KR20070042971A - 용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로충전하는 방법 - Google Patents

용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로충전하는 방법 Download PDF

Info

Publication number
KR20070042971A
KR20070042971A KR1020077001156A KR20077001156A KR20070042971A KR 20070042971 A KR20070042971 A KR 20070042971A KR 1020077001156 A KR1020077001156 A KR 1020077001156A KR 20077001156 A KR20077001156 A KR 20077001156A KR 20070042971 A KR20070042971 A KR 20070042971A
Authority
KR
South Korea
Prior art keywords
crucible
melter assembly
raw material
forming apparatus
crystal
Prior art date
Application number
KR1020077001156A
Other languages
English (en)
Other versions
KR101300309B1 (ko
Inventor
존 데이비스 홀더
Original Assignee
엠이엠씨 일렉트로닉 머티리얼즈, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠이엠씨 일렉트로닉 머티리얼즈, 인크. filed Critical 엠이엠씨 일렉트로닉 머티리얼즈, 인크.
Priority claimed from US11/155,105 external-priority patent/US7344594B2/en
Priority claimed from US11/155,104 external-priority patent/US7465351B2/en
Priority claimed from US11/155,385 external-priority patent/US7691199B2/en
Publication of KR20070042971A publication Critical patent/KR20070042971A/ko
Application granted granted Critical
Publication of KR101300309B1 publication Critical patent/KR101300309B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

용융기 어셈블리는 용융된 원재료의 충전재를 결정체 형성에 사용되기 위하여 결정 형성 장치에 공급한다. 용융기 어셈블리는 하우징, 및 하우징 내에 배치된 도가니를 포함한다. 도가니 내에 수취된 고체 원재료를 용융시키기 위하여, 가열기가 도가니에 관련하여 배치된다. 도가니는 용융된 원재료의 방향성있는 흐름이 선택된 흐름 속도로 결정 형성 장치에 공급될 수 있도록, 용융된 원재료의 흐름을 제어하는 노즐을 갖는다. 용융된 원재료로 결정 형성 장치를 충전하는 방법, 및 하나의 용융기 어셈블리를 다수의 결정 형성 장치에 이용하는 방법도 제공된다.
용융기 어셈블리, 도가니, 결정 형성 장치, 고체 원재료, 가열기

Description

용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로 충전하는 방법{A MELTER ASSEMBLY AND METHOD FOR CHARGING A CRYSTAL FORMING APPARATUS WITH MOLTEN SOURCE MATERIAL}
본 발명은 일반적으로 고체 실리콘을 용융시키기 위한 용융기 어셈블리(melter assembly)에 관한 것으로, 더 상세하게는 결정 형성 장치를 용융된 원재료로 충전하기 위한 용융기 어셈블리 및 방법에 관한 것이다.
반도체 디바이스 및 태양 전지와 같은 많은 전자 부품을 제조하기 위한 시작 재료인 단결정질 구조의 단결정 재료는, 통상적으로 초크랄스키(Czochralski: "Cz")법을 이용하여 준비된다. 간단하게 설명하면, 초크랄스키법은 과립상이거나 덩어리로 된 다결정질 실리콘("폴리실리콘")과 같은 다결정질 원재료를 특별하게 설계된 용광로 내에 배치된 석영 도가니 내에서 용융시켜 실리콘 용융체(silicon melt)를 형성하는 것을 포함한다. 전형적으로, 아르곤과 같은 비활성 기체가 용광로를 순환한다. 비교적 작은 씨드 결정이, 그 씨드 결정을 상승시키거나 하강시킬 수 있는 인상 샤프트 상에서 도가니 위에 설치된다. 도가니는 회전되고, 씨드 결정은 하강되어 도가니 내의 용융된 실리콘과 접촉하게 된다. 씨드가 용융되기 시작하면, 용융된 실리콘으로부터 천천히 꺼내지고 성장하기 시작하여, 단결정질 구 조를 갖는 용융재로부터의 실리콘이 형성된다.
태양 전지나 기타 전기 부품들의 제조를 위한 시작 재료로서 사용되기에 적합한 큰 입자의 다결정질 반도체 구조는 본 기술분야에 공지되어 있는 다양한 다른 프로세스들에 의해 제조될 수 있다. 초크랄스키법과 마찬가지로, 그러한 다른 프로세스들은 원하는 전기적 도전 특성을 갖는 고체 결정체(예를 들어, 잉곳, 리본 등)를 제조하기 위하여 용융된 원재료(예를 들어, 실리콘)를 사용하는 다양한 장치를 포함한다. 그러한 프로세스들은 차가운 도가니를 용융된 실리콘으로 충전하고, 그 용융된 실리콘이 고체화하여 다결정질체를 형성할 수 있게 하는 것을 수반하는 블럭 캐스팅(block casting)을 포함할 수 있다. 통상적으로 EFG(Edge-defined Film Growth)법이라고 알려져 있는 다른 프로세스는, 용융된 원재료가 도가니로부터 인상 장치에 연결된 씨드 결정으로 이송되는 것을 돕기 위하여 모세관 작용을 이용하는 모세관 다이 부재를 이용하여, 속이 빈 결정체를 제어된 치수를 갖는 다양한 형상으로 성장시키는 것을 포함한다. 또한, 원재료의 용융재로부터 인상된, 일반적으로 평평한 결정질 리본 구조의 성장을 포함하는 다양한 리본 성장 방법들도 있다.
전형적으로, 반도체 디바이스 및 태양 전지용의 반도체 재료를 형성하기 위한 다양한 기존의 방법들은, 과립상 폴리실리콘을 도가니 내에서 직접 용융시키거나, 용융된 실리콘의 충전재(charge)를 도가니에 넣는 단계를 포함한다. 과립상 폴리실리콘을 도가니 내에서 직접 용융시키는 것의 한가지 단점은, 용융 동안의 수소 방출로부터의 스플래터(splatter)를 감소시키기 위해서는, 폴리실리콘이 탈수소 화된 고순도 실리콘인 것이 바람직하다는 것이다. 도가니 내에서의 스플래터는 실리콘이 결정 형성 장치의 핫존(hot zone)의 다양한 구성요소들에 퇴적되게 하고, 이것은 인상된 결정 내의 불순물로 될 수 있고, 또는 핫존 내의 흑연 및 실리콘-탄화물 코팅된 흑연 구성요소들에 손상을 줄 수 있다. 탈수소화된 화학적 기상 증착(CVD) 과립상 폴리실리콘은 보다 쉽게 입수할 수 있는 비탈수소화 CVD 폴리실리콘에 비해 고가이며, 그것을 사용하면 다양한 방법에 의해 제조되는 실리콘 웨이퍼 또는 기타 전기 부품들의 제조 비용이 증가된다.
결정 형성 장치의 주 도가니에서 고체 폴리실리콘을 용융시키면, 조작상 및 기계상 문제점이 추가로 발생한다. 예를 들어, 폴리실리콘은 액체 실리콘에 비하여 열 전도율과 방사율이 높기 때문에, 폴리실리콘을 용융시키기 위해서는 많은 전력이 요구된다. 또한, 주 도가니에서 고체 폴리실리콘을 용융시키는 것은 시간 소모적이어서, 전형적으로 하나의 250㎏(551lbs) 폴리실리콘 충전재를 용융시키는 데에 15-18 시간이 요구된다. 또한, 고체 폴리실리콘을 용융시키는 데에 요구되는 높은 용융 온도에의 노출에 의해 도가니 내에 유도되는 (화학적 및 기계적) 열 스트레스는 도가니 벽의 입자들이 느슨해져 용융재 내에 부유하게 하고, 이것은 결정 품질을 저하시키고 도가니가 빨리 고장나게 한다. 또한, 도가니 벽을 상처 입히거나 긁어내는 경우가 많은 고체 폴리실리콘 입자의 적재로 인한 기계적 스트레스가 도가니에 가해지며, 이에 의해 도가니가 손상을 입고, 도가니 벽의 입자들이 제거되며, 이것은 실리콘 용융재 및 그로부터 형성되는 결정체들을 오염시킬 수 있다.
다양한 종래 기술의 방법들은 도가니에서 폴리실리콘을 용융시킬 필요성을 없애려고 시도해왔다. 이러한 종래 기술의 방법들은 폴리실리콘을 용융시키기 위한 보조 도가니를 제공하는 것을 포함하고, 그 보조 도가니는 주 도가니보다 높게 배치되며, 이에 의해 차압(differential pressure)을 이용하거나 이용하지 않는 중력 피드(gravity feed)는 용융된 실리콘이 결정 성장 동안 주 도가니 내로 흘러들어갈 수 있게 한다. 이러한 기존의 종래 기술의 방법들은 고체 폴리실리콘을 효율적으로 신속하게 용융시키지 않으며, 결정 형성 장치의 핫존 부분들로의 용융재 스플래터를 감소시키는 방식으로, 용융된 실리콘을 주 도가니로 이송하지 않는다. 또한, 기존의 방법들은 용융 시간을 단축하고 결정 형성 장치의 처리량을 증가시키기 위하여, 고체 폴리실리콘을 가열하는 신속하고 경제적인 방식을 제공하지 않는다. 따라서, 용융된 실리콘을 결정 형성 장치에 공급하는 방법으로서, 고체 폴리실리콘을 효율적으로 신속하게 용융시키고, 스플래터를 감소시키고 생성되는 실리콘 결정의 품질을 유지하는 방식으로 용융된 실리콘을 장치의 주 도가니로 이송하는 방법이 필요하다.
<발명의 요약>
본 발명의 몇가지 목적 중에서도, 결정 형성 장치를 용융된 실리콘 원재료로 충전하는 것을 용이하게 하는 실리콘 용융기 어셈블리 및 방법의 제공; 결정 수율 및 처리량을 증가시키는 용융기 어셈블리 및 방법의 제공; 품질을 향상시키는 용융기 어셈블리 및 방법의 제공; 고체 실리콘의 신속한 가열을 허용하는 용융기 어셈블리 및 방법의 제공; 실리콘에 대한 제어된 가열을 허용하는 용융기 어셈블리 및 방법의 제공; 용융재를 결정 형성 장치에 넣는 것에 의해 유발되는 용융재 스플 래터를 감소시키는 용융기 어셈블리 및 방법의 제공; 폴리실리콘을 용융된 실리콘의 저장소에 넣는 것에 의해 유발되는 먼지 및 용융재 스플래터를 억제하고 고립시키는 용융기 어셈블리 및 방법의 제공, 및 다수의 결정 형성 장치를 단일 용융재로 재충전할 수 있는 용융기 어셈블리 및 방법의 제공에 주목할 수 있다.
일반적으로, 본 발명은 용융된 원재료의 충전재를 결정 형성 장치에 공급하는 용융기 어셈블리에 관한 것이다. 용융기 어셈블리는 하우징, 및 하우징 내에 배치된 도가니를 포함한다. 가열기는 도가니 내에 수취된 고체 원재료를 용융시키기 위하여 도가니에 관련하여 배치된다. 도가니는 용융된 원재료의 방향성있는 흐름이 선택된 흐름 속도로 장치에 공급되도록, 용융된 원재료의 흐름을 제어하도록 구성된 노즐을 갖는다.
본 발명의 다른 양태에서는, 결정 인상기를 용융된 실리콘으로 충전하는 방법이 제공된다. 이 방법은 인상 챔버를 정의하는 결정 인상기의 상부 하우징을, 성장 챔버를 정의하는 결정 인상기의 하부 하우징으로부터 분리하는 단계를 포함한다. 용융기 어셈블리는 상부 하우징을 대신하여 하부 하우징에 부착된다. 원재료는 용융기 어셈블리 내에서 용융된다. 용융된 원재료는 용융기 어셈블리로부터 결정 형성 장치의 하부 하우징 내에 배치된 도가니로 전달되고, 그에 의해 단결정질 잉곳을 성장시키기 위하여 도가니 내에 용융체가 형성된다.
다른 양태에서, 본 발명은 결정체의 형성에 사용하기 위하여, 용융된 원재료의 충전재를 결정 형성 장치에 공급하기 위한 용융체 어셈블리에 관련된다. 용융체 어셈블리는 하우징, 및 하우징 내에 배치된 도가니를 포함한다. 가열기는 도가 니 내에 수취된 고체 원재료를 용융시키기 위하여 도가니에 관련하여 배치된다. 서셉터는 도가니를 지지하고, 도가니 내의 고체 원재료의 가열을 촉진한다. 서셉터는 가열기의 독립적인 제어를 허용하기 위하여 서로에 대해 이격된 상측부 및 하측부를 갖는다.
본 발명의 다른 양태에서, 결정 형성 장치를 용융된 원재료로 충전하는 방법이 제공된다. 이 방법은 용융된 실리콘을 장치의 도가니로 전달하기 위하여, 결정 형성 장치에 관련하여 용융기 어셈블리를 위치시키는 단계를 포함한다. 용융기 어셈블리 내의 상부 가열 코일은 용융 도가니 내의 원재료를 용융시키도록 동작한다. 용융기 어셈블리 내의 하부 가열 코일은 용융된 원재료가 용융기 어셈블리의 오리피스를 통해 흐르는 것을 허용하여, 용융된 원재료의 스트림을 결정 형성 장치의 도가니로 전달한다.
본 발명의 다른 양태에서, 다수의 결정 형성 장치에 단일 용융기 어셈블리를 이용하는 방법이 제공된다. 이 방법은, 용융된 실리콘을 제1 결정 형성 장치의 도가니로 전달하기 위하여, 용융기 어셈블리를 제1 장치에 관련하여 위치시키는 단계를 포함한다. 용융기 어셈블리 내의 가열기는 용융 도가니 내의 원재료를 용융시키도록 동작한다. 용융된 원재료의 스트림은 용융기 어셈블리로부터 제1 결정 형성 장치로 전달된다. 용융기 어셈블리는 용융된 실리콘을 제2 결정 형성 장치의 도가니로 전달하기 위하여, 제2 결정 형성 장치에 관련하여 위치된다. 용융된 원재료의 스트림은 용융기 어셈블리로부터 제2 결정 형성 장치로 이송된다.
본 발명의 다른 목적 및 특징들은 이하에서 분명해질 것이다.
도 1은 본 발명의 용융기 어셈블리의 수직 개략도.
도 2는 결정 인상기의 형태로 된 종래 기술의 결정 형성 장치의 부분적 개략도.
도 3은 결정 인상기의 하부 하우징에 설치된 용융기 어셈블리의 부분 개략도.
도 4는 용융기 어셈블리로부터 분리된 용융 도가니, 서셉터 및 유도 코일을 나타내는 수직 개략도.
도 5는 용융기 어셈블리로부터 분리된 서셉터, 용융 도가니 및 유도 코일의 정면도.
도 6은 도 6의 선 6-6을 포함하는 평면을 따라 절취한 단면도.
도 7은 도 5의 선 7-7을 포함하는 평면을 따라 절취한 단면도.
도 8은 서셉터의 수직 분해도.
도 9는 노즐을 도시한 용융 도가니의 부분 확대도.
도 10은 도 4와 유사하지만, 용융 도가니가 피더로부터의 고체 폴리실리콘으로 채워지고 있는 것을 나타낸 수직 개략도.
도 11은 도 10과 유사하지만, 용융 도가니 내에서의 고체 폴리실리콘의 초기 용융을 나타낸 도면.
도 11a는 도 11과 유사하지만, 용융 도가니 내에서 고체 폴리실리콘이 더 용융된 것을 나타낸 도면.
도 12는 도 11과 유사하지만, 용융 도가니 내에서 고체 폴리실리콘의 훨씬 더 용융된 것을 나타낸 도면.
도 13은 도 12와 유사하지만, 고체 폴리실리콘 피드를 용융 도가니에 넣는 것을 나타낸 도면.
도 13a는 도 13과 유사하지만, 용융 도가니 내에서 고체 폴리실리콘이 더 용융된 것을 나타낸 도면.
도 14는 도 12와 유사하지만, 용융 도가니 내에서 고체 폴리실리콘이 더 용융된 것을 나타낸 도면.
도 15는 도 14와 유사하지만, 액체 실리콘이 용융 도가니의 출구를 통하여 흐르는 것과, 고체 폴리실리콘 피드를 도가니에 넣는 것을 나타낸 도면.
도 16은 도 15와 유사하지만, 용융 도가니 내에서의 용융재 높이의 감소를 나타낸 도면.
도 17은 도 15와 유사하지만, 용융 도가니의 다른 실시예를 나타낸 도면.
도 18은 본 발명의 다른 실시예의 용융기 어셈블리의 개략도.
도 19는 본 발명의 다른 실시예의 용융기 어셈블리의 확대된 부분 개략도.
도 20은 본 발명의 다른 실시예의 용융기 어셈블리의 개략도.
도 21은 도 20의 실시예의 용융 도가니의 분해도.
도 21a는 용융재 흐름 가이드의 한 버전의 개략도.
도 21b는 용융재 흐름 가이드의 제2 버전의 개략도.
도 21c는 용융재 흐름 가이드의 제3 버전의 개략도.
도 22는 결정 형성 장치 상에 설치된 용융기 어셈블리의 다른 실시예의 개략도.
도 23은 액체 실리콘이 결정 형성 장치의 용융 도가니와 주 도가니 사이에서 이송되고 있는 것을 나타낸 용융기 어셈블리의 다른 실시예의 개략도.
도 24는 EFG 결정 인상기의 형태로 된 종래 기술의 결정 형성 장치의 부분 개략도.
도 25는 도 24의 결정 형성 장치의 하부 하우징에 설치된 용융기 어셈블리의 부분 개략도.
도 26은 종래 기술의 리본 성장 결정 형성 장치의 부분 투시도.
도 27은 도 26의 결정 형성 장치의 하부 하우징에 설치된 용융기 어셈블리의 부분 개략도.
도 28은 캐스팅 도가니 형태로 된 종래 기술의 결정 형성 장치 위에 설치된 용융기 어셈블리의 부분 개략도.
도 29는 일련의 결정 인상기들 중 제1 결정 인상기에서 사용되도록 위치된 용융기 어셈블리의 개략도.
도면들 전체에서, 대응하는 부분들은 대응하는 참조번호로 표시되어 있다.
도 1 및 도 2를 참조하면, 총괄적으로 참조번호 1로 표시된 본 발명의 용융기 어셈블리는, 본 기술분야에 공지되어 있는 다양한 결정 형성 장치에 용융된 원재료를 공급하기 위하여 사용될 수 있다. 그러한 결정 형성 장치 중 하나는 초크 랄스키법에 따라 단결정질 실리콘 잉곳(도 2의 잉곳 I)을 성장시키는 데에 사용되는 유형의 통상적인 결정 인상기(crystal puller)(총괄적으로 CP로 표시됨)이다. 결정 인상기 CP는 도 2에서 실리콘 잉곳 I를 생성하도록 구성된 것으로 도시되어 있다. 본 발명의 용융기 어셈블리에 의해 공급되는 용융된 원재료는 실리콘이나, 고체 결정체를 생성하기 위해 결정 형성 장치에서 이용되는 임의의 다른 원재료(예를 들어, 알루미나, 티탄산 바륨, 니오븀산 리튬, 이트륨 알루미늄 가넷, 게르마늄, 갈륨, 비화 갈륨 등)일 수 있다.
결정 인상기 CP는 하부 결정 인상 챔버 GC를 둘러싸는 하부 하우징 LH 및 도 2에 부분적으로 도시된 상부 인상 챔버 PC를 둘러싸는 상부 하우징 UH를 포함하는 수냉식 하우징을 포함한다. 상부 하우징 UH 및 하부 하우징 LH는 플랜지 접속부(flanged connection) FC 및 잠금 장치 LD에 의해 분리가능하게 연결된다. 상부 하우징 UH 및 하부 하우징 LH는 게이트 분리 밸브 GV에 의해 분리된다. 하우징의 내부를 진공 배기하기 위하여, 펌프(도시되지 않음) 또는 기타 적절한 수단이 제공될 수 있다. 도 3에 도시되어 있는 바와 같이, 용융기 어셈블리(1)는 상부 하우징 UH를 대신하여 결정 인상기 CP의 하부 하우징 LH에 설치될 수 있고, 중력 피더 GF로부터 고체의 과립상 폴리실리콘을 수취할 수 있다. 이하에 더 상세하게 설명되는 바와 같이, 용융기 어셈블리(1)는 고체 폴리실리콘을 용융시키고, 용융된 실리콘을 중력 피드에 의해 결정 인상기 CP 또는 기타 결정 형성 장치로 이송한다.
다시 도 2를 참조하면, 결정 인상기 CP는 초크랄스키법에 따라 단결정질 실리콘 잉곳 I를 제조하기 위한 통상적인 결정 인상기이다. 도시된 실시예에서, 결 정 인상기 CP는 뉴욕주 로체스터의 Kayex Corporation에 의해 제조된 모델 번호 FX150 결정 성장기 용광로이지만, 다른 결정 인상기들도 본 발명의 범위를 벗어나지 않고서 사용될 수 있음을 알 것이다. 결정 성장 챔버 GC를 둘러싼 하부 하우징 LH는 대체적으로 돔 형상인 상측 벽 UW을 가지며, 흑연 서셉터 S 내에 위치한 석영 결정 성장 도가니 CC를 담고 있다. 도가니 CC는 용융된 원재료 M을 담고 있으며, 그로부터 단결정질 실리콘 잉곳 I가 성장된다. 서셉터 CS는 서셉터 S와 도가니 CC를 결정 인상기 CP의 중앙 길이방향 축에 대하여 회전시키기 위한 턴테이블 T 상에 설치된다. 또한, 도가니 CC는 잉곳 I가 성장되고 원재료가 용융재로부터 제거되어 갈 때, 용융된 원재료 M의 표면을 거의 일정한 레벨로 유지하기 위하여, 성장 챔버 GC 내에서 상승될 수 있다.
전기 저항 가열기 HC는 원재료 M을 용융된 상태로 유지하기 위하여 도가니를 가열하도록 도가니 CC를 둘러싼다. 가열기 HC는 용융된 원재료 M의 온도가 전체 인상 프로세스 동안 정밀하게 제어되도록 외부 제어 시스템(도시되지 않음)에 의해 제어된다. 열 차폐 어셈블리 HS는 성장 챔버 GC 내에서 용융된 원재료 M 위에 설치되고, 잉곳 I가 원재료로부터 인상될 때 잉곳을 둘러싸게 되는 크기 및 형상의 중심 개구를 갖는다. 결정 인상 도가니를 둘러싸는 하부 하우징 LH 내의 영역은 일반적으로 인상기 CP의 "핫존"으로 칭해진다. 핫존 부분은 서셉터 S, 가열기 HC, 열 차폐 어셈블리 HS, 및 도가니 CC 주변의 열 전도 및 성장 결정의 냉각 속도를 제어하는 열 반사기 또는 단열재 I를 포함한다.
인상 샤프트 PS는 그것을 상승, 하강 및 회전시킬 수 있는 인상 메커니즘 PM 으로부터 하향 연장된다. 결정 인상기 CP는 그 종류에 따라서는 샤프트 PS 대신에 인상 와이어(도시되지 않음)를 가질 수 있다. 인상 샤프트 PS는 인상 챔버 PC를 통과하여 하향 연장되며, 단결정질 잉곳 I를 성장시키는 데에 사용되는 씨드 결정 C를 보유하는 씨드 결정 처크(chuck) SC에서 종단된다. 도 1에서는 인상 샤프트 PS가 그 상단부와 처크 SC에 연결되는 부분에서 거의 생략되어 있다. 잉곳 I를 성장시킬 때에, 인상 메커니즘 PM은 씨드 결정 C가 용융된 원재료 M의 표면에 접촉할 때까지 그 씨드 결정을 하강시킨다. 씨드 결정 C가 용융되기 시작하면, 인상 메커니즘 PM은 성장 챔버 GC 및 인상 챔버 PC를 통과하여 씨드 결정 C를 천천히 상승시켜, 단결정질 잉곳 I을 성장시킨다. 인상 메커니즘 PM이 씨드 결정 C를 회전시키는 속도, 및 인상 메커니즘이 씨드 결정 SC를 상승시키는 속도는 외부 제어 시스템(도시되지 않음)에 의해 제어된다. 이하에 더 상세하게 설명되는 부분 이외에, 결정 인상기 CP의 일반적인 구성 및 동작은 통상적인 것이며 당업자들에게 알려져 있다. 또한, 결정 인상기 CP는 본 발명의 범위를 벗어나지 않고서 다른 구성을 가질 수 있음을 알 것이다.
도 1 및 도 3에 도시된 바와 같이, 용융기 어셈블리(1)는 총괄적으로 5로 표시된 용융 용기, 및 결정 인상기 CP의 하부 하우징 LH으로의 연결을 위하여 용융 용기의 바닥으로부터 하향 연장되는 도킹 칼라(docking collar)(9)를 포함한다. 용융 용기(5)는 고리형 바닥(annular floor)(13)을 포함하며, 그로부터 총괄적으로 15로 표시된 튜브형 측벽이 상향 돌출되고, 그 측벽은 이격된 내벽 및 외벽 부재(17, 19)로 형성된다. 용융 용기(5)의 상단벽(총괄적으로 23으로 표시됨)은 개 략적으로 돔 형상이고, 이격된 내벽 및 외벽 부재(25, 27)에 의해 형성된다. 튜브형 벽(15)과 상단벽(23)의 이격된 벽 부재들은 공동(31)을 가지며, 그를 통해 냉각수가 순환될 수 있다. 용기(5)의 상단벽(23)의 중심 피드 포털(central feed portal)(35)은 중력 피더 GF의 피드 튜브(43)를 수용하는 슬리브(39)를 갖는다. 중심 피드 포털(35)은 용융기 어셈블리(1) 및 중력 피더 GF 내의 대기를 밀봉하기 위한 진공 밀봉부(47)를 갖는다. 피더 및 용융기 어셈블리의 대기는, 결정 인상기 CP 내의 대기와 실질적으로 동일한 압력 및 조성을 갖는다. 용융기 어셈블리(1) 내에 용융재 스플래터와 먼지를 억제하기 위하여, 피드 튜브(43)와 슬리브(39) 간의 피트(fit)는 약 13㎜(½인치)의 방사상 틈(radial clearance)을 갖는 느슨한 피트(loose fit)여야 한다. 용융 용기(5)의 상단벽(23) 및 튜브형 벽(15)은 그들을 함께 연결시키기 위한 파스너(fastener)(57)를 수용하는 각각의 메이팅 플랜지(mating flange)(51, 53)를 갖는다. 상단벽(23)은 용융 용기(5) 내부로의 접근을 허용하기 위하여 제거될 수 있다. 용융 용기(5)는 전력선(60, 63) 및 냉각 파이프(도시되지 않음)가 용기 내로 진입하는 것을 허용하는 측면 접근 포트(59)를 갖는다. 측면 접근 포트(59)는 그 포트를 경유하는 파이프 및 전력선(60, 63)을 둘러싸는 진공 밀봉부(도시되지 않음)를 가져서, 용기(5) 내의 대기의 압력 및 조성이 유지되게 한다.
용융 용기(5)는, 용화(fuse)된 석영(또는 용화된 실리카)와 같은 적절한 재료로 이루어져 있으며 총괄적으로 65로 표시되어 있는 용융 도가니를 포함하며, 그 도가니는 총괄적으로 69로 표시된 흑연 서셉터 어셈블리 상에 설치되어 있다. 서 셉터 어셈블리(69)는 용융 용기(5)의 고리형 바닥(13) 내의 개구(81)를 덮는 플랫폼(77) 상에 장착된 세라믹 베이스(73)에 의해 지지된다. 플랫폼(77)과 고리형 바닥(13) 간의 빈틈없는 밀봉은, 용융재 스플래터 및 먼지가 용융 용기(5)로부터 도킹 칼라(9)를 통과하여 결정 인상기 CP로 들어가는 것을 방지한다. 용융 도가니(65)는 총괄적으로 85로 표시된 노즐을 가지며, 그 노즐은 도가니의 본체(89)에 매달려 있고, 용융된 실리콘이 용융 도가니로부터 결정 인상기 CP의 결정 성장 도가니 CC로 흐를 수 있게 해 준다. 서셉터 어셈블리(69)는 용융 도가니(65)의 본체(89) 및 노즐(85)과 동일한 형태를 갖고 그들을 둘러싸고 있다. 용융기 어셈블리(1)는 도가니(65) 및 서셉터 어셈블리(69)의 상부 구역 둘레의 상부 유도 코일(95), 및 도가니 노즐(85) 및 서셉터의 하부 구역 둘레의 하부 유도 코일(99)을 갖는다. 상부 및 하부 유도 코일(95, 99)은 각각의 코일을 흐를 수 있는 전류를 제공하는 각각의 전원(100, 101)(도 1 및 도 3에 개략적으로 도시되어 있음)에 연결된다. 상부 및 하부 코일(95, 99)은, 각 코일을 통해 흐르는 전류가 다른 코일을 흐르는 전류에 상관없이 감시 및 조절될 수 있도록 개별적으로 제어될 수 있다. 서셉터(69) 및 용융 도가니(65)의 상부 및 하부 구역 둘레의 2개의 코일(95, 99)의 배열은 용융 도가니의 상부 및 하부 영역에서의 독립적인 온도 제어를 가능하게 한다.
도 1 및 도 4를 참조하면, 용융 도가니(65)의 본체(89)는 개략적으로 원통형이며, 개방 상단부(103) 및 원뿔형 바닥벽(107)을 갖는다. 노즐(85)은 원뿔형 바닥벽(107)에 매달려있고, 본체(89)와 동축이다. 일 실시예에서, 용융된 실리콘이 노즐(85)로 흐르는 것을 용이하게 하기 위하여, 도가니(65)의 바닥벽(107)의 내벽은 약 1도 내지 약 60도 범위, 더 바람직하게는 약 10도의 경사를 갖는다. 도시된 실시예에서, 원뿔형 바닥벽(107)을 포함하는 도가니(65)의 본체(89)는 일체형으로 제조되며, 바닥 노즐(85)은 도가니의 바닥벽에 용화된 석영 튜브로 제조된다. 다른 구성들도 본 발명의 범위 내에서 사용될 수 있다.
노즐(85)은 개략적으로 노즐의 중심선에 맞춰진 경로의 방향을 따르는 용융 용기(5)로부터의 흐름을 생성하도록 구성된다. 결정 인상기 CP의 구성요소들에 튀고 분무되는 것을 감소시키기 위하여, 도가니(65)로부터 흐르는 액체 실리콘은 방향성있는 스트림(directed stream)인 것이 중요하다. 액체 실리콘이 튀고 분무되는 것은, 핫존 부분(예를 들어, 열 차폐부 HS, 도가니 GC, 서셉터 S 등)에 손상을 입힐 가능성이 있고, 또한 결정 성장 도가니로 떨어져서 결정의 품질을 위험하게 할 수 있는 유리된 실리콘 입자를 발생시킬 가능성이 있기 때문에, 결정 인상기 CP의 핫존에서는 바람직하지 못하다. 도 9에 가장 잘 나타나 있는 바와 같이, 용융 도가니 노즐(85)은 도가니(65)의 바닥벽(107) 내의 제1 대직경 부분(109), 보다 작은 직경을 가지며 대직경 부분으로부터의 노즐 하향스트림의 오리피스를 형성하는 제2 부분(111), 및 오리피스 아래에서 개구의 중간 크기 직경을 갖는 제3 부분(115)을 포함한다. 이하에 더 상세하게 설명되는 바와 같이, 노즐(85)의 전체 길이와, 그에 대응하는 제1, 제2 및 제3 부분(109, 111, 115)의 길이 및 직경은, 도가니(65)로부터 흐르는 용융된 실리콘의 스트림을 최적의 흐름 속도로 유지하여 너무 일찍 쏟아지는 것을 방지하도록 크기가 정해진다. 도가니(65)로부터 흐르는 용융된 실리콘의 스트림은 응집성의 끊임없는 액체 스트림인 것이 바람직하지만, 스트림은 대체적으로 노즐(85)의 중심선을 따르는 방향을 갖고 도가니(65)로부터 흐르는 액적(droplet)을 포함할 수 있음을 알 것이다. 노즐(85)로부터의 용융된 실리콘의 흐름은 노즐의 중심선으로부터 벗어날 수 있으며, 여전히 "대체적으로 ~ 방향을 갖고"의 의미로부터 벗어나지 않고서 대체적으로 노즐의 경로를 따른 방향을 가질 수 있다. 일 실시예에서, 용융된 실리콘의 흐름은 약 40㎜(1.6인치)의 최대 거리로 노즐(85)의 중심선에서 벗어날 수 있으며, 여전히 "대체적으로 ~ 방향을 갖고"의 의미 내에 있다.
도 4 내지 도 8에 도시되어 있는 바와 같이, 서셉터 어셈블리(69)는 3 부분, 즉 용융 도가니(65)를 지지하기 위한 것으로서 총괄적으로 121로 표시되어 있는 개략적으로 원통형인 상측부(도가니 지지부), 도가니(65)의 원뿔형 바닥벽(107)을 지지하고 용융을 시작시키기 위한 일체형 원뿔 중간부(용융 서셉터)(125), 및 용융 도가니(65)의 노즐(85)을 수용하는 하측 출구부(노즐 서셉터)(129)를 갖는다. 상측부(121) 및 하측 출구부(129)는 각각의 고리형 갭(130, 131)에 의해 중간부(125)로부터 이격된다. 도시된 실시예에서, 상측부(121)는 총괄적으로 123(도 6)으로 표시된 4개의 방사상 영역을 가지며, 이들은 각각 방사상 갭(132)에 의해 분리된다. 일 실시예에서, 고리형 갭(130, 131) 및 방사상 갭(132)은 약 3㎜(1/8인치) 내지 약 6㎜(1/4인치)의 범위를 갖는다. 갭(130, 131, 132)은 상부 코일(95)과 하부 코일(99)에 의해 서셉터 어셈블리(69) 내에 유도된 전류들을 분리시켜, 하측 출구부(129)는 하부 코일로부터 유도된 전류에 의해 가열되고, 중간부(125)는 상부 코일로부터 유도된 전류에 의해 가열되고, 상측부(121)는 어느 한쪽의 코일로부터 유도된 전류에 의해서도 가열되지 않게 한다. 상부 코일(95) 및 하부 코일(99)은, 서셉터 어셈블리의 각 부(121, 125, 129) 간의 고리형 갭(130, 131) 내의 흑연 섬유 절연체(도시되지 않음), 및 서셉터 어셈블리의 상측부(121)의 각 영역(123)들 간의 방사상 갭(132) 간의 흑연 절연체(도시되지 않음)를 포함하는 세라믹 바디(도시되지 않음) 내에 조립될 수 있음을 알 수 있다. 절연체는 규사(quartz sand), 세라믹 내화 섬유(ceramic refractory fiber), 유리질 내화 섬유, 또는 임의의 다른 고온 단열 및 전기절연 재료와 같은 다른 재료들도 포함할 수 있음을 알 수 있다.
도 5 및 도 6에 도시된 바와 같이, 상부 바디(121)는 그 내부에 갭(137)들을 형성하도록 원주 방향으로 이격된 일련의 핑거(133)들을 갖는다. 핑거(133)들 간의 갭(137)과 상측부(121)의 영역(123)들 간의 갭(132)은 상측부가 상부 유도 코일(95)에 전기적으로 커플링되는 것을 방지하고, 또한 유도 전류가 서셉터 어셈블리(69)의 핑거들에 흐르는 것을 방지한다. 도시된 실시예에는 16개의 핑거(133)가 도시되어 있지만, 서셉터(69)는 본 발명의 범위를 벗어나지 않고서 다른 설계를 가질 수 있음을 알 수 있다. 방사상 갭(132) 각각은 핑거(133)들 중 하나를 반으로 나누며, 그 갭들은 서로에 대해 약 90도씩 이격되어 있다. 핑거(133)들 간의 갭(137)은 약 3㎜(1/8 인치) 내지 약 6㎜(1/4 인치)의 범위를 갖는 것이 바람직하다. 서셉터 어셈블리(69)의 핑거(133)에는 전류가 유도되지 않으므로, 서셉터의 상측부(121)는 대량의 저항열을 발생시키지 않는다. 오히려, 상부 및 하부 코 일(95, 99)로부터의 유도 전류로부터 발생된 서셉터 어셈블리(69)의 하측부의 저항열이, 용융 도가니(65) 및 도가니의 하측부 내의 고체 폴리실리콘을 가열한다. 핑거(133)들에는 유도 열이 가해지지 않고, 도가니 내의 실리콘이 상부 코일(95)에 의해 가열될 때의 복사 및 전도에 의해서만 가열된다.
도 5 내지 도 8에 도시되어 있는 바와 같이, 서셉터 어셈블리(69)의 원뿔형 중간부(125) 및 하측 출구부(129)는, 상부 및 하부 유도 코일(95, 99)이 이 영역들 내의 서셉터의 각 부에 전기적으로 연결되도록 하는 솔리드 구조를 갖고 있다. 중간부(125)와 출구부(129) 간의 갭(131)은 서셉터 어셈블리(69)의 2개 부분을 전기적으로 분리하여, 상부 코일(95)이 하측 출구부에 전류를 유도하지 않고, 하부 코일(99)이 중간부에 전류를 유도하지 않게 한다. 상부 코일(95)에 공급되는 전류는 교번 자계를 생성하고, 이에 의해 핑거(133) 아래의 서셉터 어셈블리(69)의 중간부에 전류가 흐르게 된다. 하부 코일(99)에 공급되는 전류는 교번 자계를 생성하고, 이에 의해 서셉터(69)의 하측 출구부(129)에 전류가 흐르게 된다. 서셉터 어셈블리(69) 내의 유도 전류는 코일(95, 99) 내에서의 전류 흐름에 반대 방향으로 서셉터를 통하여 흐르고, 서셉터 내에 저항 열을 발생시킨다. 흑연 서셉터 어셈블리(69)의 솔리드 부분의 유도 열은 도가니(65)의 바닥벽(107)의 복사 및 전도열을 유발하여, 도가니의 바닥벽에 놓여있는 고체 실리콘이 용융되게 한다.
저항 및 전도 열이 도가니(65) 내의 고체 폴리실리콘의 바닥 부분을 용융시키고 난 후, 상부 코일(95)의 자계는 전기적으로 도전성인 액체 실리콘 내에 전류를 유도하며, 이것은 액체 실리콘을 더 가열하고, 액체 실리콘으로부터의 복사 및 전도열에 의해 도가니 내에 남아있는 고체 폴리실리콘의 용융 속도가 증가한다. 일 실시예에서, 코일(95, 99)에 공급되는 교류의 주파수는 약 3㎑ 내지 약 15㎑의 범위이고, 전력의 크기는 약 15㎾ 내지 160㎾의 범위이다. 일 실시예에서, 상부 코일(95) 내의 전류는 약 10㎑의 주파수 및 약 160㎾의 전력을 갖고, 하부 코일(99) 내의 전류는 약 3㎑의 주파수 및 약 15㎾의 전력을 갖는다. 각 전원(100, 101)은 전력 변환기, 모터 발전기, 펄스폭 변조기 인버터, 또는 코일에 교류를 공급하기 위한 임의의 다른 수단을 포함할 수 있음을 알 수 있다.
일 실시예에서, 서셉터 어셈블리(69)의 원통형 바디(121)는 높이 약 38㎝(15인치), 내측 직경 약 20㎝(8인치) 및 벽 두께 약 13㎜(1/2인치)를 가질 수 있다. 서셉터(69)의 원뿔형부(125)의 바닥벽은 도가니(65)의 바닥벽(107)의 각도에 대응하는 각도를 가질 수 있으며, 본 발명의 범위를 벗어나지 않고서 약 1 도 내지 약 60도의 범위 내에 있을 수 있다(더 바람직하게는 10도). 서셉터(69)의 하측 출구부(129)는 서셉터의 원뿔형부(125)의 바닥벽으로부터 약 16.5㎝ 내지 30㎝(약 6.5인치 내지 약 12인치)만큼 연장될 수 있다. 이러한 치수들은 단지 예시적인 것일 뿐이며, 도가니(65) 및 서셉터(69)는 본 발명의 범위를 벗어나지 않고서 다른 치수를 가질 수 있음을 알 수 있다.
상부 코일(95)을 통한 전류는 도가니(65) 내의 용융재의 온도를 제어하도록 변화될 수 있고, 하부 코일(99)을 통한 전류는 도가니 노즐(85)을 통과하는 용융재의 온도를 제어하도록 변화될 수 있다. 예를 들어, 결정 인상기 CP의 결정 성장 도가니 CC로 쏟아지고 있는 용융재가 용융 도가니로부터 결정 성장 도가니로의 자 유 낙하 동안 실리콘의 용융점보다 높게 유지되도록, 용융 도가니(65) 내의 용융재의 온도는 반드시 실리콘의 용융점(1414℃)보다 높게 유지되어야 한다. 약 5피트(1.5미터)의 자유 낙하 높이 F(도 3)에 기초할 때, 노즐(85)을 통과하는 실리콘 액체는 적어도 20도의 과열(superheat)(약 1434℃의 최소 온도에 대응함)을 가져서, 용융 도가니 노즐의 대직경부(109)와 결정 인상기 CP의 결정 성장 도가니 CC 내의 용융재 M의 표면 간의 거리 전체에서 실리콘 흐름 스트림이 액체로 유지되게 한다. 또한, 과열된 액체 실리콘이 노즐을 통과하여 흐르는 것으로 인한 노즐의 과도한 삭마(ablation)를 방지하기 위하여, 용융 도가니(65)의 석영 노즐(85)을 통과하는 용융된 실리콘의 온도는 약 1465℃를 넘어서는 안 된다. 노즐(85)을 통과하는 용융된 실리콘이 1465℃보다 높은 온도에서 흐르도록 허용되는 경우, 제1 및 제2 노즐부(111, 115)는 너무 이르게 너무 커질 것이며, 액체 실리콘의 질량 흐름 속도는 폴리실리콘의 원하는 용융 속도를 초과할 것이다. 결정 성장 도가니 CC를 채우는 동안 도가니 내의 용융재의 높이가 대략적으로 일정하게 유지되도록, 노즐(85)을 통한 액체 실리콘의 질량 흐름 속도는 도가니(65) 내의 폴리실리콘의 원하는 용융 속도 이하이어야 한다. 도가니(65)로부터의 흐름 속도가 폴리실리콘의 용융 속도를 초과하는 경우, 결정 성장 도가니 CC를 채우는 동안 도가니(65) 내의 용융재 높이는 낮아질 것이며, 이는 노즐(85) 내의 정압의 감소를 유발한다. 노즐(85) 내의 정압이 미리 정해진 레벨 미만으로 낮아지면, 노즐을 통과하는 액체 실리콘의 스트림은 방향성을 잃을 것이고(즉, 더 이상은 노즐의 중심선을 따른 방향을 갖지 않음), 그 결과 결정 성장 도가니 CC에서 과도한 튐 및 분무가 발생한 다.
결정 성장 생산성을 적어도 약 10% 내지 35% 향상시키는 데에 필요한 만큼 용융재 준비 시간을 단축하기 위하여, 용융기 어셈블리(1)는 액체 실리콘을 약 50㎏/hr 내지 약 140㎏/hr 범위의 바람직한 질량 흐름 속도로 전달해야 한다. 실험을 통하여, 용융기 어셈블리(1)로부터의 액체 실리콘의 보다 더 바람직한 질량 흐름 속도는 약 85㎏/hr인 것으로 결정되었다. 약 250㎜(10인치)인 도가니(65)의 바닥 출구(85) 위의 초기 용융재 높이 H(도 14)에 기초할 때, 오리피스(111)는 약 85㎏/hr의 액체 실리콘의 최적 질량 흐름 속도를 제공하는 초기 직경을 갖게 되는 크기를 갖는다. 오리피스 직경 및 오리피스(111) 위의 용융재 높이 H는 용융기 어셈블리(1)로부터의 원하는 질량 흐름 속도는 물론, 용융 도가니(65)의 직경 및 높이에 따라 달라질 것이다.
이제 도 9를 참조하면, 도가니(65)의 노즐(85) 내의 오리피스(111)는 약 250㎜(10인치)의 초기 용융재 높이 H(도 14) 및 약 85㎏/hr의 액체 실리콘 흐름 속도에 대응하여, 약 2.3㎜의 초기 직경 D1을 갖는다. 용융기 어셈블리(1)가 연속적인 결정 인상기 CP들을 용융된 실리콘으로 채우는 데에 사용되면, 액체 실리콘의 흐름에 의한 도가니 노즐(85)의 벽 두께의 삭마로 인해 오리피스 직경 D1이 증가할 것이다. 따라서, 액체 실리콘의 최적 질량 흐름 속도를 유지하기 위해서는, 개구의 직경이 증가함에 따라 오리피스(111) 위의 초기 용융재 높이 H가 감소되는 것이 바람직하다. 오리피스(111)를 통한 액체 실리콘의 질량 흐름 속도는, 오리피스를 떠나는 액체의 속도(v)가 오리피스 위로의 높이(h)의 2배에 중력 상수(g)를 곱한 것 의 제곱근과 동일함을 기술하는 토리첼리의 법칙을 적용함으로써 결정된다. 이 법칙은,
v = (2 × h × g)½
로도 쓸 수 있으며, 여기에서 v는 오리피스를 통과하는 액체의 속도, h는 용융재 높이 H, g는 중력 상수이다.
그 다음, 오리피스(111)를 통과하여 흐르는 액체의 질량 흐름 속도는, 위의 수학식에서 얻어진 속도에 오리피스의 면적과 액체의 밀도를 곱함으로써 계산된다.
노즐(85)의 오리피스(111)의 상대적인 크기는 용융기 어셈블리(1)의 연속적인 동작 동안 도가니(65)로부터의 액체 실리콘의 원하는 질량 흐름 속도를 유지하기 위해 요구되는 용융재 높이 H를 조정함으로써 모니터링될 수 있다. 오리피스(111)가 삭마되어 액체 실리콘의 원하는 질량 흐름 속도가 도달가능한 용융 속도를 초과하게 되면, 도가니(65)가 교체된다. 일 실시예에서, 용융 도가니(65)가 교체되기 전에, 오리피스 직경 D1은 3.0㎜(0.12인치)까지 증가하도록 허용될 수 있다. 약 3.0㎜(0.12인치)의 오리피스 직경 D1에서 85㎏/hr의 액체 실리콘 흐름 속도를 유지하기 위해서, 용융재 높이 H는 반드시 약 177㎜(7.0인치)로 낮아져야 한다.
액체 실리콘이 결정 성장 도가니 CC 내의 용융재 풀 M에 충돌할 때 과다하게 튀는 것을 방지하기 위하여, 반드시 액체 실리콘의 방향성있는 스트림이 도가니 노즐(85)로부터 결정 성장 도가니 내의 용융재로 흘러야 한다. 약 85㎏/hr의 액체 실리콘 흐름 속도에서의 다양한 노즐 설계의 테스트 결과에 기초할 때, 용융 도가니 노즐(85)의 바람직한 설계는 약 6 내지 14㎜(0.24 내지 0.55인치), 더 바람직하게는 약 10㎜(0.39인치)의 제1 부분(109)에 대한 초기 직경 D2, 및 약 50 내지 60㎜(1.96 내지 2.4인치), 더 바람직하게는 약 55㎜(2.16인치)의 길이 L1을 포함하는 것으로 결정되었다. 노즐(85)의 오리피스(111)는 약 2.1 내지 2.3㎜(0.08 내지 0.09인치) 범위, 더 바람직하게는 약 2.2㎜(0.087인치)의 초기 내측 직경 D1, 및 약 8 내지 12㎜(0.39 내지 0.47인치), 더 바람직하게는 약 10㎜(0.39인치)의 길이 L2를 가질 수 있다. 제3 부분(115)은 약 3 내지 8㎜(0.12 내지 0.31인치) 범위, 더 바람직하게는 약 3㎜(0.12인치)의 내측 직경 D3, 및 약 76㎜ 내지 210㎜(3.0인치 내지 8.3인치) 범위, 더 바람직하게는 약 118㎜(4.6인치)의 길이 L3를 가질 수 있다. 노즐(85)의 제3 부분(115)의 바람직한 길이 L3는 다음의 공식으로부터 밀리미터 단위로 계산될 수 있는 것으로 결정되었다.
L3 = 50 + (50 × D3/D1)
위의 공식은 약 50㎏/hr 내지 약 140㎏/hr 범위의 액체 실리콘의 질량 흐름에 대해 노즐(85)의 제3 부분(115)의 바람직한 길이 L3를 결정하는 데에 사용될 수 있다. 노즐(85)의 제1, 제2 및 제3 부분(109, 111, 115)의 바람직한 구성은 액체 실리콘의 바람직한 질량 흐름 속도를 비롯한 다양한 인자들에 따라 달라짐을 알 수 있을 것이다. 따라서, 본 발명은 여기에 열거된 노즐(85)의 특정 치수들로 한정되지 않는다.
도 3에 도시되어 있는 바와 같이, 총괄적으로 151로 표시된 스플래시 가드 어셈블리(splash guard assembly)는 도킹 칼라(9)에 의해 지지되며, 스플래시 가드(155)를 포함하고, 그 스플래시 가드는 그로부터 상향 연장되는 4개의 케이블(163, 165 : 이들 중 2개만이 도시되어 있음)에 의해 4개의 풀리(pulley)(159, 161)(이들 중 2개만이 도시되어 있음)에 연결된다. 풀리(159, 161)는 도킹 칼라(9)의 외측으로부터 접근할 수 있는 핸들(173)을 갖는 샤프트(169)에 연결된다. 핸들(173)은 용융기 어셈블리(1)의 동작 동안 샤프트(169)를 회전시키고 스플래시 가드(155)를 상승 또는 하강시키도록 수동으로 돌려질 수 있다. 스플래시 가드(155)는 용융된 실리콘이 그것을 통과할 수 있도록 하기 위하여, 개방형 상단과 바닥을 갖는 뒤집힌 보울 형상을 갖는다. 스플래시 가드(155)는 용화된 석영, 용화된 실리카, 실리콘 탄화물 코팅된 흑연, 또는 다른 적절한 재료로 이루어질 수 있다. 스플래시 가드(155)는 결정 인상기 CP의 열 차폐부 HS 내부에 맞는 크기를 가지며, 따라서 가드는 도 3에 점선으로 도시된 것처럼 결정 성장 도가니 CC 내의 용융재 M의 표면에 가깝게 하강될 수 있다. 스플래시 가드 어셈블리(151)는, 용융기 어셈블리(1)와 결정 성장 도가니 CC 간에서 액체 실리콘을 이송하는 동안, 액체 실리콘의 스플래시 및 분무로부터 열 차폐부 HS 및 다른 핫존 구성요소들을 보호한다.
사용 시에, 본 발명의 용융기 어셈블리(1)는 중력 피더 GF로부터 수취된 폴리실리콘을 효율적으로 용융시켜 쏟는다. 용융기 어셈블리(1)는 결정 성장 도가니 CC를 액체 실리콘으로 재충전하기 위해 결정 인상기 P에 쉽게 연결되고, 그 다음 실리콘 잉곳 I의 제조를 위한 상부 인상 챔버 PC의 설치를 위해 결정 인상기 CP로 부터 쉽게 분리되도록 설계된 모듈 설계를 갖는다. 용융기 어셈블리(1)의 이동가능한 설계는 단 하나의 용융기 어셈블리가 다수의 결정 인상기 CP(예를 들어 8개)에서 사용될 수 있게 함으로써 상당한 비용 절약을 허용한다.
빈 용융 도가니(65)와 함께, 냉각수(도시되지 않음), 전력(도시되지 않음) 및 퍼지 가스(purge gas)(도시되지 않음)가 용융기 어셈블리(1)에 연결된다. 다음으로, 하부 하우징 LH(도 2) 내의 게이트 밸브 GV가 폐쇄되어 하부 하우징을 고립시키고, 결정 인상기 CP의 상부 하우징 UH는 하부 하우징으로부터 분리되어 도 3에 도시된 바와 같이 용융기 어셈블리(1)로 교체된다. 용융기 어셈블리(1)의 도킹 칼라(9)와 하부 하우징 LH 간의 플랜지 연결 FC를 단단하게 한 후, 용융기 어셈블리는 폴리실리콘 피더 GF에 연결된다. 피더 GF를 용융기 어셈블리(1)에 연결한 후, 용융기 어셈블리 내의 공기는 진공 펌핑에 의해 제거되고, 용융기 어셈블리 내의 압력이 결정 인상기 CP의 압력(약 10-30 torr)와 거의 동일해지도록 비활성 기체(예를 들어 아르곤 기체)로 교체된다. 용융기 어셈블리(1) 내의 압력이 상승된 후, 게이트 밸브 GV가 개방되어, 결정 인상기 CP 내의 대기가 용융기 어셈블리(1) 내로 퍼질 수 있게 된다.
도 10에 도시되어 있는 바와 같이, [20㎝(8인치)의 내측 직경을 갖는 용융 도가니에 대하여] 약 4 내지 7㎏의 초기 충전재를 제공하기 위하여 과립상 폴리실리콘 GP가 용융기 도가니(65)에 추가되며, 20㎝(8인치) 용융 도가니(65)에서 용융을 시작하기 위한 과립상 폴리실리콘의 초기 충전재의 최적 질량은 약 5㎏이다. 전원(100)으로부터의 전력이 턴온되어, 서셉터(69) 둘레의 상부 코일(95)에 10㎾의 교류를 제공한다. 도 11에 도시되어 있는 바와 같이, 도가니 내의 폴리실리콘 GP의 초기 충전재는 용융 서셉터(125)로부터의 열로 인해 용융되기 시작하고, 대체적으로 과립상 폴리실리콘의 초기 충전의 바닥 부근과 도가니(65)의 바닥에 있는 노즐(85) 내의 고체 폴리실리콘 GP의 용융되지 않는 플러그 위에서 용융된 실리콘 LS를 형성한다. 도 11의 초기 용융 단계에서, 용융되지 않은 폴리실리콘 GP의 최상층은 액체와 고체 폴리실리콘의 슬러시 혼합물을 포함하는 중간층 SL에 의해 용융된 실리콘 LS로부터 분리된다. 중간층 SL은 용융 도가니(65)의 원뿔형 벽(107)에 인접한 고리형 보이드 AV에 의해 용융된 실리콘으로부터 분리된다. 과립상 폴리실리콘 GP가 용융될 때, 용융되지 않은 과립상 폴리실리콘과 액체 실리콘(LS) 간의 밀도 차가 용융 도가니(65) 내에 보이드 AV를 발생시킨다. 도 11a에 나타나 있는 바와 같이, 도가니(65) 내에서의 용융은 코일(95)에 공급되는 약 12-16㎾의 전력으로 계속되고, 그에 의해 용융된 실리콘의 최상단 위로 이격된 고체 폴리실리콘의 크러스트 CL을 제외한 모든 초기 과립상 폴리실리콘 GP가 용융된 실리콘 LS로 용융된다. 크러스트 CL은 용융된 실리콘 LS의 열에서 유지되며, 액체 실리콘이 코일(95)로부터의 유도력에 의해 도가니 내에서 이동하는 동안 도가니(65) 밖으로 튀는 것을 방지한다. 용융 프로세스의 이 단계에서, 보이드 공간 VS는 도가니 내의 액체 실리콘 LS로부터 크러스트 CL을 분리한다. 도 12에 도시되어 있는 바와 같이, 코일로의 전력을 짧은 시간 간격 동안 약 60-70㎾까지 증가시켜 상부 코일(95)을 펄싱(pulsing)함으로써 크러스트 내에 개구 OG가 형성되고, 이에 의해 액체 실리콘 LS의 레벨이 코일로부터의 유도력에 의해 상승되어, 크러스트 CL에 접촉하여 완전히 용융시킨다. 짧은 시간 간격 동안의 코일(95)의 펄싱은 크러스트 CL이 완전히 용융될 때까지 약 2 내지 5분 동안 계속된다.
크러스트 CL을 완전히 용융시킨 후, 추가의 과립상 폴리실리콘 GP가 도가니(65)에 넣어진다 (도 13). 용융 프로세스의 이 시점에서, 용융된 실리콘 LS가 도가니(65)를 빠져나가는 것을 방지하기 위하여 노즐(85)의 제1 부분(109)으로 연장되는 고체 플러그 OP는, 도가니가 드레인(drain)되기 전에 용융재 높이 H가 원하는 레벨로 상승될 수 있게 해 준다. 도 13a에 도시된 바와 같이, 과립상 폴리실리콘 GP가 거의 최대 속도(예를 들어, 약 70 내지 85㎏/hr)로 추가되어 용융재 높이가 상승하기 시작하고, 남아있는 크러스트 층 CL이 계속 용융되어진다. 이 단계에서, 약 70-85㎏/hr의 과립상 폴리실리콘 GP의 최대 흐름 속도에 대하여, 코일로의 전력은 약 160㎾까지 증가된다. 도시된 실시예에서, 이러한 용융 단계에서의 용융재 높이 H(도 13a)는 약 38㎜ 내지 89㎜(1.5인치 내지 3.5인치)이다.
과립상 폴리실리콘 GP의 초기 충전재를 용융시킨 후, 용융재 높이 H(도 14)가 약 250㎜(10인치)로 상승될 때까지 추가의 과립상 폴리실리콘이 도가니에 추가되고(도 13 및 13a) 용융된다. 다음으로, 스플래시 가드(155)가 결정 인상기 CP의 핫존 내로 하강되어, 대체적으로 실리콘 용융재 M의 표면 부근에서 결정 인상 도가니 CC 내에 위치된다(도 3에 점선으로 도시됨). 스플래시 가드(155)를 하강시킨 후(도 3), 전력이 전원(101)으로부터 하부 코일(99)에 공급되어, 도가니의 바닥벽(107)의 온도를 상승시키고, 도가니 노즐(85) 내의 고체 플러그 OP를 용융시키기 시작한다(도 14). 이 단계에서, 액체 실리콘 LS가 과열되는 것을 방지하기 위하 여, 상부 코일(95)에 공급되는 전력이 감소된다. 고체 플러그 OP가 하부 코일(99) 내의 유도 전류에 의해 용융될 때, 용융된 실리콘 LS가 노즐(85)로부터 흐르기 시작하여, 대체적으로 노즐의 중심축에 맞춰지는 방향성있는 흐름 스트림으로 제1, 제2 및 제3 부분(109, 111, 115)을 통과한다(도 15). 액체 실리콘 LS가 도가니(65)로부터 드레인되기 시작할 때, 피더 GF는 약 85㎏/hr의 목표 폴리실리콘 피드 속도로 설정되어야 한다. 용융된 실리콘 LS가 도가니(65)로부터 흐르는 동안, 액체 실리콘의 용융재 높이 H를 오리피스(111)의 직경 D1에 대응하는 최적 레벨로 유지하기 위하여, 용융재 높이 H는 모니터링되어야 하고, 과립상 폴리실리콘 GP의 피드 속도가 그에 따라 조절되어야 한다. 용융재 높이 H가 최적값보다 높게 상승하면 폴리실리콘 피드 속도가 감소되어야 하고, 용융재 높이가 최적값 아래로 떨어지면 폴리실리콘 피드 속도가 증가되어야 한다. 용융된 실리콘 LS가 도가니(65)로부터 드레인되는 동안, 상부 및 하부 코일(95, 99)로의 전력은 도가니 노즐(85)을 빠져나오는 액체 실리콘의 최적 과열량(예를 들어, 적어도 약 20℃)을 유지하도록 조정되어야 한다.
과립상 폴리실리콘 GP의 목표량이 피더 GF로부터 전달되고 나면, 과립상 폴리실리콘 피드가 턴오프되고, 상부 코일(95)로의 전력은 약 12㎾로 감소된다. 이 단계에서, 도가니(65)가 드레인된다 (도 16). 필요하다면, 퍼지 가스(예를 들어 아르곤 가스)가 용융기 어셈블리에 추가되어, 어셈블리 내의 압력을 증가시키고, 임의의 남아있는 실리콘이 적절한 속도로 도가니 노즐을 빠져나오게 할 수 있다. 도가니(65) 내의 용융재 높이 H가 하강할 때, 도가니의 출구(85)를 통과하는 액체 실리콘 LS의 질량 흐름 속도가 감소된다. 퍼지 가스는 도가니(65) 내의 나머지 액체 실리콘 LS에 압력을 가하여, 그 액체 실리콘이 대체적으로 노즐의 중심축을 따르는 방향을 갖는 흐름 스트림을 유지하기 위한 충분한 속도로 도가니의 노즐(85)로부터 흘러나오게 하기 위해 사용될 수 있다. 액체 실리콘 LS의 방향성있는 질량 흐름 속도를 유지하기 위해서는, 용융재 높이 H의 약 10㎜ 감소에 대하여, 용융기 어셈블리(1)와 결정 인상기 CP 간의 약 2 torr(0.04psi)의 압력차가 바람직한 것으로 결정되었다. 용융기에서 모든 액체 실리콘 LS를 드레인하고 난 후, 상부 및 하부 코일(95, 99)로의 전력이 턴오프될 수 있고, 스플래시 가드(155)는 도킹 칼라(9) 내로 상승될 수 있다. 하부 하우징 LH의 게이트 밸브가 폐쇄되어, 성장 챔버 GC가 고립된다. 다음으로, 용융기 어셈블리(1) 내에 존재하는 실리콘 산화물을 산화하고, 용융기 어셈블리를 결정 인상기로부터 분리시킬 때의 실리콘 산화물의 제어되지 않은 연소를 방지하기 위하여, 용융기 어셈블리(1)는 주변 압력의 공기로 채워진다. 용융기 어셈블리(1)를 공기로 채운 후, 어셈블리는 결정 인상기 CP로부터 분리되어 용융 사이클과 드레이닝 사이클 간에 보관될 수 있고, 다르게는 어셈블리는 즉시 다른 결정 인상기를 재충전할 준비를 할 수 있다. 용융기 어셈블리(1)를 제거한 후, 결정 인상기 CP의 상부 하우징 UH는 교체될 수 있고, 인상기는 용융재 M으로부터 실리콘 잉곳 I를 제조할 준비를 한다.
본 발명의 용융기 어셈블리(1)의 동작에서, 결정 인상기 CP의 결정 성장 도가니 CC 내의 폴리실리콘 원재료의 용융 및 충전에 소요되는 총 시간은 약 5시간 내지 5시간 반이다. 250㎏(551lbs) 충전재에 대하여, 결정 인상기 CP의 결정 성장 도가니 CC에서의 통상적인 용융 풀 준비의 충전 및 용융에 소요되는 시간은 약 18시간이다. 본 발명의 용융기 어셈블리(1)를 사용하는 것에 의한 상당한 시간 절약은 용융기 어셈블리(1)에 의해 채워지는 각 결정 인상기 CP의 잉곳 I 제조량을 현저하게 증가시킨다. 또한, 폴리실리콘의 용융이 용융 어셈블리(1) 내로 분리되어, 결정 인상기 CP의 핫존에서는 발생하지 않기 때문에, 보다 많은 양의 수소를 갖는 폴리실리콘을 추가하는 것으로 인한 튐과 분무가 용융기 어셈블리 내로 억제되므로, 탈수소화되지 않은 저가의 폴리실리콘 원재료가 사용될 수 있다.
도 29에 도시된 바와 같이, 본 발명의 용융기 어셈블리(1)는 다수의 결정 형성 장치(예를 들어 결정 인상기 CP)에서 사용될 수 있다. 용융기 어셈블리(1)는 앞에서 설명한 바와 같이, 용융된 원재료 LS의 충전재를 결정 인상기 CP로 전달한 다음, 리프팅 메커니즘(도시되지 않음)에 의해 이동되어 인접 결정 인상기 상에 설치되도록 동작될 수 있다. 용융기 어셈블리(1)가 4개의 결정 인상기 CP에서 이용도록 위치된 것으로 도시되어 있지만, 용융기 어셈블리는 본 발명의 범위를 벗어나지 않고서 4개보다 많거나 적은 수의 결정 인상기에서 이용될 수 있다.
처음에, 용융기 어셈블리(1)는 제1 결정 인상기 CP에 관련하여 위치되고, 앞에서 설명한 바와 같이, 제1 결정 인상기의 도가니 CC에 용융된 실리콘 LS를 전달하도록 작동된다. 앞에서 설명한 바와 같이, 가열기의 상부 및 하부 유도 코일(95, 99)이 작동되어 용융 도가니(65) 내의 원재료를 용융시키고, 용융기 어셈블리(1)의 노즐(85)을 통해 흐르는 용융된 원재료의 스트림을 제1 결정 인상기 CP의 주 도가니 CC로 전달한다. 제1 결정 인상기 CP에서 이용된 후, 인상 챔버 PC를 둘 러싸는 제2 결정 인상기의 상부 하우징 UH가 제거되고, 제2 인상기의 하부 하우징 LH를 고립시키는 게이트 밸브 GV 위에 용융기 어셈블리(1)가 위치된다. 용융기 어셈블리(1)는 크레인(도시되지 않음) 또는 다른 리프팅 메커니즘에 의해 제1 및 제2 결정 인상기 CP에 관련하여 위치될 수 있다. 크레인은 용융기 어셈블리(1)를 제1 결정 인상기 CP 위로 상승시켜, 용융기 어셈블리가 제2 결정 인상기 위의 위치로 이송될 수 있게 하는 데에 사용될 수 있다. 용융기 어셈블리(1)를 제2 결정 인상기 CP에 관련하여 위치시킨 후, 용융기 어셈블리는 제2 결정 인상기의 하부 하우징 LH에 연결된다. 용융기 어셈블리를 결정 인상기에 연결한 후, 용융기 어셈블리는 용융된 원재료의 스트림을 제2 결정 형성 장치로 전달하도록 작동된다. 다수의 결정 형성 장치에서 이용하는 방법은, 본 발명의 범위를 벗어나지 않고서, 여기에 설명된 결정 형성 장치의 임의의 실시예 또는 임의의 다른 결정 형성 장치에 적용될 수 있음을 알 수 있다. 또한, 용융 및 충전 사이클의 완료 후에, 용융기 어셈블리(1)가 정지 상태로 유지되고, 결정 인상기 CP가 용융기 어셈블리에 관련하여 이동되어 제2 결정 인상기로 교체될 수 있다. 결정 인상기는 도 29에 도시되어 있는 4개보다 많거나 적은 수의 결정 인상기 CP에서 사용될 수 있음을 알 수 있다.
도 17을 보면, 총괄적으로 201로 표시되어 있고, 제1 실시예의 용융 어셈블리와 거의 유사한 다른 용융 어셈블리가 도시되어 있다. 도 17의 용융 어셈블리(201)는 폐쇄된 상단벽(207)을 갖는 용융 도가니(203)를 포함한다. 용융 도가니(203)의 폐쇄된 상단벽(207)은, 과립상 폴리실리콘 GP가 도가니 내의 용융된 실리콘 LS에 추가될 때 발생할 수 있는 스플래터를 억제한다. 또한, 상단벽(207)은 과립상 폴리실리콘 GP가 용융 도가니(203) 내에 적재될 때 발생되는 폴리실리콘 먼지를 억제한다.
도 18은 총괄적으로 215로 표시되며, 고체 폴리실리콘 GP를 용융시키기 위하여 유도 전류를 공급하는 상부 코일(219), 중간 코일(221) 및 하부 코일(223)을 포함하는 용융 어셈블리의 다른 실시예를 도시하고 있다. 이 설계도 앞의 실시예에서처럼 폐쇄된 상단벽(231)을 갖는 용융 도가니(227)를 포함하지만, 이 설계는 본 발명의 범위를 벗어나지 않고서 상단 개방형 도가니 설계에도 적용될 수 있음을 알 것이다. 본 실시예의 3-코일 구성은, 상부 코일(219), 중간 코일(221) 및 하부 코일(223)에 공급되는 전류의 제어에 의한 용융재의 온도 조절을 허용한다. 코일(219, 221, 223) 각각은 각 코일을 통과하는 전류의 독립적인 제어를 위하여 각자의 전원에 따로따로 연결된다. 3개의 코일(219, 221, 223) 각각에 의해 발생되는 가열 전력의 양은 독립적으로 조절될 수 있다.
이러한 설계에서의 별도의 중간 코일(221)의 추가는, 도가니(227)의 중간부의 실리콘 용융재의 가열이 중간 코일을 통해 흐르는 전류의 조정에 의해 독립적으로 조절될 수 있게 해 준다. 이러한 설계에서의 별도의 하부 코일(223)은 출구(235)를 통해 흐르는 실리콘의 가열이 하부 코일을 통해 흐르는 전류의 주파수의 조정에 의해 독립적으로 제어될 수 있게 한다. 또한, 하부 코일(223)은 실리콘의 흐름을 출구(235)의 내측 직경보다 작은 직경으로 제한하는 자계를 출구(235)에 발생시키기 위하여 사용될 수 있다. 출구(235)를 통과하는 흐름 스트림 직경의 감소는 도가니(227)로부터의 용융재 흐름 속도에 대한 추가의 제어를 허용하며, 출구를 통과하는 액체 실리콘과 출구의 내측 표면 간의 접촉을 감소시켜, 출구의 삭마 속도를 감소시킨다.
도 19는 총괄적으로 251로 표시되고, 폐쇄된 상단벽(259)을 갖는 도가니(255)를 포함하며, 폴리실리콘 피드 입구(263)가 중력 피더 GF의 출구를 수용하기 위한 2개의 45도 밴드(265)를 갖는 용융기 어셈블리의 다른 실시예를 도시한 것이다. 이 설계는 고체 폴리실리콘을 도가니로 이송할 때 발생되는 폴리실리콘 먼지와, 폴리실리콘이 도가니 내의 용융재와 충돌할 때 빈번하게 발생하는 용융재 스플래터 둘다를 억제한다. 2개의 밴드는 스플래터 폴리실리콘이 중력 피더에 도달하는 것을 방지하는 구불구불한 경로를 생성한다. 또한, 2개의 밴드는 용융기 어셈블리의 중심선으로부터 벗어난 중력 피더를 수용하여, 그 피더가 피더의 다른 위치로부터 용융기 어셈블리에 연결될 수 있게 한다.
도 20 및 도 21은 총괄적으로 301로 표시되며, 다수의 챔버를 갖는 도가니(총괄적으로 305로 표시됨)를 포함하는 용융기 어셈블리의 다른 실시예를 도시한 것이다. 도가니(305)는 바닥 노즐(311)을 갖는 외부 보울(309), 외측 보울에 용접되고 용융된 실리콘 LS의 인입흐름을 위한 포트(317)(2개만 도시되어 있음)를 갖는 필터 실린더(315), 및 바닥 노즐의 크기에 대응하는 크기를 갖는 내측 실린더 위어(weir)(321)를 포함한다. 실린더 위어 내부의 액체 실리콘 LS가 도가니(305)의 노즐을 빠져나오도록, 위어(321)는 보울(309) 및 필터 실린더(315)보다 짧고, 노즐(311)을 둘러싸고 있다. 이러한 설계의 용융 도가니(305)는 보울(309)과 필터 실린더(315) 사이의 공간에 의해 정의되는 용융 챔버(325), 필터 실린더와 위 어(321) 간의 제어 챔버(329), 및 실린더 위어(321) 내부의 공간에 의해 정의되는 드레인 챔버(333)를 포함한다.
노즐(311)은 앞에서 노즐(85)과 관련하여 설명된 것과 같이 구성될 수 있고, 저항 가열된 용융재 흐름 가이드(337)과 함께 사용될 수 있다. 흐름 가이드(337)는 용융 도가니(305)로부터의 액체 실리콘의 흐름을 용융 도가니(305)로부터 흐름 가이드의 외측 표면을 따라 성장 도가니 CC 내로 향하게 함으로써 그 흐름을 제어한다. 도 20 및 도 21a의 실시예에서, 용융재 흐름 가이드(337)는 외측 보울(309)의 노즐(311)을 통해 수용되며 드레인 챔버(333)에 축 정렬되는 용화된 석영 튜브의 형태이다. 용융재 흐름 가이드(337)는 그것을 실리콘의 용융점(약 1414℃)과 거의 동일하거나 약간 높은 온도로 유지하는 가열 소자(339)를 튜브 내부에 갖는다. 도 21a에 도시되어 있는 바와 같이, 흐름 가이드(337)는 결정 인상기 CP(도 2)의 결정 성장 도가니 CC 내로 하향 연장되고, 용융 어셈블리(301)로부터 결정 인상기로의 용융된 실리콘의 흐름을 용이하게 하여, 결정 성장 도가니 내에서의 튐 및 분무가 감소되게 한다. 흐름 가이드(337)는 본 발명의 범위를 벗어나지 않고서 임의의 적절한 재료(예를 들어, 용화된 실리카, 용화된 석영, 실리콘 탄화물 코팅된 흑연 등)으로 이루어질 수 있다. 가열 소자(339)는 몰리브덴, 텅스텐 또는 흑연 저항 가열기에서 사용되는 전기 저항 가열 소자일 수 있다. 다르게는, 흐름 가이드(337)는 몰리브덴, 텅스텐 또는 흑연 서셉터를 이용한 유도 가열에 의해 가열될 수 있다.
도 21b는 용융 도가니(305)의 노즐(311)을 수용하는 튜브의 형태로 된 수정 된 버전의 흐름 가이드(341)를 도시하고 있다. 흐름 가이드(341)는 용융된 실리콘 LS가 노즐(311)로부터 튜브 내로 흐르도록, 튜브의 외부에 가열 소자(343)를 갖는다. 이전 버전에서와 마찬가지로, 흐름 가이드(341)는 용융 도가니(305)로부터의 용융된 실리콘 LS의 흐름을 결정 인상기 CP(도 2)의 성장 도가니 CC로 향하게 한다. 이전 실시예에서와 마찬가지로, 흐름 가이드(341)는 저항 가열, 유도 가열 또는 임의의 다른 가열 방법에 의해 가열될 수 있다.
도 21c는 용융 도가니(305)의 노즐(311)을 수용하는 다른 버전의 흐름 가이드(345)를 도시하고 있다. 흐름 가이드(345)는 노즐로부터 흘러나오는 용융된 실리콘 LS의 응집성 스트림이 흐름 가이드의 벽에 접촉하지 않도록 하는 크기를 갖는다. 용융된 실리콘이 흐름 가이드(345)의 벽에 접촉하지 않기 때문에, 가이드는 이전 버전들에서와 같은 가열 소자를 갖지 않는다. 흐름 가이드(345)는, 노즐(311)로부터의 흐름 스트림이 성장 도가니 내의 액체 실리콘 풀에 들어갈 때, 성장 도가니 CC로부터의 액체 실리콘이 결정 인상기의 핫존 구성요소들에 접촉하는 것을 방지한다.
도 20 및 도 21의 설계에서, 과립상 폴리실리콘 GP가 용융 챔버(325)에 추가되고, 폴리실리콘은 앞에서 제1 실시예와 관련하여 설명한 것과 유사한 방식으로 (즉, 도가니(305) 둘레의 유도 코일(341)에 의한 유도 가열에 의해) 용융된다. 과립상 폴리실리콘 GP가 용융 챔버(325) 내에서 용융될 때, 용융된 실리콘 LS는 필터 실린더(315) 내의 포트(317)를 통해 흘러, 도가니(305)의 제어 챔버(329)를 채운다. 제어 챔버(329) 내의 용융된 실리콘 LS의 레벨이 실린더 위어(321)의 높이에 도달하고 나면, 용융된 실리콘은 위어의 상단을 넘어 흘러 도가니(305)의 노즐(311)을 빠져나가기 시작한다. 용융된 실리콘 LS는 흐름 가이드(337)에 접촉하고, 제어된 느린 속도로, 그리고 대체적으로 노즐(311)에 축 정렬된 방향으로 결정 성장 도가니 CC로 흘러내려, 도가니 내의 용융재 M의 표면 상의 동요를 최소화한다. 이러한 방식에서, 용융기 어셈블리(301)는 결정 인상기 CP의 핫존 부분들로의 액체 실리콘의 튐을 감소시키는 방식으로, 용융된 실리콘 LS의 제어된 흐름을 결정 성장 도가니 CC에 공급한다. 필터 실린더(315) 내의 포트(317)는 액체 실리콘 LS의 표면보다 낮게 위치되어, 액체 실리콘 내를 부유 중일 수 있는 임의의 용융되지 않은 실리콘이 용융 챔버(325)로부터 어셈블리(301)의 제어 챔버(329)로 전달되지 못하게 한다.
도 22는 총괄적으로 351로 표시되며, 이 실시예의 용융기 어셈블리가 단 하나의 내부 챔버(357)를 갖는다는 점을 제외하고는 이전 실시예와 유사한 용융기 어셈블리를 도시하고 있다. 도가니(355)는 도가니 내의 폴리실리콘을 용융시키기 위한 용융 유도 코일(361)로 둘러싸여 있다. 도가니(355)의 출구(363)는 용융체 가이드(367)를 수용하고, 전원(도시되지 않음)으로부터의 교류 전류의 흐름을 위한 하부 유도 코일(371)로 둘러싸여 있다. 하부 유도 코일(371)(부양 밸브라고도 함)은 도가니(355)로부터의 액체 실리콘 LS의 흐름을 제어하는 노즐 밸브의 역할을 한다. 전류가 하부 유도 코일(371)을 통해 흐르고 있을 때, 액체 실리콘 LS의 흐름 경로 내에 유도되는 자계는 도가니(355)로부터의 액체 실리콘의 흐름을 차단할 정도로 충분히 강하다. 도가니(355)로부터의 액체 실리콘 LS의 흐름은 하부 유도 코 일(371)에 공급되는 전류를 턴온 및 턴오프함으로써 제어된다.
도 23은 총괄적으로 381로 표시된 다른 실시예의 용융기 어셈블리를 도시한 것으로서, 이 용융기 어셈블리는 액체 실리콘을 용융 도가니(385)의 상단벽(383)을 넘어 쏟아냄으로써 결정 성장 도가니 CC 내로 이송하도록 설계되어 있다는 점을 제외하고는 이전 실시예들과 유사하다. 용융기 어셈블리(381)는 결정 인상기 CP로부터 분리된 제어된 환경에서 고체 폴리실리콘을 용융시키기 위하여 용융 도가니(385)를 가열하는 가열기(389)를 포함한다. 가열기(389)는 앞에서 설명한 것과 같은 유도 코일, 저항 가열기 또는 본 발명의 범위에서 벗어나지 않는 임의의 적합한 가열기를 포함할 수 있다. 고체 폴리실리콘이 용융되고 난 후, 용융 도가니(385)는 결정 성장 도가니 CC 위에 위치되고, 액체 실리콘 LS가 도가니의 상단벽으로부터 쏟아져나와 결정 성장 도가니를 채우도록 기울여진다. 결정 성장 도가니 CC는 결정 인상기의 동작 동안 연속적으로 채워질 수 있고, 다르게는 결정 인상 세션의 끝에서 일괄 채움 프로세스에 의해 채워질 수 있다.
도 24는 총괄적으로 GA로 표시된, EFG(Edge-defined Film Growth) 결정 성장 장치의 형태로 된 다른 종래 기술의 결정 형성 장치를 도시하고 있다. 도시된 특정 장치 GA는 속이 빈 8면의 다결정질 실리콘체(도시되지 않음)를 성장시키도록 구성되어 있지만, 다른 형상의 결정질체를 형성하도록 구성될 수 있음을 알 수 있다. 장치 GA는 결정 성장 챔버 GC1을 둘러싸는 하부 하우징 LH1과 인상 챔버 PC1을 둘러싸는 상부 하우징 UH1을 갖는다. 도 24에서 상부 하우징 UH1은 거의 생략되어 있다. 도시된 실시예에서, 하부 하우징 LH1은 성장 도가니 GC1, 모세관 다이 CD1, 서셉터 S1, 내측 가열기 어셈블리 IH1, 및 외측 가열기 어셈블리 HA1을 포함하는 도가니/모세관 다이 시스템을 둘러싸고 있다.
도가니 GC1은 용융된 원재료 SM1(예를 들어, 다결정질 실리콘)의 충전재를 포함하며, 도가니 내의 원재료를 가열하기 위한 무선 주파수 가열 코일 HC1에 의해 둘러싸여 있다. 도가니 GC1은 대체적으로 도가니의 둘레 주변에 위치되어 형성된 모세관을 갖는, 총괄적으로 EF1으로 표시된 단부면을 갖는다. 모세관 갭 CG1 및 도가니 GC1은 장치 GA에 의해 형성된 결정질체의 단면 형상에 대응하는 형상을 갖는다. 용융된 실리콘 SM1이 모세관 갭 CG1으로 흘러들어가서 모세관 작용에 의해 상승할 수 있도록, 도가니 GC1은 그 내벽에 형성된 슬롯 ST1을 갖는다. 도시된 실시예에서, 장치 GA는 모세관 갭 CG1의 형상에 대응하도록 팔각형 형상을 갖는 씨드 SC1을 갖는다. 씨드 SC1이 모세관 갭 CG1 내의 용융된 실리콘 SM1에 접촉하도록 하강되어 성장 시퀀스가 개시된다. 씨드 SC1이 모세관 다이 CD1으로부터 상승될 때, 갭 CG1 내의 용융된 실리콘 SM1은 다이로부터 끌어내지고, 도가니 GC1으로부터의 용융된 실리콘은 모세관 갭 내에서의 모세관 작용에 의해 상승하여 도가니로부터 제거된 재료를 다시 채운다. 통상적인 EFG 결정 형성 장치에 관한 추가의 정보를 위해서, 미국 특허 제5,156,978호, 제4,647,437호, 제4,440,728호, 제4,230,674호 및 제4,036,666호가 참조될 수 있으며, 이 명세서들은 여기에 참조로서 포함된다.
도 25는 도 24의 EFG 결정 형성 장치 GA1 상에 설치된 본 발명의 용융기 어셈블리(1)를 도시하고 있다. 용융기 어셈블리(1)는 인상 챔버 PC1을 둘러싸는 상 부 하우징 UH1을 제거하고 용융기 어셈블리의 도킹 칼라(9)를 결정 형성 장치의 하부 하우징 상의 플랜지 FA1에 연결함으로써 장치 GA1에 연결된다는 점을 알 것이다. 그 다음, 용융기 어셈블리(1)는 앞에서 설명한 것과 유사한 방식으로 동작하여, EFG 결정 형성 장치 GA1의 도가니 GC1을 용융된 실리콘 SM1으로 채운다. 결정 형성 장치 GA1의 도가니 GC1이 용융된 실리콘 SM1으로 채워질 때, 용융기 어셈블리(1)는 분리되어 결정 형성 장치의 동작을 위한 상부 하우징 UH1으로 교체된다.
도 26은 총괄적으로 GA2로 표시된 다른 종래 기술의 결정 형성 장치를 도시한 것으로, 본 발명의 용융기 어셈블리(1)가 이 장치에 용융된 원재료 SM2를 공급하기 위하여 사용될 수 있다. 도 26의 결정 형성 장치 GA2는 도가니 GC2 내에 담긴 용융재 SM2로부터 성장된 고체 결정질 리본 CR2를 생성하기 위하여 SSG(String Stabilized Growth)법을 사용하는 결정 인상 장치이다. 이 결정 형성 장치 GA2는 태양 전지 또는 다른 반도체 디바이스의 제조에서 사용되기에 적합한 큰 입자의 단결정질 실리콘 또는 다결정질 실리콘의 얇고 넓은 시트를 생성한다.
도 26에 도시되어 있는 바와 같이, 장치 GA2는 도가니 GC2와 거기에 담긴 용융재 SM2를 통과하는 2개의 이격된 스트링 SS1, SS2를 포함한다. 도가니 GC2에 전기적으로 연결된 DC 소스(도시되지 않음)에 의해 용융재 SM2 내에 전류가 유도되고, 이것은 용융재의 흐름 순환을 유발한다. 도가니 GC2 내의 속이 빈 장벽 HB2는 결정 CR2가 성장되는 용융재 깊이를 감소시키고, 결정의 품질을 향상시킨다. 고체 다결정질 실리콘(도시되지 않음)은 공급 튜브 ST2를 통해 도가니 GC2에 추가되고 거기에서 용융되어, 용융재 SM2를 형성할 수 있다. 도가니 내의 고체 원재료와 용 융재 SM2를 가열하기 위하여, 가열 코일 HC2(도 27)가 도가니 GC2를 둘러싼다. 도가니 GC2는 용융재 SM2가 오염된 후 도가니를 비워 용융재가 새로운 원재료로 교체될 수 있게 하는 용융재 튜브 MT2를 갖는다. 스트링 SS1, SS2가 도가니 GC2로부터 상방으로 끌려나올 때, 스트링들 사이의 액체 실리콘이 도가니로부터 제거되고, 냉각되어감에 따라 고체화하여, 고체 다결정질 실리콘의 리본 CR2를 형성한다. 도 26의 장치는 도가니 GC2를 둘러싸는 하부 하우징 LH2(도 27 참조), 및 스트링과 리본 CR2를 인상하기 위한 인상 장치를 둘러싸는 하부 하우징(도시되지 않음)을 포함함을 알 것이다. SSG 결정 형성 장치에 관한 추가의 정보를 위해서는, 미국 특허 제4,689,109호, 제4,661,200호, 및 제4,627,887호가 참조될 수 있으며, 이 명세서들은 여기에 참조로서 포함된다.
도 27에 도시되어 있는 바와 같이, 본 발명의 용융기 어셈블리(1)는 상부 하우징을 대신하여 SSG 결정 인상 장치 GA2의 도가니 GC2 위에 위치되어, 도가니를 용융된 실리콘 SM2로 재충전할 수 있다. 용융기 어셈블리(1)는 이전 실시예들과 관련하여 앞에서 설명한 것과 유사한 방식으로 동작하여 용융된 실리콘 SM2를 SSG 결정 형성 장치 GA2로 전달할 수 있다.
도 28에 도시되어 있는 바와 같이, 본 발명의 용융기 어셈블리(1)는 용융된 원재료 SM3을 고체 결정질 잉곳 SI3를 캐스트하기 위한 캐스트 장치(총괄적으로 GA3로 표시됨)에 공급하기 위해 사용될 수 있다. 도 28의 실시예에서, 캐스트 장치 GA3은 총괄적으로 MD3로 표시된 몰드 아래에, 신축가능한(retractable) 지지 부재 SP3을 갖는 연속 캐스트 장치이다. 도시된 실시예에서, 몰드 MD3은 RF 코일 RC3에 의해 둘러싸인 일련의 이격된 도가니 핑거 CF3들을 포함한다. RF 코일 RC3은 도가니 핑거 CF3 내의 전류와 용융된 원재료 SM3 내의 반대 방향 전류를 유도하여, 용융된 재료가 도가니 핑거들로부터 밀려나서 캐스트 장치 GA3 내에 담겨지게 한다. 용융된 원재료 SM3을 냉각시키는 것을 돕기 위하여, 냉각액(도시되지 않음)이 도가니 핑거 CF3를 통과하여 순환된다.
지지 부재 SP3을 도가니 핑거 CF3으로부터 하강시킴으로써, 고체 실리콘 잉곳 SI3가 캐스트 장치 GA3 내에 형성된다. 신축가능한 지지 부재 SP3이 도가니 핑거 CF3의 바닥으로부터 멀어지면서 천천히 하강되어질 때, 용융된 재료 SM3의 바닥부 내의 유도 전류가 점진적으로 감소되어, 용융된 재료가 도가니 핑거로부터 멀어져감에 따라 냉각될 수 있게 한다. 지지 부재 SP3이 하강될 때 잉곳 SI3이 캐스트되어, 도가니 핑거 CF3으로부터 분리된 용융된 원재료 SM3이 냉각되고 고체화할 수 있게 된다. 전형적으로, 장치 GA3의 상단으로부터 넣어진 고체 원재료(도시되지 않음)가 장치 내에서 용융되어, 신축가능한 지지 부재 SP3가 하강될 때 제거된 용융된 재료 SM3를 다시 채운다. 도 28에 도시된 바와 같이, 본 발명의 용융기 어셈블리(1)는 고체 잉곳 SI3을 캐스트하는 데에 사용되는 다량의 용융된 원재료 SM3을 다시 채우기 위해 도가니 핑거 CF3 위에 설치될 수 있다.
용융기 어셈블리(1)는 앞에서 설명한 것과 마찬가지의 방식으로 동작하여, 용융된 원재료 SM3의 방향성있는 흐름을 캐스트 장치 GA3에 제공할 수 있다. 도시된 실시예에서, 처음에, 용융된 원재료 SM3이 도가니 핑거 CF3에 의해 형성된 몰드 MD3에 전달될 수 있도록, 용융기 어셈블리(1)가 캐스트 장치 위에 위치된다. 과립 상 폴리실리콘 GP(도 10)가 용융기 어셈블리(1)에 넣어진 후, 용융기 어셈블리 내의 상부 가열 코일(95)은 용융 도가니(65) 내의 원재료를 용융시키도록 동작한다. 하부 가열 코일(99)은 도가니 노즐(85) 위의 고체 플러그를 용융시키도록 동작하여, 용융된 원재료 LS가 용융기 어셈블리(1)의 오리피스(111)를 통해 흘러 용융된 원재료의 방향성있는 스트림을 결정 형성 장치 GA3의 도가니에 전달할 수 있게 해 준다. 결정 형성 장치의 도가니 GC3가 채워지고 난 후, 하부 가열 코일(99)의 동작이 중단되어, 용융기 어셈블리 내에 고체화된 원재료의 고체 플러그 OP가 형성될 수 있게 해 준다. 고체 플러그 OP는, 캐스트 잉곳 SI3이 캐스트 장치 GA3으로부터 분리되거나, 다음의 캐스트 다결정질체를 제조하기 위해 새로운 캐스트 장치가 용융기 어셈블리 아래에 위치되는 동안, 용융기 어셈블리(1)로부터의 용융된 원재료 LS의 흐름을 방지한다.
도 29에 도시된 캐스트 장치 GA3은 본 발명의 범위를 벗어나지 않고서 고체 잉곳을 일괄 캐스트하기 위한 고체벽을 갖는 통상적인 냉 도가니 몰드로 교체될 수 있다. 본 발명의 용융기 어셈블리(1)를 이용할 수 있는 캐스트 프로세스에 관한 추가의 정보를 위해서는, 미국 특허 제4,769,107호, 제4,572,812호 및 제4,175,610호가 참조되며, 이 명세서들은 여기에 참조로서 포함된다.
본 발명 또는 그 바람직한 실시예(들)의 구성요소들을 소개할 때, "상기"라는 수식어를 붙이거나 아무런 수식어도 붙이지 않은 것은 하나 이상의 구성요소가 존재함을 의미하려는 의도이다. "포함한다", "갖는다"라는 용어는 포괄적인 의미로서, 열거된 구성요소들 이외의 추가의 구성요소들이 존재할 수 있음을 의미하도 록 의도된 것이다.
앞의 설명으로부터, 본 발명의 몇가지 목적이 달성되며 다른 이로운 결과들이 얻어진다는 것을 알 수 있을 것이다.
상기의 구성에 대하여, 본 발명의 범위를 벗어나지 않는 다양한 변경들이 이루어질 수 있으므로, 앞의 상세한 설명에 포함되어 있고 첨부 도면들에 도시되어 있는 모든 사항들은 제한적인 관점이 아니라 예시적인 것으로서 해석되어야 할 것이다.

Claims (32)

  1. 용융된 원재료의 충전재(charge)를 결정 형성 장치에 공급하기 위한 용융기 어셈블리(melter assembly)로서,
    하우징,
    상기 하우징 내에 배치된 도가니(crucible), 및
    상기 도가니 내에 수취된 고체 원재료를 용융시키도록, 상기 도가니에 관련하여 배치된 가열기
    를 포함하고, 상기 도가니는 용융된 원재료의 방향성있는 흐름(directed flow of molten source material)이 선택된 흐름 속도로 상기 장치에 공급될 수 있도록 용융된 원재료의 흐름을 제어하도록 구성된 노즐을 갖는 용융기 어셈블리.
  2. 제1항에 있어서, 상기 방향성있는 흐름은 용융된 원재료의 응집성있는 스트림(coherent stream)인 용융기 어셈블리.
  3. 제1항에 있어서, 상기 노즐은 제1 대직경 부분, 제2 소직경 부분 및 제3 중간직경 부분을 포함하고, 상기 노즐의 상기 제3 부분은 상기 노즐의 상기 제1 및 제2 부분보다 긴 용융기 어셈블리.
  4. 제3항에 있어서, 상기 노즐의 상기 제3 부분의 길이는 밀리미터 단위로 상기 제3 부분의 직경을 상기 제2 부분의 직경으로 나눈 것의 50배에 50을 더한 것과 거의 동일하고, 상기 선택된 흐름 속도는 약 50㎏/hr 내지 약 140㎏/hr의 범위 내에 있는 용융기 어셈블리.
  5. 제1항에 있어서, 상기 가열기는 대체적으로 상기 도가니의 상측부 둘레에 제1 유도 코일을 포함하고, 상기 제1 유도 코일은 상기 제1 유도 코일에 전류를 공급하기 위한 전원에 접속되도록 구성된 용융기 어셈블리.
  6. 제5항에 있어서, 상기 가열기는 대체적으로 상기 도가니의 하측부의 둘레에 제2 유도 코일을 더 포함하고, 상기 제2 유도 코일은 상기 도가니의 상기 하측부 내의 원재료를 가열하기 위한 다른 전원에 접속되도록 구성된 용융기 어셈블리.
  7. 제6항에 있어서, 상기 제1 및 제2 유도 코일과 상기 도가니 사이에 배치된 서셉터를 더 포함하고, 상기 서셉터는 상기 제1 유도 코일에 의한 유도 가열을 방지하기 위하여 원주 상에 이격된 복수의 핑거를 포함하는 상측부와, 상기 서셉터의 유도 가열을 촉진하기 위한 하측부를 갖는 용융기 어셈블리.
  8. 제7항에 있어서, 상기 서셉터는 갭에 의해 분리된 원뿔형 중간 부분과 하측 출구 부분을 포함하고, 상기 중간 부분 및 상기 상측부는 갭에 의해 분리되는 용융기 어셈블리.
  9. 제1항에 있어서, 상기 용융된 원재료가 상기 용융기 어셈블리로부터 상기 결정 형성 장치로 흐르는 동안 상기 결정 형성 장치를 보호하기 위하여, 상기 용융기 어셈블리로부터 상기 결정 형성 장치로 하강되도록 구성된 스플래시 가드(splash guard)를 더 포함하는 용융기 어셈블리.
  10. 제1항에 있어서, 상기 결정 형성 장치와 관련하여, 상기 결정 형성 장치는 초크랄스키법(Czochralski method)에 따라 단결정질 잉곳을 성장시키도록 구성된 결정 인상기, EFG법(Edge-defined Film Growth Method)에 따라 속이 빈 다결정질체를 성장시키도록 구성된 결정 인상기, 및 캐스트 다결정질 실리콘체를 형성하도록 구성된 도가니 중 적어도 하나를 포함하는 용융기 어셈블리.
  11. 제1항에 있어서, 상기 도가니로부터 상기 결정 형성 장치로의 용융된 원재료의 흐름을 가이드하기 위한 용융재 흐름 가이드를 더 포함하고, 상기 용융재 흐름 가이드는 상기 노즐을 통해 수용되는 튜브 및 상기 노즐을 수용하는 튜브 중 적어도 하나를 포함하는 용융기 어셈블리.
  12. 제11항에 있어서, 상기 용융재 흐름 가이드는 상기 노즐과 상기 결정 형성 장치 간에서의 흐름 동안 상기 용융된 실리콘을 가열하기 위한 가열 소자를 포함하는 용융기 어셈블리.
  13. 결정 형성 장치를 용융된 원재료로 충전하는 방법으로서,
    용융된 실리콘을 상기 장치의 도가니로 전달하기 위해, 용융기 어셈블리를 상기 결정 형성 장치에 관련하여 위치시키는 단계,
    상기 용융기 어셈블리 내의 상부 가열 코일을 작동시켜, 용융 도가니 내의 원재료를 용융시키는 단계,
    상기 용융기 어셈블리 내의 하부 가열 코일을 작동시켜, 용융된 원재료가 상기 용융기 어셈블리의 오리피스(orifice)를 통해 흐를 수 있게 하여, 용융된 원재료의 스트림을 상기 결정 형성 장치의 상기 도가니에 전달하는 단계
    를 포함하는 방법.
  14. 제13항에 있어서, 인상 챔버(pulling chamber)를 정의하는 상기 결정 형성 장치의 상부 하우징을 성장 챔버를 정의하는 상기 결정 형성 장치의 하부 하우징으로부터 분리하고, 상기 상부 하우징을 대신하여 상기 용융기 어셈블리를 상기 하부 하우징에 부착하는 단계를 더 포함하는 방법.
  15. 제14항에 있어서, 상기 용융기 어셈블리를 상기 하부 하우징으로부터 분리하고, 상기 상부 하우징을 상기 하부 하우징에 다시 부착하고, 상기 용융기 어셈블리로부터 상기 하부 하우징 내의 상기 도가니로 전달된 용융재로부터 단결정질 잉곳을 성장시키는 단계를 더 포함하는 방법.
  16. 제14항에 있어서, 상기 결정 형성 장치는 제1 결정 인상기(crystal puller)를 구성하고,
    상기 방법은, 제2 결정 인상기의 상부 하우징을 상기 제2 결정기의 하부 하우징으로부터 분리하고, 상기 상부 하우징을 대신하여 상기 용융기 어셈블리를 상기 하부 하우징에 부착하는 단계를 더 포함하는 방법.
  17. 제14항에 있어서, 상기 원재료를 용융시키는 단계는, 상기 용융기 어셈블리를 상기 결정 형성 장치의 상기 하부 하우징에 부착하는 단계에 이어 행해지는 방법.
  18. 제13항에 있어서, 상기 하부 가열 코일을 작동시키는 단계와 동시에, 상기 용융기 어셈블리에 추가의 고체 원재료를 피드(feed)하는 단계를 더 포함하고,
    상기 고체 원재료의 질량 흐름 속도를 상기 용융기 어셈블리로부터의 용융된 원재료의 질량 흐름 속도와 거의 동일하도록 제어하는 단계를 더 포함하는 방법.
  19. 제13항에 있어서, 상기 상부 가열 코일을 작동시키는 단계 전에, 다량의 고체 원재료를 상기 용융기 어셈블리 내에 피드하는 단계를 더 포함하고,
    상기 상부 가열 코일을 작동시키는 단계는, 상기 용융기 어셈블리 내의 노즐을 플러그로 막기 위하여 상기 원재료의 플러그 부분을 용융되지 않은 채로 남겨두 는 단계를 포함하는 방법.
  20. 제19항에 있어서, 상기 하부 가열 코일을 작동시키는 단계는, 상기 노즐의 플러그를 제거하기 위하여 상기 원재료의 상기 플러그 부분을 용융시키는 단계를 포함하는 방법.
  21. 제13항에 있어서, 상기 하부 가열 코일을 작동시키는 단계는, 상기 원재료의 용융점보다 높은 과열(superheat)을 유지하여, 상기 원재료가 상기 결정 인상기의 상기 하부 하우징 내의 도가니로의 전달 동안 고체화하는 것을 방지하는 단계를 포함하는 방법.
  22. 제13항에 있어서, 상기 상부 가열 코일을 작동시키는 단계는, 원하는 질량 흐름 속도의 용융된 실리콘을 전달하기 위하여 용융재 높이를 상기 용융기 어셈블리의 출구보다 높게 확립하는 단계를 포함하고,
    상기 방법은, 상기 용융된 실리콘의 상기 원하는 질량 흐름 속도를 유지하기 위하여 상기 결정 인상기에 대하여 상기 용융기 어셈블리에 가압하는 단계를 더 포함하는 방법.
  23. 제22항에 있어서, 상기 용융기 어셈블리에 가압하는 단계는, 상기 용융기 어셈블리에 비활성 기체를 추가하여, 용융재 높이의 1센티미터 하강마다 약 2 torr로 상기 용융기 어셈블리에 가압하는 단계를 포함하는 방법.
  24. 제13항에 있어서, 상기 하부 가열 코일의 작동을 중단시킴으로써 상기 오리피스를 통한 용융된 실리콘의 흐름을 중단시켜, 상기 오리피스로부터의 흐름을 방지하는 원재료의 고체 플러그를 형성하는 단계를 더 포함하는 방법.
  25. 제13항에 있어서, 상기 결정 형성 장치의 상기 도가니에 전달된 용융재로부터 단결정질 잉곳을 성장시키는 단계, 및 상기 결정 형성 장치 내의 상기 도가니에 전달된 용융재로부터 다결정질체를 형성하는 단계 중 적어도 하나를 더 포함하는 방법.
  26. 제25항에 있어서, 상기 다결정질체는 EFG법(Edge-defined Film Growth method), 다결정질 실리콘 리본, 및 캐스트 실리콘체 중 적어도 하나인 방법.
  27. 하나의 용융기 어셈블리를 다수의 결정 형성 장치에 이용하는 방법으로서,
    용융된 실리콘을 제1 결정 형성 장치의 도가니에 전달하기 위하여, 상기 용융기 어셈블리를 상기 제1 결정 형성 장치에 관련하여 위치시키는 단계,
    상기 용융기 어셈블리 내의 가열기를 작동시켜 용융 도가니 내의 원재료를 용융시키는 단계,
    용융된 원재료의 스트림을 상기 용융기 어셈블리로부터 상기 제1 결정 형성 장치로 전달하는 단계,
    용융된 실리콘을 제2 결정 형성 장치의 도가니로 전달하기 위하여, 상기 용융기 어셈블리를 상기 제2 결정 형성 장치에 관련하여 위치시키는 단계, 및
    용융된 원재료의 스트림을 상기 용융기 어셈블리로부터 상기 제2 결정 형성 장치로 전달하는 단계
    를 포함하는 방법.
  28. 제27항에 있어서, 상기 용융기 어셈블리 내의 가열기를 작동시켜 원재료를 용융시키는 단계는, 상기 가열기의 상부 유도 코일에 전기 전력을 제공하는 단계를 포함하고,
    상기 용융된 원재료의 스트림을 전달하는 단계는, 상기 가열기의 하부 유도 코일에 전기 전력을 제공하여 상기 용융기 어셈블리의 개구를 통한 흐름을 개시시키는 단계를 포함하는 방법.
  29. 제27항에 있어서, 상기 가열기의 작동을 중단시킴으로써 상기 용융 도가니로부터의 용융된 원재료의 흐름을 중단시키고, 상기 용융 도가니로부터의 흐름을 방지하는 원재료의 고체 플러그를 형성하는 단계를 더 포함하는 방법.
  30. 제27항에 있어서, 상기 용융기 어셈블리의 도가니에 전달되는 상기 원재료로부터 단결정질 잉곳을 성장시키는 단계를 더 포함하는 방법.
  31. 제27항에 있어서, 상기 용융기 어셈블리의 상기 도가니에 전달된 원재료로부터 다결정질체를 형성하는 단계를 더 포함하고,
    상기 다결정질체는 EFG법에 의해 형성된 속이 빈 다각형 실리콘체, 다결정질 실리콘 리본 및 캐스트 실리콘체 중 적어도 하나인 방법.
  32. 제27항에 있어서, 상기 용융기 어셈블리를 상기 제2 결정 형성 장치에 관련하여 위치시키는 단계는, 상기 용융기 어셈블리를 들어올리고, 상기 용융기 어셈블리를 상기 제2 결정 형성 장치 위의 위치로 이동시키는 단계를 포함하고,
    상기 방법은 용융된 원재료의 스트림을 상기 제2 결정 형성 장치에 전달하기 전에, 상기 용융기 어셈블리를 상기 제2 결정 형성 장치의 하부 하우징에 연결하는 단계를 더 포함하는 방법.
KR1020077001156A 2004-06-18 2005-06-17 용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로충전하는 방법 KR101300309B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US58130804P 2004-06-18 2004-06-18
US60/581,308 2004-06-18
US11/155,105 US7344594B2 (en) 2004-06-18 2005-06-17 Melter assembly and method for charging a crystal forming apparatus with molten source material
PCT/US2005/021369 WO2006009802A2 (en) 2004-06-18 2005-06-17 A melter assembly and method for charging a crystal forming apparatus with molten source material
US11/155,105 2005-06-17
US11/155,104 US7465351B2 (en) 2004-06-18 2005-06-17 Melter assembly and method for charging a crystal forming apparatus with molten source material
US11/155,385 US7691199B2 (en) 2004-06-18 2005-06-17 Melter assembly and method for charging a crystal forming apparatus with molten source material
US11/155,385 2005-06-17
US11/155,104 2005-06-17

Publications (2)

Publication Number Publication Date
KR20070042971A true KR20070042971A (ko) 2007-04-24
KR101300309B1 KR101300309B1 (ko) 2013-08-28

Family

ID=35351655

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077001156A KR101300309B1 (ko) 2004-06-18 2005-06-17 용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로충전하는 방법

Country Status (7)

Country Link
EP (1) EP1756337B1 (ko)
JP (1) JP5080971B2 (ko)
KR (1) KR101300309B1 (ko)
CN (2) CN101006205B (ko)
DE (1) DE602005014103D1 (ko)
TW (1) TWI347377B (ko)
WO (1) WO2006009802A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396474B1 (ko) * 2011-05-12 2014-05-19 한국에너지기술연구원 재사용이 가능한 실리콘 용융용 이중 도가니 및 이를 포함하는 실리콘 박판 제조 장치

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1958925A1 (en) 2007-02-13 2008-08-20 Vivoxid Oy A system and method for manufacturing fibres
DE102008013326B4 (de) 2008-03-10 2013-03-28 Siltronic Ag Induktionsheizspule und Verfahren zum Schmelzen von Granulat aus Halbleitermaterial
KR101569711B1 (ko) * 2008-05-20 2015-11-18 신에쯔 한도타이 가부시키가이샤 단결정 제조장치
JP5163386B2 (ja) * 2008-09-17 2013-03-13 株式会社Sumco シリコン融液形成装置
DE102009005837B4 (de) * 2009-01-21 2011-10-06 Pv Silicon Forschungs Und Produktions Gmbh Verfahren und Vorrichtung zur Herstellung von Siliziumdünnstäben
DE102011007149A1 (de) * 2011-04-11 2012-10-11 Streicher Maschinenbau GmbH & Co. KG Verfahren und Vorrichtung zur Herstellung von Material mit mono- oder multikristalliner Struktur
CN102718221B (zh) * 2012-06-28 2014-06-11 厦门大学 多晶硅自封堵浇铸装置
US9664448B2 (en) * 2012-07-30 2017-05-30 Solar World Industries America Inc. Melting apparatus
DE102013203740B4 (de) * 2013-03-05 2020-06-18 Solarworld Industries Gmbh Vorrichtung und Vefahren zur Herstellung von Silizium-Blöcken
JP6372079B2 (ja) * 2013-12-27 2018-08-15 シンフォニアテクノロジー株式会社 加熱溶解装置、加熱溶解システムおよび出湯制御装置
US10030317B2 (en) * 2014-10-17 2018-07-24 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for controlling thickness of a crystalline sheet grown on a melt
KR101671593B1 (ko) * 2014-12-31 2016-11-01 주식회사 티씨케이 잉곳 성장장치의 리플렉터
JP6503933B2 (ja) * 2015-07-02 2019-04-24 株式会社Sumco シリコン融液供給装置及び方法並びにシリコン単結晶製造装置
TWI630365B (zh) * 2016-11-11 2018-07-21 財團法人金屬工業研究發展中心 Radon device with temperature control design and temperature control method thereof
KR102135061B1 (ko) * 2017-12-21 2020-07-17 주식회사 포스코 고휘발성 원소의 표준 시료 제조 장치 및 방법
CN111041554B (zh) * 2020-01-16 2021-05-25 江苏大学 一种用于晶硅铸锭炉的载气导流装置及其导流方法
CN115852484B (zh) * 2023-02-27 2023-05-16 杭州天桴光电技术有限公司 一种高效制备氟化镁多晶光学镀膜材料的装置和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106589C2 (de) * 1991-03-01 1997-04-24 Wacker Siltronic Halbleitermat Kontinuierliches Nachchargierverfahren mit flüssigem Silicium beim Tiegelziehen nach Czochralski
US5178719A (en) * 1991-08-20 1993-01-12 Horiba Instruments, Inc. Continuous refill crystal growth method
US5993540A (en) * 1995-06-16 1999-11-30 Optoscint, Inc. Continuous crystal plate growth process and apparatus
US6800137B2 (en) * 1995-06-16 2004-10-05 Phoenix Scientific Corporation Binary and ternary crystal purification and growth method and apparatus
JPH10279390A (ja) * 1997-02-04 1998-10-20 Komatsu Electron Metals Co Ltd 石英るつぼへの原料装填装置及び原料装填方法
JPH1192276A (ja) * 1997-09-22 1999-04-06 Super Silicon Kenkyusho:Kk 半導体単結晶の製造装置及び半導体単結晶の製造方法
FR2772741B1 (fr) * 1997-12-19 2000-03-10 Centre Nat Rech Scient Procede et installation d'affinage du silicium
US6402840B1 (en) * 1999-08-10 2002-06-11 Optoscint, Inc. Crystal growth employing embedded purification chamber
FR2831881B1 (fr) * 2001-11-02 2004-01-16 Hubert Lauvray Procede de purification de silicium metallurgique par plasma inductif couple a une solidification directionnelle et obtention directe de silicium de qualite solaire
FR2869028B1 (fr) * 2004-04-20 2006-07-07 Efd Induction Sa Sa Procede et installation de fabrication de blocs d'un materiau semiconducteur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396474B1 (ko) * 2011-05-12 2014-05-19 한국에너지기술연구원 재사용이 가능한 실리콘 용융용 이중 도가니 및 이를 포함하는 실리콘 박판 제조 장치

Also Published As

Publication number Publication date
CN101724903B (zh) 2013-02-13
WO2006009802A3 (en) 2006-08-24
KR101300309B1 (ko) 2013-08-28
CN101724903A (zh) 2010-06-09
WO2006009802A2 (en) 2006-01-26
DE602005014103D1 (de) 2009-06-04
EP1756337B1 (en) 2009-04-22
JP5080971B2 (ja) 2012-11-21
EP1756337A2 (en) 2007-02-28
JP2008503427A (ja) 2008-02-07
TWI347377B (en) 2011-08-21
CN101006205B (zh) 2011-11-09
CN101006205A (zh) 2007-07-25
TW200617220A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
KR101300309B1 (ko) 용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로충전하는 방법
US7465351B2 (en) Melter assembly and method for charging a crystal forming apparatus with molten source material
US7344594B2 (en) Melter assembly and method for charging a crystal forming apparatus with molten source material
US20190136407A1 (en) Single crystal ingots with reduced dislocation defects and methods for producing such ingots
JP4345624B2 (ja) チョクラルスキー法による原料供給装置および原料供給方法
EP0349904B1 (en) Apparatus for casting silicon
EP0364899B1 (en) Apparatus and process for growing crystals of semiconductor materials
US20130219967A1 (en) Method and device for producing polycrystalline silicon blocks
JP6597526B2 (ja) 融液導入管及びこれを用いたシリコン単結晶の製造装置
US7691199B2 (en) Melter assembly and method for charging a crystal forming apparatus with molten source material
JP5163386B2 (ja) シリコン融液形成装置
US7235128B2 (en) Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
KR102217883B1 (ko) 연속 잉곳 성장 장치
JP2003020295A (ja) Cz原料供給方法及び供給用治具
JP2010024123A (ja) シリコン融液の供給装置およびこれを備えたシリコン単結晶の育成装置
KR101596550B1 (ko) 잉곳성장장치 및 잉곳성장방법
KR20130007354A (ko) 실리콘 결정 성장장치 및 그를 이용한 실리콘 결정 성장방법
JP2007254162A (ja) 単結晶製造装置およびリチャージ方法
JP2004292288A (ja) シリコン単結晶原料の溶解方法
US20230407518A1 (en) Apparatus for continuously growing ingot
KR101582022B1 (ko) 열차폐장치 및 이를 포함하는 잉곳성장장치
KR20130116710A (ko) 단결정 실리콘 잉곳 제조장치
TW201300584A (zh) 用於屏蔽拉晶裝置之一部分之進料工具
JP2010006657A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法
JP4273820B2 (ja) 単結晶引き上げ方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160808

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee