JP2008503427A - 結晶製造装置に溶融ソース材料を装入する方法および溶融装置アッセンブリ - Google Patents

結晶製造装置に溶融ソース材料を装入する方法および溶融装置アッセンブリ Download PDF

Info

Publication number
JP2008503427A
JP2008503427A JP2007516754A JP2007516754A JP2008503427A JP 2008503427 A JP2008503427 A JP 2008503427A JP 2007516754 A JP2007516754 A JP 2007516754A JP 2007516754 A JP2007516754 A JP 2007516754A JP 2008503427 A JP2008503427 A JP 2008503427A
Authority
JP
Japan
Prior art keywords
crucible
source material
crystal
assembly
melter assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007516754A
Other languages
English (en)
Other versions
JP5080971B2 (ja
JP2008503427A5 (ja
Inventor
ジョン・デイビス・ホルダー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunEdison Inc
Original Assignee
MEMC Electronic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEMC Electronic Materials Inc filed Critical MEMC Electronic Materials Inc
Priority claimed from US11/155,105 external-priority patent/US7344594B2/en
Priority claimed from US11/155,104 external-priority patent/US7465351B2/en
Priority claimed from US11/155,385 external-priority patent/US7691199B2/en
Publication of JP2008503427A publication Critical patent/JP2008503427A/ja
Publication of JP2008503427A5 publication Critical patent/JP2008503427A5/ja
Application granted granted Critical
Publication of JP5080971B2 publication Critical patent/JP5080971B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

溶融装置アセンブリは、溶融したソース材料の装入材料を、結晶性の物体の製造に使用する結晶製造装置に供給する。溶融装置アセンブリは、ハウジングと、該ハウジングの中に配置されたルツボを有している。該ルツボの中に入れられた固体ソース材料を溶融させるために、ルツボに対してヒータが配置されている。ルツボが溶融したソース材料の流れを制御するためのノズルを有していることによって、溶融したソース材料の特定の流れを選択された流量で結晶製造装置へ供給することができる。結晶製造装置に溶融したソース材料を装入する方法、および1つの溶融装置アセンブリによって複数の結晶製造装置へ供給する方法を提供する。

Description

この発明は、一般に、固体のシリコンを溶かすための溶融装置アセンブリ、特に、結晶製造装置に溶融させたソース材料を装入するための方法および溶融装置アセンブリに関する。
単結晶構造を有している単結晶物質は、種々の電子部品、例えば半導体デバイスおよび太陽電池等を製造するための出発材料であって、一般に、チョクラルスキー(Czochralski)(「Cz」)法を用いて製造される。簡単に、説明すると、チョクラルスキー法は、シリコンメルトを形成するために特に設計された炉に配置された石英ルツボの中で、多結晶のソース材料、例えば粒状のまたは塊状の多結晶のシリコン(「多結晶シリコン(polysilicon)」(またはポリシリコン)を溶融させることを伴っている。アルゴンなどの不活性ガスが、一般に炉の中を通して循環される。ルツボの上方において、比較的小さい種結晶が引上げシャフトに取り付けられ、該引上げシャフトは種結晶を上昇させたりまたは降下させたりすることができる。ルツボを回転させて、種結晶を降下させ、該ルツボ内の溶融シリコンに接触させる。種結晶が溶融し始めると、種結晶は徐々に溶融シリコンから引き上げられて、メルトからシリコンの引上げを開始して、単結晶構造を有するシリコンの成長が開始される。
太陽電池またはその他の電気素子を製造するための出発材料として用いるのに好適な大きな粒状の多結晶シリコン半導体構造は、従来技術において知られているその他の種々のプロセスにて製造することができる。チョクラルスキー法と同様に、そのような代替プロセスは、種々の装置を有しており、所望の導電的特性を有する固体の結晶性物体(例えば、インゴット、リボンなど)を製造するために、溶融させたソース材料(例えば、シリコン)を利用する。そのようなプロセスは、冷たいルツボに溶融シリコンを充填して、溶融シリコンを固化させ、多結晶物体を生成させることを含む、ブロック・キャスティング(block casting)を含むことができる。一般にエッジ規定されるフィルム成長(Edge-defined Film Growth(EFG))方法として知られる、もう1つのプロセスは、ルツボから引上げ装置に接続された種結晶へ、溶融しているソース材料を移すことを補助するために、毛管作用を使用するキャピラリーダイ部材を使って、制御された寸法で、多様な形態の中空結晶性物体を成長させることを伴っている。また、ソース材料のメルトから引上げられる、一般に平坦な結晶性のリボン構造体を成長させることに関連する、種々のリボン成長方法も存在している。
半導体素子および太陽電池のための半導体材料を形成するための種々の既存の方法は、一般に、ルツボの中で粒状多結晶シリコンを直接的に溶融させるか、または溶融シリコンの装入材料をルツボに追加する工程を有している。ルツボの中で粒状多結晶シリコンを直接的に溶融させる方法の1つの問題点は、溶融中に水素の放出からのはねかかり(splatter)を低減させるために、多結晶シリコンの純度が非常に高く、脱水素化されていることが好ましいということである。ルツボ内でのはねかかりによって結晶製造装置のホットゾーンの種々のコンポーネントにシリコンが付着して、それにより、引上げられた結晶に不純物が生じさせたり、またはホットゾーン内のシリコン炭化物被覆されたグラファイト要素およびグラファイトに損傷を生じさせたりし得る。脱水素化された化学気相堆積(CVD)粒状多結晶シリコンは、脱水素化されていない、より容易に入手することができるCVD多結晶シリコンに比べて高価である。従って、脱水素化された化学気相堆積(CVD)粒状多結晶シリコンを使用することによって、シリコンウェハーまたは種々の方法によって製造されるその他の電気要素の製造コストは増大する。
追加的な操作上の問題および機械的な問題は、結晶製造装置の主たるルツボ内で、固体の多結晶シリコンを溶融させることに起因している。例えば、多結晶シリコンを溶融させるためには、液状シリコンに比べて相対的に高い熱伝導率および高い放射率のために、大量の電力が必要とされる。また、多結晶シリコンの250kg(551ポンド)の1つの装入材料を溶融させるためには、一般に15〜18時間を要し、主たるルツボ内で固体多結晶シリコンを溶融させることは一般に時間がかかる。さらに、固体の多結晶シリコンを溶融させるのに必要とされる高い溶融温度にさらすことによって、ルツボ内に熱的ストレス(化学的ストレスおよび機械的ストレス)が引き起こされ、ルツボ壁の粒状物質がメルト内に落下したり浮遊したりして結晶性品質を低下させたり、ルツボを早期に損傷させたりし得る。また、ルツボは、固体の多結晶シリコン粒子が頻繁にルツボ壁に擦り傷を生じさせたり、ルツボ壁を抉ったりすることによって、機械的ストレスに付され、その結果、ルツボ壁に損傷を生じさせたり、ルツボ壁から粒状物を取り去ったりして、その粒状物はシリコンメルトおよびそれから形成される結晶性物体を汚染したりし得る。
ルツボ内で多結晶シリコンを溶融させる必要性を排除するために、種々の従来技術の方法が試みられている。これら従来技術の方法は、圧力差を使用するまたは使用しない重力供給によって、結晶成長の間に、主たるルツボの中に溶融シリコンを流入させるように、多結晶シリコンを溶融させるための補助ルツボを、主たるルツボの上方に配置することを含んでいる。これら従来技術の既存の方法は、固体の多結晶シリコンを効率的および迅速に溶融させるものではなく、結晶製造装置のホットゾーンの部材へのメルトのはねかかり(splatter)を減少させるような方法で、主たるルツボに溶融したシリコンを移送するものでもない。また、既存の方法は、固体の多結晶シリコンを迅速で経済的な方法で加熱して、溶融時間を減少させたり、結晶製造装置のスループットを増大させたりすることも提供しない。従って、溶融シリコンを結晶製造装置に供給する方法であって、迅速におよび効率的に固体の多結晶シリコンを溶融させ、はねかかりを減少させた方法で装置の主たるルツボへ溶融したシリコンを移送し、得られるシリコン結晶の品質を維持するような方法に対する必要性が存在している。
(発明の概要)
この発明のいくつかの目的の中で、シリコン溶融装置アセンブリ、および溶融シリコンソース材料を結晶製造装置に装入することを容易にする操作の方法を提供すること;そのような溶融装置アセンブリと、結晶収量およびスループットを向上させる方法を提供すること;そのような溶融装置アセンブリおよび品質を増大させる方法を提供すること;そのような溶融装置アセンブリおよび固体シリコンの急速な加熱を許容する方法を提供すること;そのような溶融装置アセンブリおよびシリコンの制御された加熱を許容する方法を提供すること;そのような溶融装置アセンブリおよびメルトを結晶製造装置に添加することによって引き起こされるはねかかりを減少させる方法を提供すること;そのような溶融装置アセンブリ、および多結晶シリコンを溶融シリコン溜めに添加することによって引き起こされるメルトのスプラッシュおよび粉塵成分を分離することを含む方法を提供すること;ならびに、そのような溶融装置アセンブリ、および単一の溶融装置によって複数の結晶製造装置にチャージすることができる方法を提供することが注目される。
一般に、この発明は、溶融させたソース材料の装入材料を結晶製造装置に供給するための溶融装置アセンブリに関連する。溶融装置アセンブリは、ハウジングと該ハウジング内に配置されたルツボを有している。ルツボに対して、ルツボに受け入れられた固体ソース材料を溶融させるためのヒータが配置されている。ルツボは、溶融させたソース材料の流れを制御するために適応したノズルを有しており、溶融させたソース材料の導かれた流れ(フロー)が選択された流量で装置へ供給される。
この発明のもう1つの要旨において、結晶引上げ装置に溶融シリコンを装入する方法を提供する。方法は、成長チャンバーを規定する結晶引上げ装置の下側ハウジングから、引上げチャンバーを規定する結晶引上げ装置の上側ハウジングを取り外す工程を含んでいる。上側ハウジングの代わりに、溶融装置アセンブリが下側ハウジングに取り付けられる。溶融装置アセンブリの中で、ソース材料が溶融される。溶融されたソース材料は、溶融装置アセンブリから結晶製造装置の下側ハウジング内に配置されたルツボへ供給され、従って、単結晶インゴットを成長させるためのメルトがルツボ内に形成される。
更にもう1つの要旨において、本発明は、溶融させたソース材料の装入材料を、結晶性物体を形成させるために使用される結晶製造装置へ供給するための溶融装置アセンブリに関連する。溶融装置アセンブリは、ハウジングと、該ハウジングの中に配置されたルツボを有している。ルツボ内に受け入れられた固体ソース材料を溶融させるために、該ルツボに対してヒータが配置されている。サセプタは、ルツボを支持し、ルツボ内における固体ソース材料の加熱作用を促進する。サセプタは、上側部分と下側部分とを有しており、これらはヒータを独立して制御するために間隔をおいて配置されている。
この発明のもう1つの要旨において、結晶製造装置に溶融させたソース材料を装入する方法が提供される。この方法は、結晶製造装置のルツボに溶融シリコンを供給するために、結晶製造装置に対して溶融装置アセンブリを配置する工程を含んでいる。溶融装置アセンブリ内の上側加熱作用コイルは、溶融ルツボ内でソース材料を溶融させるように操作される。溶融装置アセンブリ内の下側加熱作用コイルは、溶融させたソース材料のストリームを結晶製造装置のルツボに供給するために、溶融させたソース材料が溶融装置アセンブリのオリフィスを通して流れることを可能にするように操作される。
本発明のもう1つの要旨では、単独の溶融装置アセンブリによって複数の結晶製造装置に供給を行う方法を提供する。この方法は、第1の結晶製造装置に対して溶融装置アセンブリを配置して、溶融させたシリコンを第1の装置のルツボに供給する工程を含んでなる。溶融装置アセンブリのヒータを操作して、溶融ルツボ内のソース材料を溶融させる。溶融させたソース材料のストリームは、溶融装置アセンブリから第1の結晶製造装置へ供給される。溶融シリコンを第2の装置のルツボに送るために、溶融装置アセンブリを第2の結晶製造装置に対して配置する。溶融させたソース材料のストリームを、溶融装置アセンブリから第2の結晶製造装置へ移す。
本発明のその他の目的および特徴は、以下の記載において明らかになったりまたは指摘されたりすることになる。
図面全体について、同じ参照符号は対応する部材を示している。
(好ましい態様についての説明)
図1および2を参照すると、全体として符号1で示される、本発明の溶融装置アセンブリを、従来技術において一般的に知られている種々の結晶製造装置へ溶融させたソース材料を供給するために用いることができる。そのような結晶製造装置の1つには、チョクラルスキー法に従って単結晶シリコンインゴット(例えば、図2に示すインゴットI)を成長させるために用いられるタイプの、一般にCP(crystal puller)と称される、常套の結晶引上げ装置がある。結晶引上げ装置は、図2において、シリコンインゴットIを製造するように構成された装置として示されている。本発明の溶融装置アセンブリによって供給される溶融させたソース材料は、シリコンまたはその他のソース材料、例えば、アルミナ、チタン酸バリウム、ニオブ酸リチウム、イットリウム・アルミニウム・ガーネット、ゲルマニウム、ガリウム、ヒ化ガリウムなどの、結晶製造装置において固体の結晶物体(solid crystalline bodies)を製造するために用いられる材料であってよい。
結晶引上げ装置CPは、図2において部分的に示されているが、上側の引き上げチャンバーPCを取り囲む上側ハウジングUHと、下側の結晶成長チャンバーGCを取り囲む下側ハウジングLHとを有する水冷式のハウジングを有している。上側ハウジングUHと下側ハウジングLHとは、フランジ付きの接続部FCとロッキングデバイスLDとによって取り外し自在に接続される。上側ハウジングUHと下側ハウジングLHとは、ゲート分離弁GVによって分離(または絶縁)されている。ハウジングの内部に真空状態(または減圧状態)を導入するために、ポンプ(図示せず)またはその他の適当な手段を設けることもできる。図3に示すように、溶融装置アセンブリ1は、結晶引上げ装置CPの下側ハウジングLHの上に、上側ハウジングUHの代わりに取り付けることができ、そして重力式フィーダGFからの固体の粒状多結晶シリコンを受け入れることができる。以下において更に詳細に説明することになるが、溶融装置アセンブリ1は、固体の多結晶シリコンを溶融させて、溶融シリコンを結晶引上げ装置CPまたはその他の結晶製造装置へ重力を利用する供給によって移送する。
再び図2を参照すると、結晶引上げ装置CPは、チョクラルスキー法に従って単結晶シリコンインゴットIを製造する、常套の結晶引上げ装置である。図示する態様例において、結晶引上げ装置CPは、Kayex Corporation(アメリカ合衆国、ニューヨーク州、ロチェスター)によって製造されたModel No.FX150結晶成長炉であるが、その他の結晶引上げ装置を、この発明の範囲を逸脱することなく用いることができるということが理解されるであろう。結晶成長チャンバーGCを取り囲む下側ハウジングLHは全体としてドーム形状をした上側壁部UWを有しており、グラファイトサセプタSの中に設置された石英結晶成長ルツボCCを包囲している。ルツボCCには、単結晶シリコンインゴットIがそこから成長させられる溶融させたソース材料Mが入れられている。サセプタCSは、結晶引上げ装置CPの長手方向の中心軸まわりで、サセプタSおよびルツボCCを回転させるためのターンテーブルTの上に取り付けられている。インゴットIが成長して、ソース材料がメルトから失われる際に、溶融させたソース材料Mの表面が一般に一定のレベルに維持されるように、ルツボCCも成長チャンバーGCの中で上昇することが可能である。
電気抵抗ヒータHCがルツボCCを取り囲んでおり、ルツボを加熱してソース材料Mを溶融した状態に維持する。引き上げプロセスの間にわたって溶融させたソース材料Mの温度が正確に制御されるように、外部の制御システム(図示せず)によってヒータHCが制御される。溶融させたソース材料Mの上側の成長チャンバーGCに熱絶縁アセンブリHSが取り付けられている。熱絶縁アセンブリHSは、ソース材料からインゴットIが引き上げられる際に、インゴットを取り囲むような寸法および形状の中央開口部を有している。結晶成長ルツボを取り囲む下側ハウジングLHのエリアは、一般に、引上げ装置CPの「ホットゾーン(hot zone)」と称される。ホットゾーンの部分は、サセプタS、ヒータHC、熱絶縁アセンブリHSおよび熱リフレクタまたは絶縁材Iを有しており、絶縁ルツボCCのまわりでの熱伝達、および成長する結晶の冷却速度を制御することができる。
引き上げ機構PMから下方に引き上げシャフトPSが延びており、この機構によって引き上げシャフトPSは上昇したり、降下したりまたは回転したりすることができる。結晶引上げ装置CPは、引上げ装置のタイプに応じて、シャフトPSの代わりに引上げワイヤ(図示せず)を有することができる。引き上げシャフトPSは、引き上げチャンバーPCの中を通って下方へ延び、種結晶チャックSCで終端している。種結晶チャックSCは、単結晶インゴットIを成長させるための種結晶Cを保持する。図2では、引き上げシャフトPSは、その上側部分とチャックSCに接触する部分の両方について、その大部分を省略している。インゴットIを成長させる際に、引上げ機構PMは種結晶Cを、その種結晶Cが溶融しているソース材料Mの表面に接触するまで降下させる。種結晶Cがいったん溶けはじめると、引上げ機構PMは、成長チャンバーGCおよび引き上げチャンバーPCの中を通して、種結晶Cをゆっくりと上昇させて、単結晶インゴットIを成長させる。引き上げ機構PMが種結晶Cを回転させる速度、および引き上げ機構PMが種結晶SCを上昇させる速度は、外部の制御システム(図示せず)によって制御される。結晶引上げ装置CPの一般的な構成および操作は、以下において更に詳細に説明する事項を除いて、常套のものであって、当業者に知られている事項である。さらに、結晶引上げ装置CPは、本発明の範囲を逸脱することなく、その他の形態及び/又は構成を有することができることも理解されるであろう。
図1および3に示すように、溶融装置アセンブリ1は、全体として符号5で示される溶融容器と、結晶引上げ装置CPの下側ハウジングLHに接続するための、溶融容器の底部から下方へ延びるドッキングカラー9を有している。溶融容器5は環状のフロア13を有しており、そのフロア13から上向きに、間隔をおいて配置された内側の壁部材17と外側の壁部材19とによって形成されている、全体として符号15で示される筒状の側壁が突き出して延びている。溶融容器5の頂部壁部は、全体としてドーム形を有しており、全体として符号23で示されているが、間隔をおいて配置された内側の壁部材25と外側の壁部材27とによって形成されている。筒状の壁部15および頂部壁部23の間隔をおいて配置されている壁部材はキャビティ31を規定しており、そのキャビティ31の中を通って冷却水を循環させることができる。容器5の頂部壁部23における中央フィードポータル35は、重力式フィーダGFのフィードチューブ43を受け入れるスリーブ39を有している。溶融装置アセンブリ1および重力式フィーダGFの中で雰囲気をシールするために、中央フィードポータル35は真空シール47を有している。フィーダおよび溶融装置アセンブリの雰囲気は、結晶引上げ装置CP内の雰囲気と実質的に同じ圧力および組成を有している。フィードチューブ43とスリーブ39との間の嵌め合わせ(fit)は約13mm(1/2インチ)の径方向のクリアランスを有するルーズフィット(または隙間嵌め)であるべきであって、溶融装置アセンブリ1の中でのメルトの飛散やダストを含むことができる。溶融容器5の頂部壁部23および筒状の壁部15はそれぞれの係合するフランジ51および53を有しており、ファスナー57を受け入れることによって、頂部壁部と筒状の壁部とは一体に接続される。溶融容器5の内部へアクセスすることができるように、頂部壁部23は取り外すことができる。溶融容器5は側方のアクセスポート59を有しており、そのアクセスポート59を通して電力線(60、63)および冷却用配管(図示せず)を容器5の中に入れることができる。側方のアクセスポート59は、容器5内の雰囲気の圧力および組成が維持されるように、アクセスポート59の中を通る電力線60、63および配管チューブを包囲する真空シール(図示せず)を有している。
溶融容器5は全体として符号65で示される溶融ルツボを有しており、その溶融ルツボ65は好適な材料、例えば石英ガラス(またはフューズドシリカ)などによって形成されている。そして溶融ルツボ65は、全体として符号69で示されるグラファイトサセプタアセンブリに設置されている。サセプタアセンブリ69は、プラットフォーム77の上に取り付けられているセラミックベース73によって支持されている。プラットフォーム77は、溶融容器5の環状のフロア13における開口部81を覆っている。プラットフォーム77と環状のフロア13との間の固いシールによって、メルトの飛散物およびダストが溶融容器5からドッキングカラー9を通して結晶引上げ装置CPの中に入ることが防止される。溶融ルツボ65は、ルツボ本体部分89に連絡しており、全体として符号85で示されるノズルであって、溶融ルツボからの、結晶引上げ装置CP内の結晶成長ルツボCCへ溶融シリコンを流入させることができるノズルを有している。サセプタアセンブリ69は、溶融ルツボ65の本体部分89およびノズル85の両者に適合して包囲する。溶融装置アセンブリ1は、ルツボ65およびサセプタアセンブリ69の上側部分のまわりの上側の誘導コイル95と、ルツボノズル85およびサセプタの下側部分のまわりの下側の誘導コイル99を有している。上側の誘導コイル95および下側の誘導コイル99はそれぞれ、(図1および3において模式的に示されている)電源100および101に接続されている。両電源100および101は、各コイルに、各コイルを通って流れることができる電流を提供する。上側のコイル95および下側のコイル99は独立して制御することができるので、他方のコイルを通って流れる電流とは関係なしに、各コイルを通って流れる電流をモニターし、および調節することができる。溶融ルツボ65およびサセプタ69の上側部分および下側部分のまわりの2つのコイル95、99の配置によって、溶融ルツボの上側部分および下側部分を独立して温度調節することができる。
図1および4を参照すると、溶融ルツボ65の本体部分89は一般に円筒形形状を有しており、開口する頂部103と、円錐形態の底部壁107とを有している。ノズル85は、円錐形態の底部壁107に連絡しており、本体部分89と同軸である。1つの態様において、溶融シリコンのノズル85への流入を容易にするために、ルツボ65の底部壁107の内側の表面は約1度から約60度、より好ましくは、約10度の範囲の傾斜を有している。図示する態様例において、円錐形態の底部壁107を含むルツボ65の本体部分89は、一体ものとして製造されており、底部ノズル85は石英チューブにより形成されて、ルツボの底部壁に融着されている。本発明の範囲の中では、その他の構成を用いることもできる。
ノズル85は、一般にノズルのセンターラインと位置合わせされたパスに沿って導かれる溶融容器5からの流れを形成するように構成されている。ルツボ65から流出する液状シリコンは、結晶引上げ装置CPの要素へのはねかかったり、しぶきがかかったりすることを低減して導かれるストリームであることが重要である。液状シリコンがはねかかったり、しぶきがかかったりすることは、ホットゾーンのパーツ(例えば、熱絶縁アセンブリHS、ルツボGC、サセプタSなど)を損傷したり、シリコンの遊離した粒状物が生成したりして、これが結晶成長中のルツボの中に入ると結晶の品質を損なうことになり得るため、結晶引上げ装置CPのホットゾーンの中では望ましいものではない。図9において最も良好に示しているが、溶融ルツボノズル85は、ルツボ65の底部壁107における第1のより大きい直径の部分109、より小さな直径を有しており、大きな直径の部分の下流側のノズルのオリフィスを形成している第2の部分111、およびオリフィスの下流において中間の寸法の直径を有する第3の部分115を有している。以下により詳細に説明するが、ノズル85の全体の長さ、および第1の部分109、第2の部分111および第3の部分115の対応する長さおよび直径は、最適な流量でルツボ65から流出して、時期尚早な注ぎを防止する溶融シリコンのストリームを維持するような寸法に維持される。ルツボ65から流出する溶融シリコンのストリームは、液体のコヒーレントな連続した流れであることが好ましいが、このストリームは、ノズル85のセンターラインに沿って全体として導かれるルツボ65から流出する小滴の流れをも含み得ると理解されたい。ノズル85からの溶融シリコンの流れはノズルのセンターラインから逸脱する可能性があって、「全体として導かれる(generally directed)」という用語の意味から離れることなく、ノズルのパスに沿って全体として導かれると理解されたい。1つの態様において、溶融シリコンの流れは、約40mm(1.6インチ)の最大の距離でノズル85のセンターラインを逸脱することができるが、これは「全体として導かれる」の意味の中に含まれる。
図4〜8に示すように、サセプタアセンブリ69は3つの部分:全体として符号121で示され、全体として円筒形形状であって、溶融ルツボ65を支持する上側部分(ルツボサポート)、溶融ルツボ65の円錐形態の底部壁107をサポートし、溶融を開始させるための円錐形態でワンピースの中間の部分(メルト−イン・サセプタ)125、および溶融ルツボ65のノズル85を受け入れる下側のアウトレット部分(ノズルサセプタ)129を有している。上側部分121および下のアウトレット部分129は、それぞれ環状のギャップ130および131によって、中間の部分125から間隔をおいて配置されている。図示する態様例において、上側部分121は、一般に符号123(図6)で示される4つの半径方向のセクションを有しており、それぞれ半径方向のギャップ132によって分離されている。1つの態様において、環状のギャップ130、131および半径方向のギャップ132は、約3mm(1/8インチ)から約6mm(1/4インチ)に及んでいる。ギャップ130、131、132は、下のアウトレット部分129が下側コイル99から誘導される電流によって加熱され、中間の部分125が上側コイル95から誘導される電流によって加熱され、上側部分121はいずれのコイルから誘導される電流によっても加熱されないように、電流が上側コイル95および下側コイル99によってサセプタアセンブリ69内に誘導される電流を隔離する。上側コイル95および下側コイル99はセラミック本体部(図示せず)に組み立てられており、セラミック本体部は、サセプタアセンブリの各部分121、125および129の間の環状のギャップ130、131の中に、グラファイトファイバ絶縁体(図示せず)を有し、サセプタアセンブリの上側部分121の各部分123の間の半径方向のギャップ132の間にもグラファイトファイバ絶縁体(図示せず)を有すると理解されたい。絶縁体は、他の材料、例えばケイ砂、セラミックの耐火物繊維、ガラス質の耐火物繊維、またはその他の高温で熱および電気絶縁性の絶縁材料などをも含み得ると理解されたい。
図5および6に示すように、上側部分121は、上側部分の中でギャップ137を形成するために周方向に間隔をおいて配置される一連のフィンガ133を有している。フィンガ133どうしの間のギャップ137、および上側部分121の部分123のどうしの間のギャップ132は、上側部分が上側の誘導コイル95と電気的に結合することを防止し、ならびに、サセプタアセンブリ69のフィンガに誘導電流が流れることを防止する。図示する態様例において、16個のフィンガ133が示されているが、サセプタ69はこの発明の範囲を逸脱することなくその他の構成を有することができると理解されたい。半径方向のギャップ132はそれぞれ1つのフィンガ133を半分に分割しており、ギャップは互いに約90度の間隔をおいて配置されている。フィンガ133どうしの間のギャップ137は、約3mm(1/8インチ)〜約6mm(1/4インチ)の範囲に及ぶことが好ましい。サセプタアセンブリ69のフィンガ133にはいずれの電流も誘導されないので、サセプタの上側部分121が大量の抵抗加熱を生成することはない。上側コイル95および下側コイル99からの誘導電流からのサセプタアセンブリ69の下側部分の抵抗加熱によって、ルツボの下側部分の固体の多結晶シリコンおよび溶融ルツボ65が加熱される。フィンガ133は誘導加熱に付されず、ルツボ内のシリコンが上側コイル95によって加熱される際に、放射および伝導のみによって加熱される。
図5〜8に示すように、サセプタアセンブリ69の円錐形態の中間部分125および下側のアウトレット部分129は、上側および下側の誘導コイル95、99がサセプタのこれらの領域の個それぞれの部分に電気的に結合されるように、中実の構造を有している。上側コイル95が下側のアウトレット部分に電流を誘導したりせず、および下側コイル99が中間の部分に電流を誘導したりしないように、サセプタアセンブリ69において中間の部分125とアウトレット部分129との間のギャップ131は、これら2つの部分を電気的に分離(または隔離)している。上側コイル95へ供給された電流は、フィンガ133の下側のサセプタアセンブリ69の中間の部分125において電流を流れさせる、交番磁場を作り出す。下側コイル99へ供給される電流は、サセプタ69の下側のアウトレット部分129において電流を流れさせる、交番磁場を作り出す。サセプタアセンブリ69において誘導された電流は、コイル95、99内の流れる電流の流れる向きとは逆方向にサセプタの中を通って流れ、サセプタに抵抗加熱を生じさせる。グラファイトサセプタアセンブリ69の中実の部分の誘導加熱がルツボ65の底部壁107に放射加熱および伝導加熱を生じさせることによって、ルツボ65の底部壁107の上に載置されている固体の多結晶シリコンが溶融する。
ルツボ65内の固体の多結晶シリコンの底部部分が抵抗加熱および誘導加熱によって溶融した後、上側コイル95の磁界は、電気的伝導性の液状シリコンの中に電流を誘導し、それによって液状シリコンを更に加熱し、液状シリコンからの放射熱および伝導熱によって、ルツボの中に残存する固体の多結晶シリコンの溶融速度を向上させる。1つの態様において、コイル95および99に供給される交流電流の周波数は、約3kHzから約15kHzの範囲であり、出力の大きさは約15kWから約160kWの範囲である。1つの態様において、上側コイル95の電流は、約10kHzの周波数と約160kWの出力を有しており、下側コイル99中の電流は約3kHzの周波数と約15kWの出力を有している。各電源100および101は、出力コンバータ、電動発電機、パルス幅変調器インバータまたはコイルに交流電流を供給するためのその他のいずれかの方法を有することができると理解されたい。
1つの態様において、サセプタアセンブリ69の円筒形の本体部121は、約38cm(15インチ)の高さ、約20cm(8インチ)の内径、および約13mm(1/2インチ)の壁厚さを有することができる。サセプタ69の円錐形態の部分125の底部壁は、ルツボ65の角度付けされた底部壁107に対応して角度付けされていてよく、この発明の範囲を逸脱することなく、約1度から約60度、より好ましくは、約10度の範囲であってよい。サセプタ69の下側のアウトレット部分129は、約16.5cmから30cm(6.5インチから約12インチ)の程度で、サセプタの円錐形態の部分125の底部の壁から延びていてよい。寸法は例示のためのものであって、本発明の範囲を逸脱することなく、ルツボ65とサセプタ69はそれ以外の寸法を有することができると理解されたい。
上側コイル95を流れる電流は、ルツボ65内のメルトの温度を調節するために変動させることができ、下側コイル99を流れる電流は、ルツボノズル85を通過するメルトの温度を調節するために変動させることができる。例えば、溶融ルツボ65内のメルトの温度は、結晶引上げ装置CPの結晶成長ルツボCCの中に注がれるメルトが、溶融ルツボから結晶成長ルツボの中へ落下する間にもシリコンの融点以上の温度を保つように、シリコンの融点(即ち、1414℃)よりも十分に高いことが必要とされる。約5フィート(1.5メートル)の自由落下高さF(図3)に基づけば、溶融ルツボノズルの大きな直径の部分109と、結晶引上げ装置CPの結晶成長ルツボCCにおけるメルトMの表面との間の全体の距離について、シリコンのストリームが液状を保ったままでいるためには、ノズル85を通過するシリコン液体は少なくとも20℃で過熱されていることが必要である(下、約1434℃の最低温度に対応する)。同様に、溶融ルツボ65の石英ノズル85を通過する溶融シリコンの温度は、過熱された液状シリコンの流れがノズルを通るために、ノズルが過度なアブレーション(ablation)を受けることを防止するために、約1465℃を越えるべきではない。ノズル85を通過する溶融シリコンが1465℃を越える温度で流される場合には、第1のノズル111および第2のノズル115は、時期尚早に大きくなり過ぎて、液状シリコンの質量流量は多結晶シリコンの所望の溶融速度を上回ることになる。一般に結晶成長ルツボCCに充填する間は、ルツボ内のメルトの高さが一定の高さを保つように、ノズル85を通る液状シリコンの質量流量は、ルツボ65内における多結晶シリコンの所望の溶融速度に等しいかまたはそれ以下であるべきである。ルツボ65からの流量が多結晶シリコンの溶融レートを越える場合には、結晶成長ルツボCCに充填する間に、ルツボ65内のメルト高さが降下して、ノズル85における静圧の低下を引き起こすことになる。ノズル85の静圧が所定のレベルを下回る場合には、ノズルを通過する液状シリコンのストリームは、導かれない状態(即ち、ノズルのセンターラインに沿って全体として導かれない状態)になって、結晶成長ルツボCC内で過度にはねかかったり、しぶきがかかったりすることになり得る。
結晶成長生産性(crystal growth productivity)の少なくとも約10%〜35%の向上を達成するために必要とされるメルト調製時間(melt preparation time)を短くするため、溶融装置アセンブリ1は約50kg/時間〜約140kg/時間の範囲の好ましい質量流量で、液状シリコンを送るべきである。実験を通して、溶融装置アセンブリ1からの液状シリコンのより望ましい質量流量は、約85kg/時間であることが見出されている。オリフィス111は、約250mm(10インチ)である、ルツボ65の底部アウトレット85の上方の初期メルト高さH(図14)に基づいた約85kg/時間の液状シリコンの最適な質量流量を提供する初期直径を有するような寸法とされている。オリフィス111の上方のオリフィス直径とメルト高さHは、溶融ルツボ65の直径とおよび高さ、ならびに溶融装置アセンブリ1からの所望の質量流量に基づいて変動することになると、理解されたい。
図9を参照すると、ルツボ65のノズル85のオリフィス11は、約85kg/時間の液状シリコン流量および約250mm(10インチ)の初期メルト高さH(図14)に対応して、約2.3mm(0.09インチ)の初期直径D1を有している。連続的結晶引上げ装置CPに溶融シリコンを充填することに溶融装置アセンブリ1が使用される場合、ルツボノズル85の壁の厚みがその中を通る液状シリコンの流れによってアブレーションを受けるため、オリフィス直径D1は増大することになると理解されたい。従って、液状シリコンの最適な質量流量を維持するために、オリフィスの直径が増大するに従って、オリフィス111上の初期メルト高さHが低下することが好ましい。オリフィス111を通る液状シリコンの質量流量は、オリフィスを出る液体の速度(v)が、オリフィス(h)上の高さhの2倍に、重力定数(g)を乗じた値の平方根に等しいという、トリチェリの法則(Torricelli's Law):即ち、
v=(2×h×g)1/2
[式中、vはオリフィスを通過する液体の速度であり、hはメルト高さHであり、およびgは重力定数(gravitational constant)である。]
で示される法則を適用することによって、求められる。そして、オリフィス111を通って流れる液体の質量流量は、上記の式からの液体の速度に、オリフィスの面積および液体の密度を乗じることによって計算される。
ノズル85のオリフィス111の相対的な寸法は、溶融装置アセンブリ1の連続した操作の間に、ルツボ65からの液状シリコンの所望の質量流量を維持するために必要とされるメルトHを調整することによってモニターされる。オリフィス111がアブレートされて、液状シリコンの所望の質量流量が、達成し得る溶融速度を越えるようになると、ルツボ65は交換される。1つの態様において、オリフィス直径D1は、溶融ルツボ65が交換される前に、3.0mm(0.12インチ)まで増大することが許容される。約3.0mm(0.12インチ)のオリフィス直径D1にて、85kg/時間の液状シリコン流量を維持するためには、メルト高さHは約177mm(7.0インチ)まで下がらなければならない。
結晶成長ルツボCC内のメルトプールMに液状シリコンが衝突する際に、液状シリコンが過剰にはねることを防止するため、ルツボノズル85から結晶成長ルツボに内のメルトへ、液状シリコンの導かれたストリームが流れることが必要である。約85kg/時間の液状シリコン流量にて、種々のノズルデザインをテストした結果に基づいて、好ましいデザインの溶融ルツボノズル85が求められた。好ましいデザインの溶融ルツボノズル85は、約6〜14mm(0.24インチから0.55インチまで)まで、より好ましくは約10mm(0.39インチ)の第1の部分109についての初期直径D2と、約50から60mm(1.96インチから2.4インチまで)、より好ましくは約55mm(2.16インチ)の第1の部分の長さL1とを有するということが求められた。ノズル85のオリフィス111は、約2.1から2.3mm(0.08から0.09インチ)の範囲、または好ましくは、約2.2mm(0.087インチ)の初期内径D1と、約8から12mm(0.39から0.47インチ)の範囲、またはより好ましくは約10mm(0.39インチ)の長さL2とを有することができる。第3の部分115は、約3から8mm(0.12から0.31インチ)の範囲、より好ましくは約3mm(0.12インチ)の内径D3と、約76mmから210mm(3.0インチから8.3インチ)、好ましくは、約118mm(4.6インチ)の範囲の長さL3を有することができる。ノズル85の第3の部分115の好ましい長さL3は、以下の式:
L3=50+(50×D3/D1)
からミリメートル単位で計算することができるということが、見出された。上記の式は、約50kg/時間から約140kg/時間の範囲の液状シリコンの質量流量のための、ノズル85の第3の部分115の好ましい長さL3を決定するために用いることができる。ノズル85の第1の部分109、第2の部分111、および第3の部分115の好ましい形態は、液状シリコンの所望の質量流量を含めて、種々のファクターに依存するということが認められる。従って、本発明は、本明細書に挙げたノズル85の特定の寸法に限定されるものではない。
図3に示すように、スプラッシュガードアセンブリ(splash guard assembly)は全体として符号151で示され、スプラッシュガード155と、そのスプラッシュガード155から上方に延びる4本のケーブル163、165(2本だけを示す)、およびその4本のケーブルによって接続される4つの滑車159、161を有しており、ドッキングカラー9によって支持されている。滑車159、161は、ドッキングカラー9の外側からアクセスすることができるハンドル173を有するシャフト169に接続されている。ハンドル173は、手操作で回すことによりシャフト169を回転させて、溶融装置アセンブリ1の操作の間に、スプラッシュガード155を上昇させたりまたは降下させたりすることができる。スプラッシュガード155は、逆にされたボウル形状を有しており、溶融シリコンがスプラッシュガードを通過することができるように、開口した頂部および底部を有している。スプラッシュガード155は、石英ガラス、溶融石英、シリコン炭化物被覆されたグラファイト、またはその他の好適な材料によって形成することができる。図3において鎖線によって示すように、スプラッシュガード155は結晶引上げ装置CPの熱遮断材HSの内側に適合するような寸法に形成されており、スプラッシュガード155は結晶成長ルツボCCの中でメルトMの表面の近くまで降下させることができる。スプラッシュガードアセンブリ151は、溶融装置アセンブリ1と結晶成長ルツボCCとの間で液体を位相する間に、結晶引上げ装置CP内での液状シリコンがスプラッシュやしぶきから、熱遮断材HSおよびその他のホットゾーンの要素を保護する。
使用に際して、本発明の溶融装置アセンブリ1は、重力式フィーダGFから受け入れた多結晶シリコンを効率的に溶融させ、注入する。溶融装置アセンブリ1は、結晶成長ルツボCCに液状シリコンを再充填するために結晶引上げ装置CPに容易に接続することができ、その後、シリコンインゴットIを製造するために上側引上げチャンバーPCに取り付けるために結晶引上げ装置CPから取り外すことができるように構成されたモジュール式の構成を有している。溶融装置アセンブリ1の持ち運びできる構成によれば、複数の(例えば8個の)結晶引上げ装置CPに対応して供給することができる(service)単独の溶融装置アセンブリのみを必要とすることによって、著しいコスト削減がもたらされる。
溶融ルツボ65が空の状態で、冷却水(図示せず)、電力(図示せず)およびパージガス(図示せず)が、溶融装置アセンブリ1に接続される。次に、下側ハウジングLH(図2)内のゲート分離弁GVが閉じられて下側ハウジングが分離され、結晶引上げ装置CPの上側のハウジングUHが下側ハウジングから取り外されて、図3に示すように、溶融装置アセンブリ1に置き換えられる。溶融装置アセンブリ1のドッキングカラー9と下側ハウジングLHとの間のフランジ接続部FCを締めた後で、溶融装置アセンブリは多結晶シリコンフィーダGFに接続される。フィーダGFを溶融装置アセンブリ1に接続した後で、溶融装置アセンブリ内の空気が真空ポンプによって除去されて、溶融装置アセンブリ内の圧力が結晶引上げ装置CPの圧力(約10〜30torr)とほぼ等しくなるように、不活性ガス(例えばアルゴンガス)に置換される。溶融装置アセンブリ1内の圧力を上昇させた後、結晶引上げ装置CP内の雰囲気が溶融装置アセンブリ1に浸透するように、ゲート分離弁GVが開かれる。
図10に示すように、溶融ルツボ65の中に粒状多結晶シリコンGPを添加して、20cm(8インチ)の内径を有する溶融ルツボ内での最初の溶融のための粒状多結晶シリコンGPとして約4〜7kgの初期装入材料を提供する。20cm(8インチ)内径の溶融ルツボについての適切な初期装入材料質量は約5kgである。電源100からの出力をオンにして(作動させて)、サセプタ69まわりの上側コイル95に10kWの交流電流を供給する。図11に示すように、ルツボ内の多結晶シリコンGPの初期装入材料はメルト−インサセプタ125からの熱のために溶融して、全体として、粒状多結晶シリコンの初期装入材料の底部の近くであって、ルツボ65底部のノズル85内の固体多結晶シリコンGPの溶融していないプラグの上方で溶融シリコンLSの形成を開始する。図11の初期溶融段階において、溶融していない多結晶シリコンGPの頂部層は、液状多結晶シリコンおよび固体状多結晶シリコンの半溶融状態混合物を含む中間の層SLによって、溶融シリコンLSから分離されている。中間の層SLは、溶融ルツボ65の円錐形態の壁107に隣接する環状のボイドAVによって、溶融するシリコンから分離されている。粒状多結晶シリコンGPが溶ける際に、溶融していない粒状多結晶シリコンと液状シリコン(LS)との間の密度差によって、溶融ルツボ65内にボイドAVが生じる。図11Aに示すように、コイル95に約12〜16kWの出力を供給して、ルツボ65内の溶融を続行させて、溶融シリコンの頂部の上方に間隔をおいて存在する固体多結晶シリコンのクラスト(crust)CLを除いて、初期の粒状多結晶シリコンGPの全体を溶融させて溶融シリコンLSとする。クラストCLは、溶融シリコンLSの熱を抑え、コイル95からの誘起力によってルツボ内で動く間に、ルツボ65から液状シリコンがはねかかることを防止する。溶融プロセスにおけるこの段階で、ボイドスペースVSはルツボ内の液状シリコンLSからクラストCLを隔てている。図12に示すように、上側コイル95への出力を短い時間的間隔(例えば20〜30秒)で、約60〜70kWまで増大させることにより、上側コイル95をパルス化して、クラストに開口部OGが生じ、コイルからの誘起力により液状シリコンLSのレベルが上昇し、クラストCLを通って接触し溶融する。短い時間的間隔でのコイル95のパルス化は、クラストCLが溶融するまで約2〜5分続けられる。
クラストCLを通って溶融した後、ルツボ65に追加の粒状多結晶シリコンGPが追加される(図13)。溶融プロセスにおけるこの時点で、ノズル85の第1の部分109の中に延びており、溶融したシリコンLSがルツボ65から出ることを防止している固体プラグOPは、ルツボがドレーンされる(内容物が排出される)前に、メルト高さHを所望のレベルへ上昇させることができる。図13Aに示すように、粒状多結晶シリコンGPをほぼ最大の割合(例えば、約70〜85kg/時間)で添加して、メルト高さの上昇を開始させ、およびクラスト層CLの残存物を溶融させ続ける。この段階で、コイルへの出力は、約70〜85kg/時間の粒状多結晶シリコンGPの最大流量のために、約160kWまで増大する。図示する態様例において、溶融物のこの段階におけるメルト高さHは、約38mm〜89mm(1.5インチ〜3.5インチ)である(図13A)。
粒状多結晶シリコンGPの初期装入材料を溶融させた後、追加の粒状多結晶シリコンがルツボに追加され(図13および13A)、およびメルト高さHは約250mm(10インチ)まで上昇した(図14)。次に、スプラッシュガード155が結晶引上げ装置CPのホットゾーンの中へ降下され、結晶成長ルツボCCの中で、(図3において鎖線で示すように)一般にシリコンメルトMの表面の近くに配置される。スプラッシュガード155を降下させた後(図3)、電源101から下側コイル99へ電力を供給して、ルツボの底部壁107の温度を上昇させ、ルツボノズル85内の固体プラグOPを溶融させ始める(図14)。この段階で、上側コイル95へ供給される電力は、液状シリコンLSが過熱されることを防止するために、減少される。下側コイル99における誘起力によって固体プラグOPが溶融すると、溶融シリコンLSはノズル85から流れ始め、該ノズルの中心軸に全体として沿う導かれたフローストリームにて、ノズルの第1の部分109、第2の部分111、および第3の部分115の中を通過する(図15)。液状シリコンLSがルツボ65から流出し始めると、フィーダGFは約85kg/時間の多結晶シリコンの目標フィード流量に設定されることが必要とされる。ルツボ65から溶融シリコンLSが流れる間に、ルツボ内の液状シリコンのメルト高さHはモニターされ、高さHをオリフィス111の直径D1に対応する最適なレベルに維持するように、粒状多結晶シリコンGPの供給レートがそれに応じて調節される必要がある。メルト高さHが最適値の上方へ上昇すると、多結晶シリコン供給レートは下げられるべきであり、メルト高さが最適な値を下回るならば、供給レートは増大させられるべきである。ルツボ65から溶融シリコンLSが流出する間、ルツボノズル85を出る液状シリコンの(例えば、少なくとも約20℃での)過熱の最適な程度を維持するように、上側コイル95および下側コイル99への出力を適合させるべきである。
フィーダGFから目標量の粒状多結晶シリコンGPが供給されると、粒状多結晶シリコンフィードはオフにされて、上側コイル95への出力は約12kWまで減らされる。この段階で、ルツボ65はドレーン(または排出)されている(図16)。必要な場合には、パージガス(例えばアルゴンガス)を溶融装置アセンブリに加えて、アセンブリの中で圧力を増大させて、ルツボノズルに残存しているシリコンを適切なレートで排出することもできる。ルツボ65内のメルト高さHが降下すると、ルツボのアウトレット85を通過する液状シリコンLSの質量流量も減少する。パージガスを用いて、ルツボ65内に残存している液状シリコンLSに圧力を加えることによって、ルツボのノズル85から液状シリコンが十分な速度で流出して、ノズルの中心軸に沿って全体として導かれるフローストリームを維持させることができる。液状シリコンLSの所望の質量流量を維持するためには、メルト高さHが10mm(0.4インチ)降下する毎に、溶融装置アセンブリ1と結晶引上げ装置CPとの間で、約2torr(0.04psi)の圧力差が望ましいということが求められている。液状シリコンLSの溶融物が完全に排出された後、上側コイル95および下側コイル99への出力がオフにされて、スプラッシュガード155はドッキングカラー9の中へ上昇させられる。下側ハウジングLHのゲート分離弁が閉められて、成長チャンバーGCが隔離される。次に、溶融装置アセンブリ1に雰囲気圧にて空気が充填されて、溶融装置アセンブリ中に存在する酸化ケイ素が酸化させられ、結晶引上げ装置から溶融装置アセンブリを分離する際における酸化ケイ素の制御されない燃焼を防止する。溶融装置アセンブリ1に空気を満たした後、該アセンブリは結晶引上げ装置CPから切り離されて、溶融と排出サイクルとの間で保管されたりすることもできるし、または他の結晶引上げ装置に再装入するために直ちに準備させられたりすることもできる。溶融装置アセンブリ1が取り外された後、結晶引上げ装置CPの上側ハウジングUHが交換されて、引上げ装置はメルトMからシリコンインゴットIを製造する準備がされている。
本発明の溶融装置アセンブリ1の操作によって、約5時間〜5と1/2時間の結晶引上げ装置CPの結晶成長ルツボCC内における多結晶シリコンソース材料の全体の溶融および充填時間が得られる。常套の結晶引上げ装置CPの結晶成長ルツボCC内における溶融プール調製時間は、250kg(551ポンド(lbs))装入材料について約18時間を要する。本発明の溶融装置アセンブリ1を使用することによる著しい時間的節約によって、溶融装置アセンブリ1により満たされた個々の結晶引上げ装置CPのインゴットI製造が著しく増大する。また、多結晶シリコンの溶融が溶融アセンブリ1内で分離されており、結晶引上げ装置CPのホットゾーンでは行われないことによって、より高い水素含量を有する多結晶シリコンを加えることによるスプラッシュやしぶきは溶融装置アセンブリの中に含まれるため、あまり高価ではなく、脱水素化されていない多結晶シリコンソース材料を使用することができる。
図29に示すように、本発明の溶融装置アセンブリ1を使用することによって、複数の結晶製造装置(例えば結晶引上げ装置CP)に対応して供給(service)することができる。溶融装置アセンブリ1は上述のように、溶融させたソース材料LSの装入材料を結晶引上げ装置CPへ供給し、その後、引上げ機構(図示せず)を上昇させることによって移動させられ、隣接する結晶引上げ装置に取り付けられるように操作することができる。溶融装置アセンブリ1による供給を受けるために、4台の結晶引上げ装置CPが示されているが、溶融装置アセンブリは、この発明の範囲を逸脱することなく、4台以上またはそれ以下の数の結晶引上げ装置に対応して供給し得るということが理解されるべきである。
溶融装置アセンブリ1は、最初に、第1の結晶引上げ装置CPに対して配置され、上記説明したように操作されて、第1の結晶引上げ装置のルツボCCに溶融シリコンLSを供給する。上述したように、ヒータの上側コイル95および下側コイル99は、溶融ルツボ65内のソース材料を溶融させて、溶融させたソース材料のストリームを溶融装置アセンブリ1のノズル85を通して第1の結晶引上げ装置CPの主ルツボCCへ流れさせるように操作される。第1の結晶引上げ装置CPに対応して供給した後、第2の結晶引上げ装置の引き上げチャンバーPCを包囲している上側のハウジングUHが取り外されて、溶融装置アセンブリ1は、第2の引上げ装置の下側ハウジングLHを隔離しているゲート分離弁GVの上方に配置される。溶融装置アセンブリ1は、クレーン(図示せず)またはその他の昇降機構によって、第1および第2の結晶引上げ装置CPに対して配置することができる。溶融装置アセンブリを第2の結晶引上げ装置の上方の位置に移すことができるように、第1の結晶引上げ装置CPの上方で溶融装置アセンブリ1を上昇させるのにクレーンを用いることができる。第2の結晶引上げ装置CPに対して溶融装置アセンブリ1を配置した後、第2の結晶引上げ装置の下側ハウジングLHに溶融装置アセンブリが接続される。溶融装置アセンブリを結晶引上げ装置に接続した後、溶融装置アセンブリを操作して、溶融させたソース材料のストリームを第2の結晶製造装置へ供給することができる。この発明の範囲を逸脱することなく、本明細書に記載するいずれかの態様例の結晶製造装置またはその他のいずれかの結晶製造装置にも、複数の結晶製造装置にサービスする(または対応して供給する)方法を適用することができると理解されたい。さらに、溶融および充填サイクルの完了後、溶融装置アセンブリ1を静置させ、溶融装置アセンブリに対して結晶引上げ装置CPを移動させ、第2の結晶引上げ装置と交換し得るということも理解されたい。この結晶引上げ装置を使用して、図29に示されている4台よりも多い数または少ない数の結晶引上げ装置CPに対応して供給することができると、理解されたい。
図17には、本発明の第1の態様例の溶融アセンブリ1と実質的に同様である、全体として符号201で示されるもう1つの溶融アセンブリが示されている。図17の溶融アセンブリ201は、閉じられた頂部壁部207を有する溶融ルツボ203を有している。溶融ルツボ203の閉じられた頂部壁部207は、ルツボ内の溶融シリコンLSに粒状多結晶シリコンGPが加えられる場合に生じ得るスプラッターを有している。また、頂部壁部207は、粒状多結晶シリコンGPが溶融ルツボ203中に装入される際に生じる多結晶シリコンの粉塵成分(dust)を含んでいる。
図18は、全体として符号215で示される、更にもう1つの態様の溶融装置アセンブリを示しており、これは誘導電流を供給して固体の多結晶シリコンGPを溶融させるための、上側コイル219、中間のコイル221、および下側コイル223を有している。この態様例の構成は閉じた頂部壁部231を有している点では前の態様例と同様であるが、この態様例の構成も、この発明の範囲を逸脱することなく、頂部の開かれたルツボの構成に含まれ得るということも理解されたい。この態様例の3コイル形態は、上側コイル219、中間コイル221および下側コイル223へ供給される電流を制御することによって、メルトの温度を制御することができる。各コイル219、221、233は独立してそれ自身の電源に接続されており、各コイルを流れる電流を独立して制御することができる。3つのコイル219、221、223のそれぞれによって生成される加熱出力の程度は、独立して調節することができる。
中間のコイル221を付加したこの構成では、中間のコイルを通って流れる電流を調節することによって、ルツボ227の中間部分におけるシリコンメルトの加熱を独立して制御することができる。この構成の独立した下側コイル223は、下側コイルを通って流れる電流の周波数を調節することによって、アウトレット235を通って流れるシリコンの熱を独立して制御することができる。また、下側コイル223を使用して、アウトレット235内に磁界を形成し、アウトレット235の内径よりも小さい直径にシリコンの流れを制限することもできる。アウトレット235の中を通過するフローストリームの直径を縮小することによって、ルツボ227からのメルトの流量を制御することができ、アウトレットを通過する液状シリコンと、該アウトレットの内側表面との間の接触を減らし、その結果として、アウトレットのアブレーションの割合を低下させることができる。
図19は、全体として符号251で示されており、重力式フィーダGFのアウトレットを収容するための、2つの45度のベンド265、267を有する多結晶シリコン供給インレット263を有する、閉じた頂部壁部259を有するルツボ255を含む溶融装置アセンブリのもう1つの態様例を示している。この構成は、固体の多結晶シリコンをルツボに移送することから生じる多結晶シリコン粉塵成分、および多結晶シリコンがルツボ内で衝突する際に頻繁に生じるメルトスプラッシュの両者を含んでいる。2つのベンドは、多結晶シリコンのスプラッシュが重力式フィーダに到達することを防止するねじれたパスを形成している。また、2つのベンドは、フィーダを、異なる位置から溶融装置アセンブリに接続することができるように、溶融装置アセンブリのセンターラインからオフセットしている重力式フィーダに対応することができる。
図20および21は、全体として305で示されるルツボと複数のチャンバーを有し、全体として符号301で示される更にもう1つの溶融装置アセンブリを示している。ルツボ305は、底部ノズル311を有する外側ボウル309、外側ボウル309に溶接接続されており、溶融シリコンLSを流入させるための(図では2つだけが示されている)ポート317、および底部ノズルの寸法に対応する大きさの内側のシリンダ堰321を有している。シリンダ堰321は、ボウル309およびフィルタシリンダ315よりも短い寸法を有しており、ノズル311を包囲しているので、シリンダ堰の内側の液状シリコンLSはルツボ305のノズルから排出される。この構成における溶融ルツボ305は、ボウル309とフィルタシリンダ315との間のスペースによって規定される溶融チャンバー325、フィルタシリンダ315と堰321との間の制御チャンバー329、およびシリンダ堰321の内側のスペースによって規定されるドレインチャンバー333を有している。
ノズル311は上述したノズル85と同様に構成することができ、抵抗加熱されるメルトフローガイド337と組み合わせて使用することができる。フローガイド337は、溶融ルツボ305から該フローガイドの外側表面に沿って、成長ルツボCCの中へ導くことによって、溶融ルツボ305からの液状シリコンの流れを制御する。図20および21Aに示す態様例では、メルトフローガイド337は、外側ボウル309のノズル311を通して受けられる石英ガラスチューブの形態を有しており、ドレインチャンバー333に軸方向に位置合わせされている。メルトフローガイド337は、そのチューブの内側に発熱エレメント339を有しており、これによってフローガイドの温度を、シリコンの融点(約1414℃)にほぼ等しいかまたはそれより多少高い温度に維持する。図21Aに示すように、フローガイド337は、結晶引上げ装置CP(図2)の結晶成長ルツボの中へ下方に延びて、溶融アセンブリ301からの結晶引上げ装置への溶融シリコンの流入を容易にすることができる。これによって、結晶成長ルツボ内でのスプラッシュやしぶきを低減させることができる。フローガイド337は、この発明の範囲を逸脱することのない範囲で、種々の適当な物質(例えば、溶融石英、石英ガラス、シリコン炭化物被覆されたグラファイトなど)によって形成することができる。発熱エレメント339は、モリブデン、タングステンまたはグラファイト抵抗ヒータと共に使用するための電気抵抗発熱エレメントであってよい。別法として、フローガイド337は、モリブデン、タングステンまたはグラファイトサセプタを有する誘導加熱によって加熱することもできる。
図21Bは、溶融ルツボ305のノズル311を受け入れるチューブの形態を有する、フローガイド341の変更された態様例を示している。フローガイド341はチューブの外側に発熱エレメント343を有しており、溶融シリコンLSはノズル311からチューブの中に流入する。前の態様例と同様に、フローガイド341は、溶融ルツボ305からの溶融シリコンLSの流れを、結晶引上げ装置CP(図2)の成長ルツボCCへ案内する。前の態様例と同様に、フローガイド341は抵抗加熱、誘導加熱、またはその他の加熱方法によって加熱することができる。
図21Cは、溶融ルツボ305のノズル311を受け入れるフローガイド345のもう1つの態様例を示している。フローガイド345は、ノズルから流れる溶融シリコンLSのコヒーレントなストリームがフローガイドの壁部に接触しないような寸法を有している。溶融シリコンがフローガイド345の壁に接触しないので、前の態様例のように、ガイドは発熱エレメントを有していない。フローガイド345は、ノズル311からのフローストリームが成長ルツボ内の液状シリコンのプールに入る際に、成長ルツボCCからの液状シリコンLSが結晶引上げ装置のホットゾーンコンポーネントに接触することを防止する。
図20および21の構成において、粒状多結晶シリコンGPが溶融チャンバー325に加えられ、多結晶シリコンは上述した第1の態様例(すなわち、ルツボ305まわりの誘導コイル341による誘導加熱)と同様にして溶かされる。溶融チャンバー325内において粒状多結晶シリコンGPが溶融すると、溶融シリコンLSはフィルタシリンダ315内のポート317を通って流れて、ルツボ305の制御チャンバー329を満たす。制御チャンバー329内の溶融シリコンLSのレベルがシリンダ堰321の高さに達すると、溶融シリコンは堰の頂部の上を流れて、ルツボ305のノズル311から出始める。溶融シリコンLSはフローガイド337に接触して、結晶成長ルツボCCまで、遅い制御された速度にて、そして全体としてノズル311と軸方向に位置合わせされて、流れる。このようにして、結晶引上げ装置CPのホットゾーン部分への液状シリコンのはねかけを減少させる方法で、溶融装置アセンブリ301は溶融シリコンLSの制御された流れを結晶成長ルツボCCへ供給する。フィルタシリンダ315において、ポート317は、液状シリコンに浮遊し得る溶融していないシリコンが溶融チャンバー325からアセンブリ301の制御チャンバー329へ移動し得ないように、液状シリコンLSの表面の下側に配置されている。
図22は、単独の内部チャンバー357を有する溶融ルツボ355を有すること以外は、上記の態様例と同様の、全体として符号351で示される溶融装置アセンブリを示している。ルツボ355は、ルツボ内で多結晶シリコンを溶融させるために溶融誘導コイル361によって取り囲まれている。ルツボ355のアウトレット363は溶融ガイド367を受け入れており、電源(図示せず)からの交流電流を流れさせるための下側誘導コイル371によって取り囲まれている。下側誘導コイル371(また浮揚バルブ(levitation valve)とも称される)は、ルツボ355の外側で液状シリコンLSの流れを制御するノズルバルブとして機能する。電流が下側誘導コイル371を通って流れる際に、液状シリコンLSの流れ経路に引き起こされた磁界は、ルツボ355からの液状シリコンの流れを塞ぐのに十分な程度の強さを有している。ルツボ355からの液状シリコンLSの流れは、下側の誘導コイル371へ供給される電流のオンとオフとを切り替えることによって制御される。
図23は、全体として符号381で示される、もう1つの態様の溶融装置アセンブリを示している。溶融装置アセンブリが、溶融ルツボ385の頂部壁部383を越えて液状シリコンを注ぐことによって、液状シリコンLSを結晶成長ルツボCCの中に移すように構成されていること以外は、上述の態様例と同様である。溶融装置アセンブリ381は、結晶引上げ装置CPとは独立して制御された環境にて、溶融ルツボ385を加熱して、固体の多結晶シリコンを溶融させるためのヒータ389を有している。ヒータ389は、この発明の範囲を逸脱することなく、上述したような誘導コイル、抵抗ヒータまたはその他の好適なヒータを有することができる。固体の多結晶シリコンが溶融した後、溶融ルツボ385は結晶成長ルツボCCの上方に配置され、液状シリコンLSが該ルツボの頂部壁部を越えて注がれ、結晶成長ルツボを満たすように傾斜される。結晶成長ルツボCCは、結晶引上げ装置の操作の間中に連続的に充填することもできるし、または結晶引上げセッションの終わりに、バッチ式の充填プロセスによって充填することもできる。
図24は、全体として符号GAで示される、エッジ規定されるフィルム成長(Edge-defined Film Growth(EFG))方法の形態の、従来技術におけるもう1つの結晶製造装置を示している。図示する特定の装置は、中空の八面の多結晶のシリコン物体(8-sided polycrystalline silicon bodies)(図示せず)を成長させるために構成されている。但し、この装置は、その他の形態を有する結晶物体を形成するように設定することもできると理解されたい。装置GAは、結晶成長チャンバーGC1を取り囲む下側ハウジングLH1と、引き上げチャンバーPC1を取り囲む上側ハウジングUH1とを有している。図24において、上側ハウジングUH1は、大部分が破断して示されている。図示する態様例において、下側ハウジングLH1は、成長ルツボGC1、キャピラリーダイCD1、サセプタS1、内側ヒータアセンブリIH1、および外側ヒータアセンブリHA1を含むルツボ/キャピラリーダイシステムを取り囲んでいる。
ルツボGC1は、溶融させたソース材料SM1(例えば、多結晶シリコン)の装入材料を含んでおり、ルツボ内のソース材料を加熱するためのラジオ周波数加熱コイルHC1によって取り囲まれている。ルツボGC1は、全体として符号EF1で示される端面を有しており、そこには、全体としてルツボの周囲端部の近くに位置して、キャピラリーギャップCG1を有している。キャピラリーギャップCG1およびルツボGC1は、装置GAによって形成される結晶物体の断面形状に対応する形状を有している。ルツボGC1は、溶融シリコンSM1がキャピラリーギャップCG1に流入して、キャピラリー作用(毛管作用)によって上昇することができるように、ルツボの内側壁に形成されたスロットST1を有している。図示する態様例において、装置GAは、キャピラリーギャップCG1の形態に対応して、八角形の形態(octagonally shaped)を有する種結晶SC1を有している。種結晶SC1が、キャピラリーギャップCG1内の溶融シリコンSM1に接触するように、降下されて、成長シーケンスが開始される。種結晶SC1がキャピラリーダイCD1から上昇すると、ギャップCG1内の溶融シリコンSM1がダイから引き出され、キャピラリーギャップ内で毛管作用によって、ルツボGC1から溶融シリコンが上昇して、ルツボから除かれた材料が補給される。米国特許第5,156,978号、同第4,647,437号、同第4,440,728号、同第4,230,674号、および同第4、036、666号を参照することができ、常套のEFG結晶製造装置に関するその他の情報についても、それらの開示事項は参照することによってこの明細書に組み込まれる。
図25は、図24のEFG結晶製造装置GA1の上側に取り付けられた本発明の溶融装置アセンブリ1を示している。引き上げチャンバーPC1を包囲する上側のハウジングUH1を除去し、および溶融装置アセンブリのドッキングカラー9を結晶製造装置の下側ハウジングにおけるフランジFA1に接続することによって、溶融装置アセンブリ1は装置GA1に接続されていると理解されたい。それから、溶融装置アセンブリ1は、EFG結晶製造装置GA1のルツボGC1に溶融シリコンSM1を充填する上述の方法と同様の方式で操作される。EFG結晶製造装置GA1のルツボGC1が溶融シリコンSM1で満たされると、溶融装置アセンブリ1は取り外され、結晶製造装置の操作のために、上側ハウジングUH1に置き換えられる。
図26は、全体として符号GA2で示される、従来技術におけるもう1つの結晶製造装置を示している。図26の結晶製造装置GA2は、固体結晶リボンCR2を製造するストリング・スタビライズド成長(String Stabilized Growth(SSG))方法を用いる結晶引上げ装置であって、ルツボGC2内に含まれるメルトSM2から成長が行われる。この結晶製造装置GA2は、太陽電池もしくはその他の半導体デバイスの製造に好適な単結晶シリコンまたは大きなグレインの、薄く幅広いシート状の多結晶シリコンを製造することができる。
図26に示すように、装置GA2は、2つの間隔をおいて配置されているストリングSS1およびSS2を有しており、ストリングSS1およびSS2はルツボGC2およびその中に含まれているメルトSM2の中を通過している。ルツボGC2に電気的に接続されている直流電源(図示せず)によって、メルトSM2内に電流が誘導される。ルツボGC2内の中空のバリアHB2は、そこから結晶CR2が成長するメルト深さを減少させ、結晶の品質を向上させる。供給チューブST2を経て固体の多結晶シリコン(図示せず)がルツボGC2に追加されて、その中で溶融して、メルトSM2を形成することができると理解されたい。ルツボ内のメルトSM2および固体のソース材料を加熱するために、加熱作用コイルHC2(図27)がルツボGC2を包囲している。メルトSM2が不純物を含むようになった後に、ルツボを空にして、メルトを新鮮なソース材料に置換することができるように、ルツボGC2はメルトチューブMT2を有している。ストリングSS1、SS2がルツボGC2から上方に引き上げられると、両ストリングの間の液状シリコンもルツボから引き上げられ、冷却されながら固化して、固体の多結晶シリコンのリボンCR2が形成される。図26の装置は、ルツボGC2を取り囲む下側ハウジングLH2(図27を参照)と、ストリングおよびリボンCR2を引き上げるための引上げ装置を取り囲む上側ハウジング(図示せず)とを有し得ると理解されたい。米国特許第4,689,109号、同第4,661,200号、および同第4,627,887号を参照することができ、SSG結晶製造装置に関するその他の情報についても、それらの開示事項は参照することによってこの明細書に組み込まれる。
図27に示すように、本発明の溶融装置アセンブリ1は、ルツボに溶融シリコンSM2を再チャージするためのSSG結晶引上げ装置GA2のルツボGC2の上方の上側ハウジングに置換して配置させることができる。溶融装置アセンブリ1は、溶融シリコンSM2をSSG結晶引上げ装置GA2に供給する上述の態様例と同様の方法で操作することができる。
図28に示すように、本発明の溶融装置アセンブリ1は、全体として符号GA3で示される、固体の結晶インゴットSI3をキャスティングするためのキャスティング装置に溶融させたソース材料SM3を供給するために用いることができる。図28に示す態様例において、キャスティング装置GA3は、全体として符号MD3で示されるモールドの下側に、格納し得る(retractable)サポートメンバーSP3を有する連続的キャスティング装置である。図示する態様例において、モールドMD3は、間隔をおいて配置される一連のルツボフィンガCF3を有しており、該ルツボフィンガCF3はRFコイルRC3によって包囲されている。RFコイルRC3は、ルツボフィンガCF3内に電流を誘導して、溶融ソース材料SM3とは反対に荷電された電流を誘導し、溶融材料はルツボフィンガから反発されて、キャスティング装置GA3の中に含まれる。ルツボフィンガCF3の中を通して冷却液体(図示せず)が循環し、溶融させたソース材料SM3の冷却を支援する。
ルツボフィンガCF3から離れてサポートメンバーSP3を降下させることによって、キャスティング装置GA3内で固体のシリコンインゴットSI3が形成される。格納し得るサポートメンバーSP3がルツボフィンガCF3の底部から離れてゆっくりと降下すると、溶融した材料SM3の底部部分において誘導される電流は徐々に減少して、溶融した材料はルツボフィンガから離れながら冷却される。サポートメンバーSP3が降下すると、インゴットSI3がキャスティングされ、ルツボフィンガCF3から取り出される溶融ソース材料SM3が冷却されおよび凝固する。一般に、装置GA3の頂部から加えられる固体のソース材料(図示せず)は、装置内で溶融されて、格納し得るサポートメンバーSP3が降下する際に、取り出される溶融したソース材料SM3が補給される。図28に示すように、本発明の溶融装置アセンブリ1をルツボフィンガCF3の上方に取り付けて、固体のインゴットSI3のキャスティングに用いられる溶融ソース材料SM3の量を補充(または補給)することができる。
溶融装置アセンブリ1は、上述したのと同様の方法で操作して、キャスティング装置GA3に溶融ソース材料SM3の導かれた流れを提供することができる。図示する態様例において、ルツボフィンガCF3によって形成されたモールドMD3に、溶融させたソース材料SM3を提供されることができるように、溶融装置アセンブリ1は、最初に、キャスティング装置の上方に配置される。粒状多結晶シリコンGP(図10)を溶融装置アセンブリ1に加えた後で、溶融装置アセンブリ内の上側加熱作用コイル95を操作して、溶融ルツボ65内のソース材料を溶融させる。下側加熱コイル99を操作して、ルツボノズル85上の固体プラグOPを溶融させて、溶融ソース材料LSを溶融装置アセンブリ1のオリフィス111を通して流れさせると、溶融させたソース材料の導かれたストリームを結晶製造装置GA3のルツボGC3へ供給することができる。結晶製造装置のルツボGC3が充填された後、下側加熱コイル99の操作を中断すると、溶融装置アセンブリ内で凝固したソース材料の固体プラグOPを形成することができる。固体プラグOPは溶融装置アセンブリ1から溶融させたソース材料LSが流出することを防止する一方で、キャストインゴットSI3はキャスティング装置GA3から取り出されるか、または次の多結晶体を製造するために新たなキャスティング装置が溶融装置アセンブリの下側に配置される。
図29に示されるキャスティング装置GA3は、この発明の範囲を逸脱することなく、バッチ式の固体インゴットをキャスティングするための固体壁を有する、常套の冷たいルツボモールドに置き換えられることもできると理解されたい。米国特許第4,769,107号、同第4,572,812号、および同第4,175,610号を参照することができ、本発明の溶融装置アセンブリ1を利用することが可能なキャスティングプロセスに関するその他の情報についても、それらの開示事項は参照することによってこの明細書に組み込まれる。
本発明またはその好ましい態様例の要素について、「1つの(a)」、「1つの(an)」、「その(the)」および「前記(said)」という記載は、1又はそれ以上の要素があることを意味している。「含んでなる(comprising)」、「含む(including)」、および「有する(having)」という語句は、包括的な意味であって、言及した要素以外の要素が存在してもよいことを意味することを意図している。
上述した事項を考慮すると、発明のいくつかの目的が達成されており、その他の利点も達成されていると理解されるであろう。
本発明の範囲を逸脱することなく、上述した構成の中で種々の変更を行うことができるので、本明細書の説明の中に含まれているすべての事項または添付図面に示される事項はすべて、例示を目的とするものであって、この発明がそれらに限定されるものではないということが意図されている。
図1は、本発明の溶融装置アセンブリの模式的な垂直断面図である。 図2は、結晶引上げ装置の形態の従来技術における結晶製造装置の模式的な一部破断断面図である。 図3は、結晶引上げ装置の下側ハウジングに取り付けられた溶融装置アセンブリの模式的な一部破断断面図である。 図4は、溶融装置アセンブリから独立している溶融ルツボ、サセプタおよび誘導コイルを示す模式的な垂直断面図である。 図5は、溶融装置アセンブリから独立している溶融ルツボ、サセプタおよび誘導コイルの立面図である。 図6は、図5における6−6線を含む面についての横断面図である。 図7は、図5における7−7線を含む面についての横断面図である。 図8は、サセプタの分解した垂直断面図である。 図9は、溶融ルツボのノズルを示す拡大した一部破断断面図である。 図10は、図4と同様の模式的な垂直断面図であって、溶融ルツボがフィーダからの固体多結晶シリコンによって充填されている状態を示している。 図11は、図10と同様の状態であって、溶融ルツボ内での固体多結晶シリコンの初期溶融状態を示している。 図11Aは、図11と同様の状態であって、溶融ルツボ内で固体の多結晶シリコンを更に溶融させた状態を示している。 図12は、図11と同様の状態であって、溶融ルツボ内で固体の多結晶シリコンを更に溶融させた状態を示している。 図13は、図12と同様の状態であって、溶融ルツボの中に固体の多結晶シリコンフィードを付加する状態を示している。 図13Aは、図13と同様の状態であって、溶融ルツボ内で固体多結晶シリコンを更に溶融させた状態を示している。 図14は、図12と同様の状態であって、溶融ルツボ内で固体の多結晶シリコンを更に溶融させた状態を示している。 図15は、図14と同様の状態であって、溶融ルツボのアウトレットを通って流れる液状シリコン、およびルツボの中に固体の多結晶シリコンを添加する状態を示している。 図16は、図15と同様の状態であって、溶融ルツボ内でメルト高さが降下する状態を示している。 図17は、図15と同様の状態であって、溶融ルツボのもう1つの態様を示している。 図18は、本発明のもう1つの態様の溶融装置アセンブリの模式的な断面図である。 図19は、本発明のもう1つの態様の溶融装置アセンブリの拡大し破断した模式図である。 図20は、本発明のもう1つの態様の溶融装置アセンブリの模式図である。 図21は、図20の態様の溶融ルツボの破断した断面図である。 図21Aは、1つの態様例のメルトフローガイドの模式的な断面図である。 図21Bは、第2の例のメルトフローガイドの模式的な断面図である。 図21Cは、第3の例のメルトフローガイドの模式的な断面図である。 図22は、結晶製造装置に取り付けられて示されている溶融装置アセンブリのもう1つの態様の模式的な断面図である。 図23は、液状シリコンが溶融ルツボと結晶製造装置の主たるルツボの間で移されている状態を示す、溶融装置アセンブリのもう1つの態様の模式的な断面図である。 図24は、EFG結晶引上げ装置の形態の、従来技術における結晶製造装置の模式的な一部破断断面図である。 図25は、図24の結晶製造装置の下側ハウジングに取り付けられている溶融装置アセンブリの模式的な一部破断断面図である。 図26は、従来技術のリボン成長結晶製造装置の部分的斜視図である。 図27は、図26の結晶製造装置の下側ハウジングに取り付けられた溶融装置アセンブリの模式的な一部破断断面図である。 図28は、キャスティングルツボの形態である従来技術の結晶製造装置の上方に取り付けられた溶融装置アセンブリの模式的な一部破断断面図である。 図29は、一連の結晶引上げ装置の中の第1の結晶引上げ装置に対応して供給するように配置された溶融装置アセンブリの模式図である。

Claims (32)

  1. 溶融させたソース材料の装入材料を結晶製造装置へ供給するための溶融装置アセンブリであって、
    ハウジング;前記ハウジング内に配置されたルツボ;前記ルツボの中に入れられた固体ソース材料を溶融させるためにルツボに対して配置されたヒータを有してなり、
    溶融させたソース材料の流れを制御することに適応化されたノズルをルツボが有していることによって、溶融させたソース材料の導かれた流れを選択された流量にて結晶製造装置へ供給することができることを特徴とする溶融装置アセンブリ。
  2. 前記導かれた流れは、溶融させたソース材料のコヒーレントなストリームである請求項1に記載の溶融装置アセンブリ。
  3. 前記ノズルは、相対的に大きい直径の第1の部分、相対的に小さい直径の第2の部分、および中間の直径の第3の部分を有してなり、該ノズルの第3の部分の長さが該ノズルの第1の部分および第2の部分の長さよりも長い請求項1に記載の溶融装置アセンブリ。
  4. ノズルの第3の部分の長さは、ミリメートル単位で、第3の部分の直径を第2の部分の直径にて除して50倍した数値に50ミリメートルを加えた数値に実質的に等しく、前記選択された流量は約50kg/hr〜約140kg/hrの範囲である請求項3に記載の溶融装置アセンブリ。
  5. 前記ヒータは、前記ルツボの上側部分の全体のまわりの第1の誘導コイルを有しており、該第1の誘導コイルは電源に接続されて、前記第1の誘導コイルに電流を供給することに適応化されている請求項1に記載の溶融装置アセンブリ。
  6. 前記ヒータは前記ルツボの下側部分の全体のまわりの第2の誘導コイルを有しており、該第2の誘導コイルはもう1つの電源に接続されて、前記ルツボの下側部分のソース材料に熱を供給することに適応化されている請求項5に記載の溶融装置アセンブリ。
  7. 第1および第2の誘導コイルとルツボとの間に配置されたサセプタをさらに有してなり、該サセプタは、前記第1の誘導コイルによる誘導加熱を防止するための、周方向について間隔をおいて配置された複数のフィンガを有する上側部分と、該サセプタの誘導加熱を促進する下側部分とを有する請求項6に記載の溶融装置アセンブリ。
  8. 前記サセプタは、円錐形態の中間部分と、ギャップによって隔てられた下側のアウトレット部分とを有しており、前記中間部分と前記上側部分とはギャップによって隔てられている請求項7に記載の溶融装置アセンブリ。
  9. 溶融装置アセンブリから結晶製造装置へ降下することに適応化されているスプラッシュガードであって、前記溶融装置アセンブリから結晶製造装置の中へ溶融させたソース材料を流入させる間に結晶製造装置を保護するスプラッシュガードを更に有する請求項1に記載の溶融装置アセンブリ。
  10. エッジ規定されるフィルム成長(EFG)方法に従って中空多結晶シリコン物体を成長させるために適応化された結晶引上げ装置、および鋳造多結晶シリコン物体を形成するために適応化したルツボを有する結晶製造装置と組み合わせられる請求項1に記載の溶融装置アセンブリ。
  11. ルツボから結晶製造装置へ溶融させたソース材料の流れを案内するメルトフローガイドを更に有してなり、前記メルトフローガイドは前記ノズルによって受けられた少なくとも1つのチューブと、該ノズルを受け入れるチューブとを有する請求項1に記載の溶融装置アセンブリ。
  12. 前記メルトフローガイドは、結晶製造装置とノズルとの間を流れる間に溶融したシリコンを加熱させるための加熱エレメントを有してなる請求項11に記載の溶融装置アセンブリ。
  13. 溶融装置アセンブリを結晶製造装置に対して配置して、該装置のルツボに溶融させたシリコンを供給する工程;
    溶融装置アセンブリの上側加熱コイルを操作して、溶融ルツボの中でソース材料を溶融させる工程;および
    溶融装置アセンブリの下側加熱コイルを操作して、溶融させたソース材料を溶融装置アセンブリのオリフィスの中を通して流れさせて、溶融させたソース材料のストリームを結晶製造装置のルツボへ供給する工程
    を含んでなる溶融させたソース材料を結晶製造装置に装入する方法。
  14. 成長チャンバーを規定する結晶製造装置の下側ハウジングから、引上げチャンバーを規定する結晶製造装置の上側ハウジングを取り外す工程、および前記上側ハウジングに代えて、下側ハウジングに溶融装置アセンブリを取り付ける工程を含んでなる請求項13に記載の方法。
  15. 下側ハウジングから溶融装置アセンブリを取り外し、該下側ハウジングに上側ハウジングを再度取り付け、前記溶融装置アセンブリから下側ハウジング内のルツボに供給されたメルトから単結晶インゴットを成長させることを更に含んでなる請求項13に記載の方法。
  16. 結晶製造装置は第1の結晶引上げ装置を構成しており、方法は下側ハウジングから第2の結晶引上げ装置の上側ハウジングを取り外すこと、および前記上側ハウジングの代わりに前記下側ハウジングに溶融装置アセンブリを取り付けることを含んでなる請求項14に記載の方法。
  17. 結晶製造装置の下側ハウジングに溶融装置アセンブリを取り付ける工程の後で、ソース材料を溶融させる工程を行う請求項14に記載の方法。
  18. 下側加熱コイルを動作させるのと同時に、溶融装置アセンブリの中へ追加の固体ソース材料を供給する工程を含んでなり、固体ソース材料の質量流量を溶融装置アセンブリから流出する溶融させたソース材料の質量流量と等しくなるように制御することを更に含んでなる請求項13に記載の方法。
  19. 上側の加熱コイルを動作させる工程の前に、溶融装置アセンブリの中に所定量の固体ソース材料を供給する工程を有してなり、上側の加熱コイルを動作させる工程は、溶融装置アセンブリのノズルを塞ぐための溶融していないソース材料のプラグ部分を外すことを含んでなる請求項13に記載の方法。
  20. 下側の加熱コイルを操作する工程が、ソース材料のプラグ部分を溶融させてノズルの閉塞を外すことを含んでなる請求項19に記載の方法。
  21. 下側の加熱コイルを操作する工程が、ソース材料の融点より高い過熱を維持して、結晶引上げ装置の下側ハウジング内のルツボに供給する間にソース材料が固化することを防止する工程を含んでなる請求項13に記載の方法。
  22. 上側の加熱コイルを動作させる工程が、所望される質量流量の溶融シリコンを供給するための溶融装置アセンブリのアウトレット上方においてメルト高さを確定することを含んでなり、前記方法は、結晶引上げ装置に対して溶融装置アセンブリを加圧して溶融シリコンの所望される質量流量を維持することを含んでなる請求項13に記載の方法。
  23. 溶融装置アセンブリを加圧する工程は、メルト高さの降下について約2torr/センチメートルで溶融装置アセンブリに不活性ガスを加えることを含んでなる請求項22に記載の方法。
  24. 下側加熱コイルの操作を停止して、オリフィスからソース材料が流れることを防止するソース材料の固体プラグを生じさせることによって、オリフィスを通る溶融シリコンの流れを停止させることを更に含んでなる請求項13に記載の方法。
  25. 結晶製造装置のルツボに供給されたメルトから単結晶インゴットを成長させること、および結晶製造装置のルツボに供給されたメルトから多結晶物体を形成することの少なくとも1つを更に含んでなる請求項13に記載の方法。
  26. 前記多結晶物体は、エッジ規定されるフィルム成長(EFG)方法に従って形成される中空の多角形のシリコン物体、多結晶シリコンのリボン、およびキャストされたシリコン物体の少なくとも1つである請求項25に記載の方法。
  27. 1つの溶融装置アセンブリによって複数の結晶製造装置に対応して供給を行う方法であって、
    第1の装置のルツボに溶融シリコンを供給するために、第1の結晶製造装置に対して溶融装置アセンブリを配置する工程;
    溶融装置アセンブリのヒータを操作して溶融ルツボ内でソース材料を溶融させる工程;
    溶融装置アセンブリから第1の結晶製造装置へ溶融させたソース材料のストリームを供給する工程;
    第2の装置のルツボに溶融シリコンを供給するために、第2の結晶製造装置に対して溶融装置アセンブリを配置する工程;ならびに
    溶融装置アセンブリから第2の結晶製造装置へ溶融させたソース材料のストリームを供給する工程
    を含んでなる方法。
  28. ソース材料を溶融させるために溶融装置アセンブリのヒータを操作することは、ヒータの上側誘導コイルに電力を供給することを含んでなり、ならびに、溶融させたソース材料のストリームを供給することは、ヒータの下側誘導コイルに電力を提供して、溶融装置アセンブリのオリフィスを通る流れを開始させることを含んでなる請求項27記載の方法。
  29. ヒータの操作を停止して、溶融ルツボからの流れを防止するソース材料の固体プラグを形成することによって、溶融ルツボからの溶融させたソース材料の流れを停止させることを更に含んでなる請求項27に記載の方法。
  30. 溶融装置アセンブリのルツボに供給されたソース材料から単結晶インゴットを成長させることを更に含んでなる請求項27に記載の方法。
  31. 溶融装置アセンブリのルツボに供給されたソース材料から多結晶物体を成長させることを更に含んでなり、前記多結晶物体は、エッジ規定されるフィルム成長(EFG)方法に従って形成される中空の多角形のシリコン物体、多結晶シリコンのリボン、およびキャストされたシリコン物体の少なくとも1つである請求項27に記載の方法。
  32. 第2の結晶製造装置に対して溶融装置アセンブリを配置することは、溶融装置アセンブリを持ち上げること、および溶融装置アセンブリを第2の結晶製造装置の上方の位置に移動させることを含んでなる請求項27に記載の方法であって、
    更に、第2の結晶製造装置に溶融させたソース材料のストリームを供給する前に、第2の結晶製造装置の下側ハウジングに溶融装置アセンブリを接続することを含んでなる方法。
JP2007516754A 2004-06-18 2005-06-17 結晶製造装置に溶融ソース材料を装入する方法および溶融装置アッセンブリ Expired - Fee Related JP5080971B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US58130804P 2004-06-18 2004-06-18
US60/581,308 2004-06-18
US11/155,105 US7344594B2 (en) 2004-06-18 2005-06-17 Melter assembly and method for charging a crystal forming apparatus with molten source material
PCT/US2005/021369 WO2006009802A2 (en) 2004-06-18 2005-06-17 A melter assembly and method for charging a crystal forming apparatus with molten source material
US11/155,105 2005-06-17
US11/155,104 US7465351B2 (en) 2004-06-18 2005-06-17 Melter assembly and method for charging a crystal forming apparatus with molten source material
US11/155,385 US7691199B2 (en) 2004-06-18 2005-06-17 Melter assembly and method for charging a crystal forming apparatus with molten source material
US11/155,385 2005-06-17
US11/155,104 2005-06-17

Publications (3)

Publication Number Publication Date
JP2008503427A true JP2008503427A (ja) 2008-02-07
JP2008503427A5 JP2008503427A5 (ja) 2008-09-04
JP5080971B2 JP5080971B2 (ja) 2012-11-21

Family

ID=35351655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007516754A Expired - Fee Related JP5080971B2 (ja) 2004-06-18 2005-06-17 結晶製造装置に溶融ソース材料を装入する方法および溶融装置アッセンブリ

Country Status (7)

Country Link
EP (1) EP1756337B1 (ja)
JP (1) JP5080971B2 (ja)
KR (1) KR101300309B1 (ja)
CN (2) CN101006205B (ja)
DE (1) DE602005014103D1 (ja)
TW (1) TWI347377B (ja)
WO (1) WO2006009802A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070404A (ja) * 2008-09-17 2010-04-02 Sumco Corp シリコン融液形成装置
JP2014510694A (ja) * 2011-04-11 2014-05-01 シュトライヒャー マシネンバウ ゲーエムベーハー ウント コーカーゲー 単結晶または多結晶構造を有する材料の生成方法及び装置
JP2015127608A (ja) * 2013-12-27 2015-07-09 シンフォニアテクノロジー株式会社 加熱溶解装置、加熱溶解システムおよび出湯制御装置
KR20160081438A (ko) * 2014-12-31 2016-07-08 주식회사 티씨케이 잉곳 성장장치의 리플렉터

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1958925A1 (en) 2007-02-13 2008-08-20 Vivoxid Oy A system and method for manufacturing fibres
DE102008013326B4 (de) 2008-03-10 2013-03-28 Siltronic Ag Induktionsheizspule und Verfahren zum Schmelzen von Granulat aus Halbleitermaterial
KR101569711B1 (ko) * 2008-05-20 2015-11-18 신에쯔 한도타이 가부시키가이샤 단결정 제조장치
DE102009005837B4 (de) * 2009-01-21 2011-10-06 Pv Silicon Forschungs Und Produktions Gmbh Verfahren und Vorrichtung zur Herstellung von Siliziumdünnstäben
US9096946B2 (en) * 2011-05-12 2015-08-04 Korea Institute Of Energy Research Reusable dual crucible for silicon melting and manufacturing apparatus of silicon slim plate including the same
CN102718221B (zh) * 2012-06-28 2014-06-11 厦门大学 多晶硅自封堵浇铸装置
US9664448B2 (en) * 2012-07-30 2017-05-30 Solar World Industries America Inc. Melting apparatus
DE102013203740B4 (de) * 2013-03-05 2020-06-18 Solarworld Industries Gmbh Vorrichtung und Vefahren zur Herstellung von Silizium-Blöcken
US10030317B2 (en) * 2014-10-17 2018-07-24 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for controlling thickness of a crystalline sheet grown on a melt
JP6503933B2 (ja) * 2015-07-02 2019-04-24 株式会社Sumco シリコン融液供給装置及び方法並びにシリコン単結晶製造装置
TWI630365B (zh) * 2016-11-11 2018-07-21 財團法人金屬工業研究發展中心 Radon device with temperature control design and temperature control method thereof
KR102135061B1 (ko) * 2017-12-21 2020-07-17 주식회사 포스코 고휘발성 원소의 표준 시료 제조 장치 및 방법
CN111041554B (zh) * 2020-01-16 2021-05-25 江苏大学 一种用于晶硅铸锭炉的载气导流装置及其导流方法
CN115852484B (zh) * 2023-02-27 2023-05-16 杭州天桴光电技术有限公司 一种高效制备氟化镁多晶光学镀膜材料的装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178719A (en) * 1991-08-20 1993-01-12 Horiba Instruments, Inc. Continuous refill crystal growth method
JPH05105576A (ja) * 1991-03-01 1993-04-27 Wacker Chemitronic Ges Elektron Grundstoffe Mbh チヨクラルスキーによるるつぼ引上げ操作時液体シリコンを連続的に追加装填する方法
JPH10279390A (ja) * 1997-02-04 1998-10-20 Komatsu Electron Metals Co Ltd 石英るつぼへの原料装填装置及び原料装填方法
JPH1192276A (ja) * 1997-09-22 1999-04-06 Super Silicon Kenkyusho:Kk 半導体単結晶の製造装置及び半導体単結晶の製造方法
JP2001072486A (ja) * 1999-08-10 2001-03-21 Optoscint Inc 埋込み精製チャンバを使用する結晶形成装置と結晶成長工程
WO2003076698A1 (en) * 2002-03-04 2003-09-18 Optoscint, Inc. Binary and ternary crystal purification and growth method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993540A (en) * 1995-06-16 1999-11-30 Optoscint, Inc. Continuous crystal plate growth process and apparatus
FR2772741B1 (fr) * 1997-12-19 2000-03-10 Centre Nat Rech Scient Procede et installation d'affinage du silicium
FR2831881B1 (fr) * 2001-11-02 2004-01-16 Hubert Lauvray Procede de purification de silicium metallurgique par plasma inductif couple a une solidification directionnelle et obtention directe de silicium de qualite solaire
FR2869028B1 (fr) * 2004-04-20 2006-07-07 Efd Induction Sa Sa Procede et installation de fabrication de blocs d'un materiau semiconducteur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105576A (ja) * 1991-03-01 1993-04-27 Wacker Chemitronic Ges Elektron Grundstoffe Mbh チヨクラルスキーによるるつぼ引上げ操作時液体シリコンを連続的に追加装填する方法
US5178719A (en) * 1991-08-20 1993-01-12 Horiba Instruments, Inc. Continuous refill crystal growth method
JPH10279390A (ja) * 1997-02-04 1998-10-20 Komatsu Electron Metals Co Ltd 石英るつぼへの原料装填装置及び原料装填方法
JPH1192276A (ja) * 1997-09-22 1999-04-06 Super Silicon Kenkyusho:Kk 半導体単結晶の製造装置及び半導体単結晶の製造方法
JP2001072486A (ja) * 1999-08-10 2001-03-21 Optoscint Inc 埋込み精製チャンバを使用する結晶形成装置と結晶成長工程
WO2003076698A1 (en) * 2002-03-04 2003-09-18 Optoscint, Inc. Binary and ternary crystal purification and growth method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070404A (ja) * 2008-09-17 2010-04-02 Sumco Corp シリコン融液形成装置
JP2014510694A (ja) * 2011-04-11 2014-05-01 シュトライヒャー マシネンバウ ゲーエムベーハー ウント コーカーゲー 単結晶または多結晶構造を有する材料の生成方法及び装置
JP2015127608A (ja) * 2013-12-27 2015-07-09 シンフォニアテクノロジー株式会社 加熱溶解装置、加熱溶解システムおよび出湯制御装置
KR20160081438A (ko) * 2014-12-31 2016-07-08 주식회사 티씨케이 잉곳 성장장치의 리플렉터
KR101671593B1 (ko) * 2014-12-31 2016-11-01 주식회사 티씨케이 잉곳 성장장치의 리플렉터

Also Published As

Publication number Publication date
CN101724903B (zh) 2013-02-13
WO2006009802A3 (en) 2006-08-24
KR101300309B1 (ko) 2013-08-28
CN101724903A (zh) 2010-06-09
WO2006009802A2 (en) 2006-01-26
DE602005014103D1 (de) 2009-06-04
EP1756337B1 (en) 2009-04-22
JP5080971B2 (ja) 2012-11-21
EP1756337A2 (en) 2007-02-28
TWI347377B (en) 2011-08-21
CN101006205B (zh) 2011-11-09
KR20070042971A (ko) 2007-04-24
CN101006205A (zh) 2007-07-25
TW200617220A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP5080971B2 (ja) 結晶製造装置に溶融ソース材料を装入する方法および溶融装置アッセンブリ
US7465351B2 (en) Melter assembly and method for charging a crystal forming apparatus with molten source material
US7344594B2 (en) Melter assembly and method for charging a crystal forming apparatus with molten source material
KR101997600B1 (ko) 원료 충전방법, 단결정의 제조방법 및 단결정 제조장치
JP2008285351A (ja) 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
US20130219967A1 (en) Method and device for producing polycrystalline silicon blocks
JP2601411B2 (ja) 単結晶引上げ方法およびその装置
US7691199B2 (en) Melter assembly and method for charging a crystal forming apparatus with molten source material
JP5163386B2 (ja) シリコン融液形成装置
US7001456B2 (en) Apparatus and method for supplying Crystalline materials in czochralski method
JP2000327477A (ja) 単結晶引き上げ方法及び単結晶引き上げ装置
JP4698892B2 (ja) Cz原料供給方法及び供給用治具
WO1999046433A1 (fr) Appareil auxiliaire destine a faire fondre une matiere premiere monocristalline et procede de fusion de cette matiere premiere monocristalline
WO1999046432A1 (fr) Procede et appareil d'apport d'une matiere premiere monocristalline
JP6471700B2 (ja) リチャージ装置を用いたシリコン原料の融解方法
TW202328509A (zh) 用於涉及矽進料管之惰性氣體控制之單晶矽錠生長之方法
JP2004083322A (ja) Cz原料供給方法及び供給治具
JP2007254162A (ja) 単結晶製造装置およびリチャージ方法
US20240167193A1 (en) Systems and methods for cooling a chunk polycrystalline feeder
TW201300584A (zh) 用於屏蔽拉晶裝置之一部分之進料工具
US20230407518A1 (en) Apparatus for continuously growing ingot
KR102301821B1 (ko) 단결정 용액성장 장치 및 단결정 용액성장 방법
JPH0733584A (ja) 半導体単結晶引き上げにおけるリチャージ方法
JP2010006657A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法
JPH0840794A (ja) 単結晶シリコン製造工程におけるリチャージ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111025

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5080971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees