JP2010064983A - Method for producing nickel particle and nickel complex suitably used therein - Google Patents

Method for producing nickel particle and nickel complex suitably used therein Download PDF

Info

Publication number
JP2010064983A
JP2010064983A JP2008232863A JP2008232863A JP2010064983A JP 2010064983 A JP2010064983 A JP 2010064983A JP 2008232863 A JP2008232863 A JP 2008232863A JP 2008232863 A JP2008232863 A JP 2008232863A JP 2010064983 A JP2010064983 A JP 2010064983A
Authority
JP
Japan
Prior art keywords
nickel
lewis base
particles
complex
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008232863A
Other languages
Japanese (ja)
Inventor
Yasunori Tsukahara
保徳 塚原
Yuji Wada
雄二 和田
Tomohisa Yamauchi
智央 山内
Akio Baba
章夫 馬場
Makoto Yasuda
誠 安田
Tetsuo Sakamoto
哲雄 坂本
Takumi Kono
巧 河野
Ryoji Kawabata
亮次 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Iwatani International Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Osaka University NUC
Nippon Steel Chemical Co Ltd
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Nippon Steel Chemical Co Ltd, Iwatani International Corp filed Critical Osaka University NUC
Priority to JP2008232863A priority Critical patent/JP2010064983A/en
Publication of JP2010064983A publication Critical patent/JP2010064983A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide nickel particles suitably used in various applications such as catalysts, magnetic materials, and substrates for electrodes, particularly MLCC electrodes. <P>SOLUTION: A nickel complex is represented by formula (1): Ni(HCOO)<SB>2</SB>(L<SP>1</SP>)(L<SP>2</SP>) (wherein L<SP>1</SP>and L<SP>2</SP>are each a Lewis base ligand and may be the same or different) and the nickel particles are produced by heating a solution including nickel formate dihydrate, a Lewis base such as an aliphatic amine, and a solvent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ニッケル粒子の製造方法及びそれに適したニッケル錯体に関する。   The present invention relates to a method for producing nickel particles and a nickel complex suitable for the method.

ニッケルナノ粒子は、銀ナノ粒子よりも安価で、銅ナノ粒子よりも化学的に安定であることから、触媒、磁性材料、積層セラミックコンデンサにおける電極などへの利用が期待されている。従来、ニッケルナノ粒子は、固相反応又は液相反応によって得られていた。固相反応としては、塩化ニッケルの化学気相蒸着(非特許文献1)やギ酸ニッケル塩の熱分解(非特許文献2)などが知られている。液相反応としては、塩化ニッケルなどのニッケル塩を水素化ホウ素ナトリウムなどの強力な還元剤で直接還元する方法(非特許文献3)、NaOH存在下ヒドラジンなどの還元剤を添加して前駆体[Ni(H2NNH22]SO4・2H2Oを形成した後に熱分解する方法(非特許文献4)、塩化ニッケルなどのニッケル塩や有機配位子を含有するニッケル錯体を溶媒とともに圧力容器に入れて水熱合成する方法(非特許文献5)などが知られている。
N.Sato, H.Katayama, S.Ogasawara, Kawasaki Seitetsu Giho 2002,34,120 V.Rosenband, A.Gany, J.Mater.Process.Tech.2004,153-154,1058 Hou, Y.; Gao, S. J. Mater. Chem. 2003, 13, 1510. Wu, S. H.; Chen, D. H. Chem. Lett. 2004, 33, 406. Zhang, Z.; Chen, X.; Zhang, X.; Shi, C. Solid State Commun. 2006, 139, 403.
Since nickel nanoparticles are cheaper than silver nanoparticles and chemically more stable than copper nanoparticles, they are expected to be used for electrodes in catalysts, magnetic materials and multilayer ceramic capacitors. Conventionally, nickel nanoparticles have been obtained by solid phase reaction or liquid phase reaction. Known solid-phase reactions include chemical vapor deposition of nickel chloride (Non-Patent Document 1) and thermal decomposition of nickel formate salt (Non-Patent Document 2). As a liquid phase reaction, a nickel salt such as nickel chloride is directly reduced with a strong reducing agent such as sodium borohydride (Non-patent Document 3), a reducing agent such as hydrazine is added in the presence of NaOH, and a precursor [ Ni (H 2 NNH 2 ) 2 ] SO 4 .2H 2 O is formed and then thermally decomposed (Non-patent Document 4), nickel salt such as nickel chloride and nickel complex containing an organic ligand are pressured together with a solvent A method of hydrothermal synthesis in a container (Non-Patent Document 5) is known.
N.Sato, H.Katayama, S.Ogasawara, Kawasaki Seitetsu Giho 2002,34,120 V. Rosenband, A. Gany, J. Mater. Process. Tech. 2004, 153-154, 1058 Hou, Y .; Gao, SJ Mater. Chem. 2003, 13, 1510. Wu, SH; Chen, DH Chem. Lett. 2004, 33, 406. Zhang, Z .; Chen, X .; Zhang, X .; Shi, C. Solid State Commun. 2006, 139, 403.

ニッケル粒子を触媒、磁性材料、電極などの用途に供するには、その直径が20−100nmの範囲にあって均一であることが必要である。例えば積層セラミックコンデンサ(MLCC)の内部電極に使用されるニッケル粒子の粒径分布が広いと層間剥離やクラックを生じる可能性があるからである。
しかし、固相反応のうち化学気相蒸着による方法の場合、粒子がサブミクロンからミクロンオーダーに肥大化してしまっていた。また、熱分解による方法の場合、反応温度(200℃以上)が高いことから、粒子が凝集してしまっていた。一方、液相反応のうち強力な還元剤を使用する方法の場合、即座にニッケルが還元されることから、所望の粒径の粒子を得るために反応を制御することが困難であった。また、前駆体を経由させる方法の場合、前駆体がゲル状をなし、その後の還元反応が不均一となること、水熱合成の場合、反応温度(200℃以上)が高いことから、いずれにしても凝集を避けることができなかった。
それ故、この発明の第一の課題は、触媒、磁性材料、電極基板などの種々の用途、特にMLCCの電極に好適なニッケル粒子を提供することにある。第二の課題は、平均粒径をd、標準偏差をσとするとき、20nm≦d≦200nm(好ましくは≦100nm)、0.01≦σ/d≦0.5の範囲にあるニッケル粒子を提供することにある。
In order to use nickel particles for applications such as a catalyst, a magnetic material, and an electrode, the diameter needs to be in the range of 20 to 100 nm and uniform. For example, if the particle size distribution of the nickel particles used for the internal electrode of the multilayer ceramic capacitor (MLCC) is wide, delamination and cracks may occur.
However, in the case of the chemical vapor deposition method among solid phase reactions, the particles have grown from submicron to micron order. In the case of the method by thermal decomposition, the reaction temperature (200 ° C. or higher) is high, and thus the particles are aggregated. On the other hand, in the method using a strong reducing agent in the liquid phase reaction, since nickel is immediately reduced, it is difficult to control the reaction in order to obtain particles having a desired particle size. In the case of the method of passing through the precursor, the precursor is in a gel form, and the subsequent reduction reaction becomes non-uniform. In the case of hydrothermal synthesis, the reaction temperature (200 ° C. or higher) is high. However, aggregation could not be avoided.
Therefore, a first object of the present invention is to provide nickel particles suitable for various uses such as a catalyst, a magnetic material, and an electrode substrate, particularly for an electrode of MLCC. The second problem is that nickel particles in the range of 20 nm ≦ d ≦ 200 nm (preferably ≦ 100 nm) and 0.01 ≦ σ / d ≦ 0.5 when the average particle diameter is d and the standard deviation is σ. It is to provide.

その課題を解決する一つの手段は、
下記一般式(1)で表されるニッケル錯体である。
Ni(HCOO)2(L1)(L2)・・・・(1)
(但し、L1及びL2はルイス塩基配位子を示し、L1とL2とは互いに同一であっても異なっていても良い。)
One way to solve that problem is
It is a nickel complex represented by the following general formula (1).
Ni (HCOO) 2 (L 1 ) (L 2 ) (1)
(However, L 1 and L 2 represent a Lewis base ligand, and L 1 and L 2 may be the same or different from each other.)

ギ酸ニッケル錯体は配位子としてギ酸イオン配位子を有しており(図1(a))、この配位子の分解に伴い、ギ酸イオン部位のヒドリド脱離によりニッケルイオンが還元される(図2)。この反応は、他の還元剤を使用した液相法と比べ、ニッケルイオンと一対で還元剤として働くギ酸イオンが配位していることから効率よく還元反応が進行する。従って、反応溶液全体において反応が同時におき、溶液系内でニッケルの核発生が高濃度に発生することができるため高い結晶化度を有する。しかも、この錯体は、ニッケル原子にルイス塩基が少なくとも1個配位していることから、ニッケルの電子密度がギ酸ニッケルにおけるニッケルのそれよりも高い。このため、ギ酸ニッケルと比べてはもとより、他の塩やルイス塩基配位でない他の錯体と比べても200℃以下という低温で分解し、ニッケルイオンが容易に還元される。その結果、一次粒径が20nm以上の粒子を生成することが可能となる。   The nickel formate complex has a formate ion ligand as a ligand (FIG. 1 (a)), and with the decomposition of this ligand, nickel ions are reduced by hydride elimination at the formate ion site ( Figure 2). In this reaction, compared with the liquid phase method using other reducing agents, the reduction reaction proceeds efficiently because formic acid ions that act as a reducing agent in a pair with nickel ions are coordinated. Therefore, the reaction takes place simultaneously in the whole reaction solution, and nickel nucleation can be generated at a high concentration in the solution system, so that the crystallinity is high. In addition, since this complex has at least one Lewis base coordinated to a nickel atom, the electron density of nickel is higher than that of nickel in nickel formate. For this reason, it is decomposed at a low temperature of 200 ° C. or lower as compared with nickel formate, as well as other salts and other complexes not having Lewis base coordination, and nickel ions are easily reduced. As a result, particles having a primary particle size of 20 nm or more can be generated.

前記ルイス塩基配位子としては一般式 R1(R2)NH(式中、R1及びR2は水素原子および炭素数6−20のアルキル基もしくはアルケニル基から選ばれるいずれかの基)を有する脂肪族アミンが好ましい。脂肪族アミンがアミノ基の窒素原子上の電子対を供与してニッケルイオンに配位し、錯形成することにより、錯体が有機溶剤に溶けることを可能にし、その結果、還元反応を均一系で進行させることができるからである。 The Lewis base ligand is represented by the general formula R 1 (R 2 ) NH (wherein R 1 and R 2 are any group selected from a hydrogen atom and an alkyl or alkenyl group having 6 to 20 carbon atoms). The aliphatic amine having is preferable. Aliphatic amines donate an electron pair on the nitrogen atom of the amino group and coordinate to the nickel ion to form a complex, thereby allowing the complex to dissolve in the organic solvent, thereby reducing the reduction reaction in a homogeneous system. It is because it can be advanced.

尚、この配位子として用いる脂肪族アミンがニッケル粒子形成時の表面修飾剤として働くことから、この脂肪族アミンの炭素数が多いほど、得られるニッケル粒子の直径が小さくなり、炭素数が少ないほど、大きくなる。即ち、炭素数によって粒径を制御することが可能である。配位子として用いる脂肪族アミンは、錯形成時の容易さから融点が低いもの、特に室温で液体であるアミンが好ましく、さらに還元反応においての反応の制御を加味すると還元反応温度より沸点が高いものが好ましい。また、三級アミンや芳香族アミンなどの立体障害の大きいアミンはニッケル錯体に配位しない、またはニッケル錯体に配位しにくいため、錯形成時に要する反応に長時間要するため好ましくない。即ち、ルイス塩基の塩基性が強いほど、また立体障害の少ないほど錯形成しやすく、ギ酸ニッケルを還元しやすい。従って、ルイス塩基配位子としては塩基解離定数pKbが5以下のものが好ましい。   In addition, since the aliphatic amine used as this ligand functions as a surface modifier at the time of nickel particle formation, the larger the carbon number of this aliphatic amine, the smaller the diameter of the resulting nickel particles and the fewer the carbon number. The bigger it gets. That is, the particle size can be controlled by the number of carbons. The aliphatic amine used as the ligand is preferably an amine having a low melting point because of ease of complex formation, particularly an amine that is liquid at room temperature, and has a boiling point higher than the reduction reaction temperature in consideration of reaction control in the reduction reaction. Those are preferred. In addition, amines with large steric hindrance such as tertiary amines and aromatic amines are not preferable because they do not coordinate to the nickel complex or are difficult to coordinate to the nickel complex, and thus the reaction required for complex formation takes a long time. That is, the stronger the basicity of the Lewis base and the less the steric hindrance, the easier it is to form a complex and the easier it is to reduce nickel formate. Accordingly, the Lewis base ligand preferably has a base dissociation constant pKb of 5 or less.

前記錯体は通常、ギ酸ニッケル二水和物、ルイス塩基及び溶媒を混合し、加熱することにより、溶液状態で提供される。この場合、先ず、ギ酸ニッケル二水和物及びルイス塩基を混合し、次いで溶媒を加えるのが望ましい。ルイス塩基がニッケル原子に極力無駄なく配位するからである。また、前記ルイス塩基の好ましい量は、ニッケルに対して2当量以上である。前記錯体が1つのニッケル原子に2当量のルイス塩基が配位し、ニッケルの電子密度の極めて高い構造を有するからである。   The complex is usually provided in solution by mixing nickel formate dihydrate, Lewis base and solvent and heating. In this case, it is desirable to first mix the nickel formate dihydrate and the Lewis base and then add the solvent. This is because the Lewis base coordinates to the nickel atom as much as possible. Moreover, the preferable quantity of the said Lewis base is 2 equivalent or more with respect to nickel. This is because the complex has a structure in which two equivalents of Lewis base are coordinated to one nickel atom and the electron density of nickel is extremely high.

反応温度の制御はマイクロ波を照射することで行うのが好ましい。マイクロ波加熱では、マイクロ波が被加熱物内に浸透し、内部加熱により急速な昇温且つ均一加熱が可能なことから、反応溶液全体を所望の温度に均一にすることができ、ニッケル粒子の還元、核生成、核成長各々の過程を溶液全体において同時に生じさせ、結果として粒径分布の狭い単分散な粒子を短時間で容易に製造することができるからである。なお、本発明で用いるマイクロ波の波長は、通常2.45GHzである。   The reaction temperature is preferably controlled by irradiation with microwaves. In microwave heating, since microwaves penetrate into the object to be heated and rapid heating and uniform heating are possible by internal heating, the entire reaction solution can be made uniform at a desired temperature. This is because the processes of reduction, nucleation, and nucleation are simultaneously generated in the entire solution, and as a result, monodisperse particles having a narrow particle size distribution can be easily produced in a short time. Note that the wavelength of the microwave used in the present invention is usually 2.45 GHz.

こうして、本発明によれば、平均粒径が20nm〜200nm、場合により20nm〜100nmのニッケル粒子が得られる。そして、得られるニッケル粒子は粒径が揃っており、平均粒子径(d)と標準偏差(σ)の比率σ/dで表すと、0.01≦σ/d≦0.5という狭い粒径分布を有し、MLCCの内部電極に好適なものである。   Thus, according to the present invention, nickel particles having an average particle diameter of 20 nm to 200 nm, and in some cases 20 nm to 100 nm can be obtained. The obtained nickel particles have a uniform particle diameter, and expressed as a ratio σ / d of the average particle diameter (d) and standard deviation (σ), a narrow particle diameter of 0.01 ≦ σ / d ≦ 0.5 It has a distribution and is suitable for the internal electrode of MLCC.

また、ニッケル粒子の粒径を制御するために表面修飾剤として、配位子として用いるルイス塩基の他にポリビニルピロリドン(PVP)、ポリエチレンイミン、ポリアクリルアミドなどの高分子樹脂、ミリスチン酸、オレイン酸などの長鎖カルボン酸またはカルボン酸塩などが反応溶液中に添加することができる。但し、得られるニッケル粒子の表面修飾量が多いと、ニッケル電極用の導電性ペーストに用いる場合、ニッケル粒子をペーストして高温で焼成すると充填密度の減少を招き層間剥離やクラックを生じる可能性があるため、得られるニッケル粒子を洗浄した後の表面修飾量は可能な限り少ない方が好ましい。   In addition to Lewis base used as a ligand as a surface modifier to control the particle size of nickel particles, polymer resins such as polyvinylpyrrolidone (PVP), polyethyleneimine, polyacrylamide, myristic acid, oleic acid, etc. Long-chain carboxylic acid or carboxylate can be added to the reaction solution. However, if the amount of surface modification of the obtained nickel particles is large, when used as a conductive paste for nickel electrodes, if the nickel particles are pasted and baked at a high temperature, the packing density may decrease and delamination or cracks may occur. Therefore, it is preferable that the surface modification amount after washing the obtained nickel particles is as small as possible.

ギ酸ニッケルのギ酸イオンは、使用する有機配位子により配位形式が容易に変化すると言われている(参考文献 G.B.Deacon, R.J.Phillips, Coordination Chemistry Reviews, 1980, 33, 227. /参考文献 R.Ivanikova, R. Boca, L. Dlhan, H. Fuess, A. Maslejova, V. Mrazova, I. Svoboda, J.Titis, Polyhedron 2006, 25, 3261.)。
ニッケル錯体としては、前記一般式(1)で表されるようにギ酸イオンが二座配位しているものに限らず、下記一般式(2)及び図1((b))で表されるように単座配位しているものであってもよい。
Ni(HCOO)2(L1)(L2)(L3)(L4)・・・・(2)
(但し、L1、L2、L3及びL4はルイス塩基配位子を示し、L1、L2、L3及びL4は互いに同一であっても異なっていても良い。)
ギ酸イオン配位子の分解に伴い、ギ酸イオン部位のヒドリド脱離によりニッケルイオンが還元される点、並びにニッケル原子にルイス塩基が少なくとも1個配位していることから、ニッケルの電子密度がギ酸ニッケルにおけるニッケルのそれよりも高い点で前記一般式(1)で表されるものと同じだからである。
The formic acid ion of nickel formate is said to change the coordination form easily depending on the organic ligand used (reference GBDeacon, RJPhillips, Coordination Chemistry Reviews, 1980, 33, 227. / reference R.Ivanikova, R. Boca, L. Dlhan, H. Fuess, A. Maslejova, V. Mrazova, I. Svoboda, J. Titis, Polyhedron 2006, 25, 3261.).
The nickel complex is not limited to a bidentate formate ion as represented by the general formula (1), but is represented by the following general formula (2) and FIG. 1 ((b)). Thus, it may be monodentate.
Ni (HCOO) 2 (L 1 ) (L 2 ) (L 3 ) (L 4 ) (2)
(However, L 1 , L 2 , L 3 and L 4 represent Lewis base ligands, and L 1 , L 2 , L 3 and L 4 may be the same or different from each other.)
As the formate ion ligand is decomposed, nickel ions are reduced by hydride elimination at the formate ion site, and at least one Lewis base is coordinated to the nickel atom. It is because it is the same as what is represented by the said General formula (1) in the point higher than that of nickel in nickel.

以上の通り、ニッケルイオンが容易に還元されることから、得られるニッケル粒子の粒径制御が容易であり、用途に応じたサイズの粒子を提供することができる。   As described above, since nickel ions are easily reduced, it is easy to control the particle diameter of the obtained nickel particles, and it is possible to provide particles having a size according to the application.

−実施例1−
ギ酸ニッケル二水和物5mmol、及び配位化合物(ルイス塩基)としてのオレイルアミン、ミリスチルアミン又はラウリルアミン50mmol(ニッケルに対して10当量)を混合し、120℃で10分加熱した。混合物が緑色の懸濁液から深緑色の均一溶液に変わり(錯形成)、室温冷却後に青緑色になった。溶液に溶媒として1−オクタノール60mlを加え、石英容器に移して2.45GHzマイクロ波装置にかけて、750Wの出力、40℃/分の昇温速度で加熱し、窒素中180℃にて10分間保持した。温度が180℃到達時に即座に黒色の溶液となり粒子が生じた。溶液を放冷し、粒子を遠心分離した後、長鎖アミンを除去するためにヘキサンを加え洗浄した後、再度メタノールで洗浄し、真空乾燥した。黒色のニッケル粒子A(オレイルアミン)、B(ミリスチルアミン)又はC(ラウリルアミン)が得られた。
Example 1
Nickel formate dihydrate 5 mmol and oleylamine, myristylamine or laurylamine 50 mmol (10 equivalents relative to nickel) as a coordination compound (Lewis base) were mixed and heated at 120 ° C. for 10 minutes. The mixture turned from a green suspension to a dark green homogeneous solution (complexation) and became blue-green after cooling at room temperature. 60 ml of 1-octanol as a solvent was added to the solution, transferred to a quartz container, heated on a 2.45 GHz microwave device at an output of 750 W, a heating rate of 40 ° C./min, and held at 180 ° C. in nitrogen for 10 minutes. . When the temperature reached 180 ° C., it immediately became a black solution and particles were formed. The solution was allowed to cool, the particles were centrifuged, washed with hexane to remove long chain amines, washed again with methanol, and dried in vacuo. Black nickel particles A (oleylamine), B (myristylamine) or C (laurylamine) were obtained.

比較のために、ギ酸ニッケル二水和物5mmolをテトラエチレングリコール60ml(溶媒)中に分散させたものを対象溶液としたことと、保持温度を240℃としたこと以外は同一条件でマイクロ波装置にて加熱を行い、ニッケル粒子Dを得た。保持温度を240℃としたのは、この温度まで昇温しないと還元反応が進行しなかったからである。   For comparison, a microwave apparatus under the same conditions except that 5 mmol of nickel formate dihydrate dispersed in 60 ml of tetraethylene glycol (solvent) was used as a target solution and the holding temperature was 240 ° C. To obtain nickel particles D. The holding temperature was set to 240 ° C. because the reduction reaction did not proceed unless the temperature was raised to this temperature.

得られたニッケル粒子を粉末X線回折装置(XRD)(理学電機(株)社製、MultiFlex)により同定した。X線解析の回折角度(2θ)=44.7°、52.5°、76.6°にそれぞれニッケルの結晶面(111)、(200)、(220)のピークを有することにより、得られた粉体が面心立方構造を有するNiであることが確認されるとともに、ニッケル酸化物や、原料であるギ酸ニッケル錯体のピークは確認されなかった。ニッケル粒子AのX線回折図を図3に示す。   The obtained nickel particles were identified by a powder X-ray diffractometer (XRD) (manufactured by Rigaku Corporation, MultiFlex). X-ray diffraction angle (2θ) = 44.7 °, 52.5 °, and 76.6 °, respectively, having nickel crystal plane (111), (200), and (220) peaks. The powder was confirmed to be Ni having a face-centered cubic structure, and the peaks of nickel oxide and the nickel formate complex as a raw material were not confirmed. An X-ray diffraction pattern of the nickel particles A is shown in FIG.

得られたNi粒子の粒径、形状を透過型電子顕微鏡(TEM)(日立ハイテクノロジーズ(株)社製、日立透過型電子顕微鏡H−9000)(出力:200kV)によって観察した。TEM観察試料としてはメタノール溶媒に分散させたニッケル粒子を、エラスティックカーボン支持膜を貼った銅グリッドに滴下し、減圧乾燥したものを用いた。平均粒径はこのTEM画像より少なくとも200個カウントして粒子径を計測し、平均値を算出することによって求めた。粒子径に対する出現頻度をTEM画像とともに図4に示す。そして、平均粒径をd、標準偏差をσとするとき、粒子径に対する標準偏差(σ/d)はそれぞれ粒子Aがd=43.1nm、σ=9.7nm、σ/d=0.23、粒子Bがd=71.2nm、σ=13.1nm、σ/d=0.18、粒子Cがd=105.9nm、σ=16.3nm、σ/d=0.15であった。   The particle diameter and shape of the obtained Ni particles were observed with a transmission electron microscope (TEM) (manufactured by Hitachi High-Technologies Corporation, Hitachi transmission electron microscope H-9000) (output: 200 kV). As a TEM observation sample, a nickel particle dispersed in a methanol solvent was dropped onto a copper grid with an elastic carbon support film and dried under reduced pressure. The average particle diameter was determined by counting at least 200 particles from this TEM image, measuring the particle diameter, and calculating the average value. The appearance frequency with respect to the particle diameter is shown in FIG. 4 together with the TEM image. When the average particle diameter is d and the standard deviation is σ, the standard deviation (σ / d) with respect to the particle diameter is such that the particle A has d = 43.1 nm, σ = 9.7 nm, and σ / d = 0.23. Particle B had d = 71.2 nm, σ = 13.1 nm, σ / d = 0.18, and Particle C had d = 105.9 nm, σ = 16.3 nm, and σ / d = 0.15.

上記の結果より、ルイス塩基配位子のアルキル基の鎖長を変化させることで粒径を制御できることが判った。粒子A及びCに修飾されている表面修飾剤の量を熱重量測定(TGA)((株)島津製作所製、TGA−50)により評価した(昇温速度:10℃/分、窒素ガス流量100mL/分)ところ、図5に示すように重量損失は2%以下であり、ニッケル粒子上にはすでにアミンはほとんど存在しないことが判明した。
ニッケル粒子DのTEM画像を図6に示す。平均粒径は260nmの肥大粒子であることが確認された。
From the above results, it was found that the particle size can be controlled by changing the chain length of the alkyl group of the Lewis base ligand. The amount of the surface modifier modified to the particles A and C was evaluated by thermogravimetry (TGA) (manufactured by Shimadzu Corporation, TGA-50) (temperature rising rate: 10 ° C./min, nitrogen gas flow rate 100 mL). However, as shown in FIG. 5, the weight loss was 2% or less, and it was found that almost no amine was already present on the nickel particles.
A TEM image of the nickel particles D is shown in FIG. It was confirmed that the average particle size was a 260 nm enlarged particle.

−実施例2−
ギ酸ニッケル二水和物1mmol、及びラウリルアミン10mmolを混合し、120℃で10分加熱した後、室温冷却することにより、錯体1を得た。得られた錯体をクロロホルムに溶解させ室温で2週間静沈することで青色結晶を得た。この錯体の同定は元素分析により行い。C、H、Nの比率を確認したところ計算値C60.12;H10.87;N5.39%に対し、実測値C59.87;H10.69;N5.25%とよく一致したことから、構造式[Ni(HCOO)2(C1225NH22]であると確認された。
-Example 2-
1 mmol of nickel formate dihydrate and 10 mmol of laurylamine were mixed, heated at 120 ° C. for 10 minutes, and then cooled to room temperature to obtain Complex 1. The obtained complex was dissolved in chloroform and allowed to settle at room temperature for 2 weeks to obtain blue crystals. This complex is identified by elemental analysis. When the ratio of C, H, and N was confirmed, the calculated value C60.12; H10.87; N5.39% was in good agreement with the actual measured values C59.87; H10.69; N5.25%. It was confirmed to be the formula [Ni (HCOO) 2 (C 12 H 25 NH 2 ) 2 ].

フーリエ変換赤外分光光度計にてギ酸ニッケル二水和物と錯体1のKBr錠剤法によるFT−IRスペクトルを測定したところ、ギ酸ニッケル二水和物の場合はギ酸イオンのC=O非対称性伸縮振動に基づく1560cm-1のピークと、結晶水のO−H伸縮振動に基づく3100−3400cm-1の幅広いピークが認められた。 FT-IR spectrum of nickel formate dihydrate and complex 1 by KBr tablet method was measured with a Fourier transform infrared spectrophotometer. In the case of nickel formate dihydrate, C = O asymmetric stretching of formate ion the peak of 1560 cm -1 based on vibration, broad peak 3100-3400Cm -1 based on O-H stretching vibration of water of crystallization was observed.

これに対して錯体1の場合、結晶水のO−H伸縮振動のピークが消失し、かわりに、脂肪族C−H基の伸縮振動に基づく2950−2850cm-1の位置、N−H伸縮振動に基づく3325cm-1、3283cm-1に鋭いピーク及びN−H基の変角振動に基づく1630cm-1の位置にそれぞれ鋭いピークが認められ、ラウリルアミンがNi2+イオンに配位していることを示した。このFT−IRの結果を図7に示す。 On the other hand, in the case of complex 1, the OH stretching vibration peak of crystal water disappears, and instead, the position of 2950-2850 cm −1 based on the stretching vibration of the aliphatic C—H group, the N—H stretching vibration. 3325cm -1 based on, sharp peaks each observed in the position of 1630 cm -1 based on the deformation vibration of the sharp peaks and N-H groups in 3283Cm -1, the laurylamine is coordinated to Ni 2+ ions showed that. The result of this FT-IR is shown in FIG.

窒素雰囲気中でギ酸ニッケル二水和物と錯体1の熱重量分析を行ったところ、ギ酸ニッケル二水和物の場合は140℃と210℃の間で脱水によると思われる一段目の重量損失があり、250℃と280℃の間でギ酸イオンの熱分解によると思われる二段目の重量損失があった。これに対して錯体1の場合ギ酸イオンの熱分解によると思われる重量損失のみであり、しかも200℃と250℃の間で生じた。配位子である長鎖アルキルアミン配位子がギ酸ニッケルの分解および還元に必要なエネルギーを低下させたものと認められる。   Thermogravimetric analysis of nickel formate dihydrate and complex 1 in a nitrogen atmosphere revealed that in the case of nickel formate dihydrate, the first-stage weight loss, which seems to be due to dehydration, was between 140 ° C and 210 ° C. There was a second stage weight loss between 250 ° C. and 280 ° C., presumably due to thermal decomposition of formate ions. On the other hand, in the case of Complex 1, only the weight loss that seems to be due to thermal decomposition of formate ions occurred, and occurred between 200 ° C and 250 ° C. It is recognized that the long-chain alkylamine ligand, which is a ligand, reduced the energy required for the decomposition and reduction of nickel formate.

−実施例3−
ルイス塩基として長鎖アルキルアミン配位子(オレイルアミン、ミリスチルアミン又はラウリルアミン)に代えてオクチルアミン、ステアリルアミン、ピリジン、アニリン、トリオクチルホスフィン又はトリフェニルホスフィン50mmolをギ酸ニッケル二水和物5mmolと混合し、120℃で10分加熱し、室温冷却後に1−オクタノール60mlを加え、各混合物の溶解性(錯形成性)を観察した。
-Example 3-
Instead of long-chain alkylamine ligand (oleylamine, myristylamine or laurylamine) as Lewis base, 50 mmol of octylamine, stearylamine, pyridine, aniline, trioctylphosphine or triphenylphosphine is mixed with 5 mmol of nickel formate dihydrate. The mixture was heated at 120 ° C. for 10 minutes, cooled to room temperature, 60 ml of 1-octanol was added, and the solubility (complexity) of each mixture was observed.

次いで、錯形成した組み合わせをそれぞれ個別に石英容器に移して2.45GHzマイクロ波装置にかけて、750Wの出力、40℃/分の昇温速度で加熱し、窒素中表1に示す所定温度にて10分間保持した。各溶液中に粒子が生じた。錯形成しなかった組み合わせの配位子を用いた場合、180度で30分加熱しても還元反応が進行せず目的とするニッケル粒子は得られなかった。   Subsequently, each complexed combination was individually transferred to a quartz container and applied to a 2.45 GHz microwave device, heated at an output of 750 W and a heating rate of 40 ° C./min, and 10% at a predetermined temperature shown in Table 1 in nitrogen. Hold for a minute. Particles were formed in each solution. When a combination of ligands that did not form a complex was used, the target nickel particles were not obtained because the reduction reaction did not proceed even when heated at 180 degrees for 30 minutes.

Figure 2010064983
表1に示されるように、用いられるルイス塩基の塩基性が強いほど、また立体障害の少ないほど錯形成しやすく、ギ酸ニッケルを還元しやすいことが明らかとなった。
Figure 2010064983
As shown in Table 1, it was clarified that the stronger the basicity of the Lewis base used and the less the steric hindrance, the easier the complex formation and the easier the reduction of nickel formate.

二座配位(a)、単座配位(b)の各ギ酸ニッケル錯体の構造を示す図である。It is a figure which shows the structure of each nickel formate complex of bidentate coordination (a) and monodentate coordination (b). ギ酸ニッケル錯体の還元反応のスキームを示す図である。It is a figure which shows the scheme of the reductive reaction of a nickel formate complex. 実施例1で得られたニッケル粒子AのX線回折図を示す図である。2 is an X-ray diffraction diagram of nickel particles A obtained in Example 1. FIG. 実施例1で得られたニッケル粒子A、B、Cの電子顕微鏡によるTEM写真と粒径分布を示す図である。It is a figure which shows the TEM photograph and particle size distribution by the electron microscope of nickel particle A, B, and C which were obtained in Example 1. FIG. 実施例1で得られたニッケル粒子A、Cの熱重量分析結果を示す図である。FIG. 4 is a diagram showing the results of thermogravimetric analysis of nickel particles A and C obtained in Example 1. 実施例1で比較のために得られたニッケル粒子Dの電子顕微鏡によるTEM写真を示す図である。It is a figure which shows the TEM photograph by the electron microscope of the nickel particle D obtained for the comparison in Example 1. FIG. ギ酸ニッケル二水和物及び実施例2で得られた錯体1のFR−IRの結果を示す図である。It is a figure which shows the result of FR-IR of the nickel formate dihydrate and the complex 1 obtained in Example 2.

Claims (8)

下記一般式(1)で表されるニッケル錯体。
Ni(HCOO)2(L1)(L2)・・・・(1)
(但し、L1及びL2はルイス塩基配位子を示し、L1とL2とは互いに同一であっても異なっていても良い。)
A nickel complex represented by the following general formula (1).
Ni (HCOO) 2 (L 1 ) (L 2 ) (1)
(However, L 1 and L 2 represent a Lewis base ligand, and L 1 and L 2 may be the same or different from each other.)
前記ルイス塩基配位子が一般式 R1(R2)NH(式中、R1及びR2は水素原子および炭素数6−20のアルキル基もしくはアルケニル基から選ばれるいずれかの基)を有する脂肪族アミンである請求項1に記載のニッケル錯体。   The Lewis base ligand is an aliphatic amine having the general formula R1 (R2) NH (wherein R1 and R2 are any one selected from a hydrogen atom and an alkyl or alkenyl group having 6 to 20 carbon atoms). The nickel complex according to claim 1. 下記一般式(2)で表されるニッケル錯体。
Ni(HCOO)2(L1)(L2)(L3)(L4)・・・・(2)
(但し、L1、L2、L3及びL4はルイス塩基配位子を示し、L1、L2、L3及びL4は互いに同一であっても異なっていても良い。)
A nickel complex represented by the following general formula (2).
Ni (HCOO) 2 (L 1 ) (L 2 ) (L 3 ) (L 4 ) (2)
(However, L 1 , L 2 , L 3 and L 4 represent Lewis base ligands, and L 1 , L 2 , L 3 and L 4 may be the same or different from each other.)
ギ酸ニッケル二水和物、ルイス塩基及び溶媒を含む溶液を加熱することを特徴とするニッケル粒子の製造方法。   A method for producing nickel particles, comprising heating a solution containing nickel formate dihydrate, a Lewis base and a solvent. 前記加熱が200度以下の温度でなされる請求項4に記載の方法。   The method according to claim 4, wherein the heating is performed at a temperature of 200 degrees or less. 前記加熱がマイクロ波を照射することによってなされる請求項4に記載の方法。   The method according to claim 4, wherein the heating is performed by irradiation with microwaves. 前記溶液が、ギ酸ニッケル二水和物及び前記ルイス塩基を混合し、次いで前記溶媒を加えることにより得られる請求項4に記載の方法。   5. The method of claim 4, wherein the solution is obtained by mixing nickel formate dihydrate and the Lewis base and then adding the solvent. 前記ルイス塩基の量がニッケルに対して2当量以上である請求項4に記載の方法。   The method according to claim 4, wherein the amount of the Lewis base is 2 equivalents or more with respect to nickel.
JP2008232863A 2008-09-11 2008-09-11 Method for producing nickel particle and nickel complex suitably used therein Withdrawn JP2010064983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232863A JP2010064983A (en) 2008-09-11 2008-09-11 Method for producing nickel particle and nickel complex suitably used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232863A JP2010064983A (en) 2008-09-11 2008-09-11 Method for producing nickel particle and nickel complex suitably used therein

Publications (1)

Publication Number Publication Date
JP2010064983A true JP2010064983A (en) 2010-03-25

Family

ID=42190885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232863A Withdrawn JP2010064983A (en) 2008-09-11 2008-09-11 Method for producing nickel particle and nickel complex suitably used therein

Country Status (1)

Country Link
JP (1) JP2010064983A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193418A (en) * 2011-03-17 2012-10-11 Nippon Steel Chem Co Ltd Method for producing ferrioxide-containing metal composite nickel nanoparticles, and ferrioxide-containing metal composite nickel nanoparticle
JP2013007082A (en) * 2011-06-23 2013-01-10 Nippon Steel & Sumikin Chemical Co Ltd Apparatus and method of continuously producing metal nanoparticles
JP2014029010A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle and method for producing the same
KR20140027935A (en) 2011-03-17 2014-03-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same
JP2014105365A (en) * 2012-11-28 2014-06-09 Dowa Electronics Materials Co Ltd Nickel nanoparticles, its manufacturing method and nickel paste
WO2014208418A1 (en) 2013-06-28 2014-12-31 東レ株式会社 Polyarylene sulfide resin composition and method for producing same
JP5706881B2 (en) * 2010-03-17 2015-04-22 新日鉄住金化学株式会社 Method for producing nickel nanoparticles
JP2016172917A (en) * 2015-03-18 2016-09-29 新日鉄住金化学株式会社 Nickel fin particle-containing composition and manufacturing method therefor
JP2020073712A (en) * 2019-09-12 2020-05-14 株式会社新光化学工業所 Method and device for producing nickel fine particles and nickel fine particles
CN114797983A (en) * 2022-03-09 2022-07-29 厦门大学 Nickel catalyst, preparation method and application
KR20230019148A (en) 2020-12-15 2023-02-07 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 Conductive ink for copper-nickel alloy electrode, substrate with copper-nickel alloy electrode, and method for producing them

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706881B2 (en) * 2010-03-17 2015-04-22 新日鉄住金化学株式会社 Method for producing nickel nanoparticles
JP2012193418A (en) * 2011-03-17 2012-10-11 Nippon Steel Chem Co Ltd Method for producing ferrioxide-containing metal composite nickel nanoparticles, and ferrioxide-containing metal composite nickel nanoparticle
KR20140027935A (en) 2011-03-17 2014-03-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same
JP2013007082A (en) * 2011-06-23 2013-01-10 Nippon Steel & Sumikin Chemical Co Ltd Apparatus and method of continuously producing metal nanoparticles
JP2014029010A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle and method for producing the same
JP2014105365A (en) * 2012-11-28 2014-06-09 Dowa Electronics Materials Co Ltd Nickel nanoparticles, its manufacturing method and nickel paste
WO2014208418A1 (en) 2013-06-28 2014-12-31 東レ株式会社 Polyarylene sulfide resin composition and method for producing same
US10000620B2 (en) 2013-06-28 2018-06-19 Toray Industries, Inc. Polyarylene sulfide resin composition and method for producing same
JP2016172917A (en) * 2015-03-18 2016-09-29 新日鉄住金化学株式会社 Nickel fin particle-containing composition and manufacturing method therefor
JP2020073712A (en) * 2019-09-12 2020-05-14 株式会社新光化学工業所 Method and device for producing nickel fine particles and nickel fine particles
KR20230019148A (en) 2020-12-15 2023-02-07 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 Conductive ink for copper-nickel alloy electrode, substrate with copper-nickel alloy electrode, and method for producing them
CN114797983A (en) * 2022-03-09 2022-07-29 厦门大学 Nickel catalyst, preparation method and application

Similar Documents

Publication Publication Date Title
JP2010064983A (en) Method for producing nickel particle and nickel complex suitably used therein
Park et al. Preparation of fine Ni powders from nickel hydrazine complex
JP5858374B2 (en) Method for producing coated copper fine particles
US10214656B2 (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
Huaman et al. Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink
JP4284283B2 (en) Silver particle powder manufacturing method
JP6274444B2 (en) Method for producing copper powder
JP2008214695A (en) Method for producing ultra-fine particle of silver
JP5117420B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
KR20100031250A (en) Method for manufacturing cupper nanoparticles and cupper nanoparticles using the same
TWI579074B (en) Method of manufacturing silver particles
JP7344550B2 (en) Method for producing iron-nickel nanowires
KR20100068447A (en) Preparation of silver spheres by the reduction of silver polyamine complexes
JP2010133015A (en) Method of preparing copper fine particle dispersion aqueous solution and method of storing copper fine particles dispersion aqueous solution
JP2012193409A (en) Iron fine particle and production method therefor
CN102689016A (en) Preparation method of superfine nickel powder
TWI638056B (en) Method for manufacturing silver particles, and silver particles manufactured by the method
JP2015160989A (en) Composition for metal nanowire formation, metal nanowire and production method thereof
JP2011214143A (en) Method for production of nickel nanoparticle
JP2011214142A (en) Method for production of nickel nanoparticle
JP6099160B2 (en) Complex compounds and suspensions
Togashi et al. N, N-Diethyl-diaminopropane-copper (ii) Oxalate Self-reducible Complex for the Solution-based Synthesis of Copper Nanocrystals
JP6608378B2 (en) Method for producing nickel particles
KR20170019157A (en) Copper Nano Particle Method For Low Temperature Sintering Copper Nano Ink Method
Wu et al. Preparation of fine copper powder with chemical reduction method and its application in MLCC

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206