JP2008247627A - Method for manufacturing carbon material, carbon material and electric double layer capacitor - Google Patents

Method for manufacturing carbon material, carbon material and electric double layer capacitor Download PDF

Info

Publication number
JP2008247627A
JP2008247627A JP2007087721A JP2007087721A JP2008247627A JP 2008247627 A JP2008247627 A JP 2008247627A JP 2007087721 A JP2007087721 A JP 2007087721A JP 2007087721 A JP2007087721 A JP 2007087721A JP 2008247627 A JP2008247627 A JP 2008247627A
Authority
JP
Japan
Prior art keywords
carbon
carbon material
precursor
metal
absorption efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087721A
Other languages
Japanese (ja)
Inventor
Hideaki Nomoto
英朗 野本
Kazuhiko Mizuuchi
和彦 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2007087721A priority Critical patent/JP2008247627A/en
Publication of JP2008247627A publication Critical patent/JP2008247627A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a new carbon material capable of manufacturing a new carbon by which a carbon material is industrially obtainable directly from a liquid phase under a mild temperature condition, a carbon material obtained by the method and an electric double layer capacitor using the carbon material. <P>SOLUTION: The carbon material is manufactured by irradiating microwaves in the presence of a liquid-phase carbon precursor and a substance having a microwave absorption efficiency higher than that of the carbon precursor. The substance having a microwave absorption efficiency higher than that of the carbon precursor is one or more kinds of substances selected from the group consisting of a metal, metal salt, metal oxide, metal hydroxide, activated carbon, carbon fiber, carbon nanotube, graphite, carbon black, silicon carbide, pitch coke, diamond, and diamond-like carbon. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素材料の製造方法および炭素材料ならびに電気二重層キャパシタに関する。   The present invention relates to a carbon material manufacturing method, a carbon material, and an electric double layer capacitor.

ナノオーダーサイズの炭素材料(以下ナノカーボンという)は、近年その特異な性質から、エネルギー貯蔵分野、ガス吸蔵等、広範な工業用への適用が見込まれている。   In recent years, nano-order sized carbon materials (hereinafter referred to as nanocarbons) are expected to be applied to a wide range of industrial applications such as energy storage and gas storage because of their unique properties.

ナノカーボン材料としては、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが知られている。これらは、原料である炭素前駆体を高度に制御された雰囲気と高温環境下で炭化して製造されるものであり、コストおよび生産プロセスの面で工業的な使用に適した材料とは言えない。また、カーボンナノチューブの製造には触媒としてナノ粒径の鉄やニッケルを用いるため、触媒に用いる重金属の除去が必要になる。   As nanocarbon materials, fullerenes, carbon nanotubes, carbon nanohorns, and the like are known. These are produced by carbonizing raw material carbon precursors in a highly controlled atmosphere and high temperature environment, and are not suitable for industrial use in terms of cost and production process. . In addition, since carbon nanotubes are made of iron or nickel having a nano particle size as a catalyst, it is necessary to remove heavy metals used in the catalyst.

これに対して、温和な温度条件で液相から直接炭素を作る方法として、電気化学的に多孔質セラミック板の表面に炭素を析出させる方法が開示されている(特許文献1参照)。この方法は、多孔質セラミックの空隙形状で炭素質の大きさを制御するものである。
特開2006− 1772号公報
On the other hand, as a method of directly producing carbon from a liquid phase under mild temperature conditions, a method of electrochemically depositing carbon on the surface of a porous ceramic plate is disclosed (see Patent Document 1). In this method, the size of the carbonaceous material is controlled by the void shape of the porous ceramic.
JP 2006-1772 A

しかしながら、特許文献1の技術は、多孔質セラミック板の表面のみが反応場となるため、生産効率に問題があると考えられる。   However, the technique of Patent Document 1 is considered to have a problem in production efficiency because only the surface of the porous ceramic plate serves as a reaction field.

本発明は、上記の課題に鑑みてなされたものであり、温和な温度条件で液相から直接に炭素材料を工業的に得ることができる新規な炭素材料の製造方法およびその製造方法により得られる炭素材料ならびにその炭素材料を用いた電気二重層キャパシタを提供することを目的とする。   The present invention has been made in view of the above-described problems, and is obtained by a novel carbon material production method capable of industrially obtaining a carbon material directly from a liquid phase under mild temperature conditions and the production method thereof. An object of the present invention is to provide a carbon material and an electric double layer capacitor using the carbon material.

本発明に係る炭素材料の製造方法は、液状の炭素前駆体と該炭素前駆体よりマイクロ波吸収効率が高い物質の共存下、マイクロ波を照射して得ることを特徴とする。   The method for producing a carbon material according to the present invention is characterized in that the carbon material is obtained by irradiation with microwaves in the presence of a liquid carbon precursor and a substance having higher microwave absorption efficiency than the carbon precursor.

また、本発明に係る炭素材料の製造方法は、好ましくは、前記炭素前駆体よりマイクロ波吸収効率が高い物質が、金属、金属塩、金属酸化物、金属水酸化物、活性炭、炭素繊維、カーボンナノチューブ、黒鉛、カーボンブラック、炭化ケイ素、ピッチコークス、ダイヤモンドおよびダイヤモンドライクカーボンからなる群から選ばれる1または2以上の物質であることを特徴とする。   In the method for producing a carbon material according to the present invention, preferably, the substance having higher microwave absorption efficiency than the carbon precursor is a metal, metal salt, metal oxide, metal hydroxide, activated carbon, carbon fiber, carbon It is one or more substances selected from the group consisting of nanotubes, graphite, carbon black, silicon carbide, pitch coke, diamond and diamond-like carbon.

また、本発明に係る炭素材料は、上記の炭素材料の製造方法により得られる炭素材料であって、直径が2nm〜10μmの一次粒子を有し、水素原子と炭素原子のモル比(H/C)が0.15以下であることを特徴とする。   The carbon material according to the present invention is a carbon material obtained by the above-described method for producing a carbon material, and has primary particles having a diameter of 2 nm to 10 μm, and a molar ratio of hydrogen atom to carbon atom (H / C). ) Is 0.15 or less.

また、本発明に係る電気二重層キャパシタは、上記の炭素材料または上記の炭素材料をさらに黒鉛化した炭素材料を導電助剤として用いることを特徴とする。   Moreover, the electric double layer capacitor according to the present invention is characterized in that the above carbon material or a carbon material obtained by further graphitizing the above carbon material is used as a conductive assistant.

本発明に係る炭素材料の製造方法および炭素材料は、液状の炭素前駆体と炭素前駆体よりマイクロ波吸収効率が高い物質の共存下、マイクロ波を照射して得るため、高度に制御された高温・雰囲気制御を行うこと無しに、ナノサイズの炭素材料を工業的に得ることができる。
また、本発明に係る電気二重層キャパシタは、上記の炭素材料または上記の炭素材料をさらに黒鉛化した炭素材料を導電助剤として用いるため、上記発明の効果を好適に奏することができる。
The method for producing a carbon material and the carbon material according to the present invention are obtained by irradiating microwaves in the presence of a liquid carbon precursor and a substance having higher microwave absorption efficiency than the carbon precursor. -A nano-sized carbon material can be obtained industrially without performing atmosphere control.
In addition, since the electric double layer capacitor according to the present invention uses the above carbon material or a carbon material obtained by further graphitizing the above carbon material as a conductive additive, the effects of the above invention can be suitably achieved.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

本実施の形態に係る炭素材料の製造方法は、液状の炭素前駆体と炭素前駆体よりマイクロ波吸収効率が高い物質の共存下、マイクロ波を照射して得るものである。これにより、液相から直接炭化した炭素材料を得ることができる。
なお、本出願人は、先に、マイクロ波を利用して、微粒子状ナノカーボンを製造するプロセスとして、予め有機溶媒中で多環芳香族化合物の会合体を作り、そこにマイクロ波等を照射して、会合体内で多環芳香族化合物を重縮合させ、粒子状の重縮合体とし、その後重縮合体を溶媒から濾別し、公知の方法で炭化する方法を提案しているが(特開2005−248045号公報)、この方法も、他の従来技術と同様に炭化物を一段で得るものではなく、得られた粒子を別途炭化する必要があり、炭化工程については従来法同様の雰囲気・温度管理が必要である。
The method for producing a carbon material according to the present embodiment is obtained by irradiating a microwave in the presence of a liquid carbon precursor and a substance having a higher microwave absorption efficiency than the carbon precursor. Thereby, the carbon material carbonized directly from the liquid phase can be obtained.
In addition, the applicant previously made an association of polycyclic aromatic compounds in an organic solvent in advance as a process for producing particulate nanocarbon using microwaves, and irradiated microwaves or the like therewith. Thus, a method has been proposed in which a polycyclic aromatic compound is polycondensed in an aggregate to form a particulate polycondensate, and then the polycondensate is filtered off from a solvent and carbonized by a known method (particularly, No. 2005-248045), this method also does not obtain carbides in a single step as in other conventional techniques, and the obtained particles need to be carbonized separately. Temperature control is necessary.

本実施の形態に係る炭素材料の製造方法において、用いる炭素前駆体は、マイクロ波照射時において液体状態である限り、例えば、固体のものであっても加熱して液体状態とすることで使用することができ、また、これとは逆に気体のものであっても加圧して液化状態とすることで使用することができる。なお、炭素前駆体がわずかな加熱によって容易に液化することが可能な固体の場合、固体の炭素前駆体をマイクロ波の予備的な照射あるいは初期照射により液化して用いることを排除するものではない。
炭素前駆体は、炭素原子を含有するものである限りその種類を特に限定するものではない。ただし、用いる前駆体の種類により、炭素収率ならびに、生成するナノカーボンの組成、形状が変わるので、用途により、最適な前駆体を選定することが好ましい。例えば、炭素前駆体として、芳香族系化合物を用いると高い炭化収率を得ることができる。また、例えば、キノリン等、含窒素化合物を前駆体に用いることで得られる炭素材料中に窒素を導入することもできる。また、炭素前駆体に有機金属錯体等を混在させることで、炭素と金属の複合物を得ることも可能となる。炭素前駆体は、これらの種類の異なるものを混合して用いてもよい。
炭素前駆体は、縮合多環芳香族がより好ましい。これに対して、極性官能基を有するフェノールや、脂肪族炭化水素では、炭化の収率が低くなる傾向がある。
In the method for producing a carbon material according to the present embodiment, as long as the carbon precursor to be used is in a liquid state at the time of microwave irradiation, for example, even if it is a solid one, it is used by heating to a liquid state On the other hand, even if it is a gas, it can be used by pressurizing it into a liquefied state. In the case where the carbon precursor is a solid that can be easily liquefied by slight heating, it does not exclude that the solid carbon precursor is liquefied and used by preliminary irradiation or initial irradiation of microwaves. .
The type of the carbon precursor is not particularly limited as long as it contains a carbon atom. However, since the carbon yield and the composition and shape of the nanocarbon to be produced vary depending on the type of precursor used, it is preferable to select an optimal precursor depending on the application. For example, when an aromatic compound is used as the carbon precursor, a high carbonization yield can be obtained. Further, for example, nitrogen can be introduced into a carbon material obtained by using a nitrogen-containing compound such as quinoline as a precursor. It is also possible to obtain a composite of carbon and metal by mixing an organic metal complex or the like with the carbon precursor. The carbon precursors may be used by mixing these different types.
The carbon precursor is more preferably a condensed polycyclic aromatic. On the other hand, in the case of phenol having a polar functional group or aliphatic hydrocarbon, the yield of carbonization tends to be low.

炭素前駆体よりマイクロ波吸収効率が高い物質は、用途により、適当なものを選定すればよく、例えば、金属、金属塩、金属酸化物、金属水酸化物、活性炭、炭素繊維、カーボンナノチューブ、黒鉛、カーボンブラック、炭化ケイ素、ピッチコークス、ダイヤモンドおよびダイヤモンドライクカーボン等を挙げることができる。これらのなかでも、金属塩、金属酸化物、金属水酸化物等の金属化合物、マイクロ波吸収能が高い金属、活性炭および炭素繊維は、より好ましい例である。
これらの物質を炭素前駆体に共存させるときの形状・共存量は、用途毎に適宜選定すれば良いが、形状については、ある程度破砕して微粒化したものを用いることが好ましい。また、炭素前駆体に共存させる炭素前駆体よりマイクロ波吸収効率が高い物質の比率は例えば炭素前駆体100質量部に対して炭素前駆体よりマイクロ波吸収効率が高い物質0.05質量部〜20質量部程度とすることが好ましい。
A substance having higher microwave absorption efficiency than the carbon precursor may be selected depending on the application. For example, metal, metal salt, metal oxide, metal hydroxide, activated carbon, carbon fiber, carbon nanotube, graphite , Carbon black, silicon carbide, pitch coke, diamond and diamond-like carbon. Among these, metal compounds such as metal salts, metal oxides and metal hydroxides, metals with high microwave absorption ability, activated carbon and carbon fibers are more preferable examples.
The shape and coexistence amount when these substances are allowed to coexist with the carbon precursor may be appropriately selected for each application, but it is preferable to use a shape that is crushed and atomized to some extent. Moreover, the ratio of the substance having higher microwave absorption efficiency than the carbon precursor coexisting with the carbon precursor is, for example, 0.05 part by mass to 20 parts by mass of the substance having higher microwave absorption efficiency than the carbon precursor with respect to 100 parts by mass of the carbon precursor. It is preferable to set it as about a mass part.

液状の炭素前駆体と炭素前駆体よりマイクロ波吸収効率が高い物質を共存させる方法は、例えば炭素前駆体中に炭素前駆体よりマイクロ波吸収効率が高い物質を例えば破砕して微粒子化したものを分散させても良く、また、基材表面に炭素前駆体よりマイクロ波吸収効率が高い物質を添着させた状態で、炭素前駆体と接触させても良い。さらにまた、例えば装置の金属部より電気的に絶縁された容器壁面に炭素前駆体よりマイクロ波吸収効率が高い物質を予め固定し、あるいはまた、炭素前駆体中に容器から電気的に絶縁された棒状ないし糸状の支持体を設置し、そこに炭素前駆体よりもマイクロ波吸収効率が高い物質を固定しても良い。この場合、炭素前駆体に共存させる炭素前駆体よりマイクロ波吸収効率が高い物質の比率は自由に設定することができる。   A method of coexisting a liquid carbon precursor and a substance having a higher microwave absorption efficiency than the carbon precursor is, for example, by crushing a substance having a higher microwave absorption efficiency than the carbon precursor into fine particles by, for example, crushing. You may make it disperse | distribute and you may make it contact with a carbon precursor in the state in which the substance whose microwave absorption efficiency is higher than a carbon precursor was adhered to the base-material surface. Furthermore, for example, a substance having higher microwave absorption efficiency than the carbon precursor is fixed in advance on the wall surface of the container that is electrically insulated from the metal part of the apparatus, or alternatively, the container is electrically insulated from the container in the carbon precursor. A rod-like or thread-like support may be installed, and a substance having higher microwave absorption efficiency than the carbon precursor may be fixed thereto. In this case, the ratio of the substance having higher microwave absorption efficiency than the carbon precursor coexisting with the carbon precursor can be set freely.

マイクロ波の周波数は、マイクロ波吸収効率が高い周波数域であれば、特に制限はない。また、マイクロ波出力は、照射する対象の容量や吸収効率により、適宜選択することができる。マイクロ波の照射時間は、用いる炭素前駆体の種類その他の条件によって変わりうるが、例えば、数分程度とすることができる。
適当な攪拌装置を用い、マイクロ波照射中に、反応系を攪拌しても良い。
There is no particular limitation on the frequency of the microwave as long as the microwave absorption efficiency is high. Further, the microwave output can be appropriately selected depending on the capacity of the object to be irradiated and the absorption efficiency. The microwave irradiation time may vary depending on the type of carbon precursor used and other conditions, but may be, for example, about several minutes.
The reaction system may be stirred during microwave irradiation using an appropriate stirring device.

マイクロ波照射により、液体中に生成した炭素材料は、公知の分離方法で、未反応前駆体と分離すれば良い。未反応前駆体は再使用しても良い。炭素前駆体よりマイクロ波吸収効率が高い物質と生成した炭素材料の分離が必要な場合は、炭素前駆体よりマイクロ波吸収効率が高い物質として酸や溶剤に可溶なものを用い、反応後に炭素材料を酸や溶剤で洗浄すれば良い。   The carbon material generated in the liquid by microwave irradiation may be separated from the unreacted precursor by a known separation method. Unreacted precursors may be reused. If it is necessary to separate a substance with higher microwave absorption efficiency than the carbon precursor and the generated carbon material, use a substance that has higher microwave absorption efficiency than the carbon precursor and is soluble in acid or solvent. What is necessary is just to wash | clean a material with an acid or a solvent.

以上説明した本実施の形態に係る炭素材料の製造方法によれば、例えば110℃前後の温度で液相から直接炭化して、直径2nm〜10μmの一次粒子を有し、水素/炭素の原子比が0.15以下の炭素材料を得ることができる。なお、生成する炭素材料は、一次粒子が凝集した二次粒子(凝集粒子)の形状を有し、このとき、長鎖状の二次粒子が繊維状の外観を有することもある。   According to the method for producing a carbon material according to the present embodiment described above, carbonized directly from a liquid phase at a temperature of, for example, around 110 ° C., and has primary particles with a diameter of 2 nm to 10 μm, and a hydrogen / carbon atomic ratio. Can be obtained. The generated carbon material has a shape of secondary particles (aggregated particles) in which primary particles are aggregated. At this time, the long-chain secondary particles may have a fibrous appearance.

この場合、マイクロ波の照射出力を制御することで、得られる炭素材料の粒子径を制御することもできる。出力を上げると、粒子径は小さくなる。
また、反応時に界面活性剤を添加することで、二次粒子の形状を制御することも可能である。
In this case, the particle diameter of the obtained carbon material can also be controlled by controlling the microwave irradiation output. Increasing the output decreases the particle size.
In addition, the shape of the secondary particles can be controlled by adding a surfactant during the reaction.

また、上記の物質とは別の粒子状の第三物質をコアとし、シェル状に炭素を被覆させることもできる。あるいはまた、酸や溶剤に可溶な第三物質を用いれば、マイクロ波照射により生成した炭素材料を洗浄することで、高純度な炭素材料を得ることもできる。また、金属を炭素材料中に残せば、金属と炭素の複合材を作ることもできる。
また、炭素材料を公知の方法で黒鉛化することで、黒鉛化性の良い黒鉛一次粒子からなる黒鉛材料を得ることもできる。
Further, a particulate third substance different from the above substance can be used as a core, and the shell can be coated with carbon. Alternatively, if a third substance soluble in an acid or a solvent is used, a high-purity carbon material can be obtained by washing the carbon material generated by microwave irradiation. In addition, if the metal is left in the carbon material, a composite material of the metal and carbon can be made.
Further, by graphitizing the carbon material by a known method, a graphite material composed of primary graphite particles having good graphitization properties can be obtained.

本実施の形態に係る炭素材料の製造方法によって得られる炭素材料およびその炭素材料より得られる黒鉛材料は、例えば、電極用導電助剤として電気二重層キャパシタに使用することができる。また、二次電池電極用導電助剤として使用することもできる。   The carbon material obtained by the method for producing a carbon material according to the present embodiment and the graphite material obtained from the carbon material can be used, for example, in an electric double layer capacitor as a conductive additive for an electrode. Moreover, it can also be used as a conductive additive for secondary battery electrodes.

実施例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   The present invention will be further described with reference to examples. In addition, this invention is not limited to the Example demonstrated below.

(実施例−1)
炭素前駆体として、市販のα―メチルナフタレン4g(新日鐵化学株式会社製。常温で液状)に、市販の椰子殻活性炭を乳鉢で平均径20μmに粉砕したもの0.05gを加え、内容積10ccのガラス製バイアルに充填した。
充填したバイアルを、市販のマイクロ波照射装置(BIOTAGE社製INITIATOR SIXTY)を用い、マイクロ波を出力70Wで2分照射した。反応中のバイアル温度は100℃〜120℃であった。
反応後、バイアル中には繊維状の炭素材料の生成が認められた。
反応液をろ過し、洗浄・乾燥した後、生成した繊維状の炭素材料部分のみを分取し、以下の各種分析を行った。
(Example-1)
As a carbon precursor, 0.05 g of commercially available coconut shell activated carbon pulverized to an average diameter of 20 μm in a mortar is added to 4 g of commercially available α-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd., liquid at normal temperature). A 10 cc glass vial was filled.
The filled vial was irradiated with a microwave at an output of 70 W for 2 minutes using a commercially available microwave irradiation apparatus (INITIATOR IXTY manufactured by BIOTAG). The vial temperature during the reaction was 100 ° C to 120 ° C.
After the reaction, formation of a fibrous carbon material was observed in the vial.
The reaction solution was filtered, washed and dried, and then only the produced fibrous carbon material portion was collected and subjected to the following various analyses.

得られた炭素材料について、走査電子顕微鏡(SEM)観察、XRD分析、元素分析を行った。
XRD分析は、学振法に準拠した。図1に示すXRD分析結果からd002値は0.349nmであった。この値からみると、得られた炭素材料の炭化度はファーネスブラックの1500℃近傍の炭化度に近似している。
元素分析により得られる炭素、水素の質量%からH/Cモル比を次式により求めた。
H/C=(水素の質量%)/{(炭素の質量%)/12}
炭素材料のH/Cの値を表1に示す。また、得られた炭素材料のSEM写真を図2および図3に示す。
The obtained carbon material was subjected to scanning electron microscope (SEM) observation, XRD analysis, and elemental analysis.
The XRD analysis was based on the Gakushin Law. From the XRD analysis result shown in FIG. 1, the d002 value was 0.349 nm. From this value, the carbonization degree of the obtained carbon material approximates the carbonization degree of furnace black in the vicinity of 1500 ° C.
The H / C molar ratio was determined by the following equation from the mass% of carbon and hydrogen obtained by elemental analysis.
H / C = (mass% of hydrogen) / {(mass% of carbon) / 12}
Table 1 shows the H / C values of the carbon materials. Moreover, the SEM photograph of the obtained carbon material is shown in FIG. 2 and FIG.

(実施例−2)
炭素前駆体として市販のn―トリデカン4g(昭和化学株式会社製 常温で液状)を使用したほかは実施例−1と同様の条件で調製して炭素材料を得た。得られた炭素材料のH/Cの値を表1に、SEM写真を図4にそれぞれ示す。
(Example-2)
A carbon material was obtained under the same conditions as in Example 1 except that 4 g of commercially available n-tridecane (liquid at room temperature, Showa Chemical Co., Ltd.) was used as the carbon precursor. Table 1 shows the H / C value of the obtained carbon material, and FIG. 4 shows the SEM photograph.

Figure 2008247627
Figure 2008247627

(実施例−3)
市販の椰子殻活性炭100質量部に対し、各種酢酸金属塩(酢酸鉄、酢酸銀、酢酸鉛)を10質量部添加した以外は実施例―1と同様の条件で調製して炭素材料を得た。得られた炭素材料の形状をSEM写真を図5〜図8に示す。図5〜図8をみると、炭素粒子の表面に金属微粒子が分散しているのが分かる。
(Example-3)
A carbon material was obtained by preparing under the same conditions as in Example-1, except that 10 parts by mass of various metal acetates (iron acetate, silver acetate, lead acetate) were added to 100 parts by mass of commercially available coconut shell activated carbon. . SEM photographs of the shape of the obtained carbon material are shown in FIGS. 5 to 8, it can be seen that metal fine particles are dispersed on the surface of the carbon particles.

導電助剤としての評価[電気二重層用電極の調製]
(実施例−4)
[電極の調製]
市販の椰子殻活性炭(BET比表面積1320m/g)、テフロン樹脂(テフロンは登録商標)、実施例−1で得られた炭素材料を、質量比で8:1:1の割合で取り、乳鉢で擦り、粗く混合した。このものを二本ロールでロール混練し、厚み100μmのシートを得た。
次いで打ち抜き機を用い、直径16mmの円盤状に打ち抜き、110℃2時間真空乾燥して、試験用シート電極とした。
[テストセルの組み立て]
テストセルの組み立ては、不活性雰囲気下、グローブボックス内で行った。
テストセルは、宝泉社製の二極セルを用いた。セパレーターはガラス繊維製ろ紙を用いた。電解液は、富山薬品工業製の1モルEt4NBF(テトラエチルアンモニウムテトラボロブルオライド)/プロピレンカーボネートを用いた。
シート電極は、電解液に漬け、6時間常温で真空含浸操作を行った後、セルを組んだ。
[充放電評価]
ナガノ社製充放電装置(BTS2004W)を用い、100mA/gの電流密度で、0から2.5Vの電圧範囲で繰り返し、充放電を行った。電流密度Iは、実充放電電流と、テストセルに装入された正負両シート電極の重量の和Wから、I=実充放電電流/Wで設定した。
5回目の放電時の、IRドロップから内部抵抗を計算した。
同様に放電時の電圧の変化から次式で静電容量を求めた。
静電容量は、電極活物質基準の静電容量C(単位:ファラッド)として次式で求めた。
C=実放電電流*(T2−T1)/(V1−V2)/0.8
V1:充電電圧の80%となる値(単位:V)
V2:充電電圧の40%となる値(単位:V)
T1:V1における時間(単位:sec)
T2:V2における時間(単位:sec)
実放電電流:単位A
重量あたりの静電容量(ファラッド/g)は、Cの値を、正負極のシート重量の和Wで割って求めた。
結果を表2に示す。
Evaluation as conductive aid [Preparation of electrode for electric double layer]
(Example-4)
[Preparation of electrode]
Commercially available coconut shell activated carbon (BET specific surface area 1320 m 2 / g), Teflon resin (Teflon is a registered trademark), and the carbon material obtained in Example-1 were taken at a mass ratio of 8: 1: 1, and a mortar And rubbed roughly to mix. This was roll kneaded with two rolls to obtain a sheet having a thickness of 100 μm.
Next, using a punching machine, it was punched into a disk shape with a diameter of 16 mm and vacuum dried at 110 ° C. for 2 hours to obtain a test sheet electrode.
[Assembly of test cell]
The test cell was assembled in a glove box under an inert atmosphere.
The test cell was a bipolar cell manufactured by Hosen. Glass fiber filter paper was used as the separator. As the electrolytic solution, 1 mol Et 4 NBF 4 (tetraethylammonium tetraborobrouride) / propylene carbonate manufactured by Toyama Pharmaceutical Co., Ltd. was used.
The sheet electrode was immersed in an electrolyte solution and subjected to a vacuum impregnation operation at room temperature for 6 hours, and then a cell was assembled.
[Charge / discharge evaluation]
Using a charge / discharge device (BTS2004W) manufactured by Nagano Co., Ltd., charging / discharging was repeated at a current density of 100 mA / g in a voltage range of 0 to 2.5V. The current density I was set as I = actual charge / discharge current / W from the total charge / discharge current and the sum W of the weights of the positive and negative sheet electrodes inserted in the test cell.
The internal resistance was calculated from the IR drop during the fifth discharge.
Similarly, the capacitance was obtained from the following equation from the change in voltage during discharge.
The capacitance was obtained by the following equation as the capacitance C (unit: farad) based on the electrode active material.
C = actual discharge current * (T2-T1) / (V1-V2) /0.8
V1: A value that is 80% of the charging voltage (unit: V)
V2: Value that is 40% of the charging voltage (unit: V)
T1: Time at V1 (unit: sec)
T2: Time in V2 (unit: sec)
Actual discharge current: Unit A
The capacitance per weight (farad / g) was obtained by dividing the value of C by the sum W of the positive and negative electrode sheet weights.
The results are shown in Table 2.

(実施例−5)
実施例―1で得られた炭素材料を、さらに黒鉛化炉で、アルゴンガス雰囲気下、2600℃3分間熱処理を行った。
得られた黒鉛材料を実施例―4と同様にして充放電評価を行った結果を表2に示す。
(Example-5)
The carbon material obtained in Example-1 was further heat-treated in a graphitization furnace at 2600 ° C. for 3 minutes in an argon gas atmosphere.
Table 2 shows the results of charge / discharge evaluation of the obtained graphite material in the same manner as in Example-4.

(比較例−1)
実施例―1の本発明の炭素材料の代わりに活性炭を増添加した以外は実施例―4と同様にして充放電評価を行った結果を表2に示す。
(Comparative Example-1)
Table 2 shows the results of charge / discharge evaluation performed in the same manner as in Example 4 except that activated carbon was added in addition to the carbon material of the present invention in Example-1.

(比較例−2)
実施例−1の本発明の炭素材料の代わりにアセチレンブラック(デンカ製デンカブラック:デンカブラックは商品名)を用いた以外は実施例―4と同様にして充放電評価を行った結果を表−2に示す。
(Comparative Example-2)
Table 1 shows the results of charge and discharge evaluation performed in the same manner as in Example 4 except that acetylene black (DENKA DENKA BLACK: DENKA BLACK is a trade name) was used instead of the carbon material of the present invention of Example-1. It is shown in 2.

(比較例−3)
実施例―1の本発明の炭素材料の代わりにケッチェンブラックEC600JD(ライオン社製:ケッチェンブラックは商品名)を用いた以外は実施例―4と同様にして充放電評価を行った結果を表−2に示す。
(Comparative Example-3)
The results of the charge / discharge evaluation performed in the same manner as in Example 4 except that Ketjen Black EC600JD (manufactured by Lion Corporation: Ketjen Black is a trade name) was used instead of the carbon material of the present invention of Example-1 Shown in Table-2.

Figure 2008247627
Figure 2008247627

実施例―1で得られた炭素材料のXRD分析結果を示すグラフ図である。It is a graph which shows the XRD analysis result of the carbon material obtained in Example-1. 実施例―1で得られた炭素材料のSEM写真を示す図である。It is a figure which shows the SEM photograph of the carbon material obtained in Example-1. 図2のSEM写真を拡大したものである。Fig. 3 is an enlarged view of the SEM photograph of Fig. 2. 実施例―2で得られた炭素材料のSEM写真を示す図である。It is a figure which shows the SEM photograph of the carbon material obtained in Example-2. 実施例―3で得られた炭素材料(酢酸鉄使用)のSEM写真を示す図である。It is a figure which shows the SEM photograph of the carbon material (iron acetate use) obtained in Example-3. 図5のSEM写真を拡大したものである。It is an enlarged SEM photograph of FIG. 実施例―3で得られた炭素材料(酢酸銀使用)のSEM写真を示す図である。It is a figure which shows the SEM photograph of the carbon material (silver acetate use) obtained in Example-3. 実施例―3で得られた炭素材料(酢酸鉛使用)のSEM写真を示す図である。It is a figure which shows the SEM photograph of the carbon material (use lead acetate) obtained in Example-3.

Claims (4)

液状の炭素前駆体と該炭素前駆体よりマイクロ波吸収効率が高い物質の共存下、マイクロ波を照射して得ることを特徴とする炭素材料の製造方法。   A method for producing a carbon material, which is obtained by irradiating a microwave in the presence of a liquid carbon precursor and a substance having higher microwave absorption efficiency than the carbon precursor. 前記炭素前駆体よりマイクロ波吸収効率が高い物質が、金属、金属塩、金属酸化物、金属水酸化物、活性炭、炭素繊維、カーボンナノチューブ、黒鉛、カーボンブラック、炭化ケイ素、ピッチコークス、ダイヤモンドおよびダイヤモンドライクカーボンからなる群から選ばれる1または2以上の物質であることを特徴とする請求項1記載の炭素材料の製造方法。   Materials having higher microwave absorption efficiency than the carbon precursor are metals, metal salts, metal oxides, metal hydroxides, activated carbon, carbon fibers, carbon nanotubes, graphite, carbon black, silicon carbide, pitch coke, diamond and diamond. 2. The method for producing a carbon material according to claim 1, wherein the carbon material is one or more substances selected from the group consisting of like carbon. 請求項1または2記載の炭素材料の製造方法により得られる炭素材料であって、直径が2nm〜10μmの一次粒子を有し、水素原子と炭素原子のモル比(H/C)が0.15以下であることを特徴とする炭素材料。   A carbon material obtained by the method for producing a carbon material according to claim 1, wherein the carbon material has primary particles having a diameter of 2 nm to 10 μm, and a molar ratio of hydrogen atom to carbon atom (H / C) is 0.15. A carbon material characterized by: 請求項3記載の炭素材料または請求項3記載の炭素材料をさらに黒鉛化した炭素材料を導電助剤として用いることを特徴とする電気二重層キャパシタ。   A carbon material according to claim 3 or a carbon material obtained by further graphitizing the carbon material according to claim 3 is used as a conductive additive.
JP2007087721A 2007-03-29 2007-03-29 Method for manufacturing carbon material, carbon material and electric double layer capacitor Pending JP2008247627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087721A JP2008247627A (en) 2007-03-29 2007-03-29 Method for manufacturing carbon material, carbon material and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087721A JP2008247627A (en) 2007-03-29 2007-03-29 Method for manufacturing carbon material, carbon material and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2008247627A true JP2008247627A (en) 2008-10-16

Family

ID=39973032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087721A Pending JP2008247627A (en) 2007-03-29 2007-03-29 Method for manufacturing carbon material, carbon material and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2008247627A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053200A1 (en) * 2008-11-10 2010-05-14 株式会社エクォス・リサーチ Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector
JP2011071085A (en) * 2009-01-19 2011-04-07 Equos Research Co Ltd Positive electrode for secondary battery, and the secondary battery
KR20140077519A (en) * 2012-12-14 2014-06-24 삼성전기주식회사 Activated carbon, method for preparing thereof and electrochemical capacitor comprising the same
CN107123555A (en) * 2017-05-19 2017-09-01 中国科学技术大学 Empty nanotube and its preparation method and application in a kind of metal hydroxides
KR20220112493A (en) * 2021-02-04 2022-08-11 한국과학기술원 Carbon fiber and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
WO2005033007A1 (en) * 2003-09-30 2005-04-14 Techno Network Shikoku Co., Ltd. Method and apparatus for producing carbon nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259883A (en) * 1996-03-22 1997-10-03 Kanebo Ltd Carbon negative electrode material for lithium ion secondary battery
WO2005033007A1 (en) * 2003-09-30 2005-04-14 Techno Network Shikoku Co., Ltd. Method and apparatus for producing carbon nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012033313; 野村信福 他: '液中プラズマ化学蒸着法' 第41回日本伝熱シンポジウム講演論文集 , 2004, p.571-572 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053200A1 (en) * 2008-11-10 2010-05-14 株式会社エクォス・リサーチ Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector
JP2011071085A (en) * 2009-01-19 2011-04-07 Equos Research Co Ltd Positive electrode for secondary battery, and the secondary battery
KR20140077519A (en) * 2012-12-14 2014-06-24 삼성전기주식회사 Activated carbon, method for preparing thereof and electrochemical capacitor comprising the same
KR102097334B1 (en) 2012-12-14 2020-04-06 삼성전기주식회사 Activated carbon, method for preparing thereof and electrochemical capacitor comprising the same
CN107123555A (en) * 2017-05-19 2017-09-01 中国科学技术大学 Empty nanotube and its preparation method and application in a kind of metal hydroxides
KR20220112493A (en) * 2021-02-04 2022-08-11 한국과학기술원 Carbon fiber and method of manufacturing the same
KR102544810B1 (en) * 2021-02-04 2023-06-20 한국과학기술원 Carbon fiber and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Liu et al. Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support
JP5191483B2 (en) Porous conductive carbon materials and their use
Pai et al. In situ grown iron oxides on carbon nanofibers as freestanding anodes in aqueous supercapacitors
Luo et al. Hierarchical TiO 2 nanobelts@ MnO 2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors
Li et al. Fabrication of Fe3O4 Dots Embedded in 3D Honeycomb‐Like Carbon Based on Metallo–Organic Molecule with Superior Lithium Storage Performance
Zhao et al. “Electron-sharing” mechanism promotes Co@ Co3O4/CNTs composite as the high-capacity anode material of lithium-ion battery
EP2778266A1 (en) Composite carbon fibers
JP2008166013A (en) Composite active material and electrochemical element using same
Nilmoung et al. Electrospun carbon/CuFe2O4 composite nanofibers with improved electrochemical energy storage performance
Ma et al. The toughening design of pseudocapacitive materials via graphene quantum dots: Towards enhanced cycling stability for supercapacitors
EP3226257A1 (en) Method for manufacturing electroconductive paste, and electroconductive paste
Suroshe et al. Capacitive behaviour of functionalized carbon nanotube/ZnO composites coated on a glassy carbon electrode
JP2007265852A (en) Compound current collector and its manufacturing method
Hao et al. Electrospun Fe2MoC/C nanofibers as an efficient electrode material for high-performance supercapacitors
Tamilselvi et al. Reduced graphene oxide (rGO): supported NiO, Co 3 O 4 and NiCo 2 O 4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices
JP2021116191A (en) Composite carbon material and lithium-ion secondary battery
JP2013108201A (en) Method for producing carbon fiber
JP2007012450A (en) Method of manufacturing active material for use in electrode of electrochemical element
Tang et al. High supercapacitive performance of Ni (OH) 2/XC-72 composite prepared by microwave-assisted method
JP7456291B2 (en) Carbon-coated composite materials and their applications
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor
Iurchenkova et al. Supercapacitor behavior of carbon‐manganese oxides nanocomposites synthesized by carbon arc
El-Shafei et al. Controlled-synthesis of hierarchical NiCo2O4 anchored on carbon nanofibers mat for free-standing and highly-performance supercapacitors
Li et al. Multi-wall carbon nanotubes supported on carbon fiber paper synthesized by simple chemical vapor deposition
JP4313547B2 (en) Method for producing carbon material for electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121019