JPH08318153A - Precipitate forming method adjusting precipitate particle diameter - Google Patents

Precipitate forming method adjusting precipitate particle diameter

Info

Publication number
JPH08318153A
JPH08318153A JP14842095A JP14842095A JPH08318153A JP H08318153 A JPH08318153 A JP H08318153A JP 14842095 A JP14842095 A JP 14842095A JP 14842095 A JP14842095 A JP 14842095A JP H08318153 A JPH08318153 A JP H08318153A
Authority
JP
Japan
Prior art keywords
reaction
mother liquor
precipitate
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14842095A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsuda
泰宏 松田
Shuichi Yamada
修一 山田
Takashi Kinouchi
孝 木之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Nikki Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Kagaku KK filed Critical Nikki Kagaku KK
Priority to JP14842095A priority Critical patent/JPH08318153A/en
Publication of JPH08318153A publication Critical patent/JPH08318153A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a precipitate forming method by which precipitate particles having an optional average diameter are obtained with a sharp particle size distribution without lowering productivity and with the particle diameter adjusted. CONSTITUTION: An additive soln. contg. acid or alkali is injected into a reaction mother liquor contg. a metallic salt or an additive soln. contg. the metallic salt is injected into the mother liquor contg. acid or alkali to adjust the precipitate particle diameter. In this method, the concn. of the additive soln. is increased stepwise or continuously as the reaction proceeds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒粒子やセラミック
微粒子等の粒子径を調整する沈澱調製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precipitation preparation method for adjusting the particle size of catalyst particles, ceramic particles and the like.

【0002】[0002]

【従来の技術】触媒等の粒子においては、シャープな粒
度分布で任意の平均粒径を有するものが従来より求めら
れている。例えば粒子によって成型体を作る場合には、
粒子径は重要な因子となる。すなわち、粒度分布にばら
つきがある場合は成型体の密度、強度がばらつき、その
後に焼成を行うと、密度、強度に加え形状そのものがば
らつく結果となり、焼成後の形状の設計が非常に困難に
なる。安定な粒度分布を有する粒子は、成型後の密度や
焼成後の焼き締まりが予め計算でき、得られた成型体、
焼結体の形状が安定する。
2. Description of the Related Art Particles such as catalysts having a sharp particle size distribution and an arbitrary average particle size have been conventionally sought. For example, when making a molded body with particles,
Particle size is an important factor. In other words, if the particle size distribution varies, the density and strength of the molded product will vary, and if firing is performed after that, the shape itself will vary in addition to density and strength, making it extremely difficult to design the shape after firing. . Particles having a stable particle size distribution, the density after molding and the baking tightness after firing can be calculated in advance, the obtained molded body,
The shape of the sintered body is stable.

【0003】また、触媒粒子を例にとると、懸濁床にお
いて触媒を使用する場合、反応塔内を触媒が通過する時
間は反応物、生成物の移動速度とそれらに対する触媒の
相対沈降速度に影響される。この相対沈降速度は、触媒
粒子の真比重と粒子径によってほぼ決定される。
Taking catalyst particles as an example, when the catalyst is used in a suspension bed, the time for the catalyst to pass through the reaction tower depends on the moving speed of the reactants and products and the relative settling speed of the catalyst to them. To be affected. This relative settling rate is substantially determined by the true specific gravity of the catalyst particles and the particle size.

【0004】特に粒子径が相対沈降速度に及ぼす影響は
大きく、触媒粒子の粒度分布グラフがブロードな場合、
平均的な粒子径より小さな粒子径のものは短時間で反応
塔を通過してしまい、十分反応に寄与することができな
い。従って、反応物に対する触媒比率を上げる必要を生
じさせ、これは触媒と反応生成物を分離させる濾過工程
においても多大な負担となる。
Particularly, the influence of the particle size on the relative sedimentation velocity is great, and when the particle size distribution graph of the catalyst particles is broad,
Particles having a particle size smaller than the average particle size pass through the reaction tower in a short time and cannot sufficiently contribute to the reaction. Therefore, it becomes necessary to increase the ratio of the catalyst to the reaction product, and this also imposes a great burden on the filtration step for separating the catalyst and the reaction product.

【0005】一方、大きな粒子は反応塔内を通過するの
に長時間を要し、劣化しても排出されず滞留したままに
なる。著しく大きな粒子は全く移動することなく、反応
塔入り口付近に堆積して入口を閉塞させたり、新たに加
えた触媒の比率を低下させ、反応性の悪化と副反応を進
行させる。また、この堆積を防ぐために反応物の供給速
度を上げようとすると、触媒との接触時間が短くなり、
結局、生産性を維持するためにはここでもまた触媒比率
を上げる必要が生じる。
On the other hand, large particles require a long time to pass through the inside of the reaction tower, and even if they are deteriorated, they are not discharged but remain in a retained state. Remarkably large particles do not move at all, and accumulate near the entrance of the reaction tower to block the entrance, or reduce the ratio of the newly added catalyst, thereby deteriorating the reactivity and advancing side reactions. Also, when trying to increase the feed rate of the reactants to prevent this accumulation, the contact time with the catalyst becomes shorter,
After all, in order to maintain the productivity, it is necessary to increase the catalyst ratio here as well.

【0006】従って、シャープな粒度分布で任意の平均
粒径を有する触媒が得られれば、反応物と触媒の接触時
間が容易に設定でき、触媒比率との組合わせで最適な反
応条件が得られる。
Therefore, if a catalyst having an arbitrary average particle size with a sharp particle size distribution can be obtained, the contact time between the reactant and the catalyst can be easily set, and optimum reaction conditions can be obtained in combination with the catalyst ratio. .

【0007】しかしながら、従来においては、このよう
な粒子を沈澱反応によって調製する場合には、沈澱反応
溶液の濃度を一定にしていたため、核の生成、核の成長
の制御がうまくできず、沈澱粒子の粒子径を制御するの
は難しかった。
However, in the past, when such particles were prepared by a precipitation reaction, the concentration of the precipitation reaction solution was kept constant, so that the generation of nuclei and the growth of nuclei could not be controlled well, and the precipitated particles It was difficult to control the particle size.

【0008】このため、沈澱粒子の粒子径を調製するた
めに種々の試みがなされている。例えば核の生成、成長
を制御するため、反応溶液の濃度を希薄にする試みがあ
る。しかし、この場合には一定の反応装置(容器)で製
造できる沈澱粒子量が少なくなってしまう。すなわち、
生産性が著しく低下してしまうという問題があった。
Therefore, various attempts have been made to adjust the particle size of the precipitated particles. For example, there are attempts to dilute the concentration of the reaction solution in order to control the generation and growth of nuclei. However, in this case, the amount of precipitated particles that can be produced by a certain reaction device (container) is reduced. That is,
There is a problem that productivity is significantly reduced.

【0009】また、反応液の濃度は一定のまま、注入速
度を落として沈澱反応を制御しようという試みもある
が、液を滴下した局所での中和反応速度は極めて速いた
めに、沈澱凝集体の生成を抑制することはできなかっ
た。また、凝集体が十分解膠するためには滴下時間が長
くなり、生産性は著しく低くなってしまうという問題も
あった。
There has also been an attempt to control the precipitation reaction by decreasing the injection speed while keeping the concentration of the reaction solution constant, but since the neutralization reaction speed at the local area where the solution is dropped is extremely high, the precipitation aggregate Could not be suppressed. Further, there is a problem that the dropping time is long in order for the agglomerates to be sufficiently deflocculated, and the productivity is remarkably lowered.

【0010】さらには、反応液の濃度は一定のまま、噴
霧器等で微粒化して注加する試みもあるが、反応母液中
へ拡散するよりも局部での中和反応は速く、逆に液滴の
形骸が凝集粒子として残りやすいという問題があった。
Further, there has been an attempt to atomize and pour the solution with a sprayer or the like while keeping the concentration of the reaction solution constant, but the neutralization reaction in the local area is faster than the diffusion into the reaction mother liquor, and conversely the droplets. However, there is a problem that the corpses of the above tend to remain as aggregated particles.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、これ
らの従来技術の課題を解決し、生産性を損なうことな
く、シャープな粒度分布で任意の平均粒径が得られる粒
子径を調整する沈澱調製方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve these problems of the prior art and adjust the particle size to obtain an arbitrary average particle size with a sharp particle size distribution without impairing productivity. It is to provide a method for preparing a precipitate.

【0012】[0012]

【課題を解決するための手段】本発明の上記目的は、次
に示す沈澱調製方法によって達成される。すなわち、本
発明は、金属塩を含む反応母液に酸またはアルカリを含
む注加溶液を注加するか、あるいは酸またはアルカリを
含む反応母液に金属塩を含む注加溶液を注加して沈澱粒
子径を調整する沈澱調製方法において、該注加溶液の濃
度を、反応の進行に伴って段階的または連続的に上昇さ
せることを特徴とする沈澱粒子径を調整する沈澱調製方
法にある。
The above objects of the present invention can be achieved by the following precipitation preparation method. That is, according to the present invention, the reaction mother liquor containing a metal salt is poured with a pouring solution containing an acid or an alkali, or the reaction mother liquor containing an acid or an alkali is poured with a pouring solution containing a metal salt to precipitate particles. The precipitation preparation method for adjusting the particle diameter is characterized in that the concentration of the pouring solution is increased stepwise or continuously with the progress of the reaction.

【0013】以下、本発明を詳述する。The present invention will be described in detail below.

【0014】本発明では、金属塩を含む反応母液に酸ま
たはアルカリを含む注加溶液を注加するか、あるいは酸
またはアルカリを含む反応母液に金属塩を含む注加溶液
を注加する。ここで用いられる金属塩は特に限定されな
いが、例えば銅(I,II)、鉄(II,III)、アル
ミニウム、ニッケル、マグネシウムの酢酸塩、塩化物、
硝酸塩、硫酸塩、蟻酸塩、クエン酸塩等の各金属塩が挙
げられる。
In the present invention, a pouring solution containing an acid or an alkali is poured into a reaction mother liquor containing a metal salt, or a pouring solution containing a metal salt is poured into a reaction mother liquor containing an acid or an alkali. The metal salt used here is not particularly limited, but for example, copper (I, II), iron (II, III), aluminum, nickel, magnesium acetate, chloride,
Examples thereof include metal salts such as nitrates, sulfates, formates and citrates.

【0015】また、酸としては、酢酸、塩酸、硝酸、硫
酸、蟻酸、クエン酸等が例示され、アルカリとしては、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、
炭酸水素ナトリウム、アンモニア、炭酸アンモニウム、
炭酸水素アンモニウム等が例示される。
Examples of the acid include acetic acid, hydrochloric acid, nitric acid, sulfuric acid, formic acid and citric acid, and examples of the alkali include
Sodium hydroxide, potassium hydroxide, sodium carbonate,
Sodium bicarbonate, ammonia, ammonium carbonate,
Examples include ammonium hydrogen carbonate.

【0016】本発明では、注加溶液の濃度を、反応の進
行に伴って段階的または連続的に上昇させる。より具体
的には注加溶液の開始時濃度は、注加溶液の飽和溶液濃
度をcとすると0〜0.5cが望ましく、0から開始す
るのが最も効果的である。また、注加溶液の終了時濃度
は0.5c〜cが望ましく、飽和溶解度まで上げるのが
最も経済的である。なお、この注加溶液の飽和溶液濃度
(c)は注加溶液温度によって異なることはいうまでも
ない。
In the present invention, the concentration of the pouring solution is increased stepwise or continuously as the reaction progresses. More specifically, the starting concentration of the pouring solution is preferably 0 to 0.5 c, where c is the saturated solution concentration of the pouring solution, and starting from 0 is most effective. Further, the final concentration of the pouring solution is preferably 0.5 c to c, and it is most economical to raise it to the saturated solubility. Needless to say, the saturated solution concentration (c) of the pouring solution varies depending on the pouring solution temperature.

【0017】本発明では注加溶液の濃度を段階的または
連続的に変える。段階的に濃度を変えるには、予め異な
る濃度の溶液を数種調製しておき、反応母液中に希薄な
ものから順次注加していけばよい。しかし、濃度をでき
るだけ小刻みに変化させようとするには、多数の容器や
ポンプが必要となり操作も煩雑になってしまう。連続的
に濃度を変える例として、一つの容器に反応終了時に注
加させようとする濃度の溶液を反応に必要な量だけ調製
し、いま一つの容器にこの溶液量と同じ容量の溶媒
(水)を貯え、ここに溶液を投入、混合希釈しながら反
応母液に注加していく。溶媒(水)へ溶液を混合してい
く2倍の速度で希釈溶液を注加すれば、反応母液に注加
する溶液濃度を連続的に変化させることができる。段階
的に変化させる方法よりも、少ない設備で済み操作も単
純である。
In the present invention, the concentration of the pouring solution is changed stepwise or continuously. In order to change the concentration stepwise, several kinds of solutions having different concentrations may be prepared in advance, and the diluted solutions may be sequentially added to the reaction mother liquor. However, in order to change the concentration in as small a step as possible, a large number of containers and pumps are required and the operation becomes complicated. As an example of continuously changing the concentration, prepare a solution of the concentration to be added to one container at the end of the reaction in an amount necessary for the reaction, and then add another container with the same volume of solvent (water ) Is stored, and the solution is added thereto, and the mixture is diluted while being added to the reaction mother liquor. By pouring the diluted solution into the solvent (water) at a rate twice that of mixing the solution, the concentration of the solution pouring into the reaction mother liquor can be continuously changed. It requires less equipment and is simpler to operate than the stepwise method.

【0018】本発明のように連続的あるいは段階的に濃
度を変えるのではなく、平均濃度の溶液のみで注加を行
うと、注加前半で核担体以外の核の生成と注加液滴の形
骸粒子が残り粒度分布が広がってしまう。
If the solution is not added continuously or stepwise as in the present invention but only the solution having an average concentration is added, the nuclei other than the nuclei carrier are generated in the first half of the addition and the injected droplets are Shaped particles remain and the particle size distribution is widened.

【0019】本発明では、反応母液中に予め核となる粒
子を懸濁させるか、あるいは核となる粒子を反応母液中
に予め懸濁させずに、沈澱反応の初期に生成した沈澱粒
子を核として用いてもよい。
In the present invention, the core particles are suspended in the reaction mother liquor in advance, or the precipitated particles formed in the initial stage of the precipitation reaction are not suspended in the reaction mother liquor in advance. You may use as.

【0020】ここで最終的に得られる沈澱粒子の形状に
は核になる粒子の形状が反映されるため、核にする粒子
の選択や調製には注意を要する。すなわち、核になる粒
子の粒度分布がブロードであれば、できあがる沈澱粒子
の粒度分布もブロードなものになってしまい、粗大粒子
が含まれる場合はさらに粗大な沈澱となってしまう。従
って、核となる粒子は粒度分布がシャープなものがよ
く、沈着量の制御による粒径の調整がしやすいことから
比較的微細なものを使用する方が望ましい。
Since the shape of the precipitate particles finally obtained here reflects the shape of the particles forming the core, care must be taken in selecting and preparing the particles forming the core. That is, if the particle size distribution of the core particles is broad, the resulting particle size distribution of the precipitated particles will also be broad, and if coarse particles are contained, the particle size will be coarser. Therefore, it is preferable that the core particles have a sharp particle size distribution, and the particle size can be easily adjusted by controlling the deposition amount, so that relatively fine particles are preferably used.

【0021】本発明では、生成する沈澱粒子の形状は、
沈澱反応における反応母液の濃度、混合撹拌の様式と効
率に大きく影響される。すなわち、生産性を重視する余
り反応母液濃度を高くし過ぎると、本発明を採用しても
反応終了時の溶液濃度が高いために注加液滴の形骸が残
ってしまい十分な効果が得られない。また撹拌、混合効
率が不十分であると、核粒子の表面への均等な析出が行
われないし、凝集による粗大粒子も形成されブロードな
粒度分布になってしまう。従って、本発明を適用するに
は、反応母液の濃度、混合撹拌の様式と効率に留意する
必要がある。
In the present invention, the shape of the precipitate particles produced is
It is greatly affected by the concentration of the reaction mother liquor, the mode and efficiency of mixing and stirring in the precipitation reaction. That is, if the reaction mother liquor concentration is set too high, placing importance on productivity, even if the present invention is employed, the solution concentration at the end of the reaction will be high, and the skeleton of the injected droplets will remain, and a sufficient effect can be obtained. Absent. If the stirring and mixing efficiencies are insufficient, the core particles will not be evenly deposited on the surface, and coarse particles will be formed due to aggregation, resulting in a broad particle size distribution. Therefore, in applying the present invention, it is necessary to pay attention to the concentration of the reaction mother liquor, the mode and efficiency of mixing and stirring.

【0022】[0022]

【作用】このように本発明は、沈澱反応の初期に生成し
た沈澱粒子あるいは予め反応母液に懸濁させた核になる
粒子以外に、沈澱析出の核になりうる粒子の生成を極力
抑制することで、核粒子の数と粒子径を制御しながら、
その核になるべき粒子の表面に沈澱を均等に析出、成長
させることにより、沈澱の粒子径を調製するものであ
る。
As described above, the present invention suppresses as much as possible the generation of particles that can become nuclei for precipitation precipitation, in addition to precipitated particles that are formed in the early stage of the precipitation reaction or particles that become nuclei suspended in the reaction mother liquor in advance. So, while controlling the number and size of core particles,
The particle size of the precipitate is adjusted by evenly depositing and growing the precipitate on the surface of the particles to be the nuclei.

【0023】[0023]

【実施例】以下に実施例等に基づいて本発明を具体的に
説明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0024】実施例1 水630gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解し、核粒子として平均粒子径8μ
mの水酸化アルミニウム(昭和電工(株)製ギブサイ
ト、商品名:ハイジライトH−32)23.7gを懸濁
させた後、95℃まで加熱し、これを反応母液とした。
22wt%の炭酸ナトリウム(40℃での飽和溶解度:
32wt%)溶液400gを325gの水に80分を要
して混合希釈した。これと並行してこの希釈炭酸ナトリ
ウム溶液を80分を要して反応母液に十分撹拌しながら
注加した。この時の注加溶液濃度は反応開始時0wt
%、反応終了時22wt%であった。
Example 1 To 630 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
(Hydrous salt) 113 g is dissolved, and the average particle diameter as a core particle is 8 μ
23.7 g of m aluminum hydroxide (Gibsite manufactured by Showa Denko KK, trade name: Hydilite H-32) was suspended and then heated to 95 ° C. to obtain a reaction mother liquor.
22 wt% sodium carbonate (saturated solubility at 40 ° C .:
32 wt%) solution (400 g) was mixed and diluted with 325 g of water over 80 minutes. In parallel with this, the diluted sodium carbonate solution was added to the reaction mother liquor over 80 minutes while sufficiently stirring. The concentration of the added solution at this time was 0 wt at the start of the reaction.
% And 22 wt% at the end of the reaction.

【0025】比較例1 実施例1と同様にして反応母液を調製した。22wt%
の炭酸ナトリウム溶液400gを325gの水に40分
を要して混合希釈した。これと並行してこの希釈炭酸ナ
トリウム溶液を80分を要して反応母液に十分撹拌しな
がら注加した。この時の注加液濃度は反応開始時0wt
%、40分後に11wt%となり、以降反応終了時まで
11wt%が維持された。
Comparative Example 1 A reaction mother liquor was prepared in the same manner as in Example 1. 22 wt%
400 g of the sodium carbonate solution of 3 was mixed and diluted with 325 g of water over 40 minutes. In parallel with this, the diluted sodium carbonate solution was added to the reaction mother liquor over 80 minutes while sufficiently stirring. The injection concentration at this time was 0 wt at the start of the reaction.
%, 11 wt% after 40 minutes, and 11 wt% was maintained until the end of the reaction.

【0026】比較例2 実施例1と同様にして反応母液を調製した。11wt%
の炭酸ナトリウム溶液800gを噴霧器を用い80分を
要して反応母液に十分撹拌しながら注加した。
Comparative Example 2 A reaction mother liquor was prepared in the same manner as in Example 1. 11 wt%
800 g of the sodium carbonate solution of 1 was added to the reaction mother liquor using a sprayer over 80 minutes with sufficient stirring.

【0027】実施例2 水600gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)90.4gを溶解し、核粒子として平均粒子径1
μmの水酸化アルミニウム(昭和電工(株)製ギブサイ
ト、商品名:ハイジライトH−42M)23.7gを懸
濁させた後、95℃まで加熱し、これを反応母液とし
た。22wt%の炭酸ナトリウム溶液400gを325
gの水に80分を要して混合希釈した。これと並行して
この希釈炭酸ナトリウム溶液を80分を要して反応母液
に十分撹拌しながら注加した。この時の注加溶液濃度は
反応開始時0wt%、反応終了時22wt%であった。
Example 2 To 600 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
Aqueous salt) 90.4 g is dissolved, and the average particle diameter as core particles is 1
After suspending 23.7 g of aluminum hydroxide (gibbsite manufactured by Showa Denko KK, trade name: Hydilite H-42M) having a size of μm, the suspension was heated to 95 ° C. and used as a reaction mother liquor. 325 g of 22 wt% sodium carbonate solution
The mixture was diluted with 80 g of water over 80 minutes. In parallel with this, the diluted sodium carbonate solution was added to the reaction mother liquor over 80 minutes while sufficiently stirring. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 22 wt% at the end of the reaction.

【0028】比較例3 水925gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)90.4gを溶解し、核粒子として平均粒子径1
μmの水酸化アルミニウム(昭和電工(株)製ギブサイ
ト、商品名:ハイジライトH−42M)23.7gを懸
濁させた後、95℃まで加熱し、これを反応母液とし
た。22wt%の炭酸ナトリウム溶液400gを80分
を要して反応母液に十分撹拌しながら注加した。
Comparative Example 3 In 925 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
Aqueous salt) 90.4 g is dissolved, and the average particle diameter as core particles is 1
After suspending 23.7 g of aluminum hydroxide (gibbsite manufactured by Showa Denko KK, trade name: Hydilite H-42M) having a size of μm, the suspension was heated to 95 ° C. and used as a reaction mother liquor. 400 g of 22 wt% sodium carbonate solution was added to the reaction mother liquor over 80 minutes with sufficient stirring.

【0029】実施例3 水600gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)90.4gを溶解し、核粒子として平均粒子径1
μmの水酸化アルミニウム(昭和電工(株)製ギブサイ
ト、商品名:ハイジライトH−42M)20.7gを懸
濁させた後、95℃まで加熱し、これを反応母液とし
た。22wt%の炭酸ナトリウム溶液360gを295
gの水に80分を要して混合希釈した。これと並行して
この希釈炭酸ナトリウム溶液を同じく80分を要して反
応母液に十分撹拌しながら注加した。この時の注加溶液
濃度は反応開始時0wt%、反応終了時22wt%であ
った。
Example 3 To 600 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
Aqueous salt) 90.4 g is dissolved, and the average particle diameter as core particles is 1
After suspending 20.7 g of aluminum hydroxide (gibbsite manufactured by Showa Denko KK, trade name: Hydilite H-42M) having a size of μm, the suspension was heated to 95 ° C. and used as a reaction mother liquor. 295 g of a 22 wt% sodium carbonate solution
The mixture was diluted with 80 g of water over 80 minutes. In parallel with this, the diluted sodium carbonate solution was poured into the reaction mother liquor while sufficiently stirring the same, also taking 80 minutes. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 22 wt% at the end of the reaction.

【0030】実施例4 水630gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解し、核粒子として平均粒子径1μ
mの水酸化アルミニウム(昭和電工(株)製ギブサイ
ト、商品名:ハイジライトH−42M)11.9gを懸
濁させた後、95℃まで加熱し、これを反応母液とす
る。22wt%の炭酸ナトリウム溶液400gを325
gの水に80分を要して混合希釈した。これと並行して
この希釈炭酸ナトリウム溶液を同じく80分を要して反
応母液に十分撹拌しながら注加した。この時の注加溶液
濃度は反応開始時0wt%、反応終了時22wt%であ
った。
Example 4 To 630 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
113 g of water salt) is dissolved, and the average particle diameter of the core particles is 1 μm.
After suspending 11.9 g of m aluminum hydroxide (Gibsite manufactured by Showa Denko KK, trade name: Hydilite H-42M), the suspension was heated to 95 ° C. and used as a reaction mother liquor. 325 g of 22 wt% sodium carbonate solution
The mixture was diluted with 80 g of water over 80 minutes. In parallel with this, the diluted sodium carbonate solution was poured into the reaction mother liquor while sufficiently stirring the same, also taking 80 minutes. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 22 wt% at the end of the reaction.

【0031】比較例4 実施例4と同様にして反応母液を調製した。11wt%
の炭酸ナトリウム溶液800gを80分を要して反応母
液に十分撹拌しながら注加した。
Comparative Example 4 A reaction mother liquor was prepared in the same manner as in Example 4. 11 wt%
800 g of the sodium carbonate solution of was added to the reaction mother liquor over 80 minutes with sufficient stirring.

【0032】比較例5 実施例4と同様にして反応母液を調製した。22wt%
の炭酸ナトリウム溶液400gを80分を要して反応母
液に十分撹拌しながら注加した。
Comparative Example 5 A reaction mother liquor was prepared in the same manner as in Example 4. 22 wt%
400 g of the sodium carbonate solution of was added to the reaction mother liquor over 80 minutes with sufficient stirring.

【0033】実施例5 水630gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解し、核粒子として平均粒子径1μ
mの水酸化アルミニウム(昭和電工(株)製ギブサイ
ト、商品名:ハイジライトH−42M)5.9gを懸濁
させた後、95℃まで加熱し、これを反応母液とした。
22wt%の炭酸ナトリウム溶液400gを325gの
水に80分を要して混合希釈した。これと並行してこの
希釈炭酸ナトリウム溶液を同じく80分を要して反応母
液に十分撹拌しながら注加した。この時の注加溶液濃度
は反応開始時0wt%、反応終了時22wt%であっ
た。
Example 5 To 630 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
113 g of water salt) is dissolved, and the average particle diameter of the core particles is 1 μm.
After suspending 5.9 g of m aluminum hydroxide (Gibsite manufactured by Showa Denko KK, trade name: Hydilite H-42M), the suspension was heated to 95 ° C. and used as a reaction mother liquor.
400 g of a 22 wt% sodium carbonate solution was mixed and diluted with 325 g of water in 80 minutes. In parallel with this, the diluted sodium carbonate solution was poured into the reaction mother liquor while sufficiently stirring the same, also taking 80 minutes. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 22 wt% at the end of the reaction.

【0034】実施例6 水630gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解したのち、95℃まで加熱し、こ
れを反応母液とした。22wt%の炭酸ナトリウム溶液
400gを325gの水に80分を要して混合希釈し
た。これと並行してこの希釈炭酸ナトリウム溶液を同じ
く80分を要して反応母液に十分撹拌しながら注加し
た。尚、この沈澱反応は、反応の初期に生成した水酸化
銅と水酸化第一鉄の共沈物を核として行った。この時の
注加溶液濃度は反応開始時0wt%、反応終了時22w
t%であった。
Example 6 To 630 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
After dissolving 113 g of water salt), the mixture was heated to 95 ° C. and used as a reaction mother liquor. 400 g of a 22 wt% sodium carbonate solution was mixed and diluted with 325 g of water in 80 minutes. In parallel with this, the diluted sodium carbonate solution was poured into the reaction mother liquor while sufficiently stirring the same, also taking 80 minutes. The precipitation reaction was carried out using the coprecipitate of copper hydroxide and ferrous hydroxide formed at the beginning of the reaction as a nucleus. The concentration of the solution added at this time was 0 wt% at the start of the reaction and 22 w at the end of the reaction.
It was t%.

【0035】比較例6 水955gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解したのち、95℃まで加熱し、こ
れを反応母液とした。22wt%の炭酸ナトリウム溶液
400gを80分を要して反応母液に十分撹拌しながら
注加した。尚、この沈澱反応は、反応の初期に生成した
水酸化銅と水酸化第一鉄の共沈物を核として行った。
Comparative Example 6 To 955 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
After dissolving 113 g of water salt), the mixture was heated to 95 ° C. and used as a reaction mother liquor. 400 g of 22 wt% sodium carbonate solution was added to the reaction mother liquor over 80 minutes with sufficient stirring. The precipitation reaction was carried out using the coprecipitate of copper hydroxide and ferrous hydroxide formed at the beginning of the reaction as a nucleus.

【0036】実施例7 水630gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解し、核粒子として平均粒子径3.
2μmの酸化アルミニウム(昭和電工(株)製α−アル
ミナ、商品名:細粒アルミナA−420)15.4gを
懸濁させた後、95℃まで加熱し、これを反応母液とし
た。22wt%の炭酸ナトリウム溶液400gを325
gの水に80分を要して混合希釈した。これと並行して
この希釈炭酸ナトリウム溶液を80分を要して反応母液
に十分撹拌しながら注加した。この時の注加溶液濃度は
反応開始時0wt%、反応終了時22wt%であった。
Example 7 To 630 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
Hydrochloric acid (113 g) was dissolved, and the average particle diameter as core particles was 3.
After suspending 15.4 g of 2 μm aluminum oxide (α-alumina manufactured by Showa Denko KK, trade name: fine-grained alumina A-420), the suspension was heated to 95 ° C. and used as a reaction mother liquor. 325 g of 22 wt% sodium carbonate solution
The mixture was diluted with 80 g of water over 80 minutes. In parallel with this, the diluted sodium carbonate solution was added to the reaction mother liquor over 80 minutes while sufficiently stirring. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 22 wt% at the end of the reaction.

【0037】実施例8 水630gに硫酸銅(5水塩)96gと硫酸第1鉄(7
水塩)113gを溶解し、核粒子として平均粒子径6.
5μmの酸化アルミニウム(昭和電工(株)製α−アル
ミナ、商品名:細粒アルミナA−42−6)15.4g
を懸濁させた後、95℃まで加熱し、これを反応母液と
した。22wt%の炭酸ナトリウム溶液400gを32
5gの水に80分を要して混合希釈した。これと並行し
てこの希釈炭酸ナトリウム溶液を80分を要して反応母
液に十分撹拌しながら注加した。この時の注加溶液濃度
は反応開始時0wt%、反応終了時22wt%であっ
た。
Example 8 To 630 g of water, 96 g of copper sulfate (pentahydrate) and ferrous sulfate (7
Hydrochloric acid (113 g) was dissolved, and the average particle size of the core particles was 6.
15.4 g of 5 μm aluminum oxide (α-alumina manufactured by Showa Denko KK, trade name: Fine Alumina A-42-6)
Was suspended and then heated to 95 ° C., which was used as a reaction mother liquor. 32 wt% sodium carbonate solution 400 g 32
The mixture was diluted with 5 g of water in 80 minutes. In parallel with this, the diluted sodium carbonate solution was added to the reaction mother liquor over 80 minutes while sufficiently stirring. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 22 wt% at the end of the reaction.

【0038】実施例9 22wt%の炭酸ナトリウム溶液1200gに、核粒子
として平均粒子径7.1μmの珪藻土(セライト社製
商品名セライトC−500)10.0gを懸濁させた
後、80℃まで加熱し、これを反応母液とした。28w
t%の硝酸ニッケル(40℃での飽和溶解度:54wt
%)溶液1800gを1200gの水に80分を要して
混合希釈した。これと並行してこの希釈硝酸ニッケル溶
液を80分を要して反応母液に十分撹拌しながら注加し
た。この時の注加溶液濃度は反応開始時0wt%、反応
終了時28wt%であった。
Example 9 1200 g of a 22 wt% sodium carbonate solution was added to diatomaceous earth (made by Celite Co., Ltd.) having an average particle size of 7.1 μm as core particles.
After suspending 10.0 g of the product name Celite C-500), the suspension was heated to 80 ° C. and used as a reaction mother liquor. 28w
t% nickel nitrate (saturated solubility at 40 ° C .: 54 wt
%) Solution 1800 g was mixed and diluted with 1200 g of water over 80 minutes. In parallel with this, this diluted nickel nitrate solution was added to the reaction mother liquor over 80 minutes while sufficiently stirring. The concentration of the added solution at this time was 0 wt% at the start of the reaction and 28 wt% at the end of the reaction.

【0039】比較例7 実施例9と同様にして反応母液を調製した。14wt%
の硝酸ニッケル溶液3000gを、80分を要して反応
母液に十分撹拌しながら注加した。
Comparative Example 7 A reaction mother liquor was prepared in the same manner as in Example 9. 14 wt%
3000 g of the nickel nitrate solution of was added to the reaction mother liquor over 80 minutes with sufficient stirring.

【0040】実施例10 水400gに硫酸銅(3水塩)90gと硝酸亜鉛(6水
塩)219gを溶解し80℃まで加熱し、これを反応母
液とした。22wt%の炭酸ナトリウム溶液520gに
アルミン酸ナトリウム9gと水酸化ナトリウム20gを
溶解し、450gの水に90分を要して混合希釈した。
これと並行してこの希釈溶液を90分を要して反応母液
に十分撹拌しながら注加した。尚、この沈澱反応は、反
応の初期に生成した水酸化銅、水酸化亜鉛および水酸化
アルミニウムからなる共沈物を核として行った。この時
の注加溶液濃度は反応開始時0wt%、反応終了時22
wt%であった。
Example 10 90 g of copper sulfate (trihydrate) and 219 g of zinc nitrate (hexahydrate) were dissolved in 400 g of water and heated to 80 ° C., which was used as a reaction mother liquor. 9 g of sodium aluminate and 20 g of sodium hydroxide were dissolved in 520 g of a 22 wt% sodium carbonate solution, and they were mixed and diluted in 450 g of water for 90 minutes.
At the same time, this diluted solution was poured into the reaction mother liquor over 90 minutes while sufficiently stirring. The precipitation reaction was carried out using a coprecipitate composed of copper hydroxide, zinc hydroxide and aluminum hydroxide, which was formed in the initial stage of the reaction, as a nucleus. The concentration of the solution added at this time was 0 wt% at the start of the reaction and 22 at the end of the reaction.
It was wt%.

【0041】比較例8 水850gに硫酸銅(3水塩)90gと硝酸亜鉛(6水
塩)219gを溶解し80℃まで加熱し、これを反応母
液とした。22wt%の炭酸ナトリウム溶液520gに
アルミン酸ナトリウム9gと水酸化ナトリウム20gを
溶解し、90分を要して反応母液に十分撹拌しながら注
加した。尚、この沈澱反応は、反応の初期に生成した水
酸化銅、水酸化亜鉛および水酸化アルミニウムからなる
共沈物を核として行った。
Comparative Example 8 90 g of copper sulfate (trihydrate) and 219 g of zinc nitrate (hexahydrate) were dissolved in 850 g of water and heated to 80 ° C., which was used as a reaction mother liquor. 9 g of sodium aluminate and 20 g of sodium hydroxide were dissolved in 520 g of a 22 wt% sodium carbonate solution, and the solution was poured into the reaction mother liquor over 90 minutes with sufficient stirring. The precipitation reaction was carried out using a coprecipitate composed of copper hydroxide, zinc hydroxide and aluminum hydroxide, which was formed in the initial stage of the reaction, as a nucleus.

【0042】実施例11 沈澱水630gに硫酸銅(5水塩)96gと硫酸第1鉄
(7水塩)113gを溶解し、核粒子として平均粒子径
8μmの水酸化アルミニウム(昭和電工(株)製ギブサ
イト、商品名:ハイジライトH−32)23.7gを懸
濁させた後、95℃まで加熱し、これを反応母液とし
た。22wt%の炭酸ナトリウム溶液80gを100、
80、60、40、20gの水で希釈したものおよび2
2wt%溶液80gを、80分を要して順次反応母液に
十分撹拌しながら注加した。この時の注加液濃度は9.
8wt%、11wt%、12.6wt%、14.7wt
%、17.6wt%、22wt%と段階的に上昇させ
た。
Example 11 96 g of copper sulfate (pentahydrate) and 113 g of ferrous sulfate (heptahydrate) were dissolved in 630 g of precipitated water, and aluminum hydroxide having an average particle diameter of 8 μm (Showa Denko KK) was used as core particles. 23.7 g of gibbsite manufactured, trade name: Hydilite H-32) was suspended and then heated to 95 ° C., which was used as a reaction mother liquor. 100 g of 80 g of 22 wt% sodium carbonate solution,
Diluted with 80, 60, 40, 20 g water and 2
80 g of a 2 wt% solution was sequentially added to the reaction mother liquor over 80 minutes with sufficient stirring. The injection liquid concentration at this time was 9.
8 wt%, 11 wt%, 12.6 wt%, 14.7 wt
%, 17.6 wt%, and 22 wt%.

【0043】実施例1〜11および比較例1〜8で得ら
れた沈澱は濾過、乾燥の後、350μm以下に粉砕し、
所定量を分散剤溶液中に懸濁、超音波発振器により分散
させ、粒度測定器(堀場製作所(株)、商品名:LA−
700)で粒度の測定を行った。また、一部は濾過の前
に43μm以上の粗大粒子を篩別した。このようにして
得られた粒子の粒度分布の中央値、母平均、標準偏差お
よび43μm以上の粗大粒子量を表1に示す。
The precipitates obtained in Examples 1 to 11 and Comparative Examples 1 to 8 were filtered, dried, and then pulverized to 350 μm or less,
A predetermined amount is suspended in a dispersant solution and dispersed by an ultrasonic oscillator, and a particle size analyzer (Horiba Ltd., trade name: LA-
The particle size was measured at 700). In addition, a part of coarse particles having a size of 43 μm or more was sieved before filtration. Table 1 shows the median value, population mean, standard deviation, and amount of coarse particles of 43 μm or more of the particle size distribution of the particles thus obtained.

【0044】[0044]

【表1】 表1に示されるように、実施例1〜11は担体等の核に
なる粒子の仕込比によって粒度調整が可能であり、標準
偏差が示すようにシャープな粒度分布になる。また、粗
大粒子量も極めて少なくなり、その極少量のものもほと
んどが粗大な担体によるものである。一方、比較例1〜
8は標準偏差が大きくなり、あるいは粗大粒子を多く含
んでいた。
[Table 1] As shown in Table 1, in Examples 1 to 11, the particle size can be adjusted by the charging ratio of the particles such as the carrier that form the core, and the particle size distribution becomes sharp as indicated by the standard deviation. In addition, the amount of coarse particles is extremely small, and the very small amount thereof is mostly due to the coarse carrier. On the other hand, Comparative Examples 1 to
No. 8 had a large standard deviation or contained a large amount of coarse particles.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
シャープな粒度分布で任意な平均粒径の沈澱粒子が調製
できる。粒子が触媒粒子であれば、反応物と触媒の接触
時間が容易に設定でき、触媒比率との組み合わせで最適
な反応条件が得られる。また成型体を作る場合にも、本
発明による安定した粒度分布の粒子を用いれば、成型後
の密度や焼結後の焼き締りが予め計算でき、でき上がり
の成型体、焼結体の形状が安定する。
As described above, according to the present invention,
Precipitated particles having an arbitrary average particle size can be prepared with a sharp particle size distribution. When the particles are catalyst particles, the contact time between the reactant and the catalyst can be easily set, and optimum reaction conditions can be obtained by combining with the catalyst ratio. Also when forming a molded body, if the particles having a stable particle size distribution according to the present invention are used, the density after molding and the shrinkage after sintering can be calculated in advance, and the shape of the finished molded body or sintered body is stable. To do.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属塩を含む反応母液に酸またはアルカ
リを含む注加溶液を注加して沈澱粒子径を調整する沈澱
調製方法において、該注加溶液の濃度を、反応の進行に
伴って段階的または連続的に上昇させることを特徴とす
る沈澱粒子径を調整する沈澱調製方法。
1. In a method for preparing a precipitate, wherein a pouring solution containing an acid or an alkali is added to a reaction mother liquor containing a metal salt to adjust the particle size of the precipitate, and the concentration of the pouring solution is adjusted according to the progress of the reaction. A method for preparing a precipitate, which comprises increasing the particle size of a precipitate by increasing the particle size in steps or continuously.
【請求項2】 酸またはアルカリを含む反応母液に金属
塩を含む注加溶液を注加して沈澱粒子径を調整する沈澱
調製方法において、該注加溶液の濃度を、反応の進行に
伴って段階的または連続的に上昇させることを特徴とす
る沈澱粒子径を調整する沈澱調製方法。
2. In a precipitation preparation method, wherein a pouring solution containing a metal salt is poured into a reaction mother liquor containing an acid or an alkali to adjust the particle size of the precipitated particles, and the concentration of the pouring solution is adjusted according to the progress of the reaction. A method for preparing a precipitate, which comprises increasing the particle size of a precipitate by increasing the particle size in steps or continuously.
【請求項3】 前記反応母液に、予め核になる粒子を懸
濁させてから沈澱反応を行わせる請求項1または2に記
載の沈澱調製方法。
3. The method for preparing a precipitate according to claim 1, wherein the particles which become nuclei are suspended in the reaction mother liquor before the precipitation reaction.
【請求項4】 前記反応母液に、予め核になる粒子を懸
濁させることなく、沈澱反応の初期に生成した沈澱粒子
を核として沈澱反応を行う請求項1または2に記載の沈
澱調製方法。
4. The precipitation preparation method according to claim 1, wherein the precipitation reaction is carried out by using the precipitated particles formed in the initial stage of the precipitation reaction as the core, without previously suspending the particles forming the core in the reaction mother liquor.
JP14842095A 1995-05-24 1995-05-24 Precipitate forming method adjusting precipitate particle diameter Pending JPH08318153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14842095A JPH08318153A (en) 1995-05-24 1995-05-24 Precipitate forming method adjusting precipitate particle diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14842095A JPH08318153A (en) 1995-05-24 1995-05-24 Precipitate forming method adjusting precipitate particle diameter

Publications (1)

Publication Number Publication Date
JPH08318153A true JPH08318153A (en) 1996-12-03

Family

ID=15452404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14842095A Pending JPH08318153A (en) 1995-05-24 1995-05-24 Precipitate forming method adjusting precipitate particle diameter

Country Status (1)

Country Link
JP (1) JPH08318153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137183A (en) * 2008-12-12 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for manufacturing particle and conductive particle obtained from the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137183A (en) * 2008-12-12 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for manufacturing particle and conductive particle obtained from the same

Similar Documents

Publication Publication Date Title
Fievet et al. Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process
US5420086A (en) Method for producing stabilized zirconium oxide powder
Lee et al. Preparation and growth mechanism of uniform colloidal copper oxide by the controlled double-jet precipitation
CN102030352B (en) Method for preparing nano material
JP6766166B2 (en) Preparation method in silver powder production using micro-nano bubbles as seed crystal induction
JPH11504311A (en) Method for producing weakly agglomerated nanoscalar particles
KR100855509B1 (en) Methods for producing spherical particles of cobalt hydroxide
US9045349B2 (en) Method for preparing porous alumina
CN112239223B (en) Preparation method of rare earth oxide powder with large specific surface area
JP2003503300A (en) Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
JPH09256007A (en) Production of copper powder
US20130015398A1 (en) Method for preparing modified micronized particles
JPH10216522A (en) Catalyst for methanol synthesis
JPH08318153A (en) Precipitate forming method adjusting precipitate particle diameter
JPH07278619A (en) Production of nickel powder
Park et al. Particle size control of barium titanate prepared from barium titanyl oxalate
Chen et al. Facile synthesis of flake-like dihydrate zinc oxalate particles
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
JP2002020122A (en) Gallium compound powder, gallium oxide powder and method for producing the same
WO2005108284A1 (en) Method and apparatus for producing composite oxide power
JPH08119636A (en) Production of nickel hydroxide particles
JPH0256283B2 (en)
JPS61146712A (en) Production of barium-strontium titanate solid solution or barium titanate
CN116639972B9 (en) Tetragonal phase nano barium titanate powder and preparation method and application thereof
CN1046683C (en) Liquid phase superfine zinc oxide preparing process through stepped nucleating growth