 is supplied into the reaction tank 1. By doing this, the second reaction liquid L2 discharged from the liquid supply part 5b along the inner circumferential surface 2i of the cylindrical part 2 of the stirring blade W enters the reaction tank 1 filled with the first reaction liquid L1. It comes into contact with the first reaction liquid L1 that is rotating with the rotation of the stirring blade W near the inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W. In this way, the first reaction liquid L1 and the second reaction liquid L2 come into contact with each other, whereby a reaction occurs and particles are generated.
 この際、第1の反応液L1に、5m/秒以上50m/秒以下の周速で回転している撹拌翼Wの給液部5bから第2の反応液L2を供給することで、第2の反応液L2を第1の反応液L1と均一に混合することができる。 At this time, the second reaction liquid L2 is supplied to the first reaction liquid L1 from the liquid supply part 5b of the stirring blade W rotating at a circumferential speed of 5 m/sec to 50 m/sec. The reaction liquid L2 can be uniformly mixed with the first reaction liquid L1.
 ここで、撹拌翼Wの回転に伴って回転している第1の反応液L1と、5m/秒以上50m/秒以下の周速で回転している撹拌翼Wの給液部5bから排出される第2の反応液L2と、これらの混合液に発生する遠心力により、第1の反応液L1、第2の反応液L2、及び混合液(以下、まとめて混合液と呼ぶ場合がある)は撹拌翼Wの円筒部2の径方向外側に移動し、撹拌翼Wの円筒部2に設けられた複数の孔hを通って反応槽1の内周面1iに衝突し、その後、反応槽1の内周面1iに沿って上下方向に移動する。主に下方に移動した混合液は、撹拌翼Wの回転により生じる遠心力に起因する径方向外側に向かう流れに引き寄せられて再び撹拌翼Wの円筒部2に設けられた複数の孔hを通って反応槽1の内周面1iに衝突し、その後、反応槽1の内周面1iに沿って上下方向に移動することで対流が生まれる。ここで、複数の孔hを混合液が通過する際、絞り流路の効果により、混合液は径方向外側に加速されるので、混合液の径方向外向きの流速は、複数の孔h近傍で最も高い。さらに、5m/秒以上50m/秒以下の周速で回転する撹拌翼Wの円筒部2の外周面2o及び内周面2iと、固定されている反応槽1の内周面1iとの間に存在する混合液には、周方向に剪断力が与えられる。混合液に与えられる剪断力は撹拌翼Wの円筒部2の内周面2iと外周面2oとに近ければ近い程大きい。混合液に与えられる剪断力は、得られる粒子の粒子径と均一性を決定する大きな要因となる。特に与えられる剪断力が大きければ大きい程、微細な粒子径を持つ粒子を得ることができる。 Here, the first reaction liquid L1 that is rotating with the rotation of the stirring blade W is discharged from the liquid supply part 5b of the stirring blade W that is rotating at a circumferential speed of 5 m/sec to 50 m/sec. The centrifugal force generated in the second reaction liquid L2 and the mixed liquid causes the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid (hereinafter sometimes referred to collectively as the mixed liquid) moves radially outward of the cylindrical portion 2 of the stirring blade W, passes through the plurality of holes h provided in the cylindrical portion 2 of the stirring blade W, and collides with the inner circumferential surface 1i of the reaction tank 1, and then 1 in the vertical direction along the inner circumferential surface 1i. The mixed liquid that has mainly moved downward is drawn by the radially outward flow caused by the centrifugal force generated by the rotation of the stirring blade W, and passes through the plurality of holes h provided in the cylindrical part 2 of the stirring blade W again. The particles collide with the inner peripheral surface 1i of the reaction tank 1, and then move in the vertical direction along the inner peripheral surface 1i of the reaction tank 1, thereby generating convection. Here, when the mixed liquid passes through the plurality of holes h, the mixed liquid is accelerated radially outward due to the effect of the throttle channel, so the flow velocity of the mixed liquid outward in the radial direction is highest in Further, between the outer circumferential surface 2o and inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W rotating at a circumferential speed of 5 m/sec or more and 50 m/sec or less and the inner circumferential surface 1i of the fixed reaction tank 1. A shearing force is applied to the existing mixed liquid in the circumferential direction. The closer the shearing force applied to the mixed liquid is to the inner circumferential surface 2i and outer circumferential surface 2o of the cylindrical portion 2 of the stirring blade W, the greater it is. The shearing force applied to the liquid mixture is a major factor in determining the particle size and uniformity of the resulting particles. In particular, the larger the applied shearing force, the more fine the particles can be obtained.
 本変形例の晶析装置4aでは、給液部5bが、円盤部8の外縁部に設けられている。具体的には上記のように撹拌翼Wの円筒部2の内周面2iと給液部5bの中心との距離が2mm以下とされている。そのため、給液部5bから撹拌翼Wの円筒部2の内周面2iに沿って排出される第2の反応液L2と、撹拌翼Wの円筒部2の内周面2i近傍で撹拌翼Wの回転に伴って回転している第1の反応液L1と、が初めて接触して反応を開始する反応開始ポイントには、遠心力と絞り流路の効果による径方向外側に向かう流れに加えて剪断力が最大限に与えられる。よって、与えられる剪断力が最も大きい領域を反応開始ポイントとすることができる。具体的には、撹拌翼Wの円筒部2の内周面2iと外周面2oから至近距離、例えば2mm以内、の領域に反応開始ポイントを形成することができる。ここで、混合液は上記の複数の孔hを通って円筒部2の内周側から外周側に移動可能である。従って、反応開始ポイントにおける第1の反応液L1と第2の反応液L2との撹拌が剪断力により促進される。そのため、より均一な第1の反応液L1と第2の反応液L2との混合が反応開始ポイントから開始され、混合液の流れに沿って反応が起こる場である反応場で混合及び反応が行われることで微細かつ均一な径を有する粒子を生成することができる。ここで、反応開始ポイントは反応が開始される領域を指し、反応場は反応が起きる場全体を指す。従って、反応開始ポイントは反応場に含まれる。
 なお、撹拌翼Wの上部に相当する反応槽1の内周面に不図示のバッフル(邪魔板)が設けられていても良い。バッフルは、反応槽1が満液の状態においては、渦の発生を抑制し混合液の撹拌を促進させる効果がある。一方、反応槽1が満液ではなく混合液の液膜が形成される状態においてはバッフルを設ける必要はない。
 なお、バッフルは必須の構成ではなく、設けなくても良い。例えば、反応槽1における回転軸3が挿入される箇所に不図示のメカニカルシールを設け、気相部の無い完全な満液状態とする場合、渦の発生が抑制されるため、バッフルを設けなくても良い。バッフルを設けない場合、流路抵抗が低減され、原動機Mの動力を低減できる。
In the crystallizer 4a of this modification, the liquid supply section 5b is provided at the outer edge of the disk section 8. Specifically, as described above, the distance between the inner circumferential surface 2i of the cylindrical portion 2 of the stirring blade W and the center of the liquid supply portion 5b is 2 mm or less. Therefore, the second reaction liquid L2 discharged from the liquid supply part 5b along the inner peripheral surface 2i of the cylindrical portion 2 of the stirring blade W, and the second reaction liquid L2 discharged from the liquid supply portion 5b along the inner peripheral surface 2i of the cylindrical portion 2 of the stirring blade W At the reaction start point where the first reaction liquid L1, which is rotating with the rotation of Maximum shear force is applied. Therefore, the region where the applied shearing force is the largest can be set as the reaction initiation point. Specifically, the reaction start point can be formed in a region within a close distance, for example, within 2 mm, from the inner circumferential surface 2i and outer circumferential surface 2o of the cylindrical portion 2 of the stirring blade W. Here, the mixed liquid can move from the inner circumferential side to the outer circumferential side of the cylindrical portion 2 through the plurality of holes h described above. Therefore, stirring of the first reaction liquid L1 and the second reaction liquid L2 at the reaction starting point is promoted by the shear force. Therefore, the more uniform mixing of the first reaction liquid L1 and the second reaction liquid L2 is started from the reaction start point, and the mixing and reaction are performed in the reaction field where the reaction occurs along the flow of the mixed liquid. By doing so, it is possible to produce particles with fine and uniform diameters. Here, the reaction initiation point refers to the area where the reaction starts, and the reaction field refers to the entire area where the reaction occurs. Therefore, the reaction initiation point is included in the reaction field.
Note that a baffle (not shown) may be provided on the inner peripheral surface of the reaction tank 1 corresponding to the upper part of the stirring blade W. The baffle has the effect of suppressing the generation of vortices and promoting stirring of the mixed liquid when the reaction tank 1 is full of liquid. On the other hand, in a state where the reaction tank 1 is not full of liquid and a liquid film of the mixed liquid is formed, there is no need to provide a baffle.
Note that the baffle is not an essential component and may not be provided. For example, if a mechanical seal (not shown) is provided at the location where the rotating shaft 3 is inserted in the reaction tank 1 to create a completely full liquid state with no gas phase, the generation of vortices will be suppressed, so no baffle will be provided. It's okay. When no baffle is provided, the flow path resistance is reduced and the power of the prime mover M can be reduced.
 なお、満液状態ではなく液膜が形成される状態においても満液状態の場合と同様の効果が得られる。 Note that the same effect as in the case of a full liquid state can be obtained even in a state where a liquid film is formed instead of a full liquid state.
 このような晶析装置4aを含む第1の変形例に係る晶析システム10A1によれば、晶析装置4aにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A1 according to the first modification including such a crystallizer 4a, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4a is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の第2の変形例>
 以下、第1実施形態に係る晶析システム10Aの第2の変形例に係る晶析システム10A2を、図5を参照して説明する。第2の変形例の晶析装置4bでは、第1の変形例の晶析装置4aの撹拌翼Wが撹拌翼Waである点に相違がある。以下の説明では、撹拌翼Wとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Waは、円盤部8の外縁部に設けられる給液部5bが円筒部2を貫通して径方向外側に開口している点において撹拌翼Wと異なっている。このような撹拌翼Waでは、径方向外側に開口する給液部5bから第2の反応液L2が排出されるので、第2の反応液L2と、第1の反応液L1と第2の反応液L2との混合液の径方向(水平方向)への分散性が高い。このような撹拌翼Waを備える晶析装置4bを用いることでも、撹拌翼Wを備える晶析装置4aと同様の効果を奏することができる。なお、円盤部8に中心軸O1方向に貫通する不図示の複数の孔9が設けられていても良い。このような、複数の孔9は、混合液の一部を複数の孔9を介して攪拌翼Wの下側と上側とを流通可能とすることで、攪拌翼Wにかかる動力的な負荷を低減する効果があるが、複数の孔9を通過した混合液は攪拌翼W廻りの反応場を通過せずに反応場をショートパスしてしまうため、複数の孔9を設けない場合に比べ、均一で微細な粒子を製造する効果は低下する。従って、目的の粒子品質と所要動力を鑑みて、孔9の適用を選択することができる。
<Second modification of the first embodiment>
Hereinafter, a crystallization system 10A2 according to a second modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 5. The crystallizer 4b of the second modification is different from the crystallizer 4a of the first modification in that the stirring blade W is a stirring blade Wa. In the following explanation, only the differences from the stirring blade W will be explained, and the explanation of the overlapping parts will be omitted.
The stirring blade Wa differs from the stirring blade W in that a liquid supply portion 5b provided at the outer edge of the disk portion 8 penetrates the cylindrical portion 2 and opens radially outward. In such a stirring blade Wa, the second reaction liquid L2 is discharged from the liquid supply part 5b that opens radially outward, so that the second reaction liquid L2, the first reaction liquid L1, and the second reaction are mixed. The mixed liquid with liquid L2 has high dispersibility in the radial direction (horizontal direction). Even by using the crystallizer 4b provided with such a stirring blade Wa, the same effects as the crystallizer 4a provided with the stirring blade W can be achieved. Incidentally, a plurality of holes 9 (not shown) may be provided in the disk portion 8 to penetrate in the direction of the central axis O1. Such a plurality of holes 9 allows a portion of the mixed liquid to flow between the lower side and the upper side of the stirring blade W through the plurality of holes 9, thereby reducing the dynamic load on the stirring blade W. Although it has the effect of reducing The effectiveness of producing uniform and fine particles is reduced. Therefore, the application of the holes 9 can be selected depending on the desired particle quality and the required power.
 このような晶析装置4bを含む第2の変形例に係る晶析システム10A2によれば、晶析装置4bにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A2 according to the second modification including such a crystallizer 4b, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4b is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の第3の変形例>
 以下、第1実施形態に係る晶析システム10Aの第3の変形例に係る晶析システム10A3を、図6を参照して説明する。
 第3の変形例の晶析装置4cでは、第2の変形例における撹拌翼Waが撹拌翼Wbである点に相違がある。以下の説明では、撹拌翼Waとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Wbは、撹拌翼Waにおける円盤部8より上側の円筒部2において、径方向に貫通する複数の孔hがない(閉塞されている)とともに、円筒部8の内周面2iに外縁部が固定される第2円盤部15が円筒部2の上端部に設けられている。第2円盤部15は円盤状の部材であり、その平面視の中心に回転軸3が貫通する孔を有する。回転軸3が貫通する孔を除き、中心軸O1方向に第2円盤部15を貫通する孔はない。従って、第2円盤部15の内側に第1の反応液L1、第2の反応液L2、及びその混合液が入り込むことはない。
 このような撹拌翼Wbでは、円盤部8より上側の円筒部2に径方向に貫通する複数の孔hが設けられておらず、また、円筒部8の内周面2iに外縁部が固定される第2円盤部15が円筒部2の上端部に設けられている。そのため、撹拌翼Wbが回転する際の撹拌翼Wbの抵抗力が低減され、撹拌翼Waよりも少ない動力で撹拌翼Wbを運転することができる。
<Third modification of first embodiment>
Hereinafter, a crystallization system 10A3 according to a third modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 6.
The crystallizer 4c of the third modification differs in that the stirring blade Wa in the second modification is replaced by a stirring blade Wb. In the following explanation, only the differences from the stirring blade Wa will be explained, and the explanation of the overlapping parts will be omitted.
The stirring blade Wb has a plurality of holes h penetrating in the radial direction in the cylindrical part 2 above the disk part 8 of the stirring blade Wa (which are closed), and an outer edge part on the inner circumferential surface 2i of the cylindrical part 8. A second disk portion 15 to which is fixed is provided at the upper end of the cylindrical portion 2. The second disc part 15 is a disc-shaped member, and has a hole in the center of the second disc part 15, through which the rotating shaft 3 passes. There are no holes that pass through the second disk portion 15 in the direction of the central axis O1, except for the hole that the rotating shaft 3 passes through. Therefore, the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid thereof do not enter the inside of the second disk portion 15.
In such a stirring blade Wb, the plurality of holes h penetrating in the radial direction are not provided in the cylindrical part 2 above the disk part 8, and the outer edge part is fixed to the inner circumferential surface 2i of the cylindrical part 8. A second disk portion 15 is provided at the upper end of the cylindrical portion 2. Therefore, the resistance force of the stirring blade Wb when the stirring blade Wb rotates is reduced, and the stirring blade Wb can be operated with less power than the stirring blade Wa.
 このような晶析装置4cを含む第3の変形例に係る晶析システム10A3によれば、晶析装置4cにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A3 according to the third modification including such a crystallizer 4c, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4c is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の補足説明>
 ここで、図1~図3に戻って、第1~第3の実施形態の撹拌翼Wcを詳細に説明する。
 第1実施形態における晶析装置4では、図4に示される、第1の変形例の晶析装置4aの撹拌翼Wが撹拌翼Wcである点に相違がある。以下の説明では、撹拌翼Wとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Wcは、図1に示されるように、撹拌翼Wにおける円盤部8より上側の円筒部2において、径方向に貫通する複数の孔hがない(閉塞されている)とともに、円筒部8の内周面2iに外縁部が固定される第2円盤部15が円筒部2の上端部に設けられている。第2円盤部15は円盤状の部材であり、その平面視の中心に回転軸3が貫通する孔を有する。回転軸3が貫通する孔を除き、中心軸O1方向に第2円盤部15を貫通する孔はない。従って、第2円盤部15の内側に第1の反応液L1、第2の反応液L2、及びその混合液が入り込むことはない。
 このような撹拌翼Wcでは、円盤部8より上側の円筒部2に径方向に貫通する複数の孔hが設けられておらず、また、円筒部8の内周面2iに外縁部が固定される第2円盤部15が円筒部2の上端部に設けられているので、撹拌翼Wcが回転する際の撹拌翼Wcの抵抗力が低減される。そのため、撹拌翼Wよりも少ない動力で撹拌翼Wcを運転することができる。
<Supplementary explanation of the first embodiment>
Now, returning to FIGS. 1 to 3, the stirring blades Wc of the first to third embodiments will be described in detail.
The crystallizer 4 in the first embodiment is different from the crystallizer 4a of the first modification shown in FIG. 4 in that the stirring blade W is a stirring blade Wc. In the following explanation, only the differences from the stirring blade W will be explained, and the explanation of the overlapping parts will be omitted.
As shown in FIG. 1, the stirring blade Wc has a plurality of holes h penetrating in the radial direction in the cylindrical portion 2 above the disk portion 8 of the stirring blade W (which are closed), and the cylindrical portion 8 A second disk portion 15 whose outer edge portion is fixed to the inner circumferential surface 2i of the cylinder portion 2 is provided at the upper end portion of the cylindrical portion 2. The second disc part 15 is a disc-shaped member, and has a hole in the center of the second disc part 15, through which the rotating shaft 3 passes. There are no holes that pass through the second disk portion 15 in the direction of the central axis O1, except for the hole that the rotating shaft 3 passes through. Therefore, the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid thereof do not enter the inside of the second disk portion 15.
In such a stirring blade Wc, the plurality of holes h penetrating in the radial direction are not provided in the cylindrical part 2 above the disk part 8, and the outer edge part is fixed to the inner circumferential surface 2i of the cylindrical part 8. Since the second disk portion 15 is provided at the upper end of the cylindrical portion 2, the resistance force of the stirring blade Wc when the stirring blade Wc rotates is reduced. Therefore, the stirring blade Wc can be operated with less power than the stirring blade W.
 このような晶析装置4を含む第1実施形態に係る晶析システム10Aによれば、晶析装置4における反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A according to the first embodiment including such a crystallizer 4, shearing that affects particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4 The force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be individually adjusted, and the control performance of particle quality can be further improved.
<第1実施形態の第4の変形例>
 以下、第1実施形態に係る晶析システム10Aの第4の変形例に係る晶析システム10A4を、図7を参照して説明する。
 第4の変形例の晶析装置4dでは、第1の変形例の晶析装置4aの撹拌翼Wが撹拌翼Wdである点に相違がある。以下の説明では、撹拌翼Wとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Wdは、図7に示されるように、円盤部8が円筒部2の上端部に設けられている点において撹拌翼Wと異なっている。また、円筒部2の高さが撹拌翼Wの円筒部2の高さの半分程度である。このような撹拌翼Wdを備える晶析装置4dを用いることでも、撹拌翼Wを備える晶析装置4と同様の効果を奏することができる。また、円盤部8よりも上方に円筒部2が設けられていないため、撹拌翼Wdを撹拌翼Wよりも軽量とすることができる。また撹拌翼Wdを簡易な構造とすることができるので、撹拌翼Wよりも少ない動力で撹拌翼Wdを運転することができ、晶析装置4の省エネ化と、撹拌翼Wdの製造の容易化が期待できる。さらに、円筒部2の高さが短く抑えられているため、晶析装置4dを小型化することができる。なお、円盤部8に中心軸O1方向に貫通する不図示の複数の孔9が設けられていても良い。その場合、撹拌翼Waの円盤部8に中心軸O1方向に貫通する複数の孔9が設けられている場合と同様の効果が期待できる。
<Fourth modification of the first embodiment>
Hereinafter, a crystallization system 10A4 according to a fourth modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 7.
The crystallizer 4d of the fourth modification is different from the crystallizer 4a of the first modification in that the stirring blade W is a stirring blade Wd. In the following explanation, only the differences from the stirring blade W will be explained, and the explanation of the overlapping parts will be omitted.
The stirring blade Wd differs from the stirring blade W in that the disk portion 8 is provided at the upper end of the cylindrical portion 2, as shown in FIG. Further, the height of the cylindrical portion 2 is approximately half the height of the cylindrical portion 2 of the stirring blade W. The same effect as the crystallizer 4 provided with the stirring blade W can also be achieved by using the crystallizer 4d equipped with such a stirring blade Wd. Further, since the cylindrical portion 2 is not provided above the disk portion 8, the stirring blade Wd can be made lighter than the stirring blade W. Furthermore, since the stirring blade Wd can have a simple structure, the stirring blade Wd can be operated with less power than the stirring blade W, resulting in energy saving of the crystallizer 4 and easier manufacturing of the stirring blade Wd. can be expected. Furthermore, since the height of the cylindrical portion 2 is kept short, the crystallizer 4d can be downsized. Incidentally, a plurality of holes 9 (not shown) may be provided in the disk portion 8 to penetrate in the direction of the central axis O1. In that case, the same effects as in the case where the disk portion 8 of the stirring blade Wa is provided with a plurality of holes 9 penetrating in the direction of the central axis O1 can be expected.
 このような晶析装置4dを含む第4の変形例に係る晶析システム10A4によれば、晶析装置4dにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A4 according to the fourth modification including such a crystallizer 4d, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4d is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の第5の変形例>
 以下、第1実施形態に係る晶析システム10Aの第5の変形例に係る晶析システム10A5を、図8を参照して説明する。
 第5の変形例の晶析装置4eでは、第1の変形例の晶析装置4aの撹拌翼Wが撹拌翼Weである点に相違がある。以下の説明では、主に撹拌翼Wとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Weは、図8に示されるように、円柱状の円柱部20と、円柱部20の上端部に円柱部20と同心状に設けられる円盤基部18と、円盤基部18の平面視の中心から中心軸O1に沿って上方に延びる回転軸3と、円柱部20の径方向外側に円柱部20と同心状に設けられる円筒状の多孔板18Pと、を備えている。多孔板18Pには多孔板18Pを径方向に貫通する複数の孔18hが設けられており、第1の反応液L1と第2の反応液L2と、その混合液は、複数の孔18hを流通可能である。多孔板18Pは、円盤基部18の外縁から下方に延びている。回転軸3と円盤基部18と円柱部20とのそれぞれの内部に設けられる管路P1、P2、P3を第2の反応液が流通可能である。管路P1、P2、P3はそれぞれ連通している。管路P2は、管路P1の下端部から中心軸O1を中心に放射状に径方向外側に向かって延びている。管路P3は、管路P2の径方向外側の端部から中心軸O1に沿って下方に延びている。管路P2と管路P3は円柱部20の内部に形成されている。円柱部20の外周面20oに上下方向に間隔を空けて複数の給液部50bが設けられている。撹拌翼Weが回転すると、回転軸3と円盤基部18と円柱部20と多孔板18Pとが一体に回転する。
 このような撹拌翼Weでは、円柱部20の外周面20oに上下方向に間隔を空けて設けられた複数の給液部50bから第2の反応液L2が反応槽1内に供給され、反応槽1内の第1の反応液L1と混合し反応しながら、多孔板18Pの複数の孔18hを流通する。そのため、第1の反応液L1と第2の反応液L2とを、より均一に混合することができる。
 多孔板18Pの複数の孔18hを通過した混合液は、反応槽1の内周1iに衝突し、その後、反応槽1の内周面1iに沿って上下方向に移動する。下方に移動した混合液は、撹拌翼Weの回転により生じる遠心力に起因する径方向外側に向かう流れに引き寄せられて再び撹拌翼Weの多孔板18Pの複数の孔18hを通って反応槽1の内周面1iに衝突し、その後、反応槽1の内周面1iに沿って上下方向に移動することで対流が生まれる。ここで、複数の孔18hを混合液が通過する際、絞り流路の効果により、混合液は径方向外側に加速されるので、混合液の径方向外向きの流速は、複数の孔18h近傍で最も高い。さらに、5m/秒以上50m/秒以下の周速で回転する撹拌翼Weの円柱部20の外周面20o及び多孔板18Pの内外周面と、固定されている反応槽1の内周面1iとの間に存在する混合液には、周方向に剪断力が与えられる。混合液に与えられる剪断力は撹拌翼Weの円柱部20の外周面2oと多孔板18Pの内外周面に近ければ近い程大きい。混合液に与えられる剪断力は、得られる粒子の粒子径と均一性を決定する大きな要因となる。特に与えられる剪断力が大きければ大きい程、微細な粒子径を持つ粒子を得ることができる。撹拌翼Weを用いた場合、撹拌翼Wを用いる場合よりも、剪断力の影響を混合液のより多くの箇所に与えることができるため、均一で微細な粒子を製造することができる。
 給液部50bから供給される第2の反応液L2は、剪断力の最も高い撹拌翼Weの内外周、即ち、円柱部20の外周面20o及び多孔板18Pの内外周面から至近距離、例えば2mm以内、の範囲に供給することができる。
 図8の例では、給液部50bが、円柱部20の上下方向に4個設けられているが、給液部50bの個数は図8の例に限定されず、反応槽1のサイズに応じて増減しても良い。
<Fifth modification of the first embodiment>
Hereinafter, a crystallization system 10A5 according to a fifth modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 8.
The crystallizer 4e of the fifth modification is different from the crystallizer 4a of the first modification in that the stirring blade W is a stirring blade We. In the following explanation, only the differences from the stirring blade W will be mainly explained, and the explanation of the overlapping parts will be omitted.
As shown in FIG. 8, the stirring blade We includes a cylindrical columnar section 20, a disk base 18 provided concentrically with the columnar section 20 at the upper end of the columnar section 20, and a center of the disk base 18 in a plan view. The rotating shaft 3 extends upward along the central axis O1 from the center, and a cylindrical perforated plate 18P provided concentrically with the cylindrical portion 20 on the outside in the radial direction of the cylindrical portion 20. The porous plate 18P is provided with a plurality of holes 18h that penetrate the porous plate 18P in the radial direction, and the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid flow through the plurality of holes 18h. It is possible. The porous plate 18P extends downward from the outer edge of the disc base 18. The second reaction liquid can flow through the pipes P1, P2, and P3 provided inside the rotating shaft 3, the disc base 18, and the cylindrical part 20, respectively. The pipes P1, P2, and P3 are in communication with each other. The pipe P2 extends radially outward from the lower end of the pipe P1 about the central axis O1. The pipe P3 extends downward from the radially outer end of the pipe P2 along the central axis O1. Pipe line P2 and pipe line P3 are formed inside the cylindrical part 20. A plurality of liquid supply parts 50b are provided on the outer peripheral surface 20o of the columnar part 20 at intervals in the vertical direction. When the stirring blade We rotates, the rotating shaft 3, the disc base 18, the cylindrical part 20, and the perforated plate 18P rotate together.
In such a stirring blade We, the second reaction liquid L2 is supplied into the reaction tank 1 from the plurality of liquid supply parts 50b provided at intervals in the vertical direction on the outer peripheral surface 20o of the columnar part 20, and the second reaction liquid L2 is supplied into the reaction tank 1. It flows through the plurality of holes 18h of the porous plate 18P while mixing and reacting with the first reaction liquid L1 in the porous plate 18P. Therefore, the first reaction liquid L1 and the second reaction liquid L2 can be mixed more uniformly.
The mixed liquid that has passed through the plurality of holes 18h of the porous plate 18P collides with the inner circumference 1i of the reaction tank 1, and then moves in the vertical direction along the inner circumference 1i of the reaction vessel 1. The mixed liquid that has moved downward is drawn by the radially outward flow caused by the centrifugal force generated by the rotation of the stirring blade We, and passes through the plurality of holes 18h of the perforated plate 18P of the stirring blade We again to the reaction tank 1. Convection is generated by colliding with the inner circumferential surface 1i and then moving vertically along the inner circumferential surface 1i of the reaction tank 1. Here, when the mixed liquid passes through the plurality of holes 18h, the mixed liquid is accelerated radially outward due to the effect of the throttle channel, so the flow velocity of the mixed liquid outward in the radial direction is reduced near the plurality of holes 18h. highest in Furthermore, the outer circumferential surface 20o of the cylindrical part 20 of the stirring blade We rotating at a circumferential speed of 5 m/sec to 50 m/sec, the inner circumferential surface of the perforated plate 18P, and the inner circumferential surface 1i of the fixed reaction tank 1. A shearing force is applied in the circumferential direction to the liquid mixture existing between the two. The shearing force applied to the mixed liquid is greater as the shearing force is closer to the outer circumferential surface 2o of the cylindrical portion 20 of the stirring blade We and the inner and outer circumferential surfaces of the perforated plate 18P. The shearing force applied to the liquid mixture is a major factor in determining the particle size and uniformity of the resulting particles. In particular, the larger the applied shearing force, the more fine the particles can be obtained. When using the stirring blade We, the influence of shear force can be applied to more parts of the liquid mixture than when using the stirring blade W, so that uniform and fine particles can be produced.
The second reaction liquid L2 supplied from the liquid supply part 50b is at a close distance from the inner and outer circumferences of the stirring blade We having the highest shearing force, that is, the outer circumferential surface 20o of the columnar part 20 and the inner and outer circumferential surfaces of the perforated plate 18P, for example. It can be supplied within a range of 2 mm or less.
In the example of FIG. 8, four liquid supply parts 50b are provided in the vertical direction of the columnar part 20, but the number of liquid supply parts 50b is not limited to the example of FIG. It may be increased or decreased.
 このような晶析装置4eを含む第5の変形例に係る晶析システム10A5によれば、晶析装置4eにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A5 according to the fifth modification including such a crystallizer 4e, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4e is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の第6の変形例>
 以下、第1実施形態に係る晶析システム10Aの第6の変形例に係る晶析システム10A6を、図9を参照して説明する。
 第6の変形例の晶析装置4fでは、第1の変形例の晶析装置4aの撹拌翼Wが撹拌翼Wfである点に相違がある。以下の説明では、主に撹拌翼Wとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Wfは、図9に示されるように、円柱状の円柱部20と、円柱部20の平面視の中心から中心軸O1に沿って上方に延びる回転軸3と、円柱部20の径方向外側に円柱部20と同心状に設けられる円筒状の多孔板18Pと、を備えている。多孔板18Pには多孔板18Pを径方向に貫通する複数の孔18hが設けられており、第1の反応液L1と第2の反応液L2と、その混合液は、複数の孔18hを流通可能である。多孔板18Pは、円柱部20の外周面2oから径方向外側に延びる接続棒11に固定されている。回転軸3と円柱部20のそれぞれの内部に設けられる管路P1、P2、P3を第2の反応液が流通可能である。管路P1、P2、P3はそれぞれ連通している。管路P2は、管路P1の下端部から中心軸O1を中心に放射状に径方向外側に向かって延びている。管路P3は、管路P2の径方向外側の端部から中心軸O1に沿って下方に延びている。管路P2と管路P3は円柱部20の内部に形成されている。円柱部20の外周面20oに上下方向に間隔を空けて複数の給液部50bが設けられている。撹拌翼Wfが回転すると、回転軸3と円柱部20と接続棒11と多孔板18Pとが一体に回転する。接続棒11は、円柱部20の周方向に等間隔を空けて複数設けられている。接続棒11は2個以上設けられていることが好ましい。接続棒11は円柱部20の高さの概ね半分の位置に設けられているが、この例に限定されず、円柱部20の高さの概ね半分より上側か下側に設けられていても良い。
 このような撹拌翼Wfでは、円柱部20の外周面20oに上下方向に間隔を空けて設けられた複数の給液部50bから第2の反応液L2が反応槽1内に供給され、反応槽1内の第1の反応液L1と混合し反応しながら、多孔板18Pの複数の孔18hを流通する。そのため、第1の反応液L1と第2の反応液L2とを、より均一に混合することができる。
 多孔板18Pの複数の孔18hを通過した混合液は、反応槽1の内周1iに衝突し、その後、反応槽1の内周面1iに沿って上下方向に移動する。上下方向に移動した混合液は、撹拌翼Wfの回転により生じる遠心力に起因する径方向外側に向かう流れに引き寄せられて再び撹拌翼Wfの多孔板18Pの複数の孔18hを通って反応槽1の内周面1iに衝突し、その後、反応槽1の内周面1iに沿って上下方向に移動することで対流が生まれる。ここで、複数の孔18hを混合液が通過する際、絞り流路の効果により、混合液は径方向外側に加速されるので、混合液の径方向外向きの流速は、複数の孔18h近傍で最も高い。さらに、5m/秒以上50m/秒以下の周速で回転する撹拌翼Wfの円柱部20の外周面20o及び多孔板18Pの内外周面と、固定されている反応槽1の内周面1iとの間に存在する混合液には、周方向に剪断力が与えられる。混合液に与えられる剪断力は撹拌翼Wfの円柱部20の外周面2oと多孔板18Pの内外周面に近ければ近い程大きい。混合液に与えられる剪断力は、得られる粒子の粒子径と均一性を決定する大きな要因となる。特に与えられる剪断力が大きければ大きい程、微細な粒子径を持つ粒子を得ることができる。撹拌翼Wfを用いた場合、剪断力の影響を混合液のより多くの箇所に与えることができるため、均一で微細な粒子を製造することができる。
 給液部50bから供給される第2の反応液L2は、剪断力の最も高い撹拌翼Wfの内外周、即ち、円柱部20の外周面20o及び多孔板18Pの内外周面から至近距離、例えば2mm以内、の範囲に供給することができる。
 図9の例では、給液部50bが、円柱部20の上下方向に4個設けられているが、給液部50bの個数は図10の例に限定されず、反応槽1のサイズに応じて増減しても良い。
<Sixth modification of the first embodiment>
Hereinafter, a crystallization system 10A6 according to a sixth modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 9.
The crystallizer 4f of the sixth modification is different from the crystallizer 4a of the first modification in that the stirring blade W is a stirring blade Wf. In the following explanation, only the differences from the stirring blade W will be mainly explained, and the explanation of the overlapping parts will be omitted.
As shown in FIG. 9, the stirring blade Wf includes a cylindrical columnar section 20, a rotating shaft 3 extending upward from the center of the columnar section 20 in plan view along the central axis O1, and a radial direction of the columnar section 20. It includes a cylindrical perforated plate 18P provided on the outside concentrically with the columnar part 20. The porous plate 18P is provided with a plurality of holes 18h that penetrate the porous plate 18P in the radial direction, and the first reaction liquid L1, the second reaction liquid L2, and the mixed liquid flow through the plurality of holes 18h. It is possible. The porous plate 18P is fixed to the connecting rod 11 extending radially outward from the outer circumferential surface 2o of the cylindrical portion 20. The second reaction liquid can flow through the pipes P1, P2, and P3 provided inside the rotating shaft 3 and the cylindrical portion 20, respectively. The pipes P1, P2, and P3 are in communication with each other. The pipe P2 extends radially outward from the lower end of the pipe P1 about the central axis O1. The pipe P3 extends downward from the radially outer end of the pipe P2 along the central axis O1. Pipe line P2 and pipe line P3 are formed inside the cylindrical part 20. A plurality of liquid supply parts 50b are provided on the outer peripheral surface 20o of the columnar part 20 at intervals in the vertical direction. When the stirring blade Wf rotates, the rotating shaft 3, the cylindrical portion 20, the connecting rod 11, and the perforated plate 18P rotate together. A plurality of connecting rods 11 are provided at equal intervals in the circumferential direction of the cylindrical portion 20 . It is preferable that two or more connecting rods 11 are provided. Although the connecting rod 11 is provided at a position approximately half the height of the cylindrical portion 20, the connection rod 11 is not limited to this example, and may be provided above or below approximately half the height of the cylindrical portion 20. .
In such a stirring blade Wf, the second reaction liquid L2 is supplied into the reaction tank 1 from a plurality of liquid supply parts 50b provided at intervals in the vertical direction on the outer circumferential surface 20o of the columnar part 20, and the second reaction liquid L2 is supplied into the reaction tank 1. It flows through the plurality of holes 18h of the porous plate 18P while mixing and reacting with the first reaction liquid L1 in the porous plate 18P. Therefore, the first reaction liquid L1 and the second reaction liquid L2 can be mixed more uniformly.
The mixed liquid that has passed through the plurality of holes 18h of the porous plate 18P collides with the inner circumference 1i of the reaction tank 1, and then moves in the vertical direction along the inner circumference 1i of the reaction vessel 1. The mixed liquid that has moved in the vertical direction is attracted by the flow directed outward in the radial direction due to the centrifugal force generated by the rotation of the stirring blade Wf, and passes through the plurality of holes 18h of the perforated plate 18P of the stirring blade Wf again to the reaction tank 1. The reaction vessel 1 collides with the inner circumferential surface 1i of the reactor 1, and then moves vertically along the inner circumferential surface 1i of the reaction tank 1, thereby generating convection. Here, when the mixed liquid passes through the plurality of holes 18h, the mixed liquid is accelerated radially outward due to the effect of the throttle channel, so the flow velocity of the mixed liquid outward in the radial direction is reduced near the plurality of holes 18h. highest in Furthermore, the outer circumferential surface 20o of the columnar part 20 of the stirring blade Wf rotating at a circumferential speed of 5 m/sec to 50 m/sec, the inner circumferential surface of the perforated plate 18P, and the inner circumferential surface 1i of the fixed reaction tank 1. A shearing force is applied in the circumferential direction to the liquid mixture existing between the two. The shearing force applied to the mixed liquid increases as the shearing force approaches the outer circumferential surface 2o of the cylindrical portion 20 of the stirring blade Wf and the inner and outer circumferential surfaces of the perforated plate 18P. The shearing force applied to the liquid mixture is a major factor in determining the particle size and uniformity of the resulting particles. In particular, the greater the applied shearing force, the finer the particle size can be obtained. When the stirring blade Wf is used, the influence of shear force can be applied to more parts of the liquid mixture, so that uniform and fine particles can be produced.
The second reaction liquid L2 supplied from the liquid supply part 50b is at a close distance from the inner and outer circumferences of the stirring blade Wf having the highest shearing force, that is, the outer circumferential surface 20o of the columnar part 20 and the inner and outer circumferential surfaces of the perforated plate 18P, for example. It can be supplied within a range of 2 mm or less.
In the example of FIG. 9, four liquid supply parts 50b are provided in the vertical direction of the columnar part 20, but the number of liquid supply parts 50b is not limited to the example of FIG. It may be increased or decreased.
 このような晶析装置4fを含む第6の変形例に係る晶析システム10A6によれば、晶析装置4fにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A6 according to the sixth modification including such a crystallizer 4f, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4f is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の第7の変形例>
 以下、第1実施形態に係る晶析システム10Aの第7の変形例に係る晶析システム10A7を、図10を参照して説明する。
 第7の変形例の晶析装置4gでは、第5の変形例の晶析装置4eの撹拌翼Weが撹拌翼Wgである点に相違がある。以下の説明では、撹拌翼Weとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Wgは、図10に示されるように、第5の変形例の撹拌翼Weよりも、円柱部2の外周面20oと多孔板18Pの内周面との間隔が広い。また、撹拌翼Weにおける、径方向外側に開口する給液部50bから、さらに径方向外側に延びる延長管12が設けられており、延長管12の先端が給液部50bとされている。
 このような撹拌翼Wgによれば、円柱部20の外周面20oと多孔板18Pの内周面との間隔を広くすることができるので、円柱部20と多孔板18Pとの間に、第1の反応液L1と、第2の反応液L2と、これらの混合液と、が流入し易くなる。そのため、反応液の循環を促進させることができるので、均一で微細な粒子を製造することができる。また、給液部50bから供給される第2の反応液L2は、剪断力の最も高い撹拌翼Wgの内外周、即ち、多孔板18Pの内外周面から至近距離、例えば2mm以内、の範囲に供給することができる。
<Seventh modification of the first embodiment>
Hereinafter, a crystallization system 10A7 according to a seventh modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 10.
The crystallizer 4g of the seventh modification is different from the crystallizer 4e of the fifth modification in that the stirring blade We is a stirring blade Wg. In the following explanation, only the differences from the stirring blade We will be explained, and the explanation of the overlapping parts will be omitted.
As shown in FIG. 10, the stirring blade Wg has a wider distance between the outer peripheral surface 20o of the columnar part 2 and the inner peripheral surface of the perforated plate 18P than the stirring blade We of the fifth modification. Further, an extension pipe 12 is provided that extends further radially outward from a liquid supply part 50b that opens radially outward in the stirring blade We, and the tip of the extension pipe 12 is the liquid supply part 50b.
According to such a stirring blade Wg, the distance between the outer circumferential surface 20o of the columnar part 20 and the inner circumferential surface of the perforated plate 18P can be widened, so that the first The reaction liquid L1, the second reaction liquid L2, and a mixed liquid thereof become easier to flow in. Therefore, circulation of the reaction solution can be promoted, and uniform and fine particles can be produced. Further, the second reaction liquid L2 supplied from the liquid supply part 50b is delivered to the inner and outer periphery of the stirring blade Wg having the highest shearing force, that is, within a close distance, for example, within 2 mm, from the inner and outer periphery of the perforated plate 18P. can be supplied.
 このような晶析装置4gを含む第7の変形例に係る晶析システム10A7によれば、晶析装置4gにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A7 according to the seventh modification including such a crystallizer 4g, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4g is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
<第1実施形態の第8の変形例>
 以下、第1実施形態に係る晶析システム10Aの第8の変形例に係る晶析システム10A8を、図11を参照して説明する。
 第8の変形例の晶析装置4hでは、第6の変形例の晶析装置4fの撹拌翼Wfが撹拌翼Whである点に相違がある。以下の説明では、撹拌翼Wfとの相違点のみ説明し、重複している箇所の説明は省略する。
 撹拌翼Whは、図11に示されるように、第8の変形例の撹拌翼Wfよりも、円柱部20の外周面20oと多孔板18Pとの間隔が広い。また、撹拌翼Wfにおける、径方向外側に開口する給液部50bから、さらに径方向外側に延びる延長管12が設けられており、延長管12の先端が給液部50bとされている。
 このような撹拌翼Whによれば、円柱部20の外周面20oと多孔板18Pの内周面との間隔を広くすることができるので、円柱部20と多孔板18Pとの間に、第1の反応液L1と、第2の反応液L2と、これらの混合液と、が流入し易くなる。そのため、反応液の循環を促進させることができるので、均一で微細な粒子を製造することができる。また、給液部50bから供給される第2の反応液L2は、剪断力の最も高い撹拌翼Wgの内外周、即ち、多孔板18Pの内外周面から至近距離、例えば2mm以内、の範囲に供給することができる。
<Eighth modification of the first embodiment>
Hereinafter, a crystallization system 10A8 according to an eighth modification of the crystallization system 10A according to the first embodiment will be described with reference to FIG. 11.
The crystallizer 4h of the eighth modification is different from the crystallizer 4f of the sixth modification in that the stirring blade Wf is a stirring blade Wh. In the following explanation, only the differences from the stirring blade Wf will be explained, and the explanation of the overlapping parts will be omitted.
As shown in FIG. 11, the stirring blade Wh has a wider distance between the outer circumferential surface 20o of the columnar part 20 and the perforated plate 18P than the stirring blade Wf of the eighth modification. Furthermore, an extension tube 12 is provided that extends further radially outward from a liquid supply section 50b that opens radially outward in the stirring blade Wf, and the tip of the extension tube 12 is the liquid supply section 50b.
According to such a stirring blade Wh, since the distance between the outer circumferential surface 20o of the columnar part 20 and the inner circumferential surface of the perforated plate 18P can be widened, the first The reaction liquid L1, the second reaction liquid L2, and a mixed liquid thereof become easier to flow in. Therefore, circulation of the reaction solution can be promoted, and uniform and fine particles can be produced. Further, the second reaction liquid L2 supplied from the liquid supply part 50b is delivered to the inner and outer periphery of the stirring blade Wg having the highest shearing force, that is, within a close distance, for example, within 2 mm, from the inner and outer periphery of the perforated plate 18P. can be supplied.
 このような晶析装置4hを含む第8の変形例に係る晶析システム10A8によれば、晶析装置4hにおける反応生成物の粒子径、粒度分布、真球度などの粒子品質に影響を与える剪断力、第1の反応液L1の循環量、スラリの滞留時間を個別に調整することができ、より一層、粒子品質の制御性能を向上することができる。 According to the crystallization system 10A8 according to the eighth modification including such a crystallizer 4h, the particle quality such as the particle size, particle size distribution, and sphericity of the reaction product in the crystallizer 4h is affected. The shearing force, the circulation amount of the first reaction liquid L1, and the residence time of the slurry can be adjusted individually, and the control performance of particle quality can be further improved.
 上記の変形例のうち、給液部5bが下方に開口している、第1実施形態に係る晶析装置4の撹拌翼Wc、第1の変形例に係る晶析装置4aの撹拌翼W、及び、第4の変形例に係る晶析装置4dの撹拌翼Wdでは、第1の反応液L1と第2の反応液L2とを、より均一に混合することができる。 Among the above modifications, the stirring blade Wc of the crystallizer 4 according to the first embodiment, the stirring blade W of the crystallizer 4a according to the first modification, in which the liquid supply part 5b is open downward, Further, in the stirring blade Wd of the crystallizer 4d according to the fourth modification, the first reaction liquid L1 and the second reaction liquid L2 can be mixed more uniformly.
<晶析方法>
 なお、上記実施形態と変形例に記載される晶析システムを使用することで粒子を生成することを、晶析方法として見なすことができる。
<Crystallization method>
Note that generating particles by using the crystallization system described in the above embodiments and modifications can be regarded as a crystallization method.
 例えば、第1実施形態の晶析システム10Aは、複数の原料溶液を混合して前記複数の原料溶液の中の複数の原料に由来する粒子を晶析装置4で成長させる晶析ステップと、晶析装置4の排出口6から排出される粒子を含むスラリD1を、蛇行形状をなす屈曲部Ppを有する循環管路Poを流動させることで晶析装置4の導入口5aまで循環させる循環ステップと、を含む晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析装置システム10Aと同様の効果を得ることができる。 For example, the crystallization system 10A of the first embodiment includes a crystallization step in which a plurality of raw material solutions are mixed and particles derived from a plurality of raw materials in the plurality of raw material solutions are grown in the crystallizer 4; a circulation step in which the slurry D1 containing particles discharged from the discharge port 6 of the crystallizer 4 is circulated to the inlet 5a of the crystallizer 4 by flowing the circulation pipe Po having a meandering bent portion Pp; It can be considered as a crystallization method including . According to such a crystallization method, effects similar to those of the crystallizer system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aは、晶析システム10Aにおいて、循環管路Poの内径が一定である晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aと同様の効果を得ることができる。 Further, the crystallization system 10A of the first embodiment can be considered as a crystallization method in which the inner diameter of the circulation pipe Po is constant. According to such a crystallization method, effects similar to those of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第2実施形態の晶析システム10Bは、晶析システム10Aにおいて、屈曲部Ppが複数設けられている晶析方法と見なすことができる。このような晶析方法によれば、第2実施形態の晶析システム10Bと同様の効果を得ることができる。 Furthermore, the crystallization system 10B of the second embodiment can be considered as a crystallization method in which a plurality of bent portions Pp are provided in the crystallization system 10A. According to such a crystallization method, effects similar to those of the crystallization system 10B of the second embodiment can be obtained.
 さらに、第3実施形態の晶析システム10Cは、晶析システム10Aにおいて、屈曲部Ppの少なくとも一部が温度調節槽の中に設けられている晶析方法と見なすことができる。このような晶析方法によれば、第3実施形態の晶析システム10Cと同様の効果を得ることができる。 Furthermore, the crystallization system 10C of the third embodiment can be considered as a crystallization method in which at least a portion of the bent portion Pp is provided in the temperature control tank in the crystallization system 10A. According to such a crystallization method, effects similar to those of the crystallization system 10C of the third embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aは、屈曲部Ppが、分離可能な、複数の直管部と複数の曲管部Cと、から構成されている晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aと同様の効果を得ることができる。 Further, the crystallization system 10A of the first embodiment can be regarded as a crystallization method in which the bent portion Pp is composed of a plurality of separable straight pipe portions and a plurality of bent pipe portions C. According to such a crystallization method, effects similar to those of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1は、晶析システム10Aにおいて、晶析装置4aが、径方向に貫通する複数の孔hを備えるとともに中心軸O1回りに回転する撹拌翼Wと、この撹拌翼Wを同心状に内部に収容する有底円筒状の反応槽1と、この反応槽1の内部に第1の反応液L1を供給する導入口5aと、撹拌翼Wに設けられるとともに第2の反応液L2を反応槽1の内部に供給可能な給液部5bと、を備え、第1の反応液L1を導入口5aから反応槽1に供給する第1給液ステップと、第2の反応液L2を給液部5bから反応槽1に供給する第2給液ステップと、を備える晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1と同様の効果を得ることができる。 Furthermore, in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment, in the crystallization system 10A, the crystallizer 4a is provided with a plurality of holes h penetrating in the radial direction, and a central A stirring blade W rotating around an axis O1, a cylindrical reaction tank 1 with a bottom that concentrically accommodates the stirring blade W, and an introduction for supplying a first reaction liquid L1 into the reaction tank 1. The first reaction liquid L1 is supplied from the inlet 5a to the reaction tank 1. This can be regarded as a crystallization method comprising a first liquid supply step of supplying the second reaction liquid L2 to the reaction tank 1 from the liquid supply part 5b. According to such a crystallization method, effects similar to those of the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1は、晶析システム10A1において、撹拌翼Wが、円筒状の円筒部2と、円筒部2の内周面に外縁部が固定される円盤状の円盤部8と、円盤部8の平面視の中心から中心軸O1に沿って上方に延びる回転軸3と、をさらに備え、円盤部8と回転軸O1との内部を第2の反応液L2が流通可能であり、第2給液ステップでは円盤部8の外縁部から下方に向けて第2の反応液L2を供給する晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1と同様の効果を得ることができる。 Furthermore, in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment, the stirring blade W is connected to the cylindrical portion 2 and the inner periphery of the cylindrical portion 2. It further includes a disc-shaped disc part 8 whose outer edge is fixed to a surface, and a rotating shaft 3 extending upward from the center of the disc part 8 in plan view along the central axis O1, and the disc part 8 and the rotating shaft O1 The second reaction liquid L2 can flow through the inside of the disk, and the second liquid supply step can be considered as a crystallization method in which the second reaction liquid L2 is supplied downward from the outer edge of the disk part 8. . According to such a crystallization method, effects similar to those of the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aの第2の変形例に係る晶析システム10A2は、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1において、撹拌翼Wは、円筒状の円筒部2と、円筒部2の内周面2iに外縁部が固定される円盤状の円盤部8と、円盤部8の平面視の中心から中心軸に沿って上方に延びる回転軸O1と、をさらに備え、円盤部8と回転軸O1との内部を第2の反応液L2が流通可能であり、第2給液ステップでは円盤部8の外縁部から円筒部2を貫通して径方向外側に向けて第2の反応液L2を供給する晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第2の変形例に係る晶析システム10A2と同様の効果を得ることができる。 Furthermore, the crystallization system 10A2 according to the second modification of the crystallization system 10A of the first embodiment has a stirring blade in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment. W includes a cylindrical cylindrical part 2, a disc-shaped disc part 8 whose outer edge is fixed to the inner circumferential surface 2i of the cylindrical part 2, and a part W extending upward along the central axis from the center of the disc part 8 in a plan view. The second reaction liquid L2 can flow through the interior of the disc part 8 and the rotating shaft O1, and in the second liquid supply step, the cylindrical part 2 is supplied from the outer edge of the disc part 8. This can be considered as a crystallization method in which the second reaction liquid L2 is supplied radially outward through the hole. According to such a crystallization method, the same effects as the crystallization system 10A2 according to the second modification of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10A、及び第1実施形態の晶析システム10Aの第3の変形例に係る晶析システム10A3は、第1実施形態の晶析システム10Aの第1の変形例の晶析システム10A1の撹拌翼W、及び第1実施形態の晶析システム10Aの第2の変形例の晶析システム10A2の撹拌翼Waにおいて、円盤部8より上側の円筒部2において、径方向に貫通する複数の孔hがない(閉塞されている)とともに、円筒部2の内周面に外縁部が固定される円盤状の第2円盤部15が円筒部2の上端部に設けられている晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10A、及び第1実施形態の晶析システム10Aの第3の変形例に係る晶析システム10A3と同様の効果を得ることができる。 Furthermore, the crystallization system 10A of the first embodiment and the crystallization system 10A3 according to the third modification of the crystallization system 10A of the first embodiment are the first modification of the crystallization system 10A of the first embodiment. In the stirring blade W of the example crystallization system 10A1 and the stirring blade Wa of the crystallization system 10A2 of the second modification of the crystallization system 10A of the first embodiment, in the cylindrical part 2 above the disk part 8, the diameter A second disc part 15 is provided at the upper end of the cylindrical part 2, and the plurality of holes h penetrating in the direction are not (closed), and the outer edge part is fixed to the inner circumferential surface of the cylindrical part 2. It can be regarded as a crystallization method that According to such a crystallization method, it is possible to obtain the same effects as the crystallization system 10A of the first embodiment and the crystallization system 10A3 according to the third modification of the crystallization system 10A of the first embodiment. can.
 さらに、第1実施形態の晶析システム10Aの第4の変形例に係る晶析システム10A4は、第1実施形態の晶析システム10Aの第1の変形例の晶析システム10A1の撹拌翼Wにおいて、円盤部8が撹拌翼Wの上端部に設けられる晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第4の変形例に係る晶析システム10A4と同様の効果を得ることができる。 Further, in the crystallization system 10A4 according to the fourth modification of the crystallization system 10A of the first embodiment, in the stirring blade W of the crystallization system 10A1 of the first modification of the crystallization system 10A of the first embodiment, This can be considered as a crystallization method in which the disk portion 8 is provided at the upper end of the stirring blade W. According to such a crystallization method, the same effects as the crystallization system 10A4 according to the fourth modification of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aの第5の変形例に係る晶析システム10A5は、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1において、撹拌翼Wが、円柱状の円柱部20と、円柱部20の上端部に前記円柱部20と同心状に設けられる円盤基部18と、円盤基部18の平面視の中心から中心軸O1に沿って上方に延びる回転軸3と、円柱部20の径方向外側に円柱部20と同心状に設けられる円筒状の多孔板18Pと、を備え、多孔板18Pは、円盤基部18の外縁から下方に延びており、回転軸O1と円盤基部18と円柱部20との内部を第2の反応液L2が流通可能であり、第2給液ステップでは、円柱部20の外周面20oに上下方向に間隔を空けて設けられた複数の給液部50bから径方向外側に向けて第2の反応液L2を供給する晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第5の変形例に係る晶析システム10A4と同様の効果を得ることができる。 Furthermore, the crystallization system 10A5 according to the fifth modification of the crystallization system 10A of the first embodiment has a stirring blade in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment. W extends upward along the central axis O1 from the center of the circular columnar part 20, the disk base 18 provided at the upper end of the circular column part 20 concentrically with the columnar part 20, and the disk base 18 in plan view. It includes an extending rotating shaft 3 and a cylindrical perforated plate 18P provided concentrically with the cylindrical part 20 on the outside in the radial direction of the cylindrical part 20, and the perforated plate 18P extends downward from the outer edge of the disc base 18. , the second reaction liquid L2 can flow through the interior of the rotating shaft O1, the disc base 18, and the cylindrical part 20, and in the second liquid supply step, the second reaction liquid L2 is formed on the outer circumferential surface 20o of the cylindrical part 20 at intervals in the vertical direction. This can be considered as a crystallization method in which the second reaction liquid L2 is supplied radially outward from a plurality of provided liquid supply parts 50b. According to such a crystallization method, effects similar to those of the crystallization system 10A4 according to the fifth modification of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aの第6の変形例に係る晶析システム10A6は、第1実施形態の晶析システム10Aの第1の変形例に係る晶析システム10A1において、撹拌翼Wが、円柱状の円柱部20と、円柱部20の平面視の中心から中心軸O1に沿って上方に延びる回転軸3と、円柱部20の径方向外側に円柱部20と同心状に設けられる円筒状の多孔板18Pと、を備え、多孔板18Pは、円柱部20の外周面20oから径方向外側に延びる接続棒11に固定されており、回転軸O1と円柱部20との内部を第2の反応液L2が流通可能であり、第2給液ステップでは、円柱部20の外周面20oに上下方向に間隔を空けて設けられた複数の給液部50bから径方向外側に向けて第2の反応液L2を供給する晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第6の変形例に係る晶析システム10A6と同様の効果を得ることができる。 Furthermore, the crystallization system 10A6 according to the sixth modification of the crystallization system 10A of the first embodiment has a stirring blade in the crystallization system 10A1 according to the first modification of the crystallization system 10A of the first embodiment. W is provided concentrically with the columnar section 20 on the radially outer side of the columnar section 20, and the rotating shaft 3 extending upward from the center of the columnar section 20 in plan view along the central axis O1. The perforated plate 18P is fixed to a connecting rod 11 extending radially outward from the outer circumferential surface 20o of the cylindrical part 20, and the perforated plate 18P is fixed to a connecting rod 11 extending radially outward from the outer peripheral surface 20o of the cylindrical part 20. The second reaction liquid L2 can flow, and in the second liquid supply step, the second reaction liquid L2 is distributed radially outward from a plurality of liquid supply parts 50b provided on the outer circumferential surface 20o of the columnar part 20 at intervals in the vertical direction. This can be considered as a crystallization method for supplying the second reaction solution L2. According to such a crystallization method, the same effects as the crystallization system 10A6 according to the sixth modification of the crystallization system 10A of the first embodiment can be obtained.
 さらに、第1実施形態の晶析システム10Aの第7の変形例に係る晶析システム10A7は、第1実施形態の晶析システム10Aの第5の変形例に係る晶析システム10A5、又は第1実施形態の晶析システム10Aの第6の変形例に係る晶析システム10A6において、複数の給液部50bから径方向外側に向かって延びる延長管12が設けられ、第2給液ステップでは、延長管12の先端から第2の反応液L2を供給する晶析方法と見なすことができる。このような晶析方法によれば、第1実施形態の晶析システム10Aの第7の変形例に係る晶析システム10A7及び第8の変形例に係る晶析システム10A8と同様の効果を得ることができる。 Furthermore, the crystallization system 10A7 according to the seventh modification of the crystallization system 10A of the first embodiment is the crystallization system 10A5 according to the fifth modification of the crystallization system 10A of the first embodiment, or the first In a crystallization system 10A6 according to a sixth modification of the crystallization system 10A of the embodiment, extension pipes 12 extending radially outward from the plurality of liquid supply parts 50b are provided, and in the second liquid supply step, the extension pipes 12 are This can be considered as a crystallization method in which the second reaction liquid L2 is supplied from the tip of the tube 12. According to such a crystallization method, effects similar to those of the crystallization system 10A7 according to the seventh modification of the crystallization system 10A of the first embodiment and the crystallization system 10A8 according to the eighth modification can be obtained. I can do it.
 以上、この発明の実施形態とその変形例について図面を参照して詳述してきたが、具体的な構成はこの実施形態とその変形例に限られず、請求項に定義されるこの発明の範囲の設計等や実施形態と変形例の相互の組み合わせも含まれる。 The embodiments of this invention and their modifications have been described above in detail with reference to the drawings, but the specific configuration is not limited to this embodiment and its modifications, and is within the scope of the invention as defined in the claims. It also includes designs, etc., and mutual combinations of embodiments and modifications.
 例えば、上記実施形態では、第1の反応液L1と第2の反応液L2との2種類の反応液を混合させて生成物を得たが、3種類以上の反応液を混合させても良い。 For example, in the above embodiment, the product was obtained by mixing two types of reaction liquids, the first reaction liquid L1 and the second reaction liquid L2, but three or more types of reaction liquids may be mixed. .
 本発明の晶析システムおよび晶析方法によれば、滞留槽を必須とせずに、晶析装置で結晶化された微粒子を滞留させることができる。 According to the crystallization system and crystallization method of the present invention, fine particles crystallized in a crystallizer can be retained without requiring a retention tank.
 1 反応槽
 2 円筒部
 3 回転軸
 4 晶析装置
 5a 導入口
 5b 給液部
 6 排出口
 8 円盤部
 9、h 孔
 10A、10B、10C、10A1、10A2、10A3、10A4、10A5、10A6、10A7、10A8 晶析システム
 22、23、24 配管
 30 循環ポンプ
 31 第2循環ポンプ
 Po 循環管路
 Pp 屈曲部
 Po1、Po2、Po3、Po4、Po5、Po6 直管部
 C、C、C、C、C、C   曲管部
 W、Wa、Wb、Wc、Wd、We、Wf、Wg、Wh 撹拌翼
1 Reaction tank 2 Cylindrical part 3 Rotating shaft 4 Crystallizer 5a Inlet 5b Liquid supply part 6 Outlet 8 Disk part 9, h Hole 10A, 10B, 10C, 10A1, 10A2, 10A3, 10A4, 10A5, 10A6, 10A7, 10A8 Crystallization system 22, 23, 24 Piping 30 Circulation pump 31 Second circulation pump Po Circulation pipe Pp Bent part Po1, Po2, Po3, Po4, Po5, Po6 Straight pipe part C, C 1 , C 2 , C 3 , C 4 , C 5 curved pipe section W, Wa, Wb, Wc, Wd, We, Wf, Wg, Wh Stirring blade

Claims (10)

  1.  複数の原料溶液を混合して前記複数の原料溶液の中の複数の原料に由来する粒子を生成させる晶析装置と、
     前記晶析装置の排出口から排出される前記粒子を含むスラリを流動させ前記晶析装置の導入口から前記晶析装置内に前記スラリを循環させる循環管路と、
     前記スラリを前記晶析装置と前記循環管路との間で循環させる循環ポンプと、を備え、
     前記循環管路は、蛇行形状をなす屈曲部を有する晶析システム。
    a crystallizer that mixes a plurality of raw material solutions to generate particles derived from a plurality of raw materials in the plurality of raw material solutions;
    a circulation pipe that flows the slurry containing the particles discharged from the discharge port of the crystallizer and circulates the slurry into the crystallizer from the inlet of the crystallizer;
    a circulation pump that circulates the slurry between the crystallizer and the circulation pipe,
    In the crystallization system, the circulation pipe has a meandering bent portion.
  2.  前記循環管路の内径が一定である請求項1に記載の晶析システム。 The crystallization system according to claim 1, wherein the inner diameter of the circulation pipe is constant.
  3.  前記屈曲部が複数設けられている請求項1又は2に記載の晶析システム。 The crystallization system according to claim 1 or 2, wherein a plurality of the bent portions are provided.
  4.  前記屈曲部の少なくとも一部が温度調節槽の中に設けられている請求項1から請求項3の何れか一項に記載の晶析システム。 The crystallization system according to any one of claims 1 to 3, wherein at least a portion of the bent portion is provided in a temperature control tank.
  5.  前記屈曲部が、分離可能な、複数の直管部と複数の曲管部と、から構成されている請求項1から請求項4の何れか一項に記載の晶析システム。 The crystallization system according to any one of claims 1 to 4, wherein the bent part is composed of a plurality of separable straight pipe parts and a plurality of bent pipe parts.
  6.  前記晶析装置は、径方向に貫通する複数の孔を備えるとともに中心軸の回りに回転可能な撹拌翼と、
     前記撹拌翼を同心状に内部に収容可能な有底円筒状の反応槽と、
     前記反応槽に設けられるとともに前記反応槽の内部に第1の反応液を供給可能な導入口と、
     前記撹拌翼に設けられるとともに前記反応槽の内部に第2の反応液を供給可能な給液部と、
     を備える請求項1から請求項5の何れか一項に記載の晶析システム。
    The crystallizer includes a stirring blade that has a plurality of holes that penetrate in the radial direction and is rotatable around a central axis;
    a bottomed cylindrical reaction tank capable of concentrically accommodating the stirring blade;
    an inlet provided in the reaction tank and capable of supplying a first reaction liquid into the reaction tank;
    a liquid supply part that is provided on the stirring blade and is capable of supplying a second reaction liquid into the inside of the reaction tank;
    The crystallization system according to any one of claims 1 to 5, comprising:
  7.  前記撹拌翼は、円筒状の円筒部と、前記円筒部の内周面に外縁部が固定される円盤状の円盤部と、前記円盤部の平面視の中心から前記中心軸に沿って上方に延びる回転軸と、を備え、
     前記円盤部と前記回転軸との内部を前記第2の反応液が流通可能であり、
     前記円盤部の前記外縁部に前記給液部が設けられている請求項6に記載の晶析システム。
    The stirring blade includes a cylindrical cylindrical part, a disc-shaped disc part whose outer edge is fixed to an inner circumferential surface of the cylindrical part, and a disc part extending upwardly along the central axis from the center of the disc part in a plan view. comprising an extending rotation axis;
    The second reaction liquid can flow inside the disk portion and the rotating shaft,
    The crystallization system according to claim 6, wherein the liquid supply section is provided at the outer edge of the disk section.
  8.  前記給液部は下方に向けて開口している請求項7に記載の晶析システム。 The crystallization system according to claim 7, wherein the liquid supply section opens downward.
  9.  前記給液部は径方向外側に向けて開口し前記円筒部を貫通している請求項7に記載の晶析システム。 The crystallization system according to claim 7, wherein the liquid supply section opens radially outward and penetrates the cylindrical section.
  10.  複数の原料溶液を混合して前記複数の原料溶液の中の複数の原料に由来する粒子を晶析装置で成長させる晶析ステップと、
     前記晶析装置の排出口から排出される前記粒子を含むスラリを、蛇行形状をなす屈曲部を有する循環管路を流動させることで前記晶析装置の導入口まで循環させる循環ステップと、を含む晶析方法。
    a crystallization step of mixing a plurality of raw material solutions and growing particles derived from a plurality of raw materials in the plurality of raw material solutions in a crystallizer;
    a circulation step of circulating the slurry containing the particles discharged from the discharge port of the crystallizer to the inlet of the crystallizer by flowing a circulation pipe having a meandering bent portion; Crystallization method.
PCT/JP2023/001874 2022-03-15 2023-01-23 Crystallization system and crystallization method WO2023176146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022040318A JP2023135222A (en) 2022-03-15 2022-03-15 Crystallization system and crystallization method
JP2022-040318 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176146A1 true WO2023176146A1 (en) 2023-09-21

Family

ID=88022676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001874 WO2023176146A1 (en) 2022-03-15 2023-01-23 Crystallization system and crystallization method

Country Status (2)

Country Link
JP (1) JP2023135222A (en)
WO (1) WO2023176146A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517652A (en) * 2004-01-06 2007-07-05 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック(セーエヌエールエス) Continuous method of partial crystallization of solution and apparatus for carrying it out
JP2010137183A (en) * 2008-12-12 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for manufacturing particle and conductive particle obtained from the same
CN106637381A (en) * 2017-02-08 2017-05-10 江南大学 High-precision temperature control system for crystal growth process
WO2019239550A1 (en) * 2018-06-14 2019-12-19 日揮株式会社 Crystallizer and crystallization method
CN209865364U (en) * 2019-03-21 2019-12-31 杭州新龙化工有限公司 High-cooling crystallization device for preparing potassium nitrate
WO2022202489A1 (en) * 2021-03-26 2022-09-29 月島機械株式会社 Crystallization device, crystallization system, and crystallization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517652A (en) * 2004-01-06 2007-07-05 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック(セーエヌエールエス) Continuous method of partial crystallization of solution and apparatus for carrying it out
JP2010137183A (en) * 2008-12-12 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for manufacturing particle and conductive particle obtained from the same
CN106637381A (en) * 2017-02-08 2017-05-10 江南大学 High-precision temperature control system for crystal growth process
WO2019239550A1 (en) * 2018-06-14 2019-12-19 日揮株式会社 Crystallizer and crystallization method
CN209865364U (en) * 2019-03-21 2019-12-31 杭州新龙化工有限公司 High-cooling crystallization device for preparing potassium nitrate
WO2022202489A1 (en) * 2021-03-26 2022-09-29 月島機械株式会社 Crystallization device, crystallization system, and crystallization method

Also Published As

Publication number Publication date
JP2023135222A (en) 2023-09-28

Similar Documents

Publication Publication Date Title
KR101566240B1 (en) Aeration impeller and agitator for water treatment having the same
US6866411B1 (en) Mixing method and apparatus
JP5795794B2 (en) Emulsifying device for continuous production of emulsion and / or dispersion
JP7166284B2 (en) Apparatus for aerating pasty products and for mixing with other products
KR101809526B1 (en) Apparatus of emulsion production for fuel
CN102086240B (en) Equipment and method for producing uniform particle ion exchange resin beads
JP2006510484A (en) Apparatus and method for producing crystals / precipitates / particles
JP2008525308A (en) Apparatus and method for crystallization by hydrodynamic cavitation
CN102905781A (en) Improved tubular reactor and process
CN105664826B (en) A kind of outer circulation type alkylation reactor and alkylation reaction method
WO2023176146A1 (en) Crystallization system and crystallization method
CN107970639A (en) A kind of multistage subsection stacker module quasi-continuous crystallizer
WO2022202489A1 (en) Crystallization device, crystallization system, and crystallization method
CN203564982U (en) Mixer
CN216457017U (en) Radial flow spiral tube type crystallizer
CN202410655U (en) Mist type conical reactor
CN215876939U (en) Jet flow mixing nozzle
CN101259389A (en) High shearing thinning homogenizing machine
JP2024046965A (en) METHOD FOR PRODUCING METAL COMPOUND MICROPARTICLES, METAL COMPOUND MICROPARTICLES
JP2024047578A (en) Metal compound fine particle manufacturing device, metal compound fine particle manufacturing system
CN217189594U (en) PVDF polymeric kettle
JP4848192B2 (en) Sodium dispersion production method and sodium dispersion produced by the sodium dispersion production method
JP2021084067A (en) Dispersion system for solid-liquid mixture
JP2017511254A (en) Modular subunit for suspension crystallization system and suspension crystallization method using the modular subunit
WO2004076043A1 (en) Mixing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770109

Country of ref document: EP

Kind code of ref document: A1