JP2013108201A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2013108201A
JP2013108201A JP2011257409A JP2011257409A JP2013108201A JP 2013108201 A JP2013108201 A JP 2013108201A JP 2011257409 A JP2011257409 A JP 2011257409A JP 2011257409 A JP2011257409 A JP 2011257409A JP 2013108201 A JP2013108201 A JP 2013108201A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
boron
fiber
fibrous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011257409A
Other languages
Japanese (ja)
Inventor
Keiichi Kawamoto
圭一 川本
Tomoyuki Fukuyo
知行 福世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011257409A priority Critical patent/JP2013108201A/en
Publication of JP2013108201A publication Critical patent/JP2013108201A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a carbon fiber that is capable of imparting sufficient conductivity by a small amount of addition and is excellent in permeability or dispersibility into a resin or a liquid.SOLUTION: The method for producing a carbon fiber includes: synthesizing a fibrous carbon by contacting a supported catalyst comprising a particulate carrier and a metal catalyst with a carbon element containing material; mixing the fibrous carbon having an average fiber diameter of 5-50 nm and a bent structure with boron or a boron compound; and then subjecting the mixture to a heat treatment at a temperature of 1800°C or higher.

Description

本発明は、炭素繊維の製造方法に関する。より詳細に、本発明は、少量の添加でも充分な導電性が付与可能で、樹脂や液の中への浸透性または分散性に優れた炭素繊維を効率的に製造する方法に関する。   The present invention relates to a method for producing carbon fiber. More specifically, the present invention relates to a method for efficiently producing a carbon fiber that can impart sufficient conductivity even with a small amount of addition, and has excellent permeability or dispersibility in a resin or liquid.

炭素繊維は、樹脂、金属、セラミックス等の導電性や熱伝導性を改善するために用いられるフィラーとして、FED(フィールドエミッションディスプレー)用の電子放出素材として、各種反応用の触媒担体として、水素、メタンもしくはその他の気体を吸蔵するための媒体として、または電池やキャパシタなどの電気化学素子用の電極材または電極材への添加剤などとして、用いることが提案されている。   Carbon fiber is used as a filler for improving the electrical conductivity and thermal conductivity of resins, metals, ceramics, etc., as an electron emission material for FED (field emission display), as a catalyst carrier for various reactions, as hydrogen, It has been proposed to use it as a medium for storing methane or other gases, or as an electrode material for an electrochemical element such as a battery or a capacitor or an additive to the electrode material.

WO00/058536 AWO00 / 058536 A

Hishiyama et al. "Boron Doping to Multiwall Carbon Nanotube" TANSO 2002 No.205, 244-254Hishiyama et al. "Boron Doping to Multiwall Carbon Nanotube" TANSO 2002 No.205, 244-254

繊維状炭素の製造方法としては、触媒を核として成長させる方法、いわゆる化学気相成長法(以下、CVD法という。)が知られている。該CVD法には、触媒金属を担体に担持したものを用いて製造する方法と、担体を用いずに有機金属錯体などを気相中で熱分解させて触媒を生成させながら製造する方法(流動気相法)が知られている。   As a method for producing fibrous carbon, a method of growing using a catalyst as a nucleus, a so-called chemical vapor deposition method (hereinafter referred to as a CVD method) is known. The CVD method includes a method of producing a catalyst metal supported on a carrier and a method of producing a catalyst by pyrolyzing an organometallic complex in a gas phase without using a carrier (flow Gas phase methods) are known.

触媒を気相中で生成させながら製造する方法(流動気相法)として、例えば、フェロセンなどの有機金属錯体をベンゼンなどの炭素元素含有物質と共に反応系内に導入し流動させ反応系内における有機金属錯体の熱分解によって得られる金属微粒子を触媒として用い、水素雰囲気下で炭素元素含有物質を熱分解することを含む方法が知られている。この流動気相法では、触媒粒子生成と炭素層の成長という2つの過程が同時に進行する。流動気相法で得られる繊維状炭素は、炭素層の結晶欠陥が多く、結晶性が低すぎるため、フィラーとして樹脂等に添加しても導電性を発現しない。流動気相法によって得られる該繊維状炭素を高温で熱処理することによって繊維状炭素自身の導電性は上昇するが、それでも樹脂材料等への導電性付与効果は必ずしも充分なレベルでない。   As a method for producing a catalyst while generating it in the gas phase (fluid gas phase method), for example, an organic metal complex such as ferrocene is introduced into a reaction system together with a carbon element-containing substance such as benzene and fluidized, and the organic in the reaction system There is known a method including thermally decomposing a carbon element-containing substance in a hydrogen atmosphere using metal fine particles obtained by thermal decomposition of a metal complex as a catalyst. In this fluidized gas phase method, two processes of catalyst particle generation and carbon layer growth proceed simultaneously. The fibrous carbon obtained by the fluidized gas phase method has many crystal defects in the carbon layer and is too low in crystallinity, and therefore does not exhibit conductivity even when added to a resin or the like as a filler. Although the electrical conductivity of the fibrous carbon itself is increased by heat-treating the fibrous carbon obtained by the fluidized gas phase method at a high temperature, the conductivity imparting effect to the resin material or the like is not always a sufficient level.

一方、担持触媒を用いて製造する方法は、基板担体を用いて製造する方法(基板法)と、粉粒状担体を用いて製造する方法に大別できる。
基板担体を用いて製造する方法は、さまざまな製膜技術を応用することで、担持される触媒金属の大きさを任意にコントロールできる。そのため、実験室レベルでの研究において、多用されている。
この基板担体を用いて製造する方法で得られる繊維状炭素を樹脂等へ添加するためのフィラーとして使用するためには、基板から分離し、回収する必要がある。したがって、この方法は、工業的大量生産に対応するためにたくさんの基板を並べて基板表面積を稼ぐ必要があるので、装置効率が低い。また、基板への触媒金属の担持、繊維状炭素の合成、基板からの繊維状炭素の回収などの多くの工程が必要となるため、経済的に不利である。そのため、この基板担体を用いる方法は産業的な実用化に至っていない。
On the other hand, the method of producing using a supported catalyst can be roughly divided into a method of producing using a substrate carrier (substrate method) and a method of producing using a granular carrier.
In the method of manufacturing using a substrate carrier, the size of the supported catalyst metal can be arbitrarily controlled by applying various film forming techniques. Therefore, it is frequently used in research at the laboratory level.
In order to use the fibrous carbon obtained by the method of production using this substrate carrier as a filler for adding to a resin or the like, it is necessary to separate and recover from the substrate. Therefore, this method has a low apparatus efficiency because it is necessary to arrange a large number of substrates to increase the substrate surface area in order to cope with industrial mass production. Further, since many steps such as loading of catalytic metal on the substrate, synthesis of fibrous carbon, and recovery of fibrous carbon from the substrate are required, it is economically disadvantageous. For this reason, the method using this substrate carrier has not been industrially put into practical use.

一方、粉粒状担体を用いて製造する方法では、基板担体を用いて製造する方法と比較して、触媒担体の比表面積が大きいため、装置効率が良いだけでなく、さまざまな化学合成に用いられている反応装置が適用可能で、基板法のようなバッチ処理を前提とした生産方式だけでなく、連続処理が可能になるという利点を有する。   On the other hand, in the method of manufacturing using a granular carrier, since the specific surface area of the catalyst carrier is large compared to the method of manufacturing using a substrate carrier, not only the apparatus efficiency is good but also used for various chemical synthesis. The present invention can be applied to not only a production method based on batch processing such as the substrate method but also continuous processing.

担持触媒を用いて製造する方法では、触媒寿命が流動気相法に比べて長いので、長時間の反応が可能であり、結果的に低温での反応を実施することができる。このことによって、炭素元素含有物質の好ましくない熱分解を抑制しながら炭素層生成反応を進行させることが可能となるので、結晶性が高く比表面積の大きな微細な繊維状炭素を効率的に得ることができる。その結果、高温での熱処理を実施しなくとも、結晶性が良好であり、流動気相法で得られる繊維状炭素を高温で熱処理したものと同等の特性が発現する。   In the method of producing using the supported catalyst, the catalyst life is longer than that of the fluidized gas phase method, so that the reaction can be performed for a long time, and as a result, the reaction at a low temperature can be performed. This makes it possible to proceed with the carbon layer formation reaction while suppressing undesirable thermal decomposition of the carbon element-containing substance, so that fine fibrous carbon having high crystallinity and a large specific surface area can be efficiently obtained. Can do. As a result, even if the heat treatment at high temperature is not performed, the crystallinity is good and the same characteristics as those obtained by heat treating the fibrous carbon obtained by the fluidized gas phase method at high temperature are exhibited.

粉粒状の担持触媒を用いて合成した繊維状炭素はストレートな同軸炭素筒網面ではなく、多層カーボンナノチューブ(MWCNT)が絡み合った集合体である。
粉粒状担体と金属触媒とからなる担持触媒を用いると、繊維状炭素を比較的安価に製造でき、熱処理をしなくとも黒鉛化処理したMWCNTと同等の導電性が得られるので、樹脂等の導電性向上用の添加剤として利用され得る。ところが、高温で熱処理すると導電性がかなり低下するので、係る繊維状炭素においては高温で熱処理することが避けられていた。
The fibrous carbon synthesized using the powdery supported catalyst is not a straight coaxial carbon cylinder network surface but an aggregate in which multi-walled carbon nanotubes (MWCNT) are intertwined.
When a supported catalyst composed of a granular carrier and a metal catalyst is used, fibrous carbon can be produced at a relatively low cost, and conductivity equivalent to that of graphitized MWCNT can be obtained without heat treatment. It can be used as an additive for improving properties. However, since the conductivity is considerably lowered when heat-treated at a high temperature, it has been avoided to heat-treat such fibrous carbon at a high temperature.

また従来製法で得られる繊維状炭素は導電性付与効果が十分ではなく、所望の導電性を得るためには繊維状炭素を多量に樹脂等に添加しなければならない。繊維状炭素をこのように多量に添加すると、複合材料の強度や伸びなどの機械的特性の低下をもたらす。また、液状分散体においては、所望の導電性を得るために充填濃度を高くする必要がある。このために液粘性の増加や流動性の悪化が生じたり、そもそも液体中への分散が困難になる場合もあった。また繊維状炭素の増量はコストアップにつながることも懸念される。   In addition, the fibrous carbon obtained by the conventional production method does not have sufficient conductivity, and a large amount of fibrous carbon must be added to the resin or the like in order to obtain the desired conductivity. When a large amount of fibrous carbon is added in this manner, mechanical properties such as strength and elongation of the composite material are lowered. In addition, in the liquid dispersion, it is necessary to increase the filling concentration in order to obtain desired conductivity. For this reason, increase in liquid viscosity and deterioration of fluidity may occur, and in some cases, dispersion into the liquid may become difficult. There is also concern that increasing the amount of fibrous carbon will lead to increased costs.

そこで、本発明は、少量の添加でも充分な導電性が付与可能で、樹脂や液の中への浸透性または分散性に優れた炭素繊維を効率的に製造する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for efficiently producing a carbon fiber that can impart sufficient conductivity even with a small amount of addition, and has excellent permeability or dispersibility in a resin or liquid. To do.

炭素繊維の製造方法として、特許文献1には、繊維径1μm以下の中心部に中空部分を有する繊維状炭素にホウ素またはホウ素化合物を添加し、そして、その繊維状炭素を2000℃以上の温度で熱処理することが記載されている。この製造方法に用いられる繊維状炭素はベンゼンなどの有機化合物の熱分解によって気相で成長させたものである。この気相成長法においては、遷移金属またはその化合物、例えば、鉄、ニッケル、コバルトなどの金属超微粉またはフェロセンなどに基づく超微粒子を、基板または反応器内壁に担持してなる基板担持触媒が用いられている。特許文献1の製法で得られるホウ素ドープ炭素繊維のD/G値は0.7〜0.8程度であった(特許文献1第7頁右欄第4行)。非特許文献1には、アルミナに硝酸鉄を分散させ、これを焼成して調製した酸化鉄担持アルミナ粒子に、水素とベンゼンとの混合ガスを900℃にて接触させてMWCNTを得、これを加圧成形し、900℃で予備加熱し、さらに3000℃で加熱する二段階加熱処理をし、次いで当該MWCNTをホウ素含有黒鉛片に接触させた状態で2300℃で熱処理することによりホウ素を拡散させることが記載されている。非特許文献1は3000℃の熱処理によって粉末X線回折のピークが低角度側にシフトする旨を述べている。ホウ素ドープ炭素繊維のD/G値は0.83〜1.22程度であった(非特許文献1表5参照)。   As a method for producing carbon fiber, Patent Document 1 discloses that boron or a boron compound is added to fibrous carbon having a hollow portion at the center part with a fiber diameter of 1 μm or less, and the fibrous carbon is heated at a temperature of 2000 ° C. or higher. The heat treatment is described. The fibrous carbon used in this production method is grown in the gas phase by thermal decomposition of an organic compound such as benzene. In this vapor phase growth method, a substrate-supported catalyst in which ultrafine particles based on transition metal or a compound thereof, for example, metal ultrafine powder such as iron, nickel, cobalt or ferrocene is supported on the substrate or the inner wall of the reactor is used. It has been. The D / G value of the boron-doped carbon fiber obtained by the manufacturing method of Patent Document 1 was about 0.7 to 0.8 (Patent Document 1, page 7, right column, line 4). Non-Patent Document 1 discloses that MWCNT is obtained by contacting iron oxide-supported alumina particles prepared by dispersing iron nitrate in alumina and calcining the mixture at 900 ° C. with a mixed gas of hydrogen and benzene. Two-stage heat treatment is performed by pressure molding, preheating at 900 ° C., and further heating at 3000 ° C., and then boron is diffused by heat treatment at 2300 ° C. with the MWCNT in contact with the boron-containing graphite pieces. It is described. Non-Patent Document 1 states that the peak of powder X-ray diffraction shifts to the low angle side by heat treatment at 3000 ° C. The D / G value of the boron-doped carbon fiber was about 0.83 to 1.22 (see Table 5 of Non-Patent Document 1).

本発明者らは、上記目的を達成するために鋭意検討した。その結果、以下のような態様を有する本発明を完成するに至った。
〈1〉 粉粒状担体と金属触媒とからなる担持触媒に炭素元素含有物質を接触させることによって繊維状炭素を合成し、得られた繊維状炭素にホウ素またはホウ素化合物を混ぜ合わせ、次いで1800℃以上の温度で熱処理することを含む炭素繊維の製造方法。
〈2〉 金属触媒が遷移金属元素から選ばれる少なくとも2種の元素を含むものである〈1〉に記載の製造方法。
〈3〉 金属触媒がFe、Co、Ni、Ti、V、Cr、Mn、WおよびMoからなる群から選ばれる少なくとも2種の元素を含むものである〈1〉に記載の製造方法。
〈4〉 粉粒状担体がCa、Mg、Ba、Sr、Zr、Zn、Al、TiおよびSiからなる群から選ばれる少なくとも1種の元素を含むものである〈1〉〜〈3〉のいずれかひとつに記載の製造方法。
〈5〉 粉粒状担体が、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化ケイ素、酸化ジルコニウムおよび複合酸化物からなる群から選ばれる少なくとも1種からなるものである〈1〉〜〈3〉のいずれかひとつに記載の製造方法。
〈6〉 炭素元素含有物質が脂肪族炭化水素である〈1〉〜〈5〉のいずれかひとつに記載の製造方法。
The present inventors diligently studied to achieve the above object. As a result, the present invention having the following aspects has been completed.
<1> Fibrous carbon is synthesized by bringing a carbon element-containing substance into contact with a supported catalyst composed of a granular carrier and a metal catalyst, and boron or a boron compound is mixed with the obtained fibrous carbon, and then 1800 ° C. or higher. The manufacturing method of the carbon fiber including heat-processing at the temperature of.
<2> The production method according to <1>, wherein the metal catalyst includes at least two elements selected from transition metal elements.
<3> The production method according to <1>, wherein the metal catalyst contains at least two elements selected from the group consisting of Fe, Co, Ni, Ti, V, Cr, Mn, W, and Mo.
<4> The powder carrier includes at least one element selected from the group consisting of Ca, Mg, Ba, Sr, Zr, Zn, Al, Ti, and Si, and any one of <1> to <3> The manufacturing method as described.
<5> The powder carrier is composed of at least one selected from the group consisting of magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, zirconium oxide, and composite oxide, and any one of <1> to <3> The manufacturing method as described in one.
<6> The production method according to any one of <1> to <5>, wherein the carbon element-containing substance is an aliphatic hydrocarbon.

〈7〉 屈曲構造を有する繊維状炭素または不均一構造を有する繊維状炭素にホウ素またはホウ素化合物を混ぜ合わせ、次いで1800℃以上の温度で熱処理することを含む炭素繊維の製造方法。
〈8〉 繊維状炭素は平均繊維径が5〜50nmである〈1〉〜〈7〉のいずれかひとつに記載の製造方法。
〈9〉 ホウ素またはホウ素化合物の量が繊維状炭素100質量部に対して0.1〜10質量部である〈1〉〜〈8〉のいずれかひとつに記載の製造方法。
〈10〉 ホウ素化合物が酸化ホウ素、炭化ホウ素、ホウ酸およびホウ酸塩からなる群から選ばれる少なくとも1種である〈1〉〜〈9〉のいずれかひとつに記載の製造方法。
〈11〉 熱処理時における温度が1800〜3200℃である〈1〉〜〈10〉のいずれかひとつに記載の製造方法。
<7> A method for producing carbon fiber, comprising mixing boron or a boron compound with fibrous carbon having a bent structure or fibrous carbon having a heterogeneous structure, and then heat-treating at a temperature of 1800 ° C. or higher.
<8> The manufacturing method according to any one of <1> to <7>, wherein the fibrous carbon has an average fiber diameter of 5 to 50 nm.
<9> The production method according to any one of <1> to <8>, wherein the amount of boron or a boron compound is 0.1 to 10 parts by mass with respect to 100 parts by mass of fibrous carbon.
<10> The production method according to any one of <1> to <9>, wherein the boron compound is at least one selected from the group consisting of boron oxide, boron carbide, boric acid, and borate.
<11> The production method according to any one of <1> to <10>, wherein the temperature during the heat treatment is 1800 to 3200 ° C.

〈12〉 炭素繊維のレーザー波長785nmで測定したラマン分光分析から算出するD/G値が1.3以上である〈1〉〜〈11〉のいずれかひとつに記載の製造方法。
〈13〉 炭素繊維の粉末X線回折法における高角度側ピークから求めたd002が0.334〜0.342nmである〈1〉〜〈12〉のいずれかひとつに記載の製造方法。
〈14〉 炭素繊維の密度0.8g/cm3における体積抵抗率が0.01Ω・cm以下である〈1〉〜〈13〉のいずれかひとつに記載の製造方法。
<12> The production method according to any one of <1> to <11>, wherein a D / G value calculated from a Raman spectroscopic analysis of the carbon fiber measured at a laser wavelength of 785 nm is 1.3 or more.
<13> The method according to any one of d 002 obtained from the high angle side peak in the powder X-ray diffraction of the carbon fiber is 0.334~0.342nm <1> ~ <12> .
<14> The production method according to any one of <1> to <13>, wherein the volume resistivity of the carbon fiber at a density of 0.8 g / cm 3 is 0.01 Ω · cm or less.

〈15〉 レーザー波長785nmで測定したラマン分光分析から算出するD/G値が1.3以上で、粉末X線回折法における高角度側ピークから求めたd002が0.334〜0.342nmで、フェノール樹脂溶液に沈み込むまでの平均時間が3分未満で、炭素繊維の密度0.8g/cm3における体積抵抗率が0.01Ω・cm以下で、平均繊維径が5〜100nmで、且つ平均繊維長さが0.5〜100μmである炭素繊維。
〈16〉 レーザー波長785nmで測定したラマン分光分析から算出するD/G値が1.3以上で、粉末X線回折法における高角度側ピークから求めたd002が0.334〜0.342nmで、炭素繊維の密度0.8g/cm3における体積抵抗率が0.01Ω・cm以下で、平均繊維径が5〜100nmで、且つ平均繊維長さが0.5〜100μmで、遷移金属元素から選ばれる少なくとも2種の元素とホウ素元素を含む炭素繊維。
〈17〉 前記〈15〉または〈16〉に記載の炭素繊維を含む樹脂材料。
〈18〉 前記〈15〉または〈16〉に記載の炭素繊維を含むスラリーまたはペースト。
〈19〉 導電性基材と、〈15〉または〈16〉に記載の炭素繊維を含む導電性層とを有する積層体からなる集電体。
〈20〉 導電性基材と、〈15〉または〈16〉に記載の炭素繊維を含む電極層とを有する積層体からなる電極。
〈21〉 前記〈19〉に記載の集電体と、〈15〉または〈16〉に記載の炭素繊維を含む電極層とを有する積層体からなる電極。
〈22〉 前記〈15〉または〈16〉に記載の炭素繊維を含有する電気化学素子。
<15> The D / G value calculated from the Raman spectroscopic analysis measured at a laser wavelength of 785 nm is 1.3 or more, and d 002 obtained from the high angle side peak in the powder X-ray diffraction method is 0.334 to 0.342 nm. The average time until sinking into the phenol resin solution is less than 3 minutes, the volume resistivity at a carbon fiber density of 0.8 g / cm 3 is 0.01 Ω · cm or less, the average fiber diameter is 5 to 100 nm, and Carbon fiber having an average fiber length of 0.5 to 100 μm.
<16> The D / G value calculated from Raman spectroscopic analysis measured at a laser wavelength of 785 nm is 1.3 or more, and d 002 obtained from the high-angle peak in the powder X-ray diffraction method is 0.334 to 0.342 nm. The volume resistivity of carbon fiber at a density of 0.8 g / cm 3 is 0.01 Ω · cm or less, the average fiber diameter is 5 to 100 nm, and the average fiber length is 0.5 to 100 μm. Carbon fiber containing at least two selected elements and boron element.
<17> A resin material containing the carbon fiber according to <15> or <16>.
<18> A slurry or paste containing the carbon fiber according to <15> or <16>.
<19> A current collector comprising a laminate having a conductive substrate and a conductive layer containing the carbon fiber according to <15> or <16>.
<20> An electrode comprising a laminate having a conductive substrate and an electrode layer containing the carbon fiber according to <15> or <16>.
<21> An electrode comprising a laminate having the current collector according to <19> and an electrode layer containing the carbon fiber according to <15> or <16>.
<22> An electrochemical element containing the carbon fiber according to <15> or <16>.

本発明によれば、少量の添加でも導電性の付与効果の高い炭素繊維を提供できる。本発明の製造方法で得られる炭素繊維は、金属、樹脂、セラミックス等に充てんしたときに均一に分散しやすく、高い導電性を付与でき、且つ添加量が少なく抑えられるので、経済的であるばかりか、得られる複合材料の強度などの物性低下を引き起こさない。さらに、本発明の製造方法で得られる炭素繊維は、金属、樹脂、セラミックス等の導電性や熱伝導性を改善するために用いられるフィラーとして、FED(フィールドエミッションディスプレー)用の電子放出素材として、各種反応用の触媒担体として、水素、メタンもしくは各種気体を吸蔵するための媒体として、または電池、キャパシタ、ハイブリッドキャパシタなどの電気化学素子用の電極材料または電極材への添加剤などとして、好適に用いられる。   According to the present invention, it is possible to provide a carbon fiber having a high conductivity imparting effect even when added in a small amount. The carbon fiber obtained by the production method of the present invention is easy to disperse uniformly when filled in metals, resins, ceramics, etc., can be imparted with high conductivity, and can be suppressed in a small amount, so that it is economical. Or, it does not cause deterioration of physical properties such as strength of the obtained composite material. Furthermore, the carbon fiber obtained by the production method of the present invention is used as a filler used to improve conductivity and thermal conductivity of metals, resins, ceramics, etc., as an electron emission material for FED (field emission display), Suitable as a catalyst carrier for various reactions, as a medium for storing hydrogen, methane or various gases, or as an electrode material for an electrochemical element such as a battery, a capacitor, a hybrid capacitor, or an additive to an electrode material Used.

炭素繊維の圧密比抵抗の測定結果を示す図である。It is a figure which shows the measurement result of the consolidation specific resistance of carbon fiber. 炭素繊維の粉末X線回折の測定結果を示す図(回折ピークの位置関係を明らかにするために測定結果を重ねて示している。)である。It is a figure which shows the measurement result of the powder X-ray diffraction of carbon fiber (in order to clarify the positional relationship of a diffraction peak, the measurement result is overlapped and shown). 屈曲した構造を有する繊維状炭素の層構造を示す概念図である。It is a conceptual diagram which shows the layered structure of the fibrous carbon which has a bent structure. 屈曲した構造を有する繊維状炭素の層構造を写し出した電子顕微鏡像を示す図である。It is a figure which shows the electron microscope image which copied the layered structure of the fibrous carbon which has a bent structure. 屈曲した構造を有する繊維状炭素の電子顕微鏡像を示す図である。It is a figure which shows the electron microscope image of the fibrous carbon which has a bent structure. 炭素繊維の浸透性の測定結果を示す図である。It is a figure which shows the measurement result of the permeability of carbon fiber. 電池のレート特性の測定結果を示す図である。It is a figure which shows the measurement result of the rate characteristic of a battery. 電池のDCRの測定結果を示す図である。It is a figure which shows the measurement result of DCR of a battery.

本発明に係る炭素繊維の製造方法は、粉粒状担体と金属触媒とからなる担持触媒に炭素元素含有物質を接触させることによって繊維状炭素を合成し、得られた繊維状炭素にホウ素またはホウ素化合物を混ぜ合わせ、次いで1800℃以上の温度で熱処理することを含む。   The method for producing carbon fibers according to the present invention comprises synthesizing fibrous carbon by bringing a carbon element-containing material into contact with a supported catalyst comprising a granular carrier and a metal catalyst, and boron or a boron compound is obtained on the obtained fibrous carbon. Followed by heat treatment at a temperature of 1800 ° C. or higher.

本発明に用いられる粉粒状担体は、特に限定されず、公知の触媒用担体の中から適宜選択したものを用いることができる。好ましい粉粒状担体として、Ca、Mg、Ba、Sr、Zr、Zn、Al、TiおよびSiからなる群から選ばれる少なくとも1種の元素を含むものが挙げられる。金属触媒の保持効果が強く、金属触媒の凝集や粗大化が抑制され、微細な繊維状炭素が生成しやすいという観点から、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化ケイ素、酸化ジルコニウム、酸化亜鉛、およびシリカアルミナ、シリカマグネシア、マグネシアアルミナなどの複合酸化物が好ましいものとして挙げられる。これらのうち、酸化マグネシウム、酸化アルミニウムまたは複合酸化物が特に好ましい。このような粉粒状担体を用いて得られる繊維状炭素は、下記の比較例で示すように、ホウ素またはホウ素化合物の不存在下で単純な熱処理を実施しても導電性があまり向上しない。   The granular carrier used in the present invention is not particularly limited, and those appropriately selected from known catalyst carriers can be used. Preferable granular carriers include those containing at least one element selected from the group consisting of Ca, Mg, Ba, Sr, Zr, Zn, Al, Ti and Si. From the viewpoint that the retention effect of the metal catalyst is strong, the aggregation and coarsening of the metal catalyst are suppressed, and fine fibrous carbon is easily generated, magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, zirconium oxide, zinc oxide, In addition, composite oxides such as silica alumina, silica magnesia, and magnesia alumina are preferable. Of these, magnesium oxide, aluminum oxide or composite oxide is particularly preferable. As shown in the following comparative examples, the fibrous carbon obtained using such a granular carrier does not significantly improve conductivity even when subjected to a simple heat treatment in the absence of boron or a boron compound.

本発明に用いられる金属触媒は、繊維状炭素の合成反応を促進させるものであれば、特に限定されない。金属触媒は、主触媒元素として、遷移金属などから選ばれる少なくとも2種の元素を含むものであることが好ましい。具体的には、Fe、Co、Ni、Ti、V、Cr、Mn、WおよびMoからなる群から選ばれる少なくとも2種の元素を含むものであることが好ましく、FeとCoとの組み合わせ、MnとCoとの組み合わせ、FeとMoとの組み合わせ、FeとVとの組み合わせ、およびFeとMoとVとの組み合わせからなる群から選ばれる少なくとも1組の元素を含むものであることがより好ましい。金属触媒には主触媒元素以外に助触媒元素が含まれていてもよい。助触媒元素の添加によって繊維状炭素の生成速度が向上することがある。   The metal catalyst used in the present invention is not particularly limited as long as it promotes the synthesis reaction of fibrous carbon. The metal catalyst preferably contains at least two elements selected from transition metals and the like as the main catalyst element. Specifically, it preferably contains at least two elements selected from the group consisting of Fe, Co, Ni, Ti, V, Cr, Mn, W, and Mo. A combination of Fe and Co, Mn and Co And at least one element selected from the group consisting of a combination of Fe, Mo, a combination of Fe and V, and a combination of Fe, Mo, and V is more preferable. The metal catalyst may contain a promoter element in addition to the main catalyst element. The addition rate of the cocatalyst element may improve the production rate of fibrous carbon.

担持触媒の調製法は特に限定されない。例えば、主触媒元素を含有する化合物および助触媒元素を含有する化合物を溶媒に溶解または分散させて触媒液を得、該触媒液と粉粒状担体とを混ぜ合わせ、次いで乾燥させることを含む方法がある。触媒液には、分散剤や界面活性剤が添加されていてもよい。界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤が好適に用いられる。分散剤や界面活性剤の添加によって主触媒元素や助触媒元素の触媒液中での安定性が増す。触媒液における触媒元素濃度は、溶媒の種類、触媒元素の種類などによって適宜選択することができる。粉粒状担体と混合される触媒液の量は、用いる粉粒状担体の吸液量相当であることが好ましい。触媒液と粉粒状担体との混合物の乾燥は、70〜150℃で行うのが好ましい。また乾燥において真空乾燥を用いてもよい。さらに、乾燥後、適当な大きさにするために粉砕および分級をすることが好ましい。   The method for preparing the supported catalyst is not particularly limited. For example, a method comprising dissolving or dispersing a compound containing a main catalyst element and a compound containing a cocatalyst element in a solvent to obtain a catalyst solution, mixing the catalyst solution and a granular carrier, and then drying the catalyst solution. is there. A dispersant or a surfactant may be added to the catalyst solution. As the surfactant, a cationic surfactant, an anionic surfactant, or a nonionic surfactant is preferably used. Addition of a dispersant or a surfactant increases the stability of the main catalyst element and the promoter element in the catalyst solution. The catalyst element concentration in the catalyst solution can be appropriately selected depending on the type of solvent, the type of catalyst element, and the like. The amount of the catalyst liquid mixed with the granular carrier is preferably equivalent to the liquid absorption of the granular carrier used. It is preferable to dry the mixture of the catalyst solution and the granular carrier at 70 to 150 ° C. Moreover, you may use vacuum drying in drying. Further, after drying, it is preferable to perform pulverization and classification in order to obtain an appropriate size.

次に、該担持触媒を炭素元素含有物質と接触させることによって繊維状炭素を合成する。用いられる炭素元素含有物質は、炭素元素の供給源となる物質であれば特に制限されない。例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタンなどの飽和脂肪族炭化水素;ブテン、イソブテン、ブタジエン、エチレン、プロピレン、アセチレンなどの不飽和脂肪族炭化水素; メタノール、エタノール、プロパノール、ブタノールなどのアルコール類; ベンゼン、トルエン、キシレン、スチレン、ナフタレン、アントラセン、エチルベンゼン、フェナントレンなどの芳香族炭化水素; シクロプロパン、シクロペンタン、シクロヘキサン、シクロペンテン、シクロヘキセン、シクロペンタジエン、ジシクロペンタジエンなどの脂環式炭化水素;クメン、ホルムアルデヒド、アセトアルデヒド、アセトンなどのその他の有機化合物や、一酸化炭素、二酸化炭素などが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。また、揮発油、灯油などを炭素元素含有物質として用いることができる。これらのうち、飽和または不飽和の脂肪族炭化水素が好ましく、メタン、エタン、エチレン、アセチレンが特に好ましい。   Next, fibrous carbon is synthesized by contacting the supported catalyst with a carbon element-containing substance. The carbon element-containing substance to be used is not particularly limited as long as it is a substance that serves as a carbon element supply source. For example, saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, heptane, and octane; unsaturated aliphatic hydrocarbons such as butene, isobutene, butadiene, ethylene, propylene, and acetylene; methanol, ethanol, propanol Alcohols such as butanol; aromatic hydrocarbons such as benzene, toluene, xylene, styrene, naphthalene, anthracene, ethylbenzene, phenanthrene; fats such as cyclopropane, cyclopentane, cyclohexane, cyclopentene, cyclohexene, cyclopentadiene, dicyclopentadiene Cyclic hydrocarbons; other organic compounds such as cumene, formaldehyde, acetaldehyde, acetone, carbon monoxide, carbon dioxide and the like. These can be used alone or in combination of two or more. Moreover, volatile oil, kerosene, etc. can be used as a carbon element containing substance. Of these, saturated or unsaturated aliphatic hydrocarbons are preferable, and methane, ethane, ethylene, and acetylene are particularly preferable.

担持触媒と炭素元素含有物質とを気相中で接触させて繊維状炭素を合成する方法は、従来公知の気相成長法と同様の方法で行うことができる。例えば、所定温度に加熱された縦型または横型の反応器に前記触媒をセットし、該反応器に炭素元素含有物質をキャリアガスで導入して接触させる方法がある。担持触媒は、反応器内のボート(例えば、石英製ボート)などに載せておく固定層式で反応器にセットしてもよいし、反応器内でキャリアガスで流動させる流動層式で反応器にセットしてもよい。担持触媒は酸化状態になっていることがあるので、炭素元素含有物質を供給する前に、還元性ガスを含むガスを流通させて担持触媒を還元することが好ましい。還元時の温度は好ましくは300〜1000℃、より好ましくは500〜700℃である。還元時間は、反応器の規模に応じて変わるが、好ましくは10分間〜5時間、より好ましくは10分間〜60分間である。   A method of synthesizing fibrous carbon by bringing a supported catalyst and a carbon element-containing substance into contact with each other in a gas phase can be performed by a method similar to a conventionally known vapor phase growth method. For example, there is a method in which the catalyst is set in a vertical or horizontal reactor heated to a predetermined temperature, and a carbon element-containing substance is introduced into the reactor with a carrier gas and brought into contact therewith. The supported catalyst may be set in the reactor in a fixed bed type that is placed on a boat (for example, a quartz boat) in the reactor, or in a fluidized bed type in which the carrier gas flows in the reactor. May be set. Since the supported catalyst may be in an oxidized state, it is preferable to reduce the supported catalyst by flowing a gas containing a reducing gas before supplying the carbon element-containing substance. The temperature during the reduction is preferably 300 to 1000 ° C, more preferably 500 to 700 ° C. The reduction time varies depending on the scale of the reactor, but is preferably 10 minutes to 5 hours, more preferably 10 minutes to 60 minutes.

炭素元素含有物質を導入するために用いられるキャリアガスとしては、水素ガスなどの還元性ガスを使用することが好ましい。キャリアガスの量は反応器の形式によって適宜選択できるが、炭素元素含有物質1モル部に対して好ましくは0.1〜70モル部である。還元性ガス以外に、窒素ガス、ヘリウムガス、アルゴンガスなどの不活性ガスを同時に使用してもよい。また、反応の進行途中でガスの組成を変えてもよい。還元性ガスの濃度は、キャリアガス全体に対して、好ましくは1体積%以上、より好ましくは30体積%以上、特に好ましくは85体積%以上である。
合成反応温度は、好ましくは500〜1000℃、より好ましくは530〜850℃、さらに好ましくは550〜750℃である。
As a carrier gas used for introducing the carbon element-containing substance, it is preferable to use a reducing gas such as hydrogen gas. The amount of the carrier gas can be appropriately selected depending on the type of the reactor, but is preferably 0.1 to 70 parts by mole relative to 1 part by mole of the carbon element-containing substance. In addition to the reducing gas, an inert gas such as nitrogen gas, helium gas, or argon gas may be used at the same time. Further, the gas composition may be changed during the progress of the reaction. The concentration of the reducing gas is preferably 1% by volume or more, more preferably 30% by volume or more, and particularly preferably 85% by volume or more with respect to the entire carrier gas.
The synthesis reaction temperature is preferably 500 to 1000 ° C, more preferably 530 to 850 ° C, still more preferably 550 to 750 ° C.

熱処理に供される繊維状炭素は、平均繊維径が、好ましくは5〜100nm、より好ましくは5〜70nm、さらに好ましくは5〜50nmである。繊維径が大きすぎると、結晶性が低くなりやすく、熱処理を行っても十分なレベルの導電性に達しないことがある。逆に繊維径が小さすぎると、結晶性は高いのであるが、熱処理による導電性向上効果が小さく、十分なレベルの導電性に達しないことがある。また、平均繊維長さは、好ましくは0.5〜100μmである。アスペクト比は、好ましく5〜1000である。なお、平均繊維径および平均繊維長さは、倍率20万倍程度で透過型電子顕微鏡を通して10視野程度写真撮影し、写し出された繊維の径および長さを100本以上測定して、それらの数平均値として求められる。また、好適な繊維状炭素は、比表面積が、好ましくは20〜550m2/g、より好ましくは30〜500m2/g、さらに好ましくは40〜450m2/g、特に好ましくは40〜400m2/gである。なお、比表面積は窒素吸着によるBET法で求められる。 The fibrous carbon subjected to the heat treatment has an average fiber diameter of preferably 5 to 100 nm, more preferably 5 to 70 nm, and still more preferably 5 to 50 nm. If the fiber diameter is too large, the crystallinity tends to be low, and a sufficient level of conductivity may not be achieved even after heat treatment. On the other hand, if the fiber diameter is too small, the crystallinity is high, but the effect of improving the conductivity by heat treatment is small, and a sufficient level of conductivity may not be reached. The average fiber length is preferably 0.5 to 100 μm. The aspect ratio is preferably 5 to 1000. The average fiber diameter and the average fiber length were photographed with about 10 fields of view through a transmission electron microscope at a magnification of about 200,000 times, and the diameter and length of the projected fibers were measured by 100 or more. It is obtained as an average value. Further, suitable fibrous carbon has a specific surface area, preferably 20~550m 2 / g, more preferably 30~500m 2 / g, more preferably 40~450m 2 / g, particularly preferably 40 to 400 2 / g. The specific surface area is determined by the BET method using nitrogen adsorption.

熱処理に供される繊維状炭素は屈曲した構造を有するものまたは不均一な構造を含むものが好ましい(図3、図4および図5参照)。屈曲構造とは、繊維軸方向において曲率が急に変化する部分や、竹の節のように黒鉛層構造が乱れた部分のことをいう。不均一な構造とは、繊維の中心部が中空構造であり、筒状の層状炭素が年輪状に多層構造をなす繊維状炭素において、その筒状の層状炭素が完全な筒を形成せず一部途切れ、あるいは長手方向で分断され、繊維の外径及び/又は中空部分の内径が長手方向において一様でないもの、または繊維の中心部をなす中空部分に関して左右で、層状炭素からなる多層構造の厚み、又は多層構造が部分的に異なる構造となっているものを意味する。屈曲構造を有する繊維状炭素または不均一な構造を含む繊維状炭素は、ひずみを多く持っているものと推定される。屈曲構造を有する繊維状炭素または不均一な構造を含む繊維状炭素をホウ素またはホウ素化合物の不存在下で熱処理しても、結晶性があまり向上せず、かえって導電性が低下することが知られており、これまで実施されていない。ところが、ホウ素またはホウ素化合物を添加して熱処理を行うと、優れた熱伝導性および導電性を有する炭素繊維が得られるようになる。   The fibrous carbon subjected to the heat treatment preferably has a bent structure or a non-uniform structure (see FIGS. 3, 4 and 5). The bent structure refers to a portion where the curvature suddenly changes in the fiber axis direction or a portion where the graphite layer structure is disturbed, such as a bamboo node. The non-uniform structure is a structure in which the center of the fiber is a hollow structure, and in the fibrous carbon in which the cylindrical layered carbon forms a multi-layered structure like an annual ring, the cylindrical layered carbon does not form a complete cylinder. A multi-layer structure composed of layered carbon that is partly interrupted or divided in the longitudinal direction, and the outer diameter of the fiber and / or the inner diameter of the hollow part is not uniform in the longitudinal direction, or left and right with respect to the hollow part forming the center of the fiber. This means that the thickness or the multilayer structure is partially different. It is presumed that fibrous carbon having a bent structure or fibrous carbon having a non-uniform structure has a lot of strain. It is known that even if a fibrous carbon having a bent structure or a fibrous carbon having a non-uniform structure is heat-treated in the absence of boron or a boron compound, the crystallinity is not improved so much and the conductivity is lowered. Has not been implemented so far. However, when heat treatment is performed by adding boron or a boron compound, carbon fibers having excellent thermal conductivity and conductivity can be obtained.

また、熱処理に供される繊維状炭素の形状は、繊維の中心部に空洞を有するチューブ状であることが好ましい。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。空洞部内径d0と繊維径dとの比(d0/d)は特に限定されないが、通常0.1〜0.8である。好ましい態様の繊維状炭素は、黒鉛層が繊維に対して略平行になっている。黒鉛層の長さは、繊維径の通常0.02倍以上15倍以下である。黒鉛層の長さが短いほど、樹脂等に充てんしたときに炭素繊維と樹脂との密着強度が高くなり、樹脂と炭素繊維のコンポジットの機械的強度が高くなる。黒鉛層の長さは電子顕微鏡写真などによる観察によって測定することができる。好ましい態様の繊維状炭素は、繊維径の2倍未満の長さを有する黒鉛層の割合が30%以上90%以下であることが好ましい。 Moreover, it is preferable that the shape of the fibrous carbon subjected to the heat treatment is a tube shape having a cavity at the center of the fiber. The hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous. The ratio (d 0 / d) between the cavity inner diameter d 0 and the fiber diameter d is not particularly limited, but is usually 0.1 to 0.8. In a preferred embodiment of fibrous carbon, the graphite layer is substantially parallel to the fibers. The length of the graphite layer is usually 0.02 to 15 times the fiber diameter. The shorter the length of the graphite layer, the higher the adhesion strength between the carbon fiber and the resin when filled with a resin or the like, and the mechanical strength of the composite of the resin and the carbon fiber is increased. The length of the graphite layer can be measured by observation with an electron micrograph or the like. In the preferred embodiment of fibrous carbon, the proportion of the graphite layer having a length less than twice the fiber diameter is preferably 30% or more and 90% or less.

熱処理に供される繊維状炭素は、d002が、好ましくは0.34〜0.35nm、より好ましくは0.342〜0.348nmである。d002は粉末X線回折法にて測定した回折スペクトルから算出する。熱処理に供される繊維状炭素は002回折ピークが通常一つだけ現れる。 The fibrous carbon subjected to the heat treatment has d 002 of preferably 0.34 to 0.35 nm, more preferably 0.342 to 0.348 nm. d002 is calculated from a diffraction spectrum measured by a powder X-ray diffraction method. The fibrous carbon subjected to the heat treatment usually has only one 002 diffraction peak.

熱処理に供される繊維状炭素は、レーザー波長785nmで測定したラマン分光分析から算出するD/G値が、好ましくは1以上、より好ましくは1.2以上、さらに好ましくは1.4以上である。D/G値は、ラマンスペクトルにおけるDバンドのピーク強度DとGバンドのピーク強度Gとの比である。Dバンドは1360cm-1の付近、Gバンドは1600cm-1の付近である。なお、顕微レーザーラマン分光装置(Renishaw製など)を用いて、レーザー波長785nmにて測定し、GRAMS/AIを用いてDバンドのピーク強度DとGバンドのピーク強度Gとの比(D/G値)を算出した。熱処理に供される繊維状炭素はできればアズグロウン(as grown)状態のものが好ましいので、後述する熱処理の前に1500℃以上の温度に晒さない方が好ましい。1500℃以上の温度に晒すと後述する熱処理による効果が小さくなる傾向がある。 The fibrous carbon subjected to the heat treatment preferably has a D / G value calculated from Raman spectroscopic analysis measured at a laser wavelength of 785 nm, preferably 1 or more, more preferably 1.2 or more, and still more preferably 1.4 or more. . The D / G value is a ratio between the peak intensity D of the D band and the peak intensity G of the G band in the Raman spectrum. The D band is around 1360 cm −1 and the G band is around 1600 cm −1 . In addition, it measured by laser wavelength 785nm using micro laser Raman spectroscopy apparatus (made by Renishaw etc.), and ratio (D / G) of peak intensity D of D band and peak intensity G of G band using GRAMS / AI. Value). Since the fibrous carbon to be subjected to the heat treatment is preferably in an as grown state, it is preferable not to be exposed to a temperature of 1500 ° C. or higher before the heat treatment described later. When exposed to a temperature of 1500 ° C. or higher, the effect of heat treatment described later tends to be reduced.

本発明の製造方法では、上記のような繊維状炭素にホウ素またはホウ素化合物を混ぜ合わせ、次いで1800℃以上の温度で熱処理する。   In the production method of the present invention, boron or a boron compound is mixed with fibrous carbon as described above, and then heat-treated at a temperature of 1800 ° C. or higher.

ホウ素またはホウ素化合物は、ホウ素元素を含むものであれば特に限定されない。具体的には、ホウ素単体、BNなどの窒化ホウ素、B23などの酸化ホウ素、B4Cなどの炭化ホウ素、H3BO4などのホウ酸およびホウ酸塩などが挙げられる。これらのうち、酸化ホウ素、炭化ホウ素、ホウ酸およびホウ酸塩からなる群から選ばれる少なくとも1種が好ましいものとして挙げられる。ホウ素またはホウ素化合物は、均一混合のために、粉粒状であることが好ましい、ホウ素またはホウ素化合物の平均粒径は、好ましくは100μm以下、より好ましくは50μm以下である。このような平均粒径を有するホウ素またはホウ素化合物として、例えば、目開き100μmの篩を通過したもの、好ましくは目開き45μmの篩を通過したものを用いることができる。 The boron or boron compound is not particularly limited as long as it contains a boron element. Specific examples include boron alone, boron nitride such as BN, boron oxide such as B 2 O 3 , boron carbide such as B 4 C, boric acid and borate such as H 3 BO 4, and the like. Among these, at least one selected from the group consisting of boron oxide, boron carbide, boric acid, and borate is preferable. The boron or boron compound is preferably in the form of a powder for uniform mixing. The average particle diameter of the boron or boron compound is preferably 100 μm or less, more preferably 50 μm or less. As the boron or boron compound having such an average particle diameter, for example, one that has passed through a sieve having an opening of 100 μm, preferably one having passed through a sieve having an opening of 45 μm can be used.

繊維状炭素とホウ素またはホウ素化合物とを混ぜ合わせる方法は特に限定されない。当該混合は、手作業で行ってもよいし、混合機を用いて行ってもよい。混合機としては、ヘンシェルミキサー、アブソリュートミルなどが挙げられる。
ホウ素またはホウ素化合物の量は、繊維状炭素100質量部に対して、好ましくは0.1〜10質量部、より好ましくは0.5〜8質量部である。
The method for mixing the fibrous carbon and boron or boron compound is not particularly limited. The mixing may be performed manually or using a mixer. Examples of the mixer include a Henschel mixer and an absolute mill.
The amount of boron or boron compound is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of fibrous carbon.

熱処理温度は、1800℃以上、好ましくは1800〜3200℃、より好ましくは1800〜2800℃である。最初から高温で熱処理を行ってもよいし、段階的な昇温で熱処理を行ってもよい。段階的な昇温による熱処理では、第一段階で通常800〜1500℃、第二段階で通常1800〜3200℃にして行われる。熱処理は、ヘリウム、アルゴン等の不活性ガスの雰囲気または真空雰囲気において行うことが好ましい。   The heat processing temperature is 1800 degreeC or more, Preferably it is 1800-3200 degreeC, More preferably, it is 1800-2800 degreeC. The heat treatment may be performed at a high temperature from the beginning, or the heat treatment may be performed at a stepwise temperature increase. The heat treatment by stepwise temperature increase is usually performed at 800 to 1500 ° C. in the first stage and usually 1800 to 3200 ° C. in the second stage. The heat treatment is preferably performed in an atmosphere of an inert gas such as helium or argon or in a vacuum atmosphere.

本発明に係る好ましい形態の炭素繊維は、レーザー波長785nmで測定したラマン分光分析から算出するD/G値が、好ましくは1.3以上、より好ましくは1.4以上、さらに好ましくは1.5以上である。このD/G値が上記範囲を満たしていると、樹脂等に充てんしたときに樹脂等の導電性がより高くなる。一般には、D/G値が小さい方が結晶の発達が進んでいることを示すのであるが、ホウ素元素の炭素骨格内への挿入などによってD/G値に変動が起きているものと思われる。本発明においては、ホウ素等存在下の熱処理によってD/G値が向上する。   The preferred form of carbon fiber according to the present invention has a D / G value calculated from Raman spectroscopic analysis measured at a laser wavelength of 785 nm, preferably 1.3 or more, more preferably 1.4 or more, and still more preferably 1.5. That's it. When the D / G value satisfies the above range, the conductivity of the resin or the like becomes higher when the resin or the like is filled. In general, a smaller D / G value indicates that the development of the crystal is progressing, but it seems that the D / G value varies due to the insertion of boron element into the carbon skeleton. . In the present invention, the D / G value is improved by heat treatment in the presence of boron or the like.

本発明に係る好ましい形態の炭素繊維は、その平均繊維径が、好ましくは5〜100nm、より好ましくは5〜50nm、さらに好ましくは8〜40nm、最も好ましくは10〜30nmである。また、本発明に係る好ましい形態の炭素繊維は、平均繊維長さが、好ましくは0.5〜100μmである。
また、炭素繊維は粉末X線回折法における高角度側ピークから求めたd002が、好ましくは0.334〜0.342nm、より好ましくは0.335〜0.337nmである。本発明においては、ホウ素等存在下の熱処理によって、粉末X線回折法において002回折ピークが低角度側と高角度側のそれぞれに現れるようになる。
The preferred form of carbon fiber according to the present invention has an average fiber diameter of preferably 5 to 100 nm, more preferably 5 to 50 nm, still more preferably 8 to 40 nm, and most preferably 10 to 30 nm. Moreover, the carbon fiber of the preferable form which concerns on this invention, Preferably average fiber length is 0.5-100 micrometers.
Further, the carbon fiber d 002 obtained from the high angle side peak in the powder X-ray diffractometry, preferably 0.334~0.342Nm, more preferably 0.335~0.337Nm. In the present invention, the heat treatment in the presence of boron or the like causes the 002 diffraction peak to appear on the low angle side and the high angle side in the powder X-ray diffraction method.

本発明に係る好ましい形態の炭素繊維は、その比表面積の下限が、好ましくは20m2/g、より好ましくは30m2/g、さらに好ましくは40m2/g、である。比表面積の上限は、特段無いが、好ましくは450m2/g、より好ましくは400m2/gである。 The lower limit of the specific surface area of the preferred form of the carbon fiber according to the present invention is preferably 20 m 2 / g, more preferably 30 m 2 / g, still more preferably 40 m 2 / g. The upper limit of the specific surface area is not particularly limited, but is preferably 450 m 2 / g, more preferably 400 m 2 / g.

本発明に係る好ましい形態の炭素繊維は、黒鉛層が繊維軸に対して略平行になっている。なお、本発明において、略平行とは、繊維軸に対する黒鉛層の傾きが約±15度以内のことをいう。
また、本発明に係る好ましい形態の炭素繊維は、繊維の中心部に空洞を有する、いわゆるチューブ状である。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。空洞部内径d0と繊維径dとの比(d0/d)は特に限定されないが、好ましくは0.1〜0.8、より好ましくは0.1〜0.6である。
In a preferred embodiment of the carbon fiber according to the present invention, the graphite layer is substantially parallel to the fiber axis. In the present invention, “substantially parallel” means that the inclination of the graphite layer with respect to the fiber axis is within about ± 15 degrees.
Moreover, the carbon fiber of the preferable form which concerns on this invention is what is called a tube shape which has a cavity in the center part of a fiber. The hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous. The ratio (d 0 / d) between the cavity inner diameter d 0 and the fiber diameter d is not particularly limited, but is preferably 0.1 to 0.8, and more preferably 0.1 to 0.6.

本発明に係る好ましい形態の炭素繊維は、密度0.8g/cm3における体積抵抗率が好ましくは0.01Ω・cm以下、より好ましくは0.008Ω・cm以下である。
また、本発明に係る好ましい形態の炭素繊維は、フェノール樹脂溶液に沈み込むまでの平均時間(浸透性)が、好ましくは3分未満、より好ましくは2.5分未満である。なお、浸透性は実施例に示す方法で測定した。
The preferred form of carbon fiber according to the present invention has a volume resistivity at a density of 0.8 g / cm 3, preferably 0.01 Ω · cm or less, more preferably 0.008 Ω · cm or less.
Further, the preferred form of the carbon fiber according to the present invention has an average time (permeability) until sinking into the phenol resin solution, preferably less than 3 minutes, more preferably less than 2.5 minutes. The permeability was measured by the method shown in the examples.

本発明に係る好ましい炭素繊維は、上記のような製造方法で製造されるので、遷移金属元素から選ばれる少なくとも2種の元素とホウ素元素を含んでいる。   Since the preferable carbon fiber which concerns on this invention is manufactured with the above manufacturing methods, it contains the boron element and at least 2 types of elements chosen from a transition metal element.

本発明に係る炭素繊維は、樹脂、液などのマトリックスへの浸透性または分散性に優れるので、該炭素繊維をマトリックスに含有させることによって高い導電性や熱伝導性を有する複合材料を得ることができる。当該複合材料は帯電防止性に優れた材料である。特に樹脂に配合する場合には、従来の繊維状炭素の添加量に比べて1/2から1/3(質量比)あるいはそれ以下の添加量で、従来の繊維状炭素によって得られる導電性と同等の導電性を示すという優れた効果を有する樹脂材料を得ることができる。   Since the carbon fiber according to the present invention is excellent in permeability or dispersibility into a matrix of resin, liquid, etc., it is possible to obtain a composite material having high conductivity and thermal conductivity by containing the carbon fiber in the matrix. it can. The composite material is a material having excellent antistatic properties. In particular, when blended with a resin, the conductivity obtained by the conventional fibrous carbon is less than 1/2 to 1/3 (mass ratio) or less than that of the conventional fibrous carbon. A resin material having an excellent effect of exhibiting equivalent conductivity can be obtained.

本発明に係る炭素繊維が添加される樹脂としては、熱可塑性樹脂、熱硬化性樹脂が挙げられる。上記熱可塑性樹脂として、耐衝撃性向上のために熱可塑性エラストマーもしくはゴム成分が添加された樹脂を用いることもできる。
本発明に係る炭素繊維を含有させてなる樹脂材料には、樹脂の性能、機能を損なわない範囲で、他の各種樹脂添加剤を配合させることができる。樹脂添加剤としては、例えば、着色剤、可塑剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤、発泡剤、難燃剤、防錆剤、酸化防止剤などが挙げられる。これらの樹脂添加剤は、樹脂材料を調製する際の最終工程で配合するのが好ましい。
Examples of the resin to which the carbon fiber according to the present invention is added include thermoplastic resins and thermosetting resins. As the thermoplastic resin, a resin to which a thermoplastic elastomer or a rubber component is added in order to improve impact resistance can also be used.
Various other resin additives can be blended in the resin material containing the carbon fiber according to the present invention as long as the performance and function of the resin are not impaired. Examples of the resin additive include a colorant, a plasticizer, a lubricant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a filler, a foaming agent, a flame retardant, a rust inhibitor, and an antioxidant. These resin additives are preferably blended in the final step when preparing the resin material.

本発明に係る炭素繊維を分散させた液状物としては、水、アルコール、エチレングリコールなどに分散させた熱伝導性の流体や、塗料やバインダー樹脂とともに液中に分散させた導電性や帯電防止性の塗料や皮膜を形成するための液分散体が好適に挙げられる。   Examples of the liquid material in which the carbon fibers according to the present invention are dispersed include heat conductive fluid dispersed in water, alcohol, ethylene glycol, etc., and conductivity and antistatic property dispersed in the liquid together with paint and binder resin. A liquid dispersion for forming a paint or a film is preferably mentioned.

さらに、本発明に係る炭素繊維は、導電性付与効果が高いので、電池やキャパシタなどの電気化学素子への使用にも好適である。
電気化学素子用電極への炭素繊維の適用方法は、例えば、特開2005−63955号公報などに記載されている。具体的には、本発明に係る炭素繊維を含有するスラリーまたはペーストを調製し、これを導電性基材に積層させることを含む方法によって、導電性基材と導電性層との積層体からなる集電体、導電性基材と電極層との積層体からなる電極または集電体(導電性基材と導電性層との積層体)と電極層との積層体からなる電極を得ることができる。
Furthermore, since the carbon fiber according to the present invention has a high conductivity imparting effect, it is suitable for use in electrochemical devices such as batteries and capacitors.
A method for applying carbon fiber to an electrode for an electrochemical element is described in, for example, Japanese Patent Application Laid-Open No. 2005-63955. Specifically, it comprises a laminate of a conductive substrate and a conductive layer by a method comprising preparing a slurry or paste containing the carbon fiber according to the present invention and laminating the slurry or paste on the conductive substrate. Obtaining a current collector, an electrode composed of a laminate of a conductive substrate and an electrode layer or an electrode consisting of a laminate of a current collector (a laminate of a conductive substrate and a conductive layer) and an electrode layer it can.

本発明に係るスラリーまたはペーストは、上記のような導電性層または電極層を構成するために、炭素繊維以外の物質を含んでいてもよい。
導電性層ではバインダー材料を通常含有している。また当該電極層では必要に応じてカーボンブラック等の導電助剤を含有していてもよい。またスラリーまたはペーストの粘度調整の為に、CMC(sodium carboxymethyl cellulose)やポリエチレングリコール等のポリマーのような増粘材を含有してもよい。電極層では導電性層に含有させることができる上記物質以外に公知の電極活物質材料を通常含有している。
The slurry or paste according to the present invention may contain a substance other than carbon fiber in order to constitute the conductive layer or the electrode layer as described above.
The conductive layer usually contains a binder material. The electrode layer may contain a conductive auxiliary such as carbon black as necessary. Further, for adjusting the viscosity of the slurry or paste, a thickener such as a polymer such as CMC (sodium carboxymethyl cellulose) or polyethylene glycol may be contained. The electrode layer usually contains a known electrode active material in addition to the above substances that can be contained in the conductive layer.

電極層用のバインダー材料としては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマーや、SBR(スチレンブタジエンラバー)等のゴム系ポリマー等が挙げられる。導電性層用のバインダー材料としては、上記のようなフッ素系ポリマーやゴム系ポリマーが挙げられ、その他に、多糖類、多糖類架橋物などが挙げられる。溶媒には、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーならトルエン、N−メチルピロリドン、アセトンなど; SBRなら水などが使用できる。   Examples of the binder material for the electrode layer include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber-based polymers such as SBR (styrene butadiene rubber). Examples of the binder material for the conductive layer include the above-described fluorine-based polymers and rubber-based polymers, and other examples include polysaccharides and polysaccharide cross-linked products. As the solvent, a known solvent suitable for each binder, for example, toluene, N-methylpyrrolidone, acetone or the like for a fluorine-based polymer; water or the like for SBR can be used.

スラリーまたはペーストの調製方法は、特に限定されない。たとえば、電極層用のスラリーまたはペーストは、電極活物質材料と炭素繊維とバインダー材料を一度に混合することによって; 電極活物質材料と炭素繊維を混合し、次いでバインダー材料を添加して混合することによって; 電極活物質材料とバインダーを混合し、次いで炭素繊維を添加して混合することによって; または炭素繊維とバインダー材料を混合し、次いで電極活物質材料を添加して混合することによって、得ることができる。混合では、溶媒を用いない乾式混合と溶媒を用いる湿式混合とを併用できる。例えば、電極活物質材料、炭素繊維またはこれらの混合物にバインダー材料を乾式混合し、次いで溶媒を加えて混練りすることができ; バインダー材料を溶媒で希釈し、それに電極活物質、炭素繊維またはこれらの混合物負極材料を添加して混練りすることもできる。本発明に係る炭素繊維は有機溶剤への分散性に優れるので、導電性層や電極層に炭素繊維を高分散状態で含有させることができる。   The method for preparing the slurry or paste is not particularly limited. For example, a slurry or paste for an electrode layer is obtained by mixing the electrode active material, carbon fiber, and binder material at once; mixing the electrode active material and carbon fiber, and then adding and mixing the binder material By mixing the electrode active material and binder, then adding and mixing carbon fiber; or by mixing the carbon fiber and binder material and then adding and mixing electrode active material Can do. In the mixing, dry mixing without using a solvent and wet mixing using a solvent can be used in combination. For example, the binder material can be dry-mixed into the electrode active material, carbon fiber or a mixture thereof, and then kneaded by adding a solvent; the binder material is diluted with a solvent, and then the electrode active material, carbon fiber or these It is also possible to add and mix the negative electrode material. Since the carbon fiber according to the present invention is excellent in dispersibility in an organic solvent, the carbon fiber can be contained in a highly dispersed state in the conductive layer or the electrode layer.

電極または集電体に用いられる導電性基材としては、銅、アルミニウム、ステンレス、ニッケル及びそれらの合金などの金属基材、カーボンシートなど炭素基材が挙げられる。
導電性基材への積層方法は、特に限定されず、たとえば、特開2007−226969号公報やWO07/043515に開示された方法を採用できる。具体的には、ドクターブレードやバーコートなどの公知の塗布手段によってスラリーまたはペーストを導電性基材または集電体に塗布し、乾燥し、次いでプレスすることを含む方法などを採用可能である。
Examples of the conductive substrate used for the electrode or current collector include metal substrates such as copper, aluminum, stainless steel, nickel and alloys thereof, and carbon substrates such as carbon sheets.
The method for laminating the conductive base material is not particularly limited, and for example, methods disclosed in Japanese Patent Application Laid-Open No. 2007-226969 and WO07 / 043515 can be employed. Specifically, a method including applying a slurry or paste to a conductive substrate or a current collector by a known application means such as a doctor blade or a bar coat, drying, and then pressing can be employed.

本発明に係る炭素繊維は、導電性層や電極層における分散性に優れるだけでなく、電解液の吸液保持にも優れるので、サイクル特性等を向上させることができる。また、本発明に係る炭素繊維を用いることによって、電極の抵抗値を大幅に低減することができるので、結果的に電池やキャパシタの内部抵抗が低下して、ハイレート特性が向上する。   The carbon fiber according to the present invention is not only excellent in dispersibility in the conductive layer and electrode layer, but also excellent in absorbing and holding the electrolytic solution, so that cycle characteristics and the like can be improved. Moreover, since the resistance value of an electrode can be reduced significantly by using the carbon fiber which concerns on this invention, the internal resistance of a battery or a capacitor falls as a result, and a high rate characteristic improves.

以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。   Examples of the present invention will be described below to describe the present invention more specifically. Note that these are merely illustrative examples, and the present invention is not limited by these.

物性等は以下の方法により測定した。
[比表面積]
繊維状炭素または炭素繊維を120℃で8時間真空脱気した。比表面積測定装置(BELSORP-mini、日本BEL社製)を用いて、定容法にて、窒素による吸着脱離等温線を測定した。BET法によって比表面積を算出した。
Physical properties and the like were measured by the following methods.
[Specific surface area]
Fibrous carbon or carbon fiber was vacuum degassed at 120 ° C. for 8 hours. The adsorption / desorption isotherm by nitrogen was measured by a constant volume method using a specific surface area measuring apparatus (BELSORP-mini, manufactured by BEL, Japan). The specific surface area was calculated by the BET method.

〔圧密比抵抗〕
繊維状炭素または炭素繊維0.2gを精秤し、粉体抵抗測定システム(MCP−PD51、株式会社三菱化学アナリティック製)によって密度ごとに体積抵抗率を測定した。
[Consolidation resistivity]
Fibrous carbon or 0.2 g of carbon fiber was precisely weighed, and volume resistivity was measured for each density using a powder resistance measurement system (MCP-PD51, manufactured by Mitsubishi Chemical Analytic Co., Ltd.).

〔ラマン分析〕
顕微レーザーラマン分光装置(Renishaw製)を用いて、レーザー波長785nmにて測定し、GRAMS/AIを用いてDバンドのピーク強度DとGバンドのピーク強度Gとの比(D/G値)を算出した。
[Raman analysis]
Using a microscopic laser Raman spectroscope (manufactured by Renishaw), measured at a laser wavelength of 785 nm, and using GRAMS / AI, the ratio of the D band peak intensity D to the G band peak intensity G (D / G value) Calculated.

〔X線回折〕
粉末X線回折装置(Rigaku ロータフレックスRU−300)を用いて、JIS R 7651に従ってd002を算出した。なお、002回折ピークが二つ現れる場合には高角度側ピークと低角度側ピークとのそれぞれに基づいてd002を算出した。
[X-ray diffraction]
Powder X-ray diffractometer using (Rigaku rotor flex RU-300), was calculated d 002 according JIS R 7651. When two 002 diffraction peaks appear, d 002 was calculated based on each of the high angle side peak and the low angle side peak.

〔浸透性〕
レゾール型フェノール樹脂とエタノールとメタノールとを混合したマスターバッチ100質量部に対して、N−メチル−2−ピロリドン100質量部を入れ混合して固形分濃度41%の樹脂溶液を得た。樹脂溶液を溶液深さが8mmとなるように24mlプラスチック容器に入れた。直径1mm程度の炭素繊維凝集体を当該容器の縁から中に落とし、炭素繊維凝集体が容器の底に到達するまでの平均時間を測定した。炭素繊維凝集体が溶液に浸透せず液面に浮いたままとなる場合または沈下するまでに5分以上を要した場合を×、沈下するまでに3分以上5分未満を要した場合を△、沈下に要した時間が3分未満の場合を○として評価した。
[Penetration]
100 parts by mass of N-methyl-2-pyrrolidone was added to and mixed with 100 parts by mass of a master batch obtained by mixing a resol type phenolic resin, ethanol and methanol to obtain a resin solution having a solid content concentration of 41%. The resin solution was placed in a 24 ml plastic container so that the solution depth was 8 mm. A carbon fiber aggregate having a diameter of about 1 mm was dropped from the edge of the container into the container, and an average time until the carbon fiber aggregate reached the bottom of the container was measured. When carbon fiber aggregates do not penetrate into the solution and remain floating on the liquid surface, or when it takes 5 minutes or more to sink, and when it takes 3 minutes to less than 5 minutes to sink The case where the time required for subsidence was less than 3 minutes was evaluated as ○.

参考例1
硝酸鉄(III)九水和物1.81質量部を水1.2質量部に添加し溶解させ、次いでメタバナジン酸アンモニウム0.052質量部および七モリブデン酸六アンモニウム0.079質量部を添加し溶解させて、溶液Aを得た。 該溶液Aを中間アルミナ(住友化学製; γ−アルミナ AKP−G015)1質量部に滴下し、混合した。混合後、100℃で4時間真空乾燥した。乾燥後、乳鉢で粉砕して触媒を得た。該触媒は、Feに対してMo10モル%、V10モル%を含み、中間アルミナに対してFeが25質量%担持されていた。
Reference example 1
Add 1.81 parts by mass of iron (III) nitrate nonahydrate to 1.2 parts by mass of water and dissolve, then add 0.052 parts by mass of ammonium metavanadate and 0.079 parts by mass of hexaammonium heptamolybdate. Solution A was obtained by dissolution. The solution A was added dropwise to 1 part by mass of intermediate alumina (manufactured by Sumitomo Chemical; γ-alumina AKP-G015) and mixed. After mixing, vacuum drying was performed at 100 ° C. for 4 hours. After drying, the catalyst was obtained by grinding in a mortar. The catalyst contained 10 mol% Mo and 10 mol% V based on Fe, and 25 mass% Fe was supported on the intermediate alumina.

秤量した触媒を石英ボートに載せ、石英製反応管に該石英ボートを入れ、密閉した。反応管内を窒素ガスで置換し、窒素ガスを流しながら、反応器を室温から690℃まで60分間かけて昇温させた。窒素を流しながら690℃で30分間保持した。
温度690℃を維持したまま、窒素ガスを、窒素ガス(100容量部)と水素ガス(400容量部)との混合ガスAに切り替えて反応器に流し、30分間、還元反応させた。還元反応後、温度690℃を維持したまま、混合ガスAを、水素ガス(250容量部)とエチレンガス(250容量部)との混合ガスBに切り替え反応器に流し、60分間、気相成長反応させた。混合ガスBを窒素ガスに切り替え、反応器内を窒素ガスで置換し、室温まで冷やした。反応器を開き石英ボートを取り出した。触媒を核として成長した繊維状炭素が得られた。該繊維状炭素は、屈曲構造および/または不均一構造を有するチューブ状で、シェルが多層構造を成していた。また、繊維状炭素は、平均繊維径が15nm、平均繊維長さが3μm、低角度側ピークから求めたd002が0.3471nm(高角度側ピークは現れなかった。)、Lcが3.73nm、D/G値が1.5677であった(表2および図2中の参考例1、図1中の● 参照)。
The weighed catalyst was placed on a quartz boat, and the quartz boat was placed in a quartz reaction tube and sealed. The inside of the reaction tube was replaced with nitrogen gas, and the reactor was heated from room temperature to 690 ° C. over 60 minutes while flowing nitrogen gas. It was kept at 690 ° C. for 30 minutes while flowing nitrogen.
While maintaining the temperature at 690 ° C., the nitrogen gas was switched to a mixed gas A of nitrogen gas (100 parts by volume) and hydrogen gas (400 parts by volume), and flowed into the reactor to carry out a reduction reaction for 30 minutes. After the reduction reaction, while maintaining the temperature at 690 ° C., the mixed gas A is switched to the mixed gas B of hydrogen gas (250 parts by volume) and ethylene gas (250 parts by volume), and is allowed to flow through the reactor for 60 minutes. Reacted. The mixed gas B was switched to nitrogen gas, the inside of the reactor was replaced with nitrogen gas, and the mixture was cooled to room temperature. The reactor was opened and the quartz boat was taken out. Fibrous carbon grown using the catalyst as a nucleus was obtained. The fibrous carbon has a tube shape having a bent structure and / or a non-uniform structure, and the shell has a multilayer structure. Further, the fibrous carbon has an average fiber diameter of 15 nm, an average fiber length of 3 μm, a d 002 obtained from a low angle side peak of 0.3471 nm (no high angle side peak appeared), and an L c of 3. The thickness was 73 nm and the D / G value was 1.5677 (see Table 2 and Reference Example 1 in FIG. 2, and ● in FIG. 1).

参考例2
遷移金属を含有する有機化合物の存在のもとにベンゼンを熱分解する公知の製法(例えば特開平7−150419号公報)で得た繊維状炭素を1200℃で熱処理した。このフロック状に集合した繊維を解砕し、嵩密度を0.02g/cm3、繊維の長さを10〜100μmとした。繊維の太さ(径)は大部分が0.5μm以下(SEM写真で観察した平均的な径は0.1〜0.2μm)であった。この繊維状炭素を2900℃で熱処理し、約2mm程度に粗解砕し、次いでバンタムミルで粉砕した。その後、非繊維状物を気流分級で分離した。
Reference example 2
Fibrous carbon obtained by a known production method (for example, JP-A-7-150419) in which benzene is thermally decomposed in the presence of an organic compound containing a transition metal was heat-treated at 1200 ° C. The fibers assembled in a floc form were crushed, the bulk density was 0.02 g / cm 3 , and the fiber length was 10 to 100 μm. The thickness (diameter) of the fibers was mostly 0.5 μm or less (average diameter observed by SEM photograph was 0.1 to 0.2 μm). The fibrous carbon was heat-treated at 2900 ° C., roughly pulverized to about 2 mm, and then pulverized with a bantam mill. Thereafter, the non-fibrous material was separated by air classification.

実施例1
参考例1で得られた繊維状炭素96質量部に炭化ホウ素4質量部を添加し、これをアブソリュートミルに入れて回転数15000rpmで1分間混合した。
得られた混合物を黒鉛製ルツボに入れ、アルゴンガス流通下、1800℃で30分間熱処理して炭素繊維を得た。粉体X線回折において002回折ピークが低角度側と高角度側のそれぞれに現れた。得られた炭素繊維の物性を表1に示す。また、圧密比抵抗の測定結果を図1に示す。浸透性の測定結果を図6に示す。
Example 1
4 parts by mass of boron carbide was added to 96 parts by mass of the fibrous carbon obtained in Reference Example 1, and this was put in an absolute mill and mixed at a rotational speed of 15000 rpm for 1 minute.
The obtained mixture was put into a graphite crucible and heat treated at 1800 ° C. for 30 minutes under a stream of argon gas to obtain carbon fibers. In powder X-ray diffraction, 002 diffraction peaks appeared on the low angle side and the high angle side, respectively. Table 1 shows the physical properties of the obtained carbon fibers. Moreover, the measurement result of a consolidation specific resistance is shown in FIG. The measurement results of permeability are shown in FIG.

実施例2、3および4
熱処理温度1800℃を2000℃、2500℃、および2800℃にそれぞれ変えた以外は実施例1と同じ方法で炭素繊維を得た。粉体X線回折において002回折ピークが低角度側と高角度側のそれぞれに現れた。得られた炭素繊維の物性等を表1に示す。また、実施例2〜4で得られた炭素繊維の圧密比抵抗の測定結果を図1に示す。実施例2および4で得られた炭素繊維の粉体X線回折の測定結果を図2に示す。実施例4の002回折ピークの低角度側は高角度側に比べ非常に弱く現れた。浸透性の測定結果を図6に示す。
Examples 2, 3 and 4
Carbon fibers were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed from 1800 ° C to 2000 ° C, 2500 ° C, and 2800 ° C. In powder X-ray diffraction, 002 diffraction peaks appeared on the low angle side and the high angle side, respectively. Table 1 shows the physical properties and the like of the obtained carbon fiber. Moreover, the measurement result of the consolidation specific resistance of the carbon fiber obtained in Examples 2-4 is shown in FIG. The measurement results of the powder X-ray diffraction of the carbon fibers obtained in Examples 2 and 4 are shown in FIG. The low angle side of the 002 diffraction peak of Example 4 appeared much weaker than the high angle side. The measurement results of permeability are shown in FIG.

比較例1および2
炭化ホウ素を添加混合せず、熱処理温度1800℃を2000℃、および2800℃にそれぞれ変えた以外は実施例1と同じ方法で炭素繊維を得た。得られた炭素繊維の物性等を表2に示す。また、圧密比抵抗の測定結果を図1に、粉体X線回折の測定結果を図2に示す。粉体X線回折において002回折ピークが低角度側と高角度側のそれぞれに現れたが、図2中の実施例2や4に示すような強いピークではなかった。浸透性の測定結果を図6に示す。
Comparative Examples 1 and 2
Carbon fiber was obtained by the same method as in Example 1 except that boron carbide was not added and mixed, and the heat treatment temperature was changed from 1800 ° C. to 2000 ° C. and 2800 ° C., respectively. Table 2 shows the physical properties and the like of the obtained carbon fiber. Moreover, the measurement result of consolidation specific resistance is shown in FIG. 1, and the measurement result of powder X-ray diffraction is shown in FIG. In the powder X-ray diffraction, a 002 diffraction peak appeared on each of the low angle side and the high angle side, but it was not a strong peak as shown in Examples 2 and 4 in FIG. The measurement results of permeability are shown in FIG.

比較例3および4
熱処理温度1800℃を1400℃および1600℃にそれぞれ変えた以外は実施例1と同じ方法で炭素繊維を得た。得られた炭素繊維の物性等を表2に示す。また、圧密比抵抗の測定結果を図1に示す。浸透性の測定結果を図6に示す。
Comparative Examples 3 and 4
Carbon fibers were obtained in the same manner as in Example 1 except that the heat treatment temperature was changed from 1800 ° C. to 1400 ° C. and 1600 ° C., respectively. Table 2 shows the physical properties and the like of the obtained carbon fiber. Moreover, the measurement result of a consolidation specific resistance is shown in FIG. The measurement results of permeability are shown in FIG.

Figure 2013108201
Figure 2013108201

Figure 2013108201
Figure 2013108201

なお、図1中、●は熱処理を施していない繊維状炭素(参考例1)、■は1400℃ホウ素熱処理された炭素繊維(比較例3)、◆は1600℃ホウ素熱処理された炭素繊維(比較例4)、★は2000℃ホウ素無し熱処理された炭素繊維(比較例1)、▲は2800℃ホウ素無し熱処理された炭素繊維(比較例2)、○は1800℃ホウ素熱処理された炭素繊維(実施例1)、□は2000℃ホウ素熱処理された炭素繊維(実施例2)、◇は2500℃ホウ素熱処理された炭素繊維(実施例3)、△は2800℃ホウ素熱処理された炭素繊維(実施例4)を示す。ホウ素無しで熱処理しても圧密比抵抗が低くならない。これに対して1800℃以上でホウ素熱処理すると圧密比抵抗が低くなることがわかる。   In FIG. 1, ● represents fibrous carbon not subjected to heat treatment (Reference Example 1), ■ represents carbon fiber subjected to boron heat treatment at 1400 ° C. (Comparative Example 3), and ◆ represents carbon fiber subjected to boron heat treatment at 1600 ° C. (Comparative) Example 4), ★ is a carbon fiber heat treated without boron at 2000 ° C. (Comparative Example 1), ▲ is a carbon fiber heat treated without boron at 2800 ° C. (Comparative Example 2), ○ is a carbon fiber heat treated with boron at 1800 ° C. Example 1), □ is carbon fiber subjected to boron heat treatment at 2000 ° C. (Example 2), ◇ is carbon fiber subjected to boron heat treatment at 2500 ° C. (Example 3), and Δ is carbon fiber subjected to boron heat treatment at 2800 ° C. (Example 4) ). Even if it heat-processes without boron, a consolidation specific resistance does not become low. On the other hand, it is understood that the consolidation specific resistance is lowered when the boron heat treatment is performed at 1800 ° C. or more.

実施例5
〔電池の正極の製造〕
LFP−NCO正極材料(LiFePO4、Aleees社製、体積平均粒子径(D50):4μm)90質量部、および実施例1で得られた炭素繊維 5質量部を、 ノビルタ混合器(ホソカワミクロン社製、実効容積:500mL)に入れ、12分間乾式混合した。混合羽根の周速度は40m/sとした。
得られた混合粉をTK−ハイビスミックス(2P−03型、プライミクス社製)に移し変え、これにフッ化ビニリデン樹脂バインダー(KF−ポリマー L#1320、呉羽化学工業社製、フッ化ビニリデン樹脂のN−メチル−2−ピロリドン溶液)を固形分で5質量部を添加し、混練した。次いで、N−メチル−2−ピロリドン(NMP、昭和電工社製)を加えながら混練し、塗工に適した粘度に調整されたスラリーを得た。上記スラリーを、自動塗工機を用いてアルミ箔に塗布し、120℃で送風乾燥し、次いで120℃で1時間真空乾燥した。その後、ロールプレス機を用いてプレスし、次いで、120℃にて12時間真空乾燥して、電極密度2g/cm3の正極シートを得た。
Example 5
[Manufacture of battery positive electrode]
90 parts by mass of LFP-NCO positive electrode material (LiFePO 4 , manufactured by Alees, volume average particle diameter (D 50 ): 4 μm) and 5 parts by mass of the carbon fiber obtained in Example 1 were mixed with a Nobilta mixer (manufactured by Hosokawa Micron , Effective volume: 500 mL) and dry mixed for 12 minutes. The peripheral speed of the mixing blade was 40 m / s.
The obtained mixed powder was transferred to TK-Hibismix (2P-03 type, manufactured by Primix), and vinylidene fluoride resin binder (KF-polymer L # 1320, manufactured by Kureha Chemical Industry Co., Ltd., vinylidene fluoride resin) 5 parts by mass of N-methyl-2-pyrrolidone solution) was added and kneaded. Next, kneading was performed while adding N-methyl-2-pyrrolidone (NMP, manufactured by Showa Denko KK) to obtain a slurry adjusted to a viscosity suitable for coating. The slurry was applied to an aluminum foil using an automatic coating machine, blown and dried at 120 ° C., and then vacuum dried at 120 ° C. for 1 hour. Then, it pressed using the roll press machine, and then vacuum-dried at 120 degreeC for 12 hours, and the positive electrode sheet with an electrode density of 2 g / cm < 3 > was obtained.

[電池の負極の製造]
人造黒鉛91質量部、アセチレンブラック(HS−100、電気化学社製)2質量部、およびフッ化ビニリデン樹脂バインダー(KFポリマー L#9305、呉羽化学工業社製、フッ化ビニリデン樹脂のN−メチル−2−ピロリドン溶液)7質量部(固形分として)を混合機(TK−ハイビスミックス2P−03型、プライミクス社製)を用いて混煉した。次いでN−メチル−2−ピロリドン(NMP、昭和電工社製)を添加しながら混練し、塗工に適した粘度に調整されたスラリーを得た。このスラリーを、自動塗工機を用いてCu箔に塗布した。それを約90℃で送風乾燥し、次いで90℃で1時間真空乾燥した。その後、ロールプレス機を用いてプレスして、電極密度1.3g/cm3の負極シートを得た。
負極シートを得た。
[Manufacture of battery negative electrode]
91 parts by weight of artificial graphite, 2 parts by weight of acetylene black (HS-100, manufactured by Denki Kagaku), and vinylidene fluoride resin binder (KF polymer L # 9305, manufactured by Kureha Chemical Industry Co., Ltd., N-methyl-vinylidene fluoride resin) 2-Pyrrolidone solution) 7 parts by mass (as solid content) was mixed using a mixer (TK-Hibismix 2P-03, manufactured by Primix). Next, N-methyl-2-pyrrolidone (NMP, manufactured by Showa Denko KK) was added and kneaded to obtain a slurry adjusted to a viscosity suitable for coating. This slurry was apply | coated to Cu foil using the automatic coating machine. It was blown dry at about 90 ° C. and then vacuum dried at 90 ° C. for 1 hour. Then, it pressed using the roll press machine and obtained the negative electrode sheet with an electrode density of 1.3 g / cm < 3 >.
A negative electrode sheet was obtained.

[電解液]
2体積部のEC(エチレンカーボネート)及び3体積部のEMC(エチルメチルカーボネート)からなる混合液に、1.0モル/リットルとなるようにLiPF6を溶解させ、さらにビニレンカーボネート1質量%を添加して、電解液を得た。
[Electrolyte]
LiPF 6 is dissolved in a mixed solution consisting of 2 parts by volume of EC (ethylene carbonate) and 3 parts by volume of EMC (ethyl methyl carbonate) so as to be 1.0 mol / liter, and 1% by mass of vinylene carbonate is further added. Thus, an electrolytic solution was obtained.

[試験セルの製造]
露点−80℃以下の乾燥アルゴン雰囲気下で下記の操作を実施した。
正極シートおよび負極シートから、試験セル用の正極および負極を切り出した。正極と負極の間にセパレータ(ポリプロピレン製マイクロポーラスフィルム、セルガード社製セルガード2500、厚さ25μm)を挟み積層体を作成した。得られた積層体をアルミニウム製ラミネートで包み、三辺をヒートシールした。これに電解液を注入し、真空中でヒートシールして試験セルを得た。
[Manufacture of test cells]
The following operation was performed in a dry argon atmosphere with a dew point of -80 ° C or lower.
A positive electrode and a negative electrode for a test cell were cut out from the positive electrode sheet and the negative electrode sheet. A separator (polypropylene microporous film, Celgard Cellguard 2500, thickness 25 μm) was sandwiched between the positive electrode and the negative electrode to prepare a laminate. The obtained laminate was wrapped with an aluminum laminate, and three sides were heat-sealed. An electrolytic solution was poured into this and heat sealed in a vacuum to obtain a test cell.

[レート特性評価試験]
試験セルに次の条件にて充放電を繰り返しレート特性を測定した。
先ずレストポテンシャルから3.6Vまでを0.2C相当の電流値で定電流充電を行い、次いで3.6Vにて定電圧充電を行い、0.05C相当の電流値に低下した時点で充電を止めた。次に0.2C、0.5C、1.0C、3.0C、5.0C、7.0Cまたは10C相当の電流値でそれぞれ定電流放電を行い、電圧2.5Vでカットオフした。それらの結果を図7に示す。
[Rate characteristics evaluation test]
The rate characteristics were measured by repeatedly charging and discharging the test cell under the following conditions.
First, constant current charging from the rest potential to 3.6 V is performed at a current value equivalent to 0.2 C, then constant voltage charging is performed at 3.6 V, and charging is stopped when the current value drops to 0.05 C equivalent. It was. Next, constant current discharge was performed at a current value corresponding to 0.2C, 0.5C, 1.0C, 3.0C, 5.0C, 7.0C, or 10C, and cut off at a voltage of 2.5V. The results are shown in FIG.

[DCR評価]
試験セルに、レストポテンシャルから3.6Vまでを0.2C相当の電流値で定電流充電を行い、次いで3.6Vにて定電圧充電を行い、0.05C相当の電流値に低下した時点で充電を止めた。0.1C相当の電流値で2時間定電流放電を行った。1時間の休止を行い充電深度を80%に設定した。次いで、0.2C相当の電流値で5秒間定電流放電を行った。
[DCR evaluation]
When the test cell is charged with a constant current from the rest potential to 3.6 V with a current value equivalent to 0.2 C, then with a constant voltage charge at 3.6 V, and when the current drops to a current value equivalent to 0.05 C I stopped charging. A constant current discharge was performed for 2 hours at a current value corresponding to 0.1 C. The charging depth was set to 80% after a one-hour pause. Next, constant current discharge was performed for 5 seconds at a current value corresponding to 0.2C.

次に、レストポテンシャルから3.6Vまでを0.2C相当の電流値で定電流充電を行い、次いで3.6Vにて定電圧充電を行い、0.05C相当の電流値に低下した時点で充電を止めた。0.1C相当の電流値で2時間定電流放電を行った。1時間の休止を行い充電深度を80%に設定した。次いで、0.5C相当の電流値で5秒間定電流放電を行った。
この操作を1.0Cおよび2.0C相当の電流値においても行った。
これらの操作をしたときのI−V特性から充電深度80%におけるDCRを算出した。
Next, constant current charging from the rest potential to 3.6 V is performed at a current value corresponding to 0.2 C, then constant voltage charging is performed at 3.6 V, and charging is performed when the current value decreases to 0.05 C. Stopped. A constant current discharge was performed for 2 hours at a current value corresponding to 0.1 C. The charging depth was set to 80% after a one-hour pause. Next, constant current discharge was performed for 5 seconds at a current value equivalent to 0.5C.
This operation was also performed at current values corresponding to 1.0 C and 2.0 C.
The DCR at a charging depth of 80% was calculated from the IV characteristics when these operations were performed.

次に、0.1C相当の電流値での定電流放電時間2時間を、3.5時間、5時間、6.5時間、および8時間に変更して、充電深度をそれぞれ65%、50%、35%および20%に設定した以外は上記と同じ操作を行い、各充電深度(SOC)における直流抵抗(DCR)をそれぞれ算出した。それらの結果を図8に示す。   Next, the constant current discharge time of 2 hours at a current value equivalent to 0.1 C was changed to 3.5 hours, 5 hours, 6.5 hours, and 8 hours, and the charging depth was changed to 65% and 50%, respectively. The same operation as described above was performed except that the values were set to 35% and 20%, and the direct current resistance (DCR) at each charging depth (SOC) was calculated. The results are shown in FIG.

比較例5
炭素繊維をカーボンブラック(SuperP:Timcal社製)に替えた以外は実施例5と同じ方法で試験セルを製造し、レート特性およびDCRを測定した。結果を図7および8に示す。
Comparative Example 5
A test cell was produced in the same manner as in Example 5 except that the carbon fiber was changed to carbon black (SuperP: manufactured by Timcal), and the rate characteristics and DCR were measured. The results are shown in FIGS.

比較例6
炭素繊維を参考例2で得られた繊維状炭素に替えた以外は実施例5と同じ方法で試験セルを製造し、レート特性およびDCRを測定した。結果を図7および8に示す。
Comparative Example 6
A test cell was produced in the same manner as in Example 5 except that the carbon fiber was replaced with the fibrous carbon obtained in Reference Example 2, and the rate characteristics and DCR were measured. The results are shown in FIGS.

比較例7
炭素繊維を参考例1で得られた繊維状炭素に替えた以外は実施例5と同じ方法で試験セルを製造し、レート特性およびDCRを測定した。結果を図7および8に示す。
Comparative Example 7
A test cell was produced in the same manner as in Example 5 except that the carbon fiber was replaced with the fibrous carbon obtained in Reference Example 1, and the rate characteristics and DCR were measured. The results are shown in FIGS.

これらの結果から、本発明の製造方法によって得られる炭素繊維(実施例)は、従来の製法によって得られる繊維状炭素に比べ、圧密比抵抗が小さいので、少量の添加でも樹脂等に導電性を付与できることがわかる。また、本発明の炭素繊維は、レート特性およびDCRを改善するための電池電極用導電性付与剤として有用であることがわかる。   From these results, the carbon fiber (Example) obtained by the production method of the present invention has a smaller consolidation specific resistance than the fibrous carbon obtained by the conventional production method. It can be seen that it can be granted. Moreover, it turns out that the carbon fiber of this invention is useful as an electroconductivity imparting agent for battery electrodes for improving a rate characteristic and DCR.

Claims (22)

粉粒状担体と金属触媒とからなる担持触媒に炭素元素含有物質を接触させることによって繊維状炭素を合成し、得られた繊維状炭素にホウ素またはホウ素化合物を混ぜ合わせ、次いで1800℃以上の温度で熱処理することを含む炭素繊維の製造方法。   Fibrous carbon is synthesized by bringing a carbon element-containing substance into contact with a supported catalyst composed of a granular carrier and a metal catalyst, boron or a boron compound is mixed with the obtained fibrous carbon, and then at a temperature of 1800 ° C. or higher. The manufacturing method of carbon fiber including heat processing. 金属触媒が遷移金属元素から選ばれる少なくとも2種の元素を含むものである請求項1に記載の製造方法。   The production method according to claim 1, wherein the metal catalyst contains at least two elements selected from transition metal elements. 金属触媒がFe、Co、Ni、Ti、V、Cr、Mn、WおよびMoからなる群から選ばれる少なくとも2種の元素を含むものである請求項1に記載の製造方法。   2. The production method according to claim 1, wherein the metal catalyst contains at least two elements selected from the group consisting of Fe, Co, Ni, Ti, V, Cr, Mn, W and Mo. 粉粒状担体がCa、Mg、Ba、Sr、Zr、Zn、Al、TiおよびSiからなる群から選ばれる少なくとも1種の元素を含むものである請求項1〜3のいずれかひとつに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the particulate carrier contains at least one element selected from the group consisting of Ca, Mg, Ba, Sr, Zr, Zn, Al, Ti and Si. 粉粒状担体が、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化ケイ素、酸化ジルコニウムおよび複合酸化物からなる群から選ばれる少なくとも1種からなるものである請求項1〜3のいずれかひとつに記載の製造方法。   The production according to any one of claims 1 to 3, wherein the particulate carrier is composed of at least one selected from the group consisting of magnesium oxide, aluminum oxide, titanium oxide, silicon oxide, zirconium oxide and composite oxide. Method. 炭素元素含有物質が脂肪族炭化水素である請求項1〜5のいずれかひとつに記載の製造方法。   The method according to any one of claims 1 to 5, wherein the carbon element-containing substance is an aliphatic hydrocarbon. 屈曲構造を有する繊維状炭素または不均一構造を有する繊維状炭素にホウ素またはホウ素化合物を混ぜ合わせ、次いで1800℃以上の温度で熱処理することを含む炭素繊維の製造方法。   A method for producing carbon fiber, comprising mixing fibrous carbon having a bent structure or fibrous carbon having a heterogeneous structure with boron or a boron compound and then heat-treating at a temperature of 1800 ° C. or higher. 繊維状炭素は平均繊維径が5〜50nmである請求項1〜7のいずれかひとつに記載の製造方法。   The manufacturing method according to any one of claims 1 to 7, wherein the fibrous carbon has an average fiber diameter of 5 to 50 nm. ホウ素またはホウ素化合物の量が繊維状炭素100質量部に対して0.1〜10質量部である請求項1〜8のいずれかひとつに記載の製造方法。   The amount of boron or a boron compound is 0.1-10 mass parts with respect to 100 mass parts of fibrous carbon, The manufacturing method as described in any one of Claims 1-8. ホウ素化合物が酸化ホウ素、炭化ホウ素、ホウ酸およびホウ酸塩からなる群から選ばれる少なくとも1種である請求項1〜9のいずれかひとつに記載の製造方法。   The method according to any one of claims 1 to 9, wherein the boron compound is at least one selected from the group consisting of boron oxide, boron carbide, boric acid, and borate. 熱処理時における温度が1800〜3200℃である請求項1〜10のいずれかひとつに記載の製造方法。   The temperature at the time of heat processing is 1800-3200 degreeC, The manufacturing method as described in any one of Claims 1-10. 炭素繊維のレーザー波長785nmで測定したラマン分光分析から算出するD/G値が1.3以上である請求項1〜11のいずれかひとつに記載の製造方法。   The D / G value calculated from the Raman spectroscopic analysis measured at a laser wavelength of 785 nm of the carbon fiber is 1.3 or more, The production method according to any one of claims 1 to 11. 炭素繊維の粉末X線回折法における高角度側ピークから求めたd002が0.334〜0.342nmである請求項1〜12のいずれかひとつに記載の製造方法。 The production method according to claim 1, wherein d 002 obtained from a high-angle peak in the powder X-ray diffraction method of carbon fiber is 0.334 to 0.342 nm. 炭素繊維の密度0.8g/cm3における体積抵抗率が0.01Ω・cm以下である請求項1〜13のいずれかひとつに記載の製造方法。 The volume resistivity at a density of 0.8 g / cm 3 of the carbon fiber is 0.01 Ω · cm or less, The production method according to claim 1. レーザー波長785nmで測定したラマン分光分析から算出するD/G値が1.3以上で、粉末X線回折法における高角度側ピークから求めたd002が0.334〜0.342nmで、フェノール樹脂溶液に沈み込むまでの平均時間が3分未満で、炭素繊維の密度0.8g/cm3における体積抵抗率が0.01Ω・cm以下で、平均繊維径が5〜100nmで、且つ平均繊維長さが0.5〜100μmである炭素繊維。 The D / G value calculated from the Raman spectroscopic analysis measured at a laser wavelength of 785 nm is 1.3 or more, and the d 002 obtained from the high angle side peak in the powder X-ray diffraction method is 0.334 to 0.342 nm. The average time to sink into the solution is less than 3 minutes, the volume resistivity at a carbon fiber density of 0.8 g / cm 3 is 0.01 Ω · cm or less, the average fiber diameter is 5 to 100 nm, and the average fiber length Carbon fiber having a thickness of 0.5 to 100 μm. レーザー波長785nmで測定したラマン分光分析から算出するD/G値が1.3以上で、粉末X線回折法における高角度側ピークから求めたd002が0.334〜0.342nmで、炭素繊維の密度0.8g/cm3における体積抵抗率が0.01Ω・cm以下で、平均繊維径が5〜100nmで、且つ平均繊維長さが0.5〜100μmで、遷移金属元素から選ばれる少なくとも2種の元素とホウ素元素を含む炭素繊維。 The D / G value calculated from the Raman spectroscopic analysis measured at a laser wavelength of 785 nm is 1.3 or more, and the d 002 obtained from the high angle side peak in the powder X-ray diffraction method is 0.334 to 0.342 nm. The volume resistivity at a density of 0.8 g / cm 3 is 0.01 Ω · cm or less, the average fiber diameter is 5 to 100 nm, the average fiber length is 0.5 to 100 μm, and at least selected from transition metal elements Carbon fiber containing two elements and boron element. 請求項15または請求項16に記載の炭素繊維を含む樹脂材料。   The resin material containing the carbon fiber of Claim 15 or Claim 16. 請求項15または請求項16に記載の炭素繊維を含むスラリーまたはペースト。   A slurry or paste comprising the carbon fiber according to claim 15 or 16. 導電性基材と、請求項15または請求項16に記載の炭素繊維を含む導電性層とを有する積層体からなる集電体。   The electrical power collector which consists of a laminated body which has an electroconductive base material and the electroconductive layer containing the carbon fiber of Claim 15 or Claim 16. 導電性基材と、請求項15または請求項16に記載の炭素繊維を含む電極層とを有する積層体からなる電極。   The electrode which consists of a laminated body which has an electroconductive base material and the electrode layer containing the carbon fiber of Claim 15 or Claim 16. 請求項19に記載の集電体と、請求項15または請求項16に記載の炭素繊維を含む電極層とを有する積層体からなる電極。   The electrode which consists of a laminated body which has the electrical power collector of Claim 19, and the electrode layer containing the carbon fiber of Claim 15 or Claim 16. 請求項15または請求項16に記載の炭素繊維を含有する電気化学素子。   The electrochemical element containing the carbon fiber of Claim 15 or Claim 16.
JP2011257409A 2011-10-27 2011-11-25 Method for producing carbon fiber Pending JP2013108201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257409A JP2013108201A (en) 2011-10-27 2011-11-25 Method for producing carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011236547 2011-10-27
JP2011236547 2011-10-27
JP2011257409A JP2013108201A (en) 2011-10-27 2011-11-25 Method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2013108201A true JP2013108201A (en) 2013-06-06

Family

ID=48705240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257409A Pending JP2013108201A (en) 2011-10-27 2011-11-25 Method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2013108201A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170438A (en) * 2014-03-06 2015-09-28 株式会社豊田自動織機 Electrode active material and manufacturing method of the same
JP2017007891A (en) * 2015-06-22 2017-01-12 デンカ株式会社 Production method of carbon nanofiber-carbon material composite, and carbon nanofiber-carbon material composite
CN109763209A (en) * 2019-01-31 2019-05-17 山东瑞城宇航碳材料有限公司 A method of manufacture high thermal conductivity asphalt base carbon fiber
CN110870103A (en) * 2017-07-28 2020-03-06 日本瑞翁株式会社 Electrode for electrochemical device, and method for manufacturing electrode for electrochemical device
KR20200114480A (en) * 2019-03-28 2020-10-07 서울대학교산학협력단 Method for manufacturing carbon nanofiber complex and carbon nanofiber complex
WO2021080006A1 (en) * 2019-10-24 2021-04-29 東洋インキScホールディングス株式会社 Carbon nanotube dispersion liquid for nonaqueous electrolyte secondary battery, resin composition using same, mixture slurry, membrane electrode, and nonaqueous electrolyte secondary battery
JP2021095314A (en) * 2019-12-19 2021-06-24 東洋インキScホールディングス株式会社 Carbon nanotube, carbon nanotube dispersion and their uses
JP2021527611A (en) * 2018-07-27 2021-10-14 エルジー・ケム・リミテッド Carbon nanotubes, their manufacturing methods and positive electrodes for primary batteries containing them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200096A (en) * 2000-01-20 2001-07-24 Showa Denko Kk Electroconductive thermoplastic resin composition
JP2003306835A (en) * 2002-04-17 2003-10-31 Showa Denko Kk Vapor-grown carbon fiber and method for producing the same
JP2006225648A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Conductive resin composition, its production method and use
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube
WO2007074629A1 (en) * 2005-12-29 2007-07-05 Toray Industries, Inc. Process for producing carbon nanotube and catalyst for carbon nanotube production
WO2009091002A1 (en) * 2008-01-17 2009-07-23 Showa Denko K.K. Electric double layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200096A (en) * 2000-01-20 2001-07-24 Showa Denko Kk Electroconductive thermoplastic resin composition
JP2003306835A (en) * 2002-04-17 2003-10-31 Showa Denko Kk Vapor-grown carbon fiber and method for producing the same
JP2006225648A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Conductive resin composition, its production method and use
JP2006298713A (en) * 2005-04-22 2006-11-02 Univ Nagoya Method for manufacturing three-layer carbon nanotube and composition containing three-layer carbon nanotube
WO2007074629A1 (en) * 2005-12-29 2007-07-05 Toray Industries, Inc. Process for producing carbon nanotube and catalyst for carbon nanotube production
WO2009091002A1 (en) * 2008-01-17 2009-07-23 Showa Denko K.K. Electric double layer capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015026255; K. Nishimura: 'Structural characterization of boron-doped submicron vapor-grown carbon fibers and their anode perfo' Journal of MATERIALS RESEARCH Volume15, Number 6, 200006, page.1303-1313, The Materials Research Society *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170438A (en) * 2014-03-06 2015-09-28 株式会社豊田自動織機 Electrode active material and manufacturing method of the same
JP2017007891A (en) * 2015-06-22 2017-01-12 デンカ株式会社 Production method of carbon nanofiber-carbon material composite, and carbon nanofiber-carbon material composite
CN110870103A (en) * 2017-07-28 2020-03-06 日本瑞翁株式会社 Electrode for electrochemical device, and method for manufacturing electrode for electrochemical device
CN110870103B (en) * 2017-07-28 2022-12-16 日本瑞翁株式会社 Electrode for electrochemical element, and method for producing electrode for electrochemical element
JP2021527611A (en) * 2018-07-27 2021-10-14 エルジー・ケム・リミテッド Carbon nanotubes, their manufacturing methods and positive electrodes for primary batteries containing them
US11511994B2 (en) 2018-07-27 2022-11-29 Lg Chem, Ltd. Carbon nanotubes, method of manufacturing same, and positive electrode for primary battery comprising same
JP7086419B2 (en) 2018-07-27 2022-06-20 エルジー・ケム・リミテッド Carbon nanotubes, their manufacturing methods and positive electrodes for primary batteries containing them
CN109763209A (en) * 2019-01-31 2019-05-17 山东瑞城宇航碳材料有限公司 A method of manufacture high thermal conductivity asphalt base carbon fiber
KR20200114480A (en) * 2019-03-28 2020-10-07 서울대학교산학협력단 Method for manufacturing carbon nanofiber complex and carbon nanofiber complex
KR102178734B1 (en) 2019-03-28 2020-11-13 서울대학교 산학협력단 Method for manufacturing carbon nanofiber complex and carbon nanofiber complex
CN114585587A (en) * 2019-10-24 2022-06-03 东洋油墨Sc控股株式会社 Carbon nanotube dispersion for nonaqueous electrolyte secondary battery, resin composition using same, composite material slurry, electrode film, and nonaqueous electrolyte secondary battery
JP2021072279A (en) * 2019-10-24 2021-05-06 東洋インキScホールディングス株式会社 Carbon nanotube dispersion liquid for non-aqueous electrolyte secondary battery, resin composition using the same, mixture slurry, electrode film, and non-aqueous electrolyte secondary battery
WO2021080006A1 (en) * 2019-10-24 2021-04-29 東洋インキScホールディングス株式会社 Carbon nanotube dispersion liquid for nonaqueous electrolyte secondary battery, resin composition using same, mixture slurry, membrane electrode, and nonaqueous electrolyte secondary battery
CN114585587B (en) * 2019-10-24 2024-03-08 东洋油墨Sc控股株式会社 Carbon nanotube dispersion, resin composition using same, composite slurry, electrode film, and nonaqueous electrolyte secondary battery
JP2021095314A (en) * 2019-12-19 2021-06-24 東洋インキScホールディングス株式会社 Carbon nanotube, carbon nanotube dispersion and their uses
JP7358967B2 (en) 2019-12-19 2023-10-11 東洋インキScホールディングス株式会社 Carbon nanotubes, carbon nanotube dispersions and their uses

Similar Documents

Publication Publication Date Title
KR100980186B1 (en) Carbon fiber conjugate and composite material using the same
EP2778266B1 (en) Composite carbon fibers
JP2013108201A (en) Method for producing carbon fiber
Nieto-Márquez et al. Carbon nanospheres: synthesis, physicochemical properties and applications
Jo et al. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries
Bae et al. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery
US10312519B2 (en) Method for manufacturing electroconductive paste, and electroconductive paste
JP2018504762A (en) Method for producing negative electrode for lithium battery
WO2010002004A1 (en) Carbon fiber and composite material
WO2007049590A1 (en) Electrically conductive sheet
JP6981203B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
KR101608049B1 (en) Manufacturing method of Si-CNFs composite and Lithium Secondary battery using of Fe-Cu catalysts
EP4232409A1 (en) Process for preparing silicon-containing composite particles
WO2013099256A1 (en) Method for producing carbon fiber
US11117120B2 (en) Catalyst for synthesizing carbon nanotube and method of synthesizing carbon nanotube
CN113905976A (en) Carbon-carbon nanotube hybrid material and method for producing same
JP5551817B2 (en) Carbon fiber, carbon fiber production catalyst, and carbon fiber evaluation method.
Keller et al. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions
Seyyedin et al. Enhancing lithium–sulphur battery performance by copper oxide@ graphene oxide nanocomposite-modified cathode
JP5957793B2 (en) Carbon material manufacturing method
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor
Zhao et al. Low temperature aluminothermic reduction of natural sepiolite to high-performance Si nanofibers for Li-ion batteries
JP6045860B2 (en) Carbon material and non-aqueous secondary battery using the same
KR20230101804A (en) Carbon Black, Slurry and Lithium Ion Secondary Batteries
KR20230093434A (en) Carbon Black, Slurry and Lithium Ion Secondary Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110