JP2008016360A5 - - Google Patents

Download PDF

Info

Publication number
JP2008016360A5
JP2008016360A5 JP2006187411A JP2006187411A JP2008016360A5 JP 2008016360 A5 JP2008016360 A5 JP 2008016360A5 JP 2006187411 A JP2006187411 A JP 2006187411A JP 2006187411 A JP2006187411 A JP 2006187411A JP 2008016360 A5 JP2008016360 A5 JP 2008016360A5
Authority
JP
Japan
Prior art keywords
copper
fine particles
particle dispersion
dispersion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006187411A
Other languages
Japanese (ja)
Other versions
JP2008016360A (en
JP5170989B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006187411A priority Critical patent/JP5170989B2/en
Priority claimed from JP2006187411A external-priority patent/JP5170989B2/en
Publication of JP2008016360A publication Critical patent/JP2008016360A/en
Publication of JP2008016360A5 publication Critical patent/JP2008016360A5/ja
Application granted granted Critical
Publication of JP5170989B2 publication Critical patent/JP5170989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

導電性銅被膜の製造方法Method for producing conductive copper coating

本発明は導電性被膜の製造方法に関し、詳しくはナノサイズの微粒子または酸化物微粒子の分散液を基板に塗布した後、焼成して、比抵抗値の低い導電性被膜を形成する方法に関する。 The present invention relates to a method for producing a conductive copper film, and more specifically, after applying a dispersion of nano-sized copper fine particles or copper oxide fine particles to a substrate, firing is performed to form a conductive copper film having a low specific resistance value. Regarding the method.

金属微粒子または金属酸化物微粒子の分散液を基板に塗布した後、焼成して導電性金属被膜を形成することは、電極、配線、電子回路などの作製に一般に用いられていることはよく知られているところである。   It is well known that a conductive metal film is formed by applying a dispersion of metal fine particles or metal oxide fine particles to a substrate and then firing to form electrodes, wirings, and electronic circuits. It is in place.

例えば、特許文献1には、平均粒子径が1〜100nmの金、銀、銅などの金属微粒子を、アミン、アルコール、チオールなどの金属微粒子と配位可能な化合物で被覆した状態で含むペーストを用いて多層配線板を製造することが記載されている。しかし、実施例に示された、上記ペーストの粘度は80Pa・s程度と高く、また熱硬化物の比抵抗値も1×10−5Ω・cm以上と高いものである。 For example, Patent Document 1 includes a paste containing metal fine particles such as gold, silver and copper having an average particle diameter of 1 to 100 nm coated with a compound capable of coordinating with metal fine particles such as amine, alcohol and thiol. It is described that a multilayer wiring board is manufactured using the same. However, the viscosity of the paste shown in the examples is as high as about 80 Pa · s, and the specific resistance value of the thermoset is as high as 1 × 10 −5 Ω · cm or more.

また、特許文献2には、金属ペーストの塗膜を真空中で仮焼した後、酸化性雰囲気として仮焼して残存する分解物残渣を酸化させて排除し、さらに還元性雰囲気下で酸化された金属を還元して本焼成することにより金属薄膜を形成することが記載されている。しかし、この方法は、真空焼却炉などの特別な装置を必要とし、またこの方法によって得られる薄膜は基板との密着性が十分でないという問題がある。   Patent Document 2 discloses that a metal paste coating is calcined in a vacuum, then calcined as an oxidizing atmosphere to oxidize and remove residual decomposition products, and further oxidized in a reducing atmosphere. It is described that a metal thin film is formed by reducing the metal and performing main firing. However, this method requires a special apparatus such as a vacuum incinerator, and there is a problem that the thin film obtained by this method has insufficient adhesion to the substrate.

また、特許文献3には、粒子径が200nm以下の還元可能な金属酸化物を分散させた分散体を基板に塗布した後、不活性雰囲気中、次いで還元性雰囲気中で焼成して金属被膜を形成することが記載されている。しかし、この方法によって、低温で焼成して得られる金属被膜の比抵抗値は十分低いものといえない。   In Patent Document 3, a dispersion in which a reducible metal oxide having a particle size of 200 nm or less is applied to a substrate, and then fired in an inert atmosphere and then in a reducing atmosphere to form a metal film. It is described to form. However, it cannot be said that the specific resistance value of the metal coating obtained by firing at this low temperature is sufficiently low.

特開2002−299833号公報JP 2002-299833 A 特開平10−294018号公報JP-A-10-294018 特開2004−164876号公報Japanese Patent Application Laid-Open No. 2004-164876

本発明は、粘度の低い微粒子分散液を用い、これを250℃以下の低温で焼成することにより、比抵抗値の低い被膜を容易に形成し得る、新規な被膜の形成方法を提供することを目的とする。 The present invention provides a novel method for forming a copper film, which can easily form a copper film having a low specific resistance value by firing a copper fine particle dispersion having a low viscosity at a low temperature of 250 ° C. or lower. The purpose is to do.

本発明者らの研究によれば、上記課題は、下記発明により解決できることがわかった。
(1)平均粒子径が1〜100nmの範囲にある微粒子または酸化物微粒子を分散させた微粒子分散液を基板に塗布した後、還元雰囲気中、250℃以下の温度で焼成することを特徴とする導電性被膜の製造方法。
(2)微粒子分散液が炭素数6〜10のアミン化合物およびカルボン酸化合物から選ばれる少なくとも1種の化合物を含有する上記(1)の導電性被膜の製造方法。
(3)微粒子分散液中の炭素数6〜10のアミン化合物およびカルボン酸化合物から選ばれる少なくとも1種の化合物の含有量が微粒子または酸化物微粒子100質量部に対し30〜150質量部である上記(2)の導電性被膜の製造方法。
(4)微粒子または酸化物微粒子の平均粒子径が10nm以下、σ/D値(σ:標準偏差、D:平均粒子径)が0.2以下である上記(1)ないし(3)のいずれかの導電性被膜の製造方法。
(5)微粒子分散液の粘度が10Pa・s以下である上記(1)ないし()のいずれかに記載の導電性被膜の製造方法。
According to the studies by the present inventors, it has been found that the above problem can be solved by the following invention.
(1) A fine particle dispersion in which copper fine particles or copper oxide fine particles having an average particle diameter in the range of 1 to 100 nm are applied to a substrate and then fired at a temperature of 250 ° C. or lower in a reducing atmosphere. A method for producing a conductive copper coating.
(2) The method for producing a conductive copper coating according to the above (1), wherein the fine particle dispersion contains at least one compound selected from an amine compound having 6 to 10 carbon atoms and a carboxylic acid compound.
(3) The content of at least one compound selected from an amine compound having 6 to 10 carbon atoms and a carboxylic acid compound in the fine particle dispersion is 30 to 150 parts by mass with respect to 100 parts by mass of the copper fine particles or copper oxide fine particles. A method for producing a conductive copper film according to (2) above.
(4) The average particle size of copper fine particles or copper oxide fine particles is 10 nm or less, and σ / D value (σ: standard deviation, D: average particle size) is 0.2 or less. A method for producing any one of the conductive copper coatings.
(5) The method for producing a conductive copper film according to any one of (1) to ( 4 ), wherein the viscosity of the fine particle dispersion is 10 Pa · s or less.

本発明の方法によれば、特殊な装置を使用することなく、比抵抗値の低い被膜を容易に形成することができる。また、本発明で使用する微粒子分散体は粘度が低く取扱いが容易であることから、本発明の方法は、電子回路用導電体の製造に好適である。 According to the method of the present invention, a copper film having a low specific resistance value can be easily formed without using a special apparatus. Further, since the fine particle dispersion used in the present invention has a low viscosity and is easy to handle, the method of the present invention is suitable for the production of a conductor for electronic circuits.

本発明で用いる「微粒子分散液」とは、平均粒子径が1〜100nm、好ましくは1〜50nm、より好ましくは2〜10nmの範囲にある微粒子または酸化物微粒子が有機溶媒に分散したものである。上記微粒子または酸化物微粒子のなかでも、粒子径が均一なもの、具体的には、平均粒子径をD、標準偏差をσとすると、σ/D値が0.01〜0.5、好ましくは0.05〜0.2の範囲にあるものが好適に用いられる。 The “fine particle dispersion” used in the present invention is a dispersion in which copper fine particles or copper oxide fine particles having an average particle diameter of 1 to 100 nm, preferably 1 to 50 nm, more preferably 2 to 10 nm are dispersed in an organic solvent. It is. Among the copper fine particles or copper oxide fine particles, those having a uniform particle diameter, specifically, when the average particle diameter is D and the standard deviation is σ, the σ / D value is 0.01 to 0.5, Those in the range of 0.05 to 0.2 are preferably used.

上記微粒子分散液中の微粒子の粒子径電界放射型透過電子顕微鏡(FE−TEM)を用いて測定し、それに基づいて平均粒子径(D)および標準偏差(σ)を求めた。 The particle diameter of the fine particles in the fine particle dispersion was measured using a field emission transmission electron microscope (FE-TEM), and the average particle diameter (D) and the standard deviation (σ) were determined based on the measurement.

上記有機溶媒としては、この種の金属微粒子の分散体の調製に一般に用いられているものであればいずれでも用いることができる。なかでも、250℃以下の焼成時に容易に揮散するものが好適に用いられる。具体的には、例えば、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、オクタン、デカン、ドデカン、テトラデカン、ヘキサデカン、トルエン、キシレンなどの炭化水素類、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、シクロヘキサノール、2−エチル−1−ヘキサノール、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノイソプロパノール、3−ジエチルアミノ−1−プロパノール、2−ジメチルアミノ−2−プロパノール、2−メチルアミノエタノール、4−ジメチルアミノ−1−ブタノールなどのアルコール類、メチルエチルケトン、アセトン、メチルイソブチルケトン、アセチルアセトンなどのケトン類などを挙げることができる。   As the organic solvent, any organic solvent can be used as long as it is generally used for the preparation of this kind of fine metal particle dispersion. Among these, those that readily volatilize during firing at 250 ° C. or lower are preferably used. Specifically, for example, hydrocarbons such as normal hexane, cyclohexane, normal pentane, normal heptane, octane, decane, dodecane, tetradecane, hexadecane, toluene, xylene, methanol, ethanol, propanol, butanol, hexanol, heptanol, octanol , Decanol, cyclohexanol, 2-ethyl-1-hexanol, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,4-butanediol, 2,3-butanediol, pentanediol, hexanediol, octanediol, 2 -Dimethylaminoethanol, 2-diethylaminoethanol, 2-dimethylaminoisopropanol, 3-diethylamino-1-propanol, 2-dimethylamino-2-propyl Propanol, 2-methyl-aminoethanol, 4-alcohols such as dimethyl-amino-1-butanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, and the like ketones such as acetylacetone.

上記微粒子分散液は、微粒子の凝集を防止するために、と配位可能な有機化合物、例えば、アミン化合物、チオール化合物、カルボン酸化合物などを含んでいるのが好ましい。これらのなかでも、炭素数6〜10のアミン化合物およびカルボン酸化合物が好適に用いられる。これら化合物の具体例としては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、2−エチルヘキシルアミン、1,1,3,3−テトラメチルブチルアミン、シクロヘキシルアミン、N,N−ジエチルシクロヘキシルアミン、N−メチルヘキシルアミン、N−メチルシクロヘキシルアミン、シクロヘプチルアミン、1−メチルヘプチルアミンなどのアミン化合物、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、2−エチルヘキサン酸、2−メチルヘプタン酸、4−メチルオクタン酸、グルコン酸、サリチル酸などのカルボン酸化合物を挙げることができる。なかでも、ヘキシルアミン、オクチルアミン、2−エチルヘキシルアミン、デカン酸および2−エチルヘキサン酸が好適に用いられる。これらは単独でも、2種以上混合して使用してもよい。 The fine particle dispersion preferably contains an organic compound capable of coordinating with copper , such as an amine compound, a thiol compound, and a carboxylic acid compound, in order to prevent aggregation of the fine particles. Of these, amine compounds having 6 to 10 carbon atoms and carboxylic acid compounds are preferably used. Specific examples of these compounds include, for example, hexylamine, heptylamine, octylamine, nonylamine, decylamine, 2-ethylhexylamine, 1,1,3,3-tetramethylbutylamine, cyclohexylamine, N, N-diethylcyclohexylamine. , Amine compounds such as N-methylhexylamine, N-methylcyclohexylamine, cycloheptylamine, 1-methylheptylamine, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-ethylhexanoic acid, 2- Examples thereof include carboxylic acid compounds such as methylheptanoic acid, 4-methyloctanoic acid, gluconic acid, and salicylic acid. Of these, hexylamine, octylamine, 2-ethylhexylamine, decanoic acid and 2-ethylhexanoic acid are preferably used. These may be used alone or in combination of two or more.

上記有機化合物の含有量については、分散液中の微粒子または酸化物微粒子の100質量部あたり、30〜150質量部、好ましくは50〜100質量部とするのよい。有機化合物の含有量が少なすぎると、微粒子の凝集が起こりやすくなり、また多量に用いても、それ以上の微粒子凝集防止効果は得られず、かえって粘度が高くなるなどの問題が生じる。 The content of the organic compound is 30 to 150 parts by mass, preferably 50 to 100 parts by mass, per 100 parts by mass of the copper fine particles or copper oxide fine particles in the dispersion. If the content of the organic compound is too small, aggregation of fine particles is likely to occur, and even if used in a large amount, the effect of preventing further aggregation of fine particles cannot be obtained, and problems such as an increase in viscosity occur.

上記微粒子分散液は、一般によく知られて方法により調製することができ、その調製方法は特に限定されるものではない。例えば、銅化合物とアミン化合物とを混合した後、この混合溶液に還元剤、例えば、水素、水素化ホウ素ナトリウム、ジメチルアミノボラン、アスコルビン酸、ホルムアルデヒドなどを添加して還元処理を行うことにより銅微粒子分散液が得られる。   The fine particle dispersion can be prepared by a generally well-known method, and the preparation method is not particularly limited. For example, after a copper compound and an amine compound are mixed, a reducing agent such as hydrogen, sodium borohydride, dimethylaminoborane, ascorbic acid, formaldehyde, etc. is added to the mixed solution and subjected to a reduction treatment to form copper fine particles. A dispersion is obtained.

上記微粒子分散液の粘度は、通常、10mPa・s〜10Pa・sであり、好ましくは10mPa・s〜100mPa・sである。   The viscosity of the fine particle dispersion is usually 10 mPa · s to 10 Pa · s, preferably 10 mPa · s to 100 mPa · s.

特に、平均粒子径が10nm以下、σ/D値が0.2以下である銅微粒子を、炭素数6〜10のアミン化合物とともに、有機溶媒に分散してなる微粒子分散液は、上記のような低い粘度を有し、基板への塗布作業性に優れ、また焼成によって、低い比抵抗値を有する銅被膜を形成するので好適に用いられる。   In particular, a fine particle dispersion obtained by dispersing copper fine particles having an average particle size of 10 nm or less and a σ / D value of 0.2 or less together with an amine compound having 6 to 10 carbon atoms in an organic solvent is as described above. Since it has a low viscosity, is excellent in workability for application to a substrate, and forms a copper film having a low specific resistance value by firing, it is preferably used.

本発明によれば、上記微粒子分散液を基板に塗布した後、還元性雰囲気中、250℃以下、好ましくは150〜250℃の範囲の温度で焼成する。還元性雰囲気としては、例えば、水素と窒素との混合ガスを挙げることができる。この場合、水素の濃度は0.5〜10容量%とすれば十分である。   According to this invention, after apply | coating the said fine particle dispersion to a board | substrate, it bakes at the temperature of 250 degrees C or less in a reducing atmosphere, Preferably it is the range of 150-250 degreeC. Examples of the reducing atmosphere include a mixed gas of hydrogen and nitrogen. In this case, it is sufficient that the hydrogen concentration is 0.5 to 10% by volume.

上記基板については、特に制限はなく、例えば、電子回路の作製に一般に用いられている基板を挙げることができる。本発明においては、250℃以下の温度で焼成するので、耐熱性の低いプラスチック製基板なども用いることができる。   There is no restriction | limiting in particular about the said board | substrate, For example, the board | substrate generally used for preparation of an electronic circuit can be mentioned. In the present invention, since baking is performed at a temperature of 250 ° C. or lower, a plastic substrate having low heat resistance can be used.

また、上記微粒子分散液の基板への塗布方法については、インクジェット印刷方式、スクリーン印刷法、ディップコーティング法、スプレー法、スピンコーティング法、インクジェット法などの通常の塗布手段を用いることができる。本発明の微粒子分散液はインクジェット法に特に好適に用いられる。   Moreover, about the coating method of the said fine particle dispersion to a board | substrate, normal coating means, such as an inkjet printing system, a screen printing method, a dip coating method, a spray method, a spin coating method, an inkjet method, can be used. The fine particle dispersion of the present invention is particularly preferably used in the ink jet method.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

(実施例1)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gとオクチルアミン(和光純薬工業株式会社製)90.6gとを添加し、40℃にて10分間攪拌混合する。次に、前記ガラスビーカーを20℃の恒温水槽に入れ、溶解させたジメチルアミンボラン溶液を徐々に添加することにより還元処理を実施した。
(Example 1)
15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 90.6 g of octylamine (manufactured by Wako Pure Chemical Industries, Ltd.) are added to a 1 L glass beaker and stirred at 40 ° C. for 10 minutes. Mix. Next, the glass beaker was placed in a constant temperature water bath at 20 ° C., and a reduced treatment was performed by gradually adding the dissolved dimethylamine borane solution.

還元処理後の溶液にアセトン100gと水10gを添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離回収した。回収物にデカンを添加して溶解させた後、ろ過して、銅微粒子40質量%とオクチルアミン20質量%とを含有するデカン分散液を得た。この分散液の粘度は30mPa・sであった。また、この分散液をFE−SEMで観察したところ、銅微粒子の平均粒子径は5nm、σ/D値は0.15であることが確認された。   To the solution after the reduction treatment, 100 g of acetone and 10 g of water were added and allowed to stand for a while, and then a precipitate made of copper and organic matter was separated and collected by filtration. After the decane was added to the recovered product and dissolved, it was filtered to obtain a decane dispersion containing 40% by mass of copper fine particles and 20% by mass of octylamine. The viscosity of this dispersion was 30 mPa · s. Further, when this dispersion was observed by FE-SEM, it was confirmed that the average particle diameter of the copper fine particles was 5 nm and the σ / D value was 0.15.

次に、ガラス板上に、上記のデカン分散液(銅微粒子分散液)を用いて、インクジェット印刷方式により印刷した。印刷後、上記ガラス板を焼成炉内に設置し、水素−窒素混合ガス(水素5容量%)を流通させながら、200℃まで30分で上昇させ、昇温後30分間保持することにより銅薄膜を形成した。得られた銅薄膜の平均膜厚は2μm、比抵抗値は4.0μΩ・cmであった。また、銅薄膜表面にテープを貼って剥がしたが、剥がれは殆ど認められなかった。   Next, it printed by the inkjet printing system on said glass plate using said decane dispersion liquid (copper fine particle dispersion liquid). After printing, the above glass plate was placed in a firing furnace, and while flowing a hydrogen-nitrogen mixed gas (5% by volume of hydrogen), the temperature was raised to 200 ° C. over 30 minutes, and the temperature was maintained for 30 minutes after being heated. Formed. The obtained copper thin film had an average film thickness of 2 μm and a specific resistance value of 4.0 μΩ · cm. Moreover, although the tape was stuck and peeled off on the copper thin film surface, peeling was hardly recognized.

(実施例2)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gとドデシルアミン(和光純薬工業株式会社製)130.2gとを添加し、60℃にて10分間攪拌混合する。次に、前記ガラスビーカーを20℃の恒温水槽に入れ、溶解させたジメチルアミンボラン溶液を徐々に添加することにより還元処理を実施した。
(Example 2)
15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 130.2 g of dodecylamine (manufactured by Wako Pure Chemical Industries, Ltd.) are added to a 1 L glass beaker and stirred at 60 ° C. for 10 minutes. Mix. Next, the glass beaker was placed in a constant temperature water bath at 20 ° C., and a reduced treatment was performed by gradually adding the dissolved dimethylamine borane solution.

還元処理後の溶液にアセトン100gと水10gを添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離回収した。回収物にデカンを添加して溶解させた後、ろ過して、銅微粒子40質量%とドデシルアミン20質量%とを含有するデカン分散液を得た。この分散液の粘度は60mPa・sであった。また、この分散液をFE−SEMで観察したところ、銅微粒子の平均粒子径は7nm、σ/D値は0.15であることが確認された。   To the solution after the reduction treatment, 100 g of acetone and 10 g of water were added and allowed to stand for a while, and then a precipitate made of copper and organic matter was separated and collected by filtration. After the decane was added to the recovered product and dissolved, it was filtered to obtain a decane dispersion containing 40% by mass of copper fine particles and 20% by mass of dodecylamine. The viscosity of this dispersion was 60 mPa · s. Moreover, when this dispersion liquid was observed by FE-SEM, it was confirmed that the average particle diameter of copper fine particles was 7 nm, and (sigma) / D value was 0.15.

次に、ガラス板上に、上記のデカン分散液(銅微粒子分散液)を用いて、インクジェット印刷方式により印刷した。印刷後、上記ガラス板を焼成炉内に設置し、水素−窒素混合ガス(水素5容量%)を流通させながら、200℃まで30分で上昇させ、昇温後30分間保持することにより銅薄膜を形成した。得られた銅薄膜の平均膜厚は2μm、比抵抗値は8.0μΩ・cmであった。   Next, it printed by the inkjet printing system on said glass plate using said decane dispersion liquid (copper fine particle dispersion liquid). After printing, the above glass plate was placed in a firing furnace, and while flowing a hydrogen-nitrogen mixed gas (5% by volume of hydrogen), the temperature was raised to 200 ° C. over 30 minutes, and the temperature was maintained for 30 minutes after being heated. Formed. The obtained copper thin film had an average film thickness of 2 μm and a specific resistance value of 8.0 μΩ · cm.

(実施例3)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gと2−エチルヘキシルアミン(和光純薬工業株式会社製)100.5gとを添加し、30℃にて10分間攪拌混合する。次に、前記ガラスビーカーを20℃の恒温水槽に入れ、溶解させたジメチルアミンボラン溶液を徐々に添加することにより還元処理を実施した。
(Example 3)
Into a 1 L glass beaker, 15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 100.5 g of 2-ethylhexylamine (manufactured by Wako Pure Chemical Industries, Ltd.) are added, and 10 at 30 ° C. Stir and mix for a minute. Next, the glass beaker was placed in a constant temperature water bath at 20 ° C., and a reduced treatment was performed by gradually adding the dissolved dimethylamine borane solution.

還元処理後の溶液にアセトン100gと水10gを添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離回収した。回収物にテトラデカンを添加して再溶解させた後、ろ過して、銅微粒子40質量%と2−エチルヘキシルアミン20質量%とを含有するデカン分散液を得た。この分散液の粘度は40mPa・sであった。また、この分散液をFE−SEMで観察したところ、銅微粒子の平均粒子径は5nm、σ/D値は0.15であることが確認された。   To the solution after the reduction treatment, 100 g of acetone and 10 g of water were added and allowed to stand for a while, and then a precipitate made of copper and organic matter was separated and collected by filtration. Tetradecane was added to the recovered material and redissolved, followed by filtration to obtain a decane dispersion containing 40% by mass of copper fine particles and 20% by mass of 2-ethylhexylamine. The viscosity of this dispersion was 40 mPa · s. Further, when this dispersion was observed by FE-SEM, it was confirmed that the average particle diameter of the copper fine particles was 5 nm and the σ / D value was 0.15.

次に、ガラス板上に、上記のデカン分散液(銅微粒子分散液)を用いて、インクジェット印刷方式により印刷した。印刷後、上記ガラス板を焼成炉内に設置し、水素−窒素混合ガス(水素5容量%)を流通させながら、200℃まで30分で上昇させ、昇温後30分間保持することにより銅薄膜を形成した。得られた銅薄膜の平均膜厚は2μm、比抵抗値は6.0μΩ・cmであった。また、銅薄膜表面にテープを貼って剥がしたが、剥がれは殆ど認められなかった。   Next, it printed by the inkjet printing system on said glass plate using said decane dispersion liquid (copper fine particle dispersion liquid). After printing, the above glass plate was placed in a firing furnace, and while flowing a hydrogen-nitrogen mixed gas (5% by volume of hydrogen), the temperature was raised to 200 ° C. over 30 minutes, and the temperature was maintained for 30 minutes after being heated. Formed. The obtained copper thin film had an average film thickness of 2 μm and a specific resistance value of 6.0 μΩ · cm. Moreover, although the tape was stuck and peeled off on the copper thin film surface, peeling was hardly recognized.

(実施例4)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gと1,1,3,3−テトラメチルブチルアミン(和光純薬工業株式会社製)80.2gとを添加し、30℃にて10分間攪拌混合する。次に、前記ガラスビーカーを20℃の恒温水槽に入れ、溶解させたジメチルアミンボラン溶液を徐々に添加することにより還元処理を実施した。
Example 4
Add 15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 80.2 g of 1,1,3,3-tetramethylbutylamine (manufactured by Wako Pure Chemical Industries, Ltd.) to a 1 L glass beaker. And stirring and mixing at 30 ° C. for 10 minutes. Next, the glass beaker was placed in a constant temperature water bath at 20 ° C., and a reduced treatment was performed by gradually adding the dissolved dimethylamine borane solution.

還元処理後の溶液にアセトン100gと水10gを添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離回収した。回収物にテトラデカンを添加して再溶解させた後、ろ過して、銅微粒子40質量%と1,1,3,3−テトラメチルブチルアミン20質量%とを含有するテトラデカン分散液を得た。この分散液の粘度は40mPa・sであった。また、この分散液をFE−SEMで観察したところ、銅微粒子の平均粒子径は5nm、σ/D値は0.15であることが確認された。   To the solution after the reduction treatment, 100 g of acetone and 10 g of water were added and allowed to stand for a while, and then a precipitate made of copper and organic matter was separated and collected by filtration. Tetradecane was added to the recovered product and redissolved, followed by filtration to obtain a tetradecane dispersion containing 40% by mass of copper fine particles and 20% by mass of 1,1,3,3-tetramethylbutylamine. The viscosity of this dispersion was 40 mPa · s. Further, when this dispersion was observed by FE-SEM, it was confirmed that the average particle diameter of the copper fine particles was 5 nm and the σ / D value was 0.15.

次に、ガラス板上に、上記のデカン分散液(銅微粒子分散液)を用いて、インクジェット印刷方式により印刷した。印刷後、上記ガラス板を焼成炉内に設置し、水素−窒素混合ガス(水素5容量%)を流通させながら、200℃まで30分で上昇させ、昇温後30分間保持することにより銅薄膜を形成した。得られた銅薄膜の平均膜厚は2μm、比抵抗値は7.0μΩ・cmであった。   Next, it printed by the inkjet printing system on said glass plate using said decane dispersion liquid (copper fine particle dispersion liquid). After printing, the above glass plate was placed in a firing furnace, and while flowing a hydrogen-nitrogen mixed gas (5% by volume of hydrogen), the temperature was raised to 200 ° C. over 30 minutes, and the temperature was maintained for 30 minutes after being heated. Formed. The obtained copper thin film had an average film thickness of 2 μm and a specific resistance value of 7.0 μΩ · cm.

Claims (5)

平均粒子径が1〜100nmの範囲にある微粒子または酸化物微粒子を分散させた微粒子分散液を基板に塗布した後、還元雰囲気中、250℃以下の温度で焼成することを特徴とする導電性被膜の製造方法。 Conductivity is characterized in that a fine particle dispersion in which copper fine particles or copper oxide fine particles having an average particle size in the range of 1 to 100 nm are dispersed is applied to a substrate and then fired at a temperature of 250 ° C. or lower in a reducing atmosphere. For producing a conductive copper coating. 微粒子分散液が炭素数6〜10のアミン化合物およびカルボン酸化合物から選ばれる少なくとも1種の化合物を含有する請求項1記載の導電性被膜の製造方法。 The method for producing a conductive copper coating according to claim 1, wherein the fine particle dispersion contains at least one compound selected from an amine compound having 6 to 10 carbon atoms and a carboxylic acid compound. 微粒子分散液中の炭素数6〜10のアミン化合物およびカルボン酸化合物から選ばれる少なくとも1種の化合物の含有量が微粒子または酸化物微粒子100質量部に対し30〜150質量部である請求項2記載の導電性被膜の製造方法。 The content of at least one compound selected from an amine compound having 6 to 10 carbon atoms and a carboxylic acid compound in the fine particle dispersion is 30 to 150 parts by mass with respect to 100 parts by mass of the copper fine particles or copper oxide fine particles. 2. The method for producing a conductive copper film according to 2. 微粒子または酸化物微粒子の平均粒子径が10nm以下、σ/D値(σ:標準偏差、D:平均粒子径)が0.2以下である請求項1ないし3のいずれかに記載の導電性被膜の製造方法。 The average particle diameter of copper fine particles or copper oxide fine particles is 10 nm or less, and σ / D value (σ: standard deviation, D: average particle diameter) is 0.2 or less. For producing a conductive copper coating. 微粒子分散液の粘度が10Pa・s以下である請求項1ないしのいずれかに記載の導電性被膜の製造方法。 The method for producing a conductive copper film according to any one of claims 1 to 4 , wherein the fine particle dispersion has a viscosity of 10 Pa · s or less.
JP2006187411A 2006-07-07 2006-07-07 Method for producing conductive copper coating Expired - Fee Related JP5170989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187411A JP5170989B2 (en) 2006-07-07 2006-07-07 Method for producing conductive copper coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187411A JP5170989B2 (en) 2006-07-07 2006-07-07 Method for producing conductive copper coating

Publications (3)

Publication Number Publication Date
JP2008016360A JP2008016360A (en) 2008-01-24
JP2008016360A5 true JP2008016360A5 (en) 2009-05-07
JP5170989B2 JP5170989B2 (en) 2013-03-27

Family

ID=39073169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187411A Expired - Fee Related JP5170989B2 (en) 2006-07-07 2006-07-07 Method for producing conductive copper coating

Country Status (1)

Country Link
JP (1) JP5170989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342597B2 (en) * 2011-04-15 2013-11-13 福田金属箔粉工業株式会社 Copper ultrafine particle dispersed paste and method for forming conductive film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900248B2 (en) * 2001-03-30 2007-04-04 ハリマ化成株式会社 Multilayer wiring board and method for forming the same
JP2004071467A (en) * 2002-08-08 2004-03-04 Asahi Kasei Corp Connecting material
JP4233834B2 (en) * 2002-10-09 2009-03-04 日揮触媒化成株式会社 NOVEL METAL PARTICLE AND METHOD FOR PRODUCING THE PARTICLE
JP2004164876A (en) * 2002-11-11 2004-06-10 Asahi Kasei Corp Manufacturing method of metal coating film
JP4414145B2 (en) * 2003-03-06 2010-02-10 ハリマ化成株式会社 Conductive nanoparticle paste
DE602005025454D1 (en) * 2004-03-10 2011-02-03 Asahi Glass Co Ltd METAL-CONTAINING FINE PARTICLES, LIQUID DISPERSION OF A METAL-CONTAINING FINE PARTICLE AND CONDUCTIVE METAL-CONTAINING MATERIAL
JP2006173408A (en) * 2004-12-16 2006-06-29 Catalysts & Chem Ind Co Ltd Method of manufacturing substrate with circuit, and substrate with circuit obtained thereby

Similar Documents

Publication Publication Date Title
Yabuki et al. Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes
EP2114114B1 (en) Bimetallic nanoparticles for conductive ink applications
CA2461338C (en) Low viscosity precursor compositions and methods for the deposition of conductive electronic features
JP5151476B2 (en) Ink composition and metallic material
TWI597004B (en) Conductive material and process
JP5556176B2 (en) Particles and inks and films using them
US7629017B2 (en) Methods for the deposition of conductive electronic features
JP5007020B2 (en) Method for forming metal thin film and metal thin film
US8206609B2 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticles
JP5690098B2 (en) A novel process and highly conductive structure for forming highly conductive structures from silver nanoparticles at low process temperatures
JP2010504612A (en) Silver paste for conductive film formation
JP2008176951A (en) Silver-based particulate ink paste
JP2007321215A5 (en)
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
JP2012144796A (en) Method of manufacturing silver nanoparticle, silver nanoparticle and silver ink
WO2012053456A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
JP5072228B2 (en) Method for producing metal coating
KR20100083391A (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
WO2013141172A1 (en) Conductive ink and production method for base material including conductor
JP5170989B2 (en) Method for producing conductive copper coating
JP2008016360A5 (en)
JP2017101307A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and electronic component
JP2011109087A (en) Conductive feature on electronic device
TW201819303A (en) Cuprous oxide particle, method for producing same, composition for light sintering, method for forming conductive film, and cuprous oxide particle paste