WO2013141172A1 - Conductive ink and production method for base material including conductor - Google Patents

Conductive ink and production method for base material including conductor Download PDF

Info

Publication number
WO2013141172A1
WO2013141172A1 PCT/JP2013/057525 JP2013057525W WO2013141172A1 WO 2013141172 A1 WO2013141172 A1 WO 2013141172A1 JP 2013057525 W JP2013057525 W JP 2013057525W WO 2013141172 A1 WO2013141172 A1 WO 2013141172A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
conductive ink
conductor
fine particles
alkylamine
Prior art date
Application number
PCT/JP2013/057525
Other languages
French (fr)
Japanese (ja)
Inventor
智 柏原
平社 英之
米田 貴重
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013141172A1 publication Critical patent/WO2013141172A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane

Definitions

  • the present invention relates to a method for producing a conductive ink and a substrate with a conductor.
  • a conductive ink made of a dispersion liquid in which metal fine particles are dispersed in a solvent is printed on the base material by a method such as inkjet printing.
  • a method of forming a conductor by heating is known.
  • silver (Ag) fine particles As the metal fine particles dispersed in the conductive ink, silver (Ag) fine particles have been used from the viewpoint of ensuring high conductivity. However, in the conductor using the silver fine particles, migration of silver ions easily occurs. Problems such as short circuit between wirings may occur, and the reliability of the wiring board may be reduced. In view of this, there has been proposed a technique for improving the reliability of electronic components and wiring boards by using ink containing copper (Cu) fine particles that hardly cause a migration phenomenon instead of silver fine particles. The use of copper fine particles as metal fine particles is more advantageous in terms of cost than silver fine particles.
  • the ink containing the copper fine particles has a problem that the volume resistivity of the formed conductor increases and the conductivity decreases.
  • a method of obtaining a dispersion of copper hydride fine particles that is difficult to be oxidized in the atmosphere is disclosed (for example, see Patent Document 1).
  • an alkylamine such as dodecylamine and a water-insoluble organic liquid are added to an aqueous solution containing copper (II) ions having a pH of 3 or less, and the copper (II) ions are reduced with NaBH 4 or the like.
  • a copper hydride fine particle dispersion can be obtained.
  • fine particles of copper hydride produced by reduction of copper (II) ions in the aqueous phase are taken into the organic phase by coordination of alkylamine on the surface, thereby producing the produced copper hydride. Is inhibited from changing to copper (II) ions and copper (II) oxide in water.
  • the copper hydride fine particles are applied by applying the dispersion on a substrate made of glass or resin and then heating.
  • the copper hydride contained therein is converted to metallic copper, the alkylamine on the surface of the fine particles is desorbed, and the metallic copper fine particles are melted and bonded together to form a conductor.
  • the conductive ink contains a large amount of a dispersant and a surface protective agent. Therefore, it is difficult to add a resin, and even if a resin can be added, the resin is decomposed together with the dispersant and the surface protective agent in the process of making a conductor, and a sufficient effect cannot be obtained.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a conductive ink that can form a conductor having good adhesion to a substrate and having a small volume resistivity. Moreover, this invention aims at provision of the base material with a conductor which has a favorable adhesiveness with a base material and a small volume resistivity obtained using the said conductive ink.
  • the present invention provides the following conductive ink and method for producing a substrate with a conductor. ⁇ 1> a water-insoluble organic solvent; Copper hydride fine particles dispersed in the organic solvent; An alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C.
  • R 1 m R 2 n SiR 3 4-mn (In the formula (1), R 1, glycidoxy group, an isocyanate group, a mercaptoalkyl group, an aminoalkyl group, N- aminoalkyl - is a monovalent organic group selected from an amino group, R 2 Is an alkyl group or a hydrogen atom, R 3 is an alkoxyl group, m is an integer of 1 to 3, n is an integer of 0 to 2, and m + n is 3 or less.
  • a conductive ink comprising:
  • ⁇ 2> The conductive ink according to ⁇ 1>, wherein a content ratio of the copper hydride fine particles is 10 to 50% by mass.
  • ⁇ 3> The conductive ink according to ⁇ 1> or ⁇ 2>, wherein the content ratio of the alkylamine is 2 to 10% by mass.
  • ⁇ 4> The conductive ink according to any one of ⁇ 1> to ⁇ 3>, wherein a content ratio of the silane coupling agent is 0.01 to 2.00% by mass with respect to the organic solvent.
  • ⁇ 5> The conductive ink according to any one of ⁇ 1> to ⁇ 4>, wherein an average primary particle diameter of the copper hydride fine particles is 100 nm or less.
  • ⁇ 6> a step of preparing a substrate; Forming a conductive ink coating layer according to any one of ⁇ 1> to ⁇ 5> on the substrate; And a step of heating the coating layer to form a conductor containing copper.
  • the conductor formed in the step of forming the conductor containing copper is a conductor mainly composed of copper.
  • a conductor mainly composed of copper means that copper is most contained among the elements constituting the conductor.
  • the conductive ink of the present invention it is possible to form a conductor having good adhesion to the substrate, low volume resistivity, and excellent conductivity. Moreover, according to the manufacturing method of the base material with a conductor of this invention, the base material with a conductor which has a favorable adhesiveness and a small volume resistivity on a base material is obtained.
  • FIGS. 1A to 1D are views for explaining a mechanism for improving adhesion to a substrate by a silane coupling agent used in the conductive ink of the present invention.
  • FIGS. 2 (a) to 2 (d) are diagrams showing the behavior of a silane coupling agent having a higher bondability to metal than alkylamine.
  • a conductive ink according to an embodiment of the present invention includes a water-insoluble organic solvent, copper hydride fine particles dispersed in the organic solvent, an alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or less. And a silane coupling agent having a specific chemical formula.
  • the silane coupling agent having a specific chemical formula is blended together with the alkylamine which is a dispersant for the copper hydride fine particles, it has excellent adhesion to the substrate, A conductor having good conductivity can be formed.
  • the conductive ink of the embodiment of the present invention since the silane coupling agent having a specific chemical formula is blended together with the alkylamine which is a dispersant for the copper hydride fine particles, it has excellent adhesion to the substrate, A conductor having good conductivity can be formed.
  • each component contained in the conductive ink of the embodiment will be described.
  • the copper hydride fine particles become a conductive component of the conductive ink of the embodiment.
  • the copper hydride fine particles it is preferable to use copper hydride fine particles in a copper hydride fine particle dispersion produced by a method to be described later, but it is not limited thereto.
  • the copper hydride fine particle dispersion produced by the method described later contains not only the copper hydride fine particles but also the alkylamine having a boiling point of 250 ° C. or less as a dispersant, the copper hydride fine particles.
  • the conductive ink of the present invention can be obtained by using the dispersion as it is. A method for preparing the conductive ink of the present invention using the copper hydride fine particle dispersion will be described later.
  • the average primary particle size of the copper hydride fine particles is preferably 5 to 100 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm. If the average primary particle diameter of the copper hydride fine particles is 100 nm or less, the sinterability at a low temperature, which is a feature of the fine particles, becomes good, and the volume resistivity of the obtained conductor can be lowered. Moreover, if the average primary particle diameter of the copper hydride fine particles is 5 nm or more, the copper hydride fine particles can be stably dispersed.
  • the average primary particle size of the copper hydride fine particles was determined by measuring the particle size of 100 randomly extracted fine particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). This is a value obtained by averaging the values of.
  • the content (concentration) of copper hydride fine particles in the conductive ink is preferably 10 to 50% by mass, more preferably 20 to 40% by mass.
  • the content (concentration) of the copper hydride fine particles as a solid content is 10% by mass or more, it is easy to form a conductor having a sufficient thickness. If the content ratio of the copper hydride fine particles is 50% by mass or less, it is easy to control ink characteristics such as viscosity and surface tension, and it becomes easy to form a conductor.
  • the dispersion containing the copper hydride fine particles of the embodiment is preferably obtained by a method of reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B) in a solvent (A).
  • the copper (II) salt a salt capable of forming a copper (II) amine complex with the alkylamine (B) can be used.
  • the copper (II) salt may be an anhydride or a hydrate.
  • the copper (II) salt is represented as CuX 2 or CuY.
  • X is a monovalent base and Y is a divalent base.
  • a salt having a boiling point or decomposition point of this liberated HX or H 2 Y (hereinafter also referred to as free acid) of 150 ° C. or less is preferable. This is because the free acid is likely to volatilize during heating during conductor formation, and a conductor having a low volume resistivity is likely to be formed.
  • Examples of the copper (II) salt include copper oxalate (II) (decomposition point of liberated oxalic acid: 189.5 ° C.), copper chloride (II) (boiling point of liberated hydrochloric acid 110 ° C.), copper acetate (II ) (Boiling point of free acetic acid: 118 ° C.), copper (II) formate (boiling point of free formic acid: 100.75 ° C.), copper (II) nitrate (boiling point of free nitric acid: 82.6 ° C.), copper sulfate (II) (boiling point of free sulfuric acid: 290 ° C), copper (II) tartrate (boiling point of free tartaric acid, decomposition point: unknown), copper (II) citrate (decomposition point of free citric acid: 175 ° C) , Copper carbonate (II) (boiling point of free carbonic acid
  • copper (II) acetate copper (II) formate, copper (II) nitrate, and copper (II) carbonate are preferred.
  • a copper (II) salt may be used individually by 1 type, and may use 2 or more types together.
  • hydride-based reducing agents examples include NaBH 4 , LiBH 4 , Zn (BH 4 ) 2 , (CH 3 ) 4 NBH (OCOCH 3 ) 3 , NaBH 3 CN, LiAlH 4 , (i-Bu) 2 AlH (DIBAL ), LiAlH (t-BuO) 3 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 (Red-Al), and the like.
  • at least one selected from the group consisting of NaBH 4 , LiBH 4 , and NaBH 3 CN is preferable because the reduction rate, which is important for controlling the particle size of the copper hydride fine particles, can be easily adjusted.
  • a hydride type reducing agent may be used individually by 1 type, and may use 2 or more types together.
  • the solvent (A) is a solvent having an SP value of 8 to 12.
  • the SP value is 8 to 12
  • the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type
  • the SP value of the solvent (A) is more preferably 8.5 to 9.5.
  • Examples of the solvent (A) include cyclohexane (SP value 8.2), isobutyl acetate (SP value 8.3), isopropyl acetate (SP value 8.4), butyl acetate (SP value 8.5), and tetrachloride.
  • the solvent (A) a solvent inert to the hydride reducing agent used for the reduction reaction is used. That is, as the solvent (A), a solvent that is not reduced by the hydride reducing agent used in the reduction reaction or a solvent that does not have active hydrogen is preferable because it can suppress the inactivation of the hydride reducing agent.
  • hydrocarbons such as toluene, xylene, benzene, etc .
  • ethers such as tetrahydrofuran
  • ethyl acetate from the viewpoint of easy control of the reduction reaction and the dispersibility of the produced copper hydride fine particles
  • Esters such as isopropyl acetate and isobutyl acetate are preferred, and toluene and xylene are particularly preferred.
  • a solvent (A) may be used individually by 1 type, and may use 2 or more types together.
  • hydride-based reducing agents have different reducing power depending on the type. For example, NaBH 4 does not reduce esters, whereas LiAlH 4 reduces esters. Therefore, an appropriate solvent is selected from the solvent (A) depending on the type of hydride-based reducing agent used.
  • the alkylamine (B) is an alkylamine having an alkyl group having 7 or more carbon atoms and having a boiling point of 250 ° C. or lower. If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water.
  • the number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
  • the boiling point of the alkylamine (B) is 250 ° C. or lower, when the conductor is formed using the conductive ink, the alkylamine (B) is detached from the surface of the fine particles even when heated at 150 ° C. or lower, and volatilizes. Low rate conductors can be formed.
  • the boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating.
  • the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
  • the alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles.
  • the alkyl group of the alkylamine (B) may be a branched alkyl group.
  • alkylamine (B) examples include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
  • An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
  • copper hydride fine particles are generated by reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B).
  • a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B).
  • the copper (II) amine complex is formed by a hydride reducing agent. Reduced.
  • formation of the copper hydride lump by rapid reduction of the copper (II) salt can be suppressed, and copper hydride fine particles in which alkylamine (B) is coordinated on the surface of the copper hydride fine particles are generated.
  • the order of adding the copper (II) salt, hydride reducing agent, and alkylamine (B) to the solvent (A) is preferably the order of alkylamine (B), copper (II) salt, and hydride reducing agent.
  • the order of adding the copper (II) salt, the hydride reducing agent, and the alkylamine (B) to the solvent (A) is the order in which the reduction reaction with the hydride reducing agent proceeds in the presence of the alkylamine (B). If there is, the order is not limited.
  • the alkylamine (B), the hydride reducing agent, and the copper (II) salt may be added to the solvent (A) in this order.
  • the hydride reducing agent is present in a solid state in the solvent (A), and after the copper (II) amine complex is formed in the solvent (A), the copper (II) present in the solid state.
  • Amine complex reacts with hydride reducing agent.
  • a hydride reducing agent, an alkylamine (B), and a copper (II) salt may be added in this order.
  • the reduction reaction with the hydride-based reducing agent may be performed while stirring the solvent (A). This facilitates the reduction reaction.
  • the reaction temperature is preferably 0 to 80 ° C, more preferably 15 to 50 ° C. If reaction temperature is 0 degreeC or more, a reductive reaction will advance easily. If reaction temperature is 80 degrees C or less, the dispersibility of the copper hydride microparticles in the obtained copper hydride microparticle dispersion liquid will be favorable, As a result, it will become easy to form a conductor with small volume resistivity.
  • the addition amount of the copper (II) salt is preferably 0.1 ⁇ 10 ⁇ 3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of productivity of copper hydride fine particles, and preferably 0.15 ⁇ 10 ⁇ 3. Mole or more is more preferable, and 0.25 ⁇ 10 ⁇ 3 mol or more is particularly preferable. Further, the addition amount of the copper (II) salt is preferably 0.65 ⁇ 10 ⁇ 3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, and 0.6 ⁇ 10 ⁇ 3 mol or less is more preferable, and 0.5 ⁇ 10 ⁇ 3 mol or less is particularly preferable.
  • the addition amount of the alkylamine (B) is 0.2 ⁇ 10 ⁇ with respect to 1 g of the solvent (A) because the dispersibility of the copper hydride fine particles in the obtained copper hydride fine particle dispersion becomes good. 3 mol or more is preferable, 0.25 ⁇ 10 ⁇ 3 mol or more is more preferable, and 0.3 ⁇ 10 ⁇ 3 mol or more is particularly preferable.
  • the amount of alkylamine (B) added is excessive, alkylamine (B) that could not be coordinated to the copper (II) salt may remain at the time of conductor formation and increase the volume resistivity of the conductor. is there.
  • the upper limit of the amount of the alkylamine (B) is preferably 0.75 ⁇ 10 ⁇ 3 mol or less, more preferably 0.7 ⁇ 10 ⁇ 3 mol or less, with respect to 1 g of the solvent (A). 6 ⁇ 10 ⁇ 3 mol or less is particularly preferable.
  • the addition amount of the hydride-based reducing agent is preferably 0.25 ⁇ 10 ⁇ 3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of the yield of copper hydride fine particles, preferably 0.3 ⁇ 10 ⁇ 3 mol.
  • the above is more preferable, and 0.35 ⁇ 10 ⁇ 3 mol or more is particularly preferable.
  • the amount of the hydride reducing agent added is preferably 0.65 ⁇ 10 ⁇ 3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, preferably 0.55 ⁇ 10 ⁇ 3.
  • the molar amount is more preferably less than or equal to 0.5 ⁇ 10 ⁇ 3 mol or less.
  • the molar ratio of the copper (II) salt and the alkylamine (B) added to the solvent (A) is that the dispersion stability of the produced copper hydride fine particles becomes good. 1.8 or less, 1.4 or less is more preferable, and 1.2 or less is particularly preferable.
  • the molar ratio (Cu / B) is preferably 0.64 or more, and preferably 0.85 or more from the viewpoint of easy desorption and volatilization of the alkylamine (B) from the surface of the fine particles by heating during conductor formation. Is more preferable.
  • the molar ratio of copper (II) salt and hydride reducing agent (R) added to the solvent (A) is preferably 1.42 or less from the viewpoint that the reduction reaction easily proceeds. 1.3 or less is more preferable, and 1.2 or less is particularly preferable. Further, the molar ratio (Cu / R) is preferably 0.7 or more, more preferably 0.8 or more, and particularly preferably 0.9 or more, from the viewpoint of easy control of the reduction reaction.
  • a copper hydride fine particle dispersion in which copper hydride fine particles (primary particles) having an average primary particle size of 100 nm or less, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A) is obtained.
  • the average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease. Moreover, there exists a tendency for the average primary particle diameter of a copper hydride microparticle to become small by reducing the addition amount of a hydride type
  • the concentration of the copper hydride fine particles as a solid content in the obtained copper hydride fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. . If the solid content concentration of the copper hydride fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be reduced. When the solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper hydride fine particles in the dispersion may be lowered.
  • the solvent of the copper hydride fine particle dispersion obtained by the above production method for example, the solvent (A) which is a solvent having an SP value of 8 to 12
  • Other solvents that is, a solvent having an SP value of less than 8 or more than 12, hereinafter referred to as solvent (C)
  • solvent (C) a solvent having an SP value of less than 8 or more than 12, hereinafter referred to as solvent (C)
  • the conductive ink of the embodiment can be obtained by adjusting the solid content concentration and the viscosity of the copper hydride fine particle dispersion produced by the production method.
  • the conductive ink of the embodiment contains the protective agent that functions to disperse the copper hydride fine particles in the solvent, or the alkylamine (B) that is a dispersant as it is.
  • a known solvent replacement method can be employed as a method of replacing the solvent (A) of the copper hydride fine particle dispersion with the solvent (C).
  • the solvent (C) is added while concentrating the solvent (A) under reduced pressure. The method of doing is mentioned.
  • a water-insoluble organic solvent is used as the solvent (for example, the solvent (A) or the solvent (C) of the conductive ink of the present invention.
  • water-insoluble means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less.
  • the solvent is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B).
  • the solvent is preferably a solvent that does not cause thermal decomposition by heating when forming the conductor.
  • the solvent examples include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), tetradecene (in water). Insoluble.), Dipentene (dissolved in 100 g of water 0.001 g (20 ° C.)), ⁇ -terpineol (dissolved in 100 g of water 0.5 g (20 ° C.)), mesitylene (insoluble in water), etc. Is mentioned. Of these, ⁇ -terpineol, decane, dodecane, and tetradecane are preferable because the drying property and the coating property of the conductive ink can be easily controlled. Only 1 type may be used for a solvent and it may use 2 or more types together.
  • the content of the solvent contained in the conductive ink is preferably 50 to 90% by mass, and more preferably 60 to 80% by mass.
  • alkylamine is contained as a dispersant for dispersing copper hydride fine particles, which is a conductive component, in the solvent.
  • the alkylamine (B) added in the production process is used in the conductive ink.
  • a dispersant The conductive ink of the embodiment is not limited to such an aspect, and an alkylamine may be added as a dispersant separately.
  • the alkylamine as a dispersant has an alkyl group having 7 or more carbon atoms and has a boiling point of 250 ° C. or lower. If the carbon number of the alkyl group in the alkylamine is 7 or more, the dispersibility of the copper hydride fine particles will be good.
  • the number of carbon atoms of the alkyl group of the alkylamine is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
  • the boiling point of the alkylamine is 250 ° C. or lower, when the conductor is formed using the conductive ink, the alkylamine is desorbed from the surface of the copper hydride fine particles even when heated at 150 ° C. or lower, and volatilizes. Can be formed.
  • the boiling point of the alkylamine is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating.
  • the boiling point of the alkylamine is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
  • the alkyl group of the alkylamine is preferably a linear alkyl group from the viewpoint of dispersion stability of the copper hydride fine particles, but may be a branched alkyl group.
  • Alkylamines include n-heptylamine (boiling point 157 ° C), n-octylamine (boiling point 176 ° C), n-nonylamine (boiling point 201 ° C), 1-aminodecane (boiling point 220 ° C), 1-aminoundecane (boiling point 242). ° C), and n-heptylamine and n-octylamine are more preferable.
  • An alkylamine may be used individually by 1 type, and may use 2 or more types together.
  • the content of alkylamine is preferably 2 to 10% by mass of the entire conductive ink. If the content of the alkylamine is within the above range, good dispersibility of the copper hydride fine particles can be obtained.
  • the silane coupling agent contained in the conductive ink according to the embodiment includes a functional group having a binding property (reactivity) to an organic material and a functional group having a binding property (reactivity) to an inorganic material in a molecule.
  • the silane compound having two or more kinds of functional groups and serves as an intermediary for binding the organic material and the inorganic material.
  • Formula (1) R 1 m R 2 n SiR 3 4-mn , or Formula (2): R 4 3 SiR 5 —S k —R 5 SiR 4 3
  • the silane compound represented by these can be used.
  • R 1 is a monovalent organic group selected from a glycidoxyalkyl group, an isocyanate alkyl group, a mercaptoalkyl group, an aminoalkyl group, and an N-aminoalkyl-aminoalkyl group
  • R 2 is an alkyl group or a hydrogen atom
  • R 3 is an alkoxyl group.
  • the number of carbon atoms of the alkyl group in R 1 and R 2 is preferably 1 to 6.
  • the alkoxy group of R 3 preferably has 1 to 4 carbon atoms, particularly preferably a methoxy group or an ethoxy group.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3 -Aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane and the like.
  • R 4 is an alkoxyl group having 1 to 4 carbon atoms
  • R 5 is an alkylene group having 1 to 4 carbon atoms
  • k is an integer of 1 to 4.
  • silane coupling agents include bis (triethoxysilylpropyl) tetrasulfide.
  • the content of the silane coupling agent is preferably 0.01 to 2.00% by mass, more preferably 0.02 to 2.00% by mass with respect to the organic solvent. .
  • the content of the silane coupling agent is less than 0.01% by mass, the effect of improving the adhesion of the conductor formed by the conductive ink to the base material cannot be obtained.
  • the content of the silane coupling agent exceeds 2.00% by mass, excess silane coupling agent is present between the copper hydride particles, the specific resistance of the wiring is increased, and the conductivity is increased. There is a risk of failure, which is not preferable.
  • the conductive ink of the embodiment of the present invention may contain other additives in addition to the above-described water-insoluble organic solvent, copper hydride fine particles, alkylamine as a dispersant, and silane coupling agent.
  • other additives include antifoaming agents, wetting and dispersing agents, leveling agents, anti-drying agents, rheology control agents, and adhesion imparting aids.
  • the concentration of the solid content (copper hydride fine particles) of the conductive ink of the embodiment varies depending on the required viscosity, but is preferably 10 to 50% by mass, more preferably 20 to 40% by mass.
  • the viscosity of the conductive ink of the embodiment is preferably 5 to 60 mPa ⁇ s, and more preferably 8 to 40 mPa ⁇ s. If the viscosity of the conductive ink is 5 mPa ⁇ s or more, the ink can be ejected with high accuracy. If the viscosity of the conductive ink is 60 mPa ⁇ s or less, it can be applied to almost all available inkjet heads.
  • the surface tension of the conductive ink of the embodiment is preferably 18 to 45 dyn / cm, and more preferably 20 to 40 dyn / cm. If the surface tension of the conductive ink is 18 dyn / cm or more, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is 45 dyn / cm or less, it can be applied to almost all available inkjet heads.
  • the viscosity of the conductive ink is a value measured at 20 ° C. with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L).
  • the surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
  • the alkylamine bonded to and coordinated with the copper hydride fine particles is released by heating. Then, the copper hydride from which the alkylamine has been released is changed into, for example, metal copper by heating at 60 ° C. or higher, and the metal copper fine particles thus produced are melted and bonded to form a conductor.
  • the conductive ink of the embodiment of the present invention it is possible to form a conductor having good adhesion to the base material, small volume resistivity and excellent conductivity.
  • the silane coupling agent having a specific functional group contained in the conductive ink of the embodiment has sufficient binding properties to both a base material made of an organic material such as a resin and copper hydride fine particles.
  • the binding property to the copper hydride fine particles is lower than that of the alkylamine as the dispersant.
  • the binding property to the copper hydride fine particles can also be referred to as affinity or reactivity with the metal surface.
  • 3-mercaptopropyltrimethoxysilane has a methoxy group which is a hydrolyzable group having affinity and reactivity with a metal which is an inorganic material, and a mercapto group which is an organic functional group which has a binding property with an organic material.
  • silane coupling agent S1 the binding ability of methoxy group to copper hydride fine particles is smaller than the binding ability of amino group to copper hydride fine particles of alkylamine. Therefore, in the state of the conductive ink, as shown in FIG. 1A, the alkylamine 2 as a dispersant is coordinated and coordinated around the copper hydride fine particles 1.
  • the copper hydride fine particles 1 exist in a stable dispersion state in the solvent. Without such a dispersant coordination, the copper hydride fine particles 1 tend to aggregate and precipitate.
  • the silane coupling agent S1 exists in a solvent in a free state.
  • the copper hydride fine particles 1 whose outer periphery is protected by the alkylamine 2 are present in the coating layer.
  • the silane coupling agent S1 is bonded to the substrate 3 through a mercapto group.
  • the alkylamine 2 begins to desorb from the outer periphery of the copper hydride fine particles 1, and at the same time, the silane coupling agent S1 passes through the methoxy group and the copper hydride fine particles 1 To join.
  • the volume of the obtained conductor is as follows. It is estimated that the resistivity increases.
  • the copper hydride fine particles 1 in a state where the silane coupling agent S2 is bonded to the outer periphery are formed. , Present in the coating layer. Since the silane coupling agent S2 also has bonding properties with the base material 3, the adhesion of the copper hydride fine particles 1 to the base material 3 is ensured through the silane coupling agent S2. Alkylamine 2 is also present in the coating layer.
  • the alkylamine 2 present in the coating layer volatilizes, but the silane coupling agent S2 does not desorb from the outer periphery of the copper hydride fine particles 1 and remains as it is. Present around the microparticles 1.
  • the silane coupling agent S 2 remains on the surface of the copper hydride fine particles 1. Therefore, melting and bonding between the metal copper fine particles generated from the copper hydride are hindered by the silane coupling agent S2, so that the volume resistivity of the formed conductor is increased and a conductor having good conductivity is obtained. Absent.
  • the base material with a conductor has a conductor formed by heating the above-described conductive ink coating layer on the base material.
  • This base material with conductor is formed by applying the conductive ink of the embodiment to the surface of the base material to form a coating layer, and then heating to remove volatile components and melt the metallic copper fine particles changed from copper hydride.
  • a film substrate or substrate made of plastic such as glass substrate, polyimide, polyethylene phthalate (PET), polyethylene naphthalate (PEN), or substrate made of fiber reinforced composite material (for example, glass fiber reinforced plastic substrate). ) Etc. can be used.
  • Examples of the method for applying the conductive ink include known methods such as an inkjet printing method, a screen printing method, a roll coating method, an air knife coating method, a blade coating method, a bar coating method, a gravure coating method, a die coating method, and a slide coating method. It is done. Of these, inkjet printing is particularly preferred.
  • the diameter of the ink ejection holes is set to 0.5 to 100 ⁇ m, and the diameter of the conductive ink when adhered on the substrate is set to 1 to 100 ⁇ m. It is preferable to adjust to.
  • the heating temperature after applying the conductive ink on the substrate is preferably 60 to 300 ° C, more preferably 60 to 150 ° C.
  • the heating time is the time that the conductor can be formed by volatilizing the water-insoluble organic solvent that is the solvent of the conductive ink, the acid liberated from the copper (II) salt, and the alkylamine released from the surface of the copper hydride fine particles. What is necessary is just to set according to heating temperature. Moreover, it is preferable to perform heating in inert atmosphere, such as nitrogen atmosphere, from the point which is easy to suppress the oxidation of the conductor to form.
  • the thickness of the conductor thus formed is preferably from 0.1 to 5.0 ⁇ m, more preferably from 0.2 to 2.0 ⁇ m, from the viewpoint of ensuring stable conductivity and easily maintaining the wiring shape.
  • the volume resistivity of the conductor is preferably 3 to 35 ⁇ ⁇ cm, and more preferably 3 to 20 ⁇ ⁇ cm. When the volume resistivity of the conductor exceeds 35 ⁇ ⁇ cm, there is a possibility that sufficient conductivity as a conductor for electronic equipment cannot be obtained.
  • the volume resistivity of the conductor was determined by measuring the surface resistance value of the conductor using a four-probe resistance meter (for example, manufactured by Mitsubishi Yuka Co., Ltd., device name: Loresta GP MCP-T610). It can be determined by multiplying the value by the conductor thickness.
  • a conductor can be formed even by heating at 150 ° C. or less, even when using a base material with low heat resistance such as PET, PEN, etc., the adhesion to the base material is good.
  • a conductor-equipped substrate having a conductor having a good volume resistivity is obtained.
  • Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples. Examples of identification of fine particles, measurement of average particle diameter of fine particles, measurement of conductor thickness, measurement of conductor volume resistivity, and method of conductor peelability test in Examples and Comparative Examples are shown below. .
  • Average particle size of fine particles Using a transmission electron microscope (manufactured by Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (manufactured by Hitachi, Ltd., device name: S-800) The average particle size was determined by averaging the values. If the particles are not spherical, the maximum particle size is measured to determine the average particle size.
  • Example 1 Manufacture of copper hydride particles
  • To a glass container 300 g of toluene, 30 g of copper (II) formate tetrahydrate as a copper (II) salt, and 15 g of n-heptylamine (boiling point 157 ° C.) were added and stirred.
  • NaBH 4 which is a hydride reducing agent
  • the fine particles in the obtained dispersion were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles.
  • the average primary particle diameter of the copper hydride fine particles (primary particles) was 10 nm. Further, the solid content concentration of the obtained copper hydride fine particle dispersion was 4% by mass.
  • the obtained copper hydride fine particle dispersion was subjected to solvent substitution under reduced pressure to prepare a conductive ink. That is, after the copper hydride fine particle dispersion was concentrated under reduced pressure, 0.1% by mass of 3-mercaptopropyltrimethoxysilane was added to dodecane (boiling point 216.3 ° C., surface tension 25.44 dyn / cm at 20 ° C.). The added solvent was added to perform solvent substitution so that the solid content concentration of the copper hydride fine particles was 30% by mass.
  • Conductor pattern formation Using the conductive ink obtained above, a wiring pattern having a length of 5 cm and a width of 2 mm was printed on a PET film by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The printed PET film was heated at 150 ° C. for 1 hour in a nitrogen atmosphere to obtain a PET film with a conductor. The thickness of the conductor was 0.51 ⁇ m, and the volume resistivity was 25 ⁇ ⁇ cm.
  • Example 2 After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, 0.1% by mass of 3-mercaptopropylmethyldimethoxysilane was added to dodecane and the solvent was replaced. A conductive ink having a partial concentration of 30% by mass was prepared.
  • a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor.
  • the thickness of the conductor was 0.53 ⁇ m, and the volume resistivity was 17 ⁇ ⁇ cm.
  • Example 3 After concentrating the copper hydride fine particle dispersion shown in Example 1 under reduced pressure, 0.1 mass% of 3-aminopropyltrimethoxy was added to decane (boiling point 174.1 ° C., surface tension 23.92 dyn / cm at 20 ° C.). Solvent substitution was performed by adding the silane added to prepare a conductive ink having a solid content concentration of copper hydride fine particles of 30% by mass.
  • a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor.
  • the thickness of the conductor was 0.55 ⁇ m, and the volume resistivity was 11 ⁇ ⁇ cm.
  • Example 4 After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, dodecane was added as a solvent, and solvent substitution was performed so that the solid content concentration of the copper hydride particles was 30% by mass.
  • a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor.
  • the thickness of the conductor was 0.56 ⁇ m, and the volume resistivity was 20 ⁇ ⁇ cm.
  • Example 5 After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, 0.1 mass% of 3-acryloxypropyltrimethoxysilane added to decane was added to perform solvent substitution. A conductive ink having a solid content concentration of 30% by mass was prepared.
  • Example 6 After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, 0.1 mass% of 3-methacryloxypropyltriethoxysilane added to decane was added to perform solvent substitution. A conductive ink having a solid content concentration of 30% by mass was prepared.
  • a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor.
  • the thickness of the conductor was 0.53 ⁇ m, and the volume resistivity was 35 ⁇ ⁇ cm.
  • Example 4 in which the conductive ink containing no silane coupling agent was used, the adhesion between the formed conductor and the PET substrate was not sufficient, and the tape peel test peeled off most of the conductor. Is observed.
  • the adhesion between the silane coupling agent and the PET base material There is little contribution to improvement, and peeling is observed in part or most of the conductor in the tape peeling test.
  • the volume resistivity of the formed conductor increases and sufficient conductivity cannot be obtained.
  • the conductive ink of the present invention it is possible to form a conductor having good adhesion to the substrate and having a small volume resistivity. Moreover, according to the manufacturing method of the base material with a conductor of this invention, the base material with a conductor which has a favorable adhesiveness and a small volume resistivity on a base material is obtained. And the obtained base material with a conductor can be used conveniently as a highly reliable wiring board.

Abstract

Provided is a conductive ink having good adhesiveness to a base material, and capable of forming a conductor having a small volume resistance. The conductive ink contains: a non-aqueous organic solvent; copper hydride fine particles dispersed in the organic solvent; an alkyl amine having an alkyl group having at least 7 carbon atoms and a boiling point of no more than 250°C; and a silane coupling agent having a specific chemical formula. Also provided is a production method for a base material including a conductor, obtained using this conductive ink.

Description

導電インクおよび導体付き基材の製造方法Method for manufacturing conductive ink and substrate with conductor
 本発明は、導電インクおよび導体付き基材の製造方法に関する。 The present invention relates to a method for producing a conductive ink and a substrate with a conductor.
 プリント配線基板のような配線パターン等を有する導体付き基材の製造方法としては、金属微粒子が溶媒中に分散された分散液からなる導電インクを、基材上にインクジェット印刷等の方法により印刷し、加熱して導体を形成する方法が知られている。 As a method for producing a base material with a conductor having a wiring pattern such as a printed wiring board, a conductive ink made of a dispersion liquid in which metal fine particles are dispersed in a solvent is printed on the base material by a method such as inkjet printing. A method of forming a conductor by heating is known.
 導電インク中に分散される金属微粒子としては、高い導電性を確保する観点から、銀(Ag)微粒子が使用されていたが、銀微粒子を用いた導体では銀イオンのマイグレーションが生じ易く、それにより配線間でのショート等の不具合が発生し、配線基板の信頼性が低下するおそれがある。そこで、銀微粒子に代えて、マイグレーション現象が生じにくい銅(Cu)微粒子を含むインクを用いることで、電子部品や配線基板の信頼性を高める技術が提案されている。金属微粒子としての銅微粒子の使用は、銀微粒子よりもコストの点でも有利である。 As the metal fine particles dispersed in the conductive ink, silver (Ag) fine particles have been used from the viewpoint of ensuring high conductivity. However, in the conductor using the silver fine particles, migration of silver ions easily occurs. Problems such as short circuit between wirings may occur, and the reliability of the wiring board may be reduced. In view of this, there has been proposed a technique for improving the reliability of electronic components and wiring boards by using ink containing copper (Cu) fine particles that hardly cause a migration phenomenon instead of silver fine particles. The use of copper fine particles as metal fine particles is more advantageous in terms of cost than silver fine particles.
 しかし、銅微粒子は酸化されやすいため、銅微粒子を含有するインクでは、形成される導体の体積抵抗率が増大し、導電性が低下するという問題があった。 However, since the copper fine particles are easily oxidized, the ink containing the copper fine particles has a problem that the volume resistivity of the formed conductor increases and the conductivity decreases.
 導体の体積抵抗率の増大を抑制するために、大気中で酸化されにくい水素化銅微粒子の分散液を得る方法が開示されている(例えば、特許文献1参照)。この方法では、銅(II)イオンを含むpH3以下の水溶液に、ドデシルアミン等のアルキルアミンと、非水溶性の有機性液体を加え、NaBH等で銅(II)イオンを還元し、その後に有機相を分離することにより、水素化銅微粒子分散液が得られる。この方法において、水相で銅(II)イオンの還元により生成する水素化銅の微粒子は、その表面にアルキルアミンが配位することで有機相中へと取り込まれることで、生成した水素化銅が水中で銅(II)イオンと酸化銅(II)に変化することが抑制される。 In order to suppress an increase in the volume resistivity of the conductor, a method of obtaining a dispersion of copper hydride fine particles that is difficult to be oxidized in the atmosphere is disclosed (for example, see Patent Document 1). In this method, an alkylamine such as dodecylamine and a water-insoluble organic liquid are added to an aqueous solution containing copper (II) ions having a pH of 3 or less, and the copper (II) ions are reduced with NaBH 4 or the like. By separating the organic phase, a copper hydride fine particle dispersion can be obtained. In this method, fine particles of copper hydride produced by reduction of copper (II) ions in the aqueous phase are taken into the organic phase by coordination of alkylamine on the surface, thereby producing the produced copper hydride. Is inhibited from changing to copper (II) ions and copper (II) oxide in water.
 こうして得られた水素化銅微粒子分散液を使用して導体付き基材を製造する際には、ガラスまたは樹脂からなる基材上に分散液を塗布した後、加熱することにより、水素化銅微粒子中の水素化銅が金属銅に変換され、さらに微粒子表面のアルキルアミンが脱離し、金属銅微粒子同士が溶融し結合することで導体が形成される。 When producing a substrate with conductor using the copper hydride fine particle dispersion thus obtained, the copper hydride fine particles are applied by applying the dispersion on a substrate made of glass or resin and then heating. The copper hydride contained therein is converted to metallic copper, the alkylamine on the surface of the fine particles is desorbed, and the metallic copper fine particles are melted and bonded together to form a conductor.
 しかしながら、特許文献1に記載された水素化銅微粒子分散液からなる導電インクを使用した場合には、導体と基材との間の密着性が充分でないため、配線の密着不良が発生し、配線基板の信頼性が低下するという問題があった。 However, when the conductive ink composed of the copper hydride fine particle dispersion described in Patent Document 1 is used, the adhesion between the conductor and the base material is not sufficient, resulting in poor wiring adhesion. There was a problem that the reliability of the substrate was lowered.
 導電インクから形成される導体の基材との間の密着性を向上させるために、導電インクに樹脂を添加することが考えられるが、通常導電インクには分散剤や表面保護剤が大量に含まれるため、さらに樹脂を添加することは難しく、例え樹脂を添加できても、導体化する処理において、分散剤や表面保護剤とともに樹脂が分解されてしまい、充分な効果が得られない。 In order to improve the adhesion between the conductive ink and the base material of the conductor, it is conceivable to add a resin to the conductive ink. Usually, however, the conductive ink contains a large amount of a dispersant and a surface protective agent. Therefore, it is difficult to add a resin, and even if a resin can be added, the resin is decomposed together with the dispersant and the surface protective agent in the process of making a conductor, and a sufficient effect cannot be obtained.
 そのような観点から、基板との密着性が高い導電層を形成することが可能な銅導体インクとして、分散剤を用いずに調製された銅系ナノ粒子と、熱硬化前の熱硬化性樹脂と、分散媒とを含有する導電インクが提案されている(例えば、特許文献2参照)。しかしながら、特許文献2に記載されたインクでは、樹脂成分を含んでいるため、導体の体積抵抗率が上昇しやすいという問題があった。 From such a viewpoint, copper-based nanoparticles prepared without using a dispersant as a copper conductor ink capable of forming a conductive layer having high adhesion to the substrate, and a thermosetting resin before thermosetting And a conductive ink containing a dispersion medium have been proposed (see, for example, Patent Document 2). However, since the ink described in Patent Document 2 contains a resin component, there is a problem that the volume resistivity of the conductor tends to increase.
国際公開第04/110925号International Publication No. 04/110925 日本国特開2011-142052号公報Japanese Unexamined Patent Publication No. 2011-142052
 本発明は、上記問題を解決するためになされたもので、基材との密着性が良好で、体積抵抗率の小さい導体を形成できる導電インクの提供を目的とする。また、本発明は、前記導電インクを使用して得られる、基材との密着性が良好でかつ体積抵抗率の小さい導体を有する導体付き基材の提供を目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a conductive ink that can form a conductor having good adhesion to a substrate and having a small volume resistivity. Moreover, this invention aims at provision of the base material with a conductor which has a favorable adhesiveness with a base material and a small volume resistivity obtained using the said conductive ink.
 本発明は、以下の導電インクおよび導体付き基材の製造方法を提供する。
<1> 非水溶性の有機溶媒と、
 前記有機溶媒中に分散された水素化銅微粒子と、
 炭素数7以上のアルキル基を有する沸点が250℃以下のアルキルアミンと、
 式(1):R SiR 4-m-n
(式(1)において、Rは、グリシドキシアルキル基、イソシアネートアルキル基、メルカプトアルキル基、アミノアルキル基、N-アミノアルキル-アミノアルキル基から選ばれる1価の有機基であり、Rは、アルキル基または水素原子であり、Rは、アルコキシル基である。mは1から3の整数、nは0から2の整数であり、m+nは3以下である。)、または
 式(2):R SiR-S-RSiR
(式(2)において、Rはアルコキシル基であり、Rはアルキレン基であり、kは1から4の整数である。)で表わされるシランカップリング剤と、
を含有することを特徴とする導電インク。
The present invention provides the following conductive ink and method for producing a substrate with a conductor.
<1> a water-insoluble organic solvent;
Copper hydride fine particles dispersed in the organic solvent;
An alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or lower;
Formula (1): R 1 m R 2 n SiR 3 4-mn
(In the formula (1), R 1, glycidoxy group, an isocyanate group, a mercaptoalkyl group, an aminoalkyl group, N- aminoalkyl - is a monovalent organic group selected from an amino group, R 2 Is an alkyl group or a hydrogen atom, R 3 is an alkoxyl group, m is an integer of 1 to 3, n is an integer of 0 to 2, and m + n is 3 or less. ): R 4 3 SiR 5 —S k —R 5 SiR 4 3
(In the formula (2), R 4 is an alkoxyl group, R 5 is an alkylene group, and k is an integer of 1 to 4),
A conductive ink comprising:
<2> 前記水素化銅微粒子の含有割合は、10~50質量%である<1>に記載の導電インク。
<3> 前記アルキルアミンの含有割合は、2~10質量%である<1>または<2>に記載の導電インク。
<4> 前記シランカップリング剤の含有割合は、有機溶媒に対して0.01~2.00質量%である<1>乃至<3>のいずれか1つに記載の導電インク。
<5> 前記水素化銅微粒子の平均一次粒子径は、100nm以下である<1>乃至<4>のいずれか1つに記載の導電インク。
<2> The conductive ink according to <1>, wherein a content ratio of the copper hydride fine particles is 10 to 50% by mass.
<3> The conductive ink according to <1> or <2>, wherein the content ratio of the alkylamine is 2 to 10% by mass.
<4> The conductive ink according to any one of <1> to <3>, wherein a content ratio of the silane coupling agent is 0.01 to 2.00% by mass with respect to the organic solvent.
<5> The conductive ink according to any one of <1> to <4>, wherein an average primary particle diameter of the copper hydride fine particles is 100 nm or less.
<6> 基材を準備する工程と、
 前記基材上に、<1>乃至<5>のいずれか1つに記載の導電インクの塗布層を形成する工程と、
 前記塗布層を加熱して、銅を含む導体を形成する工程と
 を有することを特徴とする導体付き基材の製造方法。
 銅を含む導体を形成する工程において形成される導体は、銅を主体とする導体である。ここで、「銅を主体とする導体」とは、導体を構成する要素のうち、銅が最も多く含まれることを意味する。
<6> a step of preparing a substrate;
Forming a conductive ink coating layer according to any one of <1> to <5> on the substrate;
And a step of heating the coating layer to form a conductor containing copper.
The conductor formed in the step of forming the conductor containing copper is a conductor mainly composed of copper. Here, “a conductor mainly composed of copper” means that copper is most contained among the elements constituting the conductor.
 本発明の導電インクによれば、基材との密着性が良好で、体積抵抗率が小さく導電性に優れた導体を形成できる。また、本発明の導体付き基材の製造方法によれば、基材上に密着性が良好で体積抵抗率の小さい導体を有する導体付き基材が得られる。 According to the conductive ink of the present invention, it is possible to form a conductor having good adhesion to the substrate, low volume resistivity, and excellent conductivity. Moreover, according to the manufacturing method of the base material with a conductor of this invention, the base material with a conductor which has a favorable adhesiveness and a small volume resistivity on a base material is obtained.
図1(a)~(d)は、本発明の導電インクに使用するシランカップリング剤による、基材との密着性向上の機構を説明するための図である。FIGS. 1A to 1D are views for explaining a mechanism for improving adhesion to a substrate by a silane coupling agent used in the conductive ink of the present invention. 図2(a)~(d)は、金属に対する結合性がアルキルアミンより大きいシランカップリング剤の挙動を示す図である。FIGS. 2 (a) to 2 (d) are diagrams showing the behavior of a silane coupling agent having a higher bondability to metal than alkylamine.
 以下、本発明の実施の形態について説明する。なお、本発明は、以下に記載する実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited to the embodiments described below.
[導電インク]
 本発明の実施形態の導電インクは、非水溶性の有機溶媒と、この有機溶媒中に分散された水素化銅微粒子と、炭素数7以上のアルキル基を有し沸点が250℃以下のアルキルアミンと、特定の化学式を有するシランカップリング剤とを含有する。
[Conductive ink]
A conductive ink according to an embodiment of the present invention includes a water-insoluble organic solvent, copper hydride fine particles dispersed in the organic solvent, an alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or less. And a silane coupling agent having a specific chemical formula.
 本発明の実施形態の導電インクによれば、水素化銅微粒子の分散剤であるアルキルアミンとともに、特定の化学式を有するシランカップリング剤が配合されているので、基材との密着性に優れ、導電性が良好な導体を形成できる。以下、実施形態の導電インクに含有される各成分について説明する。 According to the conductive ink of the embodiment of the present invention, since the silane coupling agent having a specific chemical formula is blended together with the alkylamine which is a dispersant for the copper hydride fine particles, it has excellent adhesion to the substrate, A conductor having good conductivity can be formed. Hereinafter, each component contained in the conductive ink of the embodiment will be described.
<水素化銅微粒子>
 水素化銅微粒子は、実施形態の導電インクの導電成分となるものである。
 水素化銅微粒子としては、後述する方法により製造される水素化銅微粒子分散液中の水素化銅微粒子を用いることが好ましいが、それに限定されない。なお、後述する方法で製造される水素化銅微粒子分散液には、水素化銅微粒子だけでなく、分散剤である沸点が250℃以下のアルキルアミンが含有されているので、この水素化銅微粒子分散液をそのまま使用して、本発明の導電インクを得ることができる。水素化銅微粒子分散液を用いて本発明の導電インクを調製する方法については、後述する。
<Copper hydride fine particles>
The copper hydride fine particles become a conductive component of the conductive ink of the embodiment.
As the copper hydride fine particles, it is preferable to use copper hydride fine particles in a copper hydride fine particle dispersion produced by a method to be described later, but it is not limited thereto. In addition, since the copper hydride fine particle dispersion produced by the method described later contains not only the copper hydride fine particles but also the alkylamine having a boiling point of 250 ° C. or less as a dispersant, the copper hydride fine particles. The conductive ink of the present invention can be obtained by using the dispersion as it is. A method for preparing the conductive ink of the present invention using the copper hydride fine particle dispersion will be described later.
 水素化銅微粒子(一次粒子)の平均一次粒子径は、5~100nmが好ましく、5~70nmがより好ましく、5~35nmが特に好ましい。水素化銅微粒子の平均一次粒子径が100nm以下であれば、微粒子の特徴である低温での焼結性が良好となり、得られる導体の体積抵抗率を低くすることが可能になる。また、水素化銅微粒子の平均一次粒子径が5nm以上であれば、水素化銅微粒子を安定に分散させることができる。
 なお、水素化銅微粒子の平均一次粒子径は、無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)を使用して測定し、それらの値を平均して求めた値である。
The average primary particle size of the copper hydride fine particles (primary particles) is preferably 5 to 100 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm. If the average primary particle diameter of the copper hydride fine particles is 100 nm or less, the sinterability at a low temperature, which is a feature of the fine particles, becomes good, and the volume resistivity of the obtained conductor can be lowered. Moreover, if the average primary particle diameter of the copper hydride fine particles is 5 nm or more, the copper hydride fine particles can be stably dispersed.
The average primary particle size of the copper hydride fine particles was determined by measuring the particle size of 100 randomly extracted fine particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). This is a value obtained by averaging the values of.
 導電インクにおける水素化銅微粒子の含有割合(濃度)は、10~50質量%が好ましく、20~40質量%がより好ましい。導電インクにおいて、固形分である水素化銅微粒子の含有割合(濃度)が10質量%以上であれば、充分な厚みを有する導体を形成しやすい。水素化銅微粒子の含有割合が50質量%以下であれば、粘度、表面張力等のインク特性の制御が容易であり、導体の形成が容易になる。 The content (concentration) of copper hydride fine particles in the conductive ink is preferably 10 to 50% by mass, more preferably 20 to 40% by mass. In the conductive ink, when the content (concentration) of the copper hydride fine particles as a solid content is 10% by mass or more, it is easy to form a conductor having a sufficient thickness. If the content ratio of the copper hydride fine particles is 50% by mass or less, it is easy to control ink characteristics such as viscosity and surface tension, and it becomes easy to form a conductor.
<水素化銅微粒子分散液の製造方法>
 実施形態の水素化銅微粒子を含有する分散液は、溶媒(A)中でアルキルアミン(B)の存在下、ヒドリド系還元剤により銅(II)塩を還元する方法により得ることが好ましい。以下、この製造方法について説明する。
<Method for producing copper hydride fine particle dispersion>
The dispersion containing the copper hydride fine particles of the embodiment is preferably obtained by a method of reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B) in a solvent (A). Hereinafter, this manufacturing method will be described.
 銅(II)塩としては、アルキルアミン(B)と銅(II)アミン錯体を形成できる塩が使用できる。銅(II)塩は、無水物でも水和物でもよい。
 銅(II)塩は、CuXまたはCuYと表される。ここで、Xは1価の塩基、Yは2価の塩基である。この銅(II)塩がヒドリド系還元剤によって還元されて水素化銅微粒子が生成する際、銅(II)塩に含まれるXはHXとして、YはHYとして、遊離すると考えられる。本発明においては、この遊離するHXまたはHY(以下、遊離酸ともいう)の沸点または分解点が150℃以下の塩が好ましい。これは、遊離酸が導体形成の際の加熱時に揮発しやすく、体積抵抗率が低い導体を形成しやすいからである。
As the copper (II) salt, a salt capable of forming a copper (II) amine complex with the alkylamine (B) can be used. The copper (II) salt may be an anhydride or a hydrate.
The copper (II) salt is represented as CuX 2 or CuY. Here, X is a monovalent base and Y is a divalent base. When this copper (II) salt is reduced by a hydride-based reducing agent to produce copper hydride fine particles, it is considered that X contained in the copper (II) salt is liberated as HX and Y as H 2 Y. In the present invention, a salt having a boiling point or decomposition point of this liberated HX or H 2 Y (hereinafter also referred to as free acid) of 150 ° C. or less is preferable. This is because the free acid is likely to volatilize during heating during conductor formation, and a conductor having a low volume resistivity is likely to be formed.
 銅(II)塩としては、例えば、シュウ酸銅(II)(遊離するシュウ酸の分解点:189.5℃)、塩化銅(II)(遊離する塩酸の沸点110℃)、酢酸銅(II)(遊離する酢酸の沸点:118℃)、ギ酸銅(II)(遊離するギ酸の沸点:100.75℃)、硝酸銅(II)(遊離する硝酸の沸点:82.6℃)、硫酸銅(II)(遊離する硫酸の沸点:290℃)、酒石酸銅(II)(遊離する酒石酸の沸点、分解点:不明)、クエン酸銅(II)(遊離するクエン酸の分解点:175℃)、炭酸銅(II)(遊離する炭酸の沸点、分解点:不明)、オレイン酸銅(II)(遊離するオレイン酸の沸点:193℃/100Pa、分解点:400℃以上)が挙げられる。なかでも、酢酸銅(II)、ギ酸銅(II)、硝酸銅(II)、炭酸銅(II)が好ましい。
 銅(II)塩は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of the copper (II) salt include copper oxalate (II) (decomposition point of liberated oxalic acid: 189.5 ° C.), copper chloride (II) (boiling point of liberated hydrochloric acid 110 ° C.), copper acetate (II ) (Boiling point of free acetic acid: 118 ° C.), copper (II) formate (boiling point of free formic acid: 100.75 ° C.), copper (II) nitrate (boiling point of free nitric acid: 82.6 ° C.), copper sulfate (II) (boiling point of free sulfuric acid: 290 ° C), copper (II) tartrate (boiling point of free tartaric acid, decomposition point: unknown), copper (II) citrate (decomposition point of free citric acid: 175 ° C) , Copper carbonate (II) (boiling point of free carbonic acid, decomposition point: unknown), copper (II) oleate (boiling point of free oleic acid: 193 ° C./100 Pa, decomposition point: 400 ° C. or higher). Of these, copper (II) acetate, copper (II) formate, copper (II) nitrate, and copper (II) carbonate are preferred.
A copper (II) salt may be used individually by 1 type, and may use 2 or more types together.
 ヒドリド系還元剤としては、例えば、NaBH、LiBH、Zn(BH、(CHNBH(OCOCH、NaBHCN、LiAlH、(i-Bu)AlH(DIBAL)、LiAlH(t-BuO)、NaAlH(OCHCHOCH(Red-Al)等が挙げられる。なかでも、水素化銅微粒子の粒子径の制御に重要である還元速度が調節しやすい点から、NaBH、LiBH、およびNaBHCNからなる群から選ばれる1種以上が好ましい。
 ヒドリド系還元剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of hydride-based reducing agents include NaBH 4 , LiBH 4 , Zn (BH 4 ) 2 , (CH 3 ) 4 NBH (OCOCH 3 ) 3 , NaBH 3 CN, LiAlH 4 , (i-Bu) 2 AlH (DIBAL ), LiAlH (t-BuO) 3 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 (Red-Al), and the like. Among these, at least one selected from the group consisting of NaBH 4 , LiBH 4 , and NaBH 3 CN is preferable because the reduction rate, which is important for controlling the particle size of the copper hydride fine particles, can be easily adjusted.
A hydride type reducing agent may be used individually by 1 type, and may use 2 or more types together.
 溶媒(A)は、SP値が8~12の溶媒である。SP値が8~12であれば、溶媒(A)と水との相溶性が低く、反応系中に水が混入することを抑制できる。これにより、溶媒(A)中に溶解したヒドリド系還元剤が水と反応して不活性化することを抑制できる。
 溶媒(A)のSP値は、8.5~9.5がより好ましい。
The solvent (A) is a solvent having an SP value of 8 to 12. When the SP value is 8 to 12, the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type | system | group reducing agent melt | dissolved in the solvent (A) reacts with water and inactivates.
The SP value of the solvent (A) is more preferably 8.5 to 9.5.
 溶媒(A)としては、例えば、シクロヘキサン(SP値8.2)、酢酸イソブチル(SP値8.3)、酢酸イソプロピル(SP値8.4)、酢酸ブチル(SP値8.5)、四塩化炭素(SP値8.6)、エチルベンゼン(SP値8.8)、キシレン(SP値8.8)、トルエン(SP値8.9)、酢酸エチル(SP値9.1)、テトラヒドロフラン(SP値9.1)、ベンゼン(SP値9.2)、クロロホルム(SP値9.3)、塩化メチレン(SP値9.7)、二硫化炭素(SP値10.0)、酢酸(SP値10.1)、ピリジン(SP値10.7)、ジメチルホルムアミド(SP値12.0)等が挙げられる。 Examples of the solvent (A) include cyclohexane (SP value 8.2), isobutyl acetate (SP value 8.3), isopropyl acetate (SP value 8.4), butyl acetate (SP value 8.5), and tetrachloride. Carbon (SP value 8.6), ethylbenzene (SP value 8.8), xylene (SP value 8.8), toluene (SP value 8.9), ethyl acetate (SP value 9.1), tetrahydrofuran (SP value) 9.1), benzene (SP value 9.2), chloroform (SP value 9.3), methylene chloride (SP value 9.7), carbon disulfide (SP value 10.0), acetic acid (SP value 10. 1), pyridine (SP value 10.7), dimethylformamide (SP value 12.0) and the like.
 また、溶媒(A)としては、還元反応に使用するヒドリド系還元剤に対して不活性な溶媒を使用する。すなわち、溶媒(A)としては、還元反応に使用するヒドリド系還元剤によって還元されない溶媒、または活性水素を持たない溶媒が、ヒドリド系還元剤が不活性化することを抑制できるので好ましい。 Further, as the solvent (A), a solvent inert to the hydride reducing agent used for the reduction reaction is used. That is, as the solvent (A), a solvent that is not reduced by the hydride reducing agent used in the reduction reaction or a solvent that does not have active hydrogen is preferable because it can suppress the inactivation of the hydride reducing agent.
 溶媒(A)としては、還元反応の制御が容易な点、および生成する水素化銅微粒子の分散性の点から、トルエン、キシレン、ベンゼン等の炭化水素類;テトラヒドロフラン等のエーテル類;酢酸エチル、酢酸イソプロピル、酢酸イソブチル等のエステル類が好ましく、トルエン、キシレンが特に好ましい。
 溶媒(A)は、1種を単独で使用してもよく、2種以上を併用してもよい。
As the solvent (A), hydrocarbons such as toluene, xylene, benzene, etc .; ethers such as tetrahydrofuran; ethyl acetate, from the viewpoint of easy control of the reduction reaction and the dispersibility of the produced copper hydride fine particles Esters such as isopropyl acetate and isobutyl acetate are preferred, and toluene and xylene are particularly preferred.
A solvent (A) may be used individually by 1 type, and may use 2 or more types together.
 また、ヒドリド系還元剤は種類によって還元力に差がある。例えば、NaBHはエステル類を還元しないが、LiAlHはエステル類を還元する。よって、使用するヒドリド系還元剤の種類により、前記溶媒(A)から適切な溶媒を選択して使用する。 Further, hydride-based reducing agents have different reducing power depending on the type. For example, NaBH 4 does not reduce esters, whereas LiAlH 4 reduces esters. Therefore, an appropriate solvent is selected from the solvent (A) depending on the type of hydride-based reducing agent used.
 アルキルアミン(B)は、炭素数7以上のアルキル基を有し、かつ沸点が250℃以下のアルキルアミンである。
 アルキルアミン(B)におけるアルキル基の炭素数が7以上であれば、生成する水素化銅微粒子の分散性が良好となる。なお、本発明では反応場が有機相であるため、水からの保護を目的として、炭素数の大きいアルキルアミンを使用する必要がない。アルキルアミン(B)におけるアルキル基の炭素数は、沸点が高くなりすぎることを抑制する点から、11以下が好ましい。
The alkylamine (B) is an alkylamine having an alkyl group having 7 or more carbon atoms and having a boiling point of 250 ° C. or lower.
If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water. The number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
 アルキルアミン(B)の沸点が250℃以下であれば、導電インクを用いて導体を形成する際に、150℃以下の加熱でもアルキルアミン(B)が微粒子表面から脱離し、揮発して体積抵抗率の低い導体を形成できる。アルキルアミン(B)の沸点は、加熱時の脱離性および揮発性の点から、250℃以下が好ましく、200℃以下がより好ましい。また、アルキルアミン(B)の沸点は、アルキル基の炭素数を7以上とする点から、通常は150℃以上が好ましい。 If the boiling point of the alkylamine (B) is 250 ° C. or lower, when the conductor is formed using the conductive ink, the alkylamine (B) is detached from the surface of the fine particles even when heated at 150 ° C. or lower, and volatilizes. Low rate conductors can be formed. The boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating. Moreover, the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
 アルキルアミン(B)のアルキル基は、得られる水素化銅微粒子の分散安定性の点から、直鎖アルキル基が好ましい。ただし、アルキルアミン(B)のアルキル基は、分岐アルキル基であってもよい。 The alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles. However, the alkyl group of the alkylamine (B) may be a branched alkyl group.
 アルキルアミン(B)としては、n-ヘプチルアミン(アルキル基の炭素数7、沸点157℃)、n-オクチルアミン(アルキル基の炭素数8、沸点176℃)、n-ノニルアミン(アルキル基の炭素数9、沸点201℃)、1-アミノデカン(アルキル基の炭素数10、沸点220℃)、1-アミノウンデカン(アルキル基の炭素数11、沸点242℃)が好ましく、n-ヘプチルアミン、n-オクチルアミンがより好ましい。
 アルキルアミン(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of the alkylamine (B) include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
 このような水素化銅微粒子分散液の製造方法では、アルキルアミン(B)の存在下において、ヒドリド系還元剤で銅(II)塩を還元することで水素化銅微粒子を生成させる。アルキルアミン(B)の存在下では、アルキルアミン(B)が銅(II)に配位して銅(II)アミン錯体が形成された後、該銅(II)アミン錯体がヒドリド系還元剤によって還元される。これにより、銅(II)塩の急激な還元による水素化銅の塊の形成を抑制でき、水素化銅の微粒子の表面にアルキルアミン(B)が配位した水素化銅微粒子が生成する。 In such a method for producing a copper hydride fine particle dispersion, copper hydride fine particles are generated by reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B). In the presence of alkylamine (B), after alkylamine (B) is coordinated to copper (II) to form a copper (II) amine complex, the copper (II) amine complex is formed by a hydride reducing agent. Reduced. Thereby, formation of the copper hydride lump by rapid reduction of the copper (II) salt can be suppressed, and copper hydride fine particles in which alkylamine (B) is coordinated on the surface of the copper hydride fine particles are generated.
 また、この製造方法では、ヒドリド系還元剤の溶媒(A)に対する溶解性がさほど高くないため、ヒドリド系還元剤の大半が固形状で溶媒(A)中に存在し、一部が溶媒(A)中に溶解している。この溶媒(A)中に溶解しているヒドリド系還元剤が銅(II)塩を還元して消費されると、固形状で存在するヒドリド系還元剤が溶媒(A)に徐々に溶解する。そして、溶媒(A)に徐々に溶解したヒドリド系還元剤が順次還元反応に寄与するので、還元反応が急激に進行せず、水素化銅微粒子が安定して生成する。
 生成する水素化銅微粒子は、表面にアルキルアミン(B)が配位していることで、溶媒(A)中に分散できる。
Moreover, in this manufacturing method, since the solubility with respect to the solvent (A) of a hydride type | system | group reducing agent is not so high, most of a hydride type | system | group reducing agent exists in a solvent (A) in a solid state, and a part is solvent (A ) Is dissolved in. When the hydride reducing agent dissolved in the solvent (A) reduces and consumes the copper (II) salt, the hydride reducing agent present in a solid state gradually dissolves in the solvent (A). And since the hydride type | system | group reducing agent which melt | dissolved in the solvent (A) gradually contributes to a reduction reaction, a reduction reaction does not advance rapidly but a copper hydride microparticles | fine-particles produce | generate stably.
The produced copper hydride fine particles can be dispersed in the solvent (A) because the alkylamine (B) is coordinated on the surface.
 銅(II)塩、ヒドリド系還元剤、アルキルアミン(B)を溶媒(A)に添加する順序は、アルキルアミン(B)、銅(II)塩、ヒドリド系還元剤の順が好ましい。これにより、前記銅(II)アミン錯体が形成された後に、該銅(II)アミン錯体のヒドリド系還元剤による還元が進行しやすくなり、水素化銅微粒子がより安定して得られる。
 ただし、銅(II)塩、ヒドリド系還元剤、アルキルアミン(B)を溶媒(A)に添加する順序は、ヒドリド系還元剤による還元反応がアルキルアミン(B)の存在下で進行する順序であれば前記順序には限定されない。例えば、溶媒(A)に、アルキルアミン(B)、ヒドリド系還元剤、銅(II)塩の順に添加してもよい。この場合、ヒドリド系還元剤は溶媒(A)中に固形状で存在しており、溶媒(A)中で前記銅(II)アミン錯体が形成された後、固形状で存在する該銅(II)アミン錯体がヒドリド系還元剤と反応する。さらに、ヒドリド系還元剤、アルキルアミン(B)、銅(II)塩の順に添加しても、差し支えない。
The order of adding the copper (II) salt, hydride reducing agent, and alkylamine (B) to the solvent (A) is preferably the order of alkylamine (B), copper (II) salt, and hydride reducing agent. Thereby, after the said copper (II) amine complex is formed, reduction | restoration by the hydride type | system | group reducing agent of this copper (II) amine complex becomes easy to advance, and copper hydride microparticles | fine-particles are obtained more stably.
However, the order of adding the copper (II) salt, the hydride reducing agent, and the alkylamine (B) to the solvent (A) is the order in which the reduction reaction with the hydride reducing agent proceeds in the presence of the alkylamine (B). If there is, the order is not limited. For example, the alkylamine (B), the hydride reducing agent, and the copper (II) salt may be added to the solvent (A) in this order. In this case, the hydride reducing agent is present in a solid state in the solvent (A), and after the copper (II) amine complex is formed in the solvent (A), the copper (II) present in the solid state. ) Amine complex reacts with hydride reducing agent. Further, a hydride reducing agent, an alkylamine (B), and a copper (II) salt may be added in this order.
 ヒドリド系還元剤による還元反応は、溶媒(A)を撹拌しながら行ってもよい。これにより、還元反応が進行しやすくなる。
 反応温度は、0~80℃が好ましく、15~50℃がより好ましい。反応温度が0℃以上であれば、還元反応が進行しやすい。反応温度が80℃以下であれば、得られる水素化銅微粒子分散液中の水素化銅微粒子の分散性が良好であり、その結果、体積抵抗率の小さい導体を形成しやすくなる。
The reduction reaction with the hydride-based reducing agent may be performed while stirring the solvent (A). This facilitates the reduction reaction.
The reaction temperature is preferably 0 to 80 ° C, more preferably 15 to 50 ° C. If reaction temperature is 0 degreeC or more, a reductive reaction will advance easily. If reaction temperature is 80 degrees C or less, the dispersibility of the copper hydride microparticles in the obtained copper hydride microparticle dispersion liquid will be favorable, As a result, it will become easy to form a conductor with small volume resistivity.
 銅(II)塩の添加量は、水素化銅微粒子の生産性の点から、溶媒(A)の1gに対して、0.1×10-3モル以上が好ましく、0.15×10-3モル以上がより好ましく、0.25×10-3モル以上が特に好ましい。また、銅(II)塩の添加量は、還元反応の制御が容易な点から、溶媒(A)の1gに対して、0.65×10-3モル以下が好ましく、0.6×10-3モル以下がより好ましく、0.5×10-3モル以下が特に好ましい。 The addition amount of the copper (II) salt is preferably 0.1 × 10 −3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of productivity of copper hydride fine particles, and preferably 0.15 × 10 −3. Mole or more is more preferable, and 0.25 × 10 −3 mol or more is particularly preferable. Further, the addition amount of the copper (II) salt is preferably 0.65 × 10 −3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, and 0.6 × 10 − 3 mol or less is more preferable, and 0.5 × 10 −3 mol or less is particularly preferable.
 アルキルアミン(B)の添加量は、得られる水素化銅微粒子分散液中の水素化銅微粒子の分散性が良好になる点から、溶媒(A)の1gに対して、0.2×10-3モル以上が好ましく、0.25×10-3モル以上がより好ましく、0.3×10-3モル以上が特に好ましい。また、アルキルアミン(B)の添加量が過剰であると、銅(II)塩に配位しきれなかったアルキルアミン(B)が導体形成時に残留し、導体の体積抵抗率を上昇させるおそれがある。よって、アルキルアミン(B)の量の上限は、溶媒(A)の1gに対して、0.75×10-3モル以下が好ましく、0.7×10-3モル以下がより好ましく、0.6×10-3モル以下が特に好ましい。 The addition amount of the alkylamine (B) is 0.2 × 10 − with respect to 1 g of the solvent (A) because the dispersibility of the copper hydride fine particles in the obtained copper hydride fine particle dispersion becomes good. 3 mol or more is preferable, 0.25 × 10 −3 mol or more is more preferable, and 0.3 × 10 −3 mol or more is particularly preferable. In addition, if the amount of alkylamine (B) added is excessive, alkylamine (B) that could not be coordinated to the copper (II) salt may remain at the time of conductor formation and increase the volume resistivity of the conductor. is there. Therefore, the upper limit of the amount of the alkylamine (B) is preferably 0.75 × 10 −3 mol or less, more preferably 0.7 × 10 −3 mol or less, with respect to 1 g of the solvent (A). 6 × 10 −3 mol or less is particularly preferable.
 ヒドリド系還元剤の添加量は、水素化銅微粒子の収率の点から、溶媒(A)の1gに対して、0.25×10-3モル以上が好ましく、0.3×10-3モル以上がより好ましく、0.35×10-3モル以上が特に好ましい。また、ヒドリド系還元剤の添加量は、還元反応の制御が容易な点から、溶媒(A)の1gに対して、0.65×10-3モル以下が好ましく、0.55×10-3モル以下がより好ましく、0.5×10-3モル以下が特に好ましい。 The addition amount of the hydride-based reducing agent is preferably 0.25 × 10 −3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of the yield of copper hydride fine particles, preferably 0.3 × 10 −3 mol. The above is more preferable, and 0.35 × 10 −3 mol or more is particularly preferable. The amount of the hydride reducing agent added is preferably 0.65 × 10 −3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, preferably 0.55 × 10 −3. The molar amount is more preferably less than or equal to 0.5 × 10 −3 mol or less.
 溶媒(A)中に添加する銅(II)塩とアルキルアミン(B)のモル比(以下、Cu/Bと示す。)は、生成する水素化銅微粒子の分散安定性が良好となる点から、1.8以下が好ましく、1.4以下がより好ましく、1.2以下が特に好ましい。また、前記モル比(Cu/B)は、導体形成時の加熱による、アルキルアミン(B)の微粒子表面からの脱離および揮発が容易な点から、0.64以上が好ましく、0.85以上がより好ましい。 The molar ratio of the copper (II) salt and the alkylamine (B) added to the solvent (A) (hereinafter referred to as Cu / B) is that the dispersion stability of the produced copper hydride fine particles becomes good. 1.8 or less, 1.4 or less is more preferable, and 1.2 or less is particularly preferable. In addition, the molar ratio (Cu / B) is preferably 0.64 or more, and preferably 0.85 or more from the viewpoint of easy desorption and volatilization of the alkylamine (B) from the surface of the fine particles by heating during conductor formation. Is more preferable.
 溶媒(A)に添加する銅(II)塩とヒドリド系還元剤(R)のモル比(以下、Cu/Rと示す。)は、還元反応が進行しやすい点から、1.42以下が好ましく、1.3以下がより好ましく、1.2以下が特に好ましい。また、前記モル比(Cu/R)は、還元反応の制御が容易な点から、0.7以上が好ましく、0.8以上がより好ましく、0.9以上が特に好ましい。 The molar ratio of copper (II) salt and hydride reducing agent (R) added to the solvent (A) (hereinafter referred to as Cu / R) is preferably 1.42 or less from the viewpoint that the reduction reaction easily proceeds. 1.3 or less is more preferable, and 1.2 or less is particularly preferable. Further, the molar ratio (Cu / R) is preferably 0.7 or more, more preferably 0.8 or more, and particularly preferably 0.9 or more, from the viewpoint of easy control of the reduction reaction.
 こうして平均一次粒子径が100nm以下、より好ましくは5~70nm、特に好ましくは5~35nmの水素化銅微粒子(一次粒子)が、溶媒(A)に分散された水素化銅微粒子分散液が得られる。水素化銅微粒子の平均一次粒子径は、アルキルアミン(B)の添加量、およびヒドリド系還元剤の添加量により調節できる。アルキルアミン(B)の添加量を多くすることで、水素化銅微粒子の平均一次粒子径が小さくなる傾向がある。また、ヒドリド系還元剤の添加量を少なくすることで、水素化銅微粒子の平均一次粒子径が小さくなる傾向がある。 Thus, a copper hydride fine particle dispersion in which copper hydride fine particles (primary particles) having an average primary particle size of 100 nm or less, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm are dispersed in the solvent (A) is obtained. . The average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease. Moreover, there exists a tendency for the average primary particle diameter of a copper hydride microparticle to become small by reducing the addition amount of a hydride type | system | group reducing agent.
 得られる水素化銅微粒子分散液における固形分である水素化銅微粒子の濃度は、分散液全体を100質量%として、1~6質量%が好ましく、2.5~4.5質量%がより好ましい。水素化銅微粒子分散液の前記固形分濃度が1質量%未満であると、濃縮工程に時間がかかり、生産性が低下するおそれがある。水素化銅微粒子分散液の固形分濃度が6質量%を超えると、分散液中の水素化銅微粒子の分散安定性が低下するおそれがある。 The concentration of the copper hydride fine particles as a solid content in the obtained copper hydride fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. . If the solid content concentration of the copper hydride fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be reduced. When the solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper hydride fine particles in the dispersion may be lowered.
<非水溶性の有機溶媒>
 実施形態の導電インクの非水溶性の有機溶媒としては、前記製造方法により得られた水素化銅微粒子分散液の溶媒(例えばSP値が8~12の溶媒である溶媒(A))を使用してもよく、それ以外の他の溶媒(すなわち、SP値が8未満または12超の溶媒。以下、溶媒(C)と記す。)を使用してもよい。つまり、実施形態の導電インクは、前記製造方法で製造された水素化銅微粒子分散液の固形分濃度や粘度を調整して、得ることができる。また、前記製造方法で得られた水素化銅微粒子分散液の溶媒を置換し、すなわち、例えば溶媒(A)を溶媒(C)に置換し、さらに固形分濃度や粘度を調整することで、実施形態の導電インクを得ることができる。どちらの場合も、実施形態の導電インクには、水素化銅微粒子を溶媒中に分散させる働きをする保護剤、または分散剤である前記アルキルアミン(B)がそのまま含有される。
<Water-insoluble organic solvent>
As the water-insoluble organic solvent of the conductive ink of the embodiment, the solvent of the copper hydride fine particle dispersion obtained by the above production method (for example, the solvent (A) which is a solvent having an SP value of 8 to 12) is used. Other solvents (that is, a solvent having an SP value of less than 8 or more than 12, hereinafter referred to as solvent (C)) may be used. That is, the conductive ink of the embodiment can be obtained by adjusting the solid content concentration and the viscosity of the copper hydride fine particle dispersion produced by the production method. In addition, by replacing the solvent of the copper hydride fine particle dispersion obtained by the above production method, that is, for example, replacing the solvent (A) with the solvent (C), and further adjusting the solid content concentration and viscosity A conductive ink in the form can be obtained. In either case, the conductive ink of the embodiment contains the protective agent that functions to disperse the copper hydride fine particles in the solvent, or the alkylamine (B) that is a dispersant as it is.
 水素化銅微粒子分散液の溶媒(A)を溶媒(C)に置換する方法としては、公知の溶媒置換方法を採用でき、例えば、溶媒(A)を減圧濃縮しつつ、溶媒(C)を添加する方法が挙げられる。 As a method of replacing the solvent (A) of the copper hydride fine particle dispersion with the solvent (C), a known solvent replacement method can be employed. For example, the solvent (C) is added while concentrating the solvent (A) under reduced pressure. The method of doing is mentioned.
 本発明の導電インクの溶媒(例えば、溶媒(A)または溶媒(C))としては、非水溶性の有機溶媒を使用する。なお、本明細書において、「非水溶性」とは、室温(20℃)における水100gへの溶解量が0.5g以下であることを意味する。溶媒は、前記アルキルアミン(B)との親和性の点から、極性の小さい有機溶媒が好ましい。また、溶媒は、導体を形成する際の加熱によって熱分解を起こさないものが好ましい。 As the solvent (for example, the solvent (A) or the solvent (C)) of the conductive ink of the present invention, a water-insoluble organic solvent is used. In the present specification, “water-insoluble” means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less. The solvent is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B). The solvent is preferably a solvent that does not cause thermal decomposition by heating when forming the conductor.
 溶媒としては、例えば、デカン(水に不溶。)、ドデカン(水に不溶。)、テトラデカン(水に不溶。)、デセン(水に不溶。)、ドデセン(水に不溶。)、テトラデセン(水に不溶。)、ジペンテン(水100gへの溶解量0.001g(20℃)。)、α-テルピネオール(水100gへの溶解量0.5g(20℃)。)、メシチレン(水に不溶。)等が挙げられる。なかでも、導電インクの乾燥性の制御、塗布性の制御が容易である点から、α-テルピネオール、デカン、ドデカン、テトラデカンが好ましい。
 溶媒は、1種のみを使用してもよく、2種以上を併用してもよい。
 導電インクに含まれる溶媒の含有量は、50~90質量%が好ましく、60~80質量%がより好ましい。
Examples of the solvent include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), tetradecene (in water). Insoluble.), Dipentene (dissolved in 100 g of water 0.001 g (20 ° C.)), α-terpineol (dissolved in 100 g of water 0.5 g (20 ° C.)), mesitylene (insoluble in water), etc. Is mentioned. Of these, α-terpineol, decane, dodecane, and tetradecane are preferable because the drying property and the coating property of the conductive ink can be easily controlled.
Only 1 type may be used for a solvent and it may use 2 or more types together.
The content of the solvent contained in the conductive ink is preferably 50 to 90% by mass, and more preferably 60 to 80% by mass.
<アルキルアミン>
 実施形態の導電インクにおいては、導電成分である水素化銅微粒子を前記溶媒中に分散する分散剤として、アルキルアミンが含有される。前記製造方法で製造される水素化銅微粒子分散液をそのままで、または溶媒置換して実施形態の導電インクとする場合には、製造工程で添加される前記アルキルアミン(B)が、導電インクにおける分散剤となる。実施形態の導電インクにおいては、このような態様に限定されず、別に分散剤としてアルキルアミンを添加してもよい。
<Alkylamine>
In the conductive ink of the embodiment, alkylamine is contained as a dispersant for dispersing copper hydride fine particles, which is a conductive component, in the solvent. When the copper hydride fine particle dispersion produced by the production method is used as it is or by replacing the solvent to obtain the conductive ink of the embodiment, the alkylamine (B) added in the production process is used in the conductive ink. Become a dispersant. The conductive ink of the embodiment is not limited to such an aspect, and an alkylamine may be added as a dispersant separately.
 分散剤であるアルキルアミンは、炭素数7以上のアルキル基を有し、かつ沸点が250℃以下のものである。アルキルアミンにおけるアルキル基の炭素数が7以上であれば、水素化銅微粒子の分散性が良好となる。アルキルアミンのアルキル基の炭素数は、沸点が高くなりすぎることを抑制する点から、11以下が好ましい。 The alkylamine as a dispersant has an alkyl group having 7 or more carbon atoms and has a boiling point of 250 ° C. or lower. If the carbon number of the alkyl group in the alkylamine is 7 or more, the dispersibility of the copper hydride fine particles will be good. The number of carbon atoms of the alkyl group of the alkylamine is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
 アルキルアミンの沸点が250℃以下であれば、導電インクを用いて導体を形成する際、150℃以下の加熱でもアルキルアミンが水素化銅微粒子表面から脱離し、揮発して体積抵抗率の低い導体を形成できる。アルキルアミンの沸点は、加熱時の脱離性および揮発性の点から、250℃以下が好ましく、200℃以下がより好ましい。また、アルキルアミンの沸点は、アルキル基の炭素数を7以上とする点から、通常は150℃以上が好ましい。 If the boiling point of the alkylamine is 250 ° C. or lower, when the conductor is formed using the conductive ink, the alkylamine is desorbed from the surface of the copper hydride fine particles even when heated at 150 ° C. or lower, and volatilizes. Can be formed. The boiling point of the alkylamine is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating. The boiling point of the alkylamine is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
 アルキルアミンのアルキル基は、水素化銅微粒子の分散安定性の点から、直鎖アルキル基が好ましいが、分岐アルキル基であってもよい。 The alkyl group of the alkylamine is preferably a linear alkyl group from the viewpoint of dispersion stability of the copper hydride fine particles, but may be a branched alkyl group.
 アルキルアミンとしては、n-ヘプチルアミン(沸点157℃)、n-オクチルアミン(沸点176℃)、n-ノニルアミン(沸点201℃)、1-アミノデカン(沸点220℃)、1-アミノウンデカン(沸点242℃)が好ましく、n-ヘプチルアミン、n-オクチルアミンがより好ましい。アルキルアミンは、1種を単独で使用してもよく、2種以上を併用してもよい。 Alkylamines include n-heptylamine (boiling point 157 ° C), n-octylamine (boiling point 176 ° C), n-nonylamine (boiling point 201 ° C), 1-aminodecane (boiling point 220 ° C), 1-aminoundecane (boiling point 242). ° C), and n-heptylamine and n-octylamine are more preferable. An alkylamine may be used individually by 1 type, and may use 2 or more types together.
 アルキルアミンの含有量は、導電インク全体の2~10質量%が好ましい。アルキルアミンの含有量が前記範囲内であれば、水素化銅微粒子の良好な分散性が得られる。 The content of alkylamine is preferably 2 to 10% by mass of the entire conductive ink. If the content of the alkylamine is within the above range, good dispersibility of the copper hydride fine particles can be obtained.
<シランカップリング剤>
 実施形態の導電インクに含有されるシランカップリング剤は、分子中に、有機材料に対して結合性(反応性)を有する官能基と無機材料に対して結合性(反応性)を有する官能基との2種以上の官能基を有するシラン化合物であり、有機材料と無機材料とを結合する仲介役としての働きをする。
<Silane coupling agent>
The silane coupling agent contained in the conductive ink according to the embodiment includes a functional group having a binding property (reactivity) to an organic material and a functional group having a binding property (reactivity) to an inorganic material in a molecule. The silane compound having two or more kinds of functional groups, and serves as an intermediary for binding the organic material and the inorganic material.
 シランカップリング剤としては、
 式(1):R SiR 4-m-n、または
 式(2):R SiR-S-RSiR
で表わされるシラン化合物を使用できる。
As a silane coupling agent,
Formula (1): R 1 m R 2 n SiR 3 4-mn , or Formula (2): R 4 3 SiR 5 —S k —R 5 SiR 4 3
The silane compound represented by these can be used.
 ここで、式(1)において、Rは、グリシドキシアルキル基、イソシアネートアルキル基、メルカプトアルキル基、アミノアルキル基、N-アミノアルキル-アミノアルキル基から選ばれる1価の有機基であり、Rは、アルキル基または水素原子であり、Rは、アルコキシル基である。RおよびRにおけるアルキル基の炭素数は1から6が好ましい。また、Rのアルコキシル基は、炭素数が1~4のものが好ましく、特にメトキシ基、エトキシ基が好ましい。そして、mは1から3の整数、nは0から2の整数であり、m+nは3以下である。
 このようなシランカップリング剤としては、具体的には、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン等が挙げられる。
Here, in the formula (1), R 1 is a monovalent organic group selected from a glycidoxyalkyl group, an isocyanate alkyl group, a mercaptoalkyl group, an aminoalkyl group, and an N-aminoalkyl-aminoalkyl group, R 2 is an alkyl group or a hydrogen atom, and R 3 is an alkoxyl group. The number of carbon atoms of the alkyl group in R 1 and R 2 is preferably 1 to 6. Further, the alkoxy group of R 3 preferably has 1 to 4 carbon atoms, particularly preferably a methoxy group or an ethoxy group. M is an integer from 1 to 3, n is an integer from 0 to 2, and m + n is 3 or less.
Specific examples of such silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3 -Aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane and the like.
 また、式(2)において、Rは炭素数が1~4のアルコキシル基であり、Rは炭素数が1~4のアルキレン基であり、kは1から4の整数である。
 このようなシランカップリング剤の具体例としては、ビス(トリエトキシシリルプロピル)テトラスルフィド等が挙げられる。
In the formula (2), R 4 is an alkoxyl group having 1 to 4 carbon atoms, R 5 is an alkylene group having 1 to 4 carbon atoms, and k is an integer of 1 to 4.
Specific examples of such silane coupling agents include bis (triethoxysilylpropyl) tetrasulfide.
 シランカップリング剤の含有量は、前記した有機溶媒に対して0.01~2.00質量%の割合であることが好ましく、0.02~2.00質量%の割合であることがより好ましい。シランカップリング剤の含有量が0.01質量%未満の場合には、この導電インクにより形成される導体の基材に対する密着性を向上させる効果が得られない。また、シランカップリング剤の含有量が2.00質量%を超える場合には、過剰なシランカップリング剤が水素化銅粒子間に存在することとなり、配線の比抵抗が上昇し、導電性が不良となるおそれがあり好ましくない。 The content of the silane coupling agent is preferably 0.01 to 2.00% by mass, more preferably 0.02 to 2.00% by mass with respect to the organic solvent. . When the content of the silane coupling agent is less than 0.01% by mass, the effect of improving the adhesion of the conductor formed by the conductive ink to the base material cannot be obtained. In addition, when the content of the silane coupling agent exceeds 2.00% by mass, excess silane coupling agent is present between the copper hydride particles, the specific resistance of the wiring is increased, and the conductivity is increased. There is a risk of failure, which is not preferable.
 本発明の実施形態の導電インクは、前記した非水溶性の有機溶媒、水素化銅微粒子、分散剤であるアルキルアミン、およびシランカップリング剤以外に、その他の添加剤を含有していてもよい。その他の添加剤としては、消泡剤、湿潤分散剤、レベリング剤、乾き防止剤、レオロジーコントロール剤、密着性付与助剤等が挙げられる。 The conductive ink of the embodiment of the present invention may contain other additives in addition to the above-described water-insoluble organic solvent, copper hydride fine particles, alkylamine as a dispersant, and silane coupling agent. . Examples of other additives include antifoaming agents, wetting and dispersing agents, leveling agents, anti-drying agents, rheology control agents, and adhesion imparting aids.
 実施形態の導電インクの固形分(水素化銅微粒子)の濃度は、要求される粘度によっても異なるが、10~50質量%が好ましく、20~40質量%がより好ましい。 The concentration of the solid content (copper hydride fine particles) of the conductive ink of the embodiment varies depending on the required viscosity, but is preferably 10 to 50% by mass, more preferably 20 to 40% by mass.
 実施形態の導電インクの粘度は、5~60mPa・sが好ましく、8~40mPa・sがより好ましい。導電インクの粘度が5mPa・s以上であれば、精度良くインクを吐出できる。導電インクの粘度が60mPa・s以下であれば、入手しうるほとんどのインクジェットヘッドに適用可能となる。 The viscosity of the conductive ink of the embodiment is preferably 5 to 60 mPa · s, and more preferably 8 to 40 mPa · s. If the viscosity of the conductive ink is 5 mPa · s or more, the ink can be ejected with high accuracy. If the viscosity of the conductive ink is 60 mPa · s or less, it can be applied to almost all available inkjet heads.
 実施形態の導電インクの表面張力は、18~45dyn/cmが好ましく、20~40dyn/cmがより好ましい。導電インクの表面張力が18dyn/cm以上であれば、精度良くインクを吐出できる。導電インクの表面張力が45dyn/cm以下であれば、入手し得るほとんどのインクジェットヘッドに適用可能となる。
 なお、本明細書において、導電インクの粘度は、B型粘度計(東機産業社製、装置名:TVB35L)で20℃で測定した値である。表面張力は表面張力計(協和界面科学社製、装置名:DY-500)により測定した値である。
The surface tension of the conductive ink of the embodiment is preferably 18 to 45 dyn / cm, and more preferably 20 to 40 dyn / cm. If the surface tension of the conductive ink is 18 dyn / cm or more, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is 45 dyn / cm or less, it can be applied to almost all available inkjet heads.
In this specification, the viscosity of the conductive ink is a value measured at 20 ° C. with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L). The surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
 実施形態の導電インクでは、加熱により、水素化銅微粒子に結合し配位したアルキルアミンが脱離する。そして、アルキルアミンが脱離した水素化銅は、例えば、60℃以上の加熱によって金属銅に変化し、こうして生じた金属銅微粒子同士が溶融、結合されて導体が形成される。 In the conductive ink of the embodiment, the alkylamine bonded to and coordinated with the copper hydride fine particles is released by heating. Then, the copper hydride from which the alkylamine has been released is changed into, for example, metal copper by heating at 60 ° C. or higher, and the metal copper fine particles thus produced are melted and bonded to form a conductor.
 本発明の実施形態の導電インクによれば、基材との密着性が良好で、体積抵抗率が小さく導電性に優れた導体を形成できる。これは、実施形態の導電インクに含有される特定の官能基を有するシランカップリング剤が、樹脂等の有機材料からなる基材と水素化銅微粒子の両方に対して充分な結合性を有し、かつ水素化銅微粒子に対する結合性が、分散剤であるアルキルアミンよりは小さいことに起因するものと推定される。 According to the conductive ink of the embodiment of the present invention, it is possible to form a conductor having good adhesion to the base material, small volume resistivity and excellent conductivity. This is because the silane coupling agent having a specific functional group contained in the conductive ink of the embodiment has sufficient binding properties to both a base material made of an organic material such as a resin and copper hydride fine particles. In addition, it is presumed that the binding property to the copper hydride fine particles is lower than that of the alkylamine as the dispersant.
 以下、本発明に使用される特定の官能基を有するシランカップリング剤として、3-メルカプトプロピルトリメトキシシランを例に挙げて、基材との密着性向上の機構を説明する。なお、水素化銅微粒子に対する結合性は、金属表面との親和性あるいは反応性ということもできる。 Hereinafter, the mechanism for improving the adhesion to the substrate will be described by taking 3-mercaptopropyltrimethoxysilane as an example of the silane coupling agent having a specific functional group used in the present invention. The binding property to the copper hydride fine particles can also be referred to as affinity or reactivity with the metal surface.
 3-メルカプトプロピルトリメトキシシランは、無機材料である金属と親和性、反応性を有する加水分解基であるメトキシ基と、有機材料と結合性を有する有機官能基であるメルカプト基とを有する。
 3-メルカプトプロピルトリメトキシシラン(以下、シランカップリング剤S1と示す。)では、メトキシ基の水素化銅微粒子との結合性が、アルキルアミンにおけるアミノ基の水素化銅微粒子との結合性より小さいので、導電インクの状態では、図1(a)に示すように、水素化銅微粒子1の周りに分散剤であるアルキルアミン2が結合して配位されている。そのため、水素化銅微粒子1は溶媒中で安定した分散状態で存在する。このような分散剤の配位がないと、水素化銅微粒子1は凝集し沈殿しやすい。シランカップリング剤S1は、溶媒中にフリーの状態で存在する。
3-mercaptopropyltrimethoxysilane has a methoxy group which is a hydrolyzable group having affinity and reactivity with a metal which is an inorganic material, and a mercapto group which is an organic functional group which has a binding property with an organic material.
In 3-mercaptopropyltrimethoxysilane (hereinafter, referred to as silane coupling agent S1), the binding ability of methoxy group to copper hydride fine particles is smaller than the binding ability of amino group to copper hydride fine particles of alkylamine. Therefore, in the state of the conductive ink, as shown in FIG. 1A, the alkylamine 2 as a dispersant is coordinated and coordinated around the copper hydride fine particles 1. Therefore, the copper hydride fine particles 1 exist in a stable dispersion state in the solvent. Without such a dispersant coordination, the copper hydride fine particles 1 tend to aggregate and precipitate. The silane coupling agent S1 exists in a solvent in a free state.
 このような導電インクが塗布・乾燥された状態(導電インクの塗布層)では、図1(b)に示すように、アルキルアミン2により外周が保護された水素化銅微粒子1が、塗布層中に存在し、シランカップリング剤S1は、メルカプト基を介して基材3と結合している。 In the state where the conductive ink is applied and dried (conductive ink coating layer), as shown in FIG. 1B, the copper hydride fine particles 1 whose outer periphery is protected by the alkylamine 2 are present in the coating layer. The silane coupling agent S1 is bonded to the substrate 3 through a mercapto group.
 次いで、加熱途中では、図1(c)に示すように、アルキルアミン2は水素化銅微粒子1の外周から脱離し始め、それとともにシランカップリング剤S1がメトキシ基を介して水素化銅微粒子1に結合する。 Then, in the middle of heating, as shown in FIG. 1 (c), the alkylamine 2 begins to desorb from the outer periphery of the copper hydride fine particles 1, and at the same time, the silane coupling agent S1 passes through the methoxy group and the copper hydride fine particles 1 To join.
 そして、加熱後の状態では、図1(d)に示すように、アルキルアミン2は水素化銅微粒子1の表面から完全に脱離して揮発する。そして、水素化銅微粒子1は、アルキルアミン2に代わり外周に結合されたシランカップリング剤S1を介して基材3と結合されることで、基材3との密着性が確保される。それとともに水素化銅は金属銅に変化し、生じた金属銅微粒子同士が溶融、結合されて、基材3との密着性が良好な導体が形成される。 In the state after heating, as shown in FIG. 1 (d), the alkylamine 2 is completely desorbed from the surface of the copper hydride fine particles 1 and volatilizes. And the copper hydride microparticles | fine-particles 1 are ensured adhesiveness with the base material 3 by couple | bonding with the base material 3 through the silane coupling agent S1 couple | bonded with the outer periphery instead of the alkylamine 2. FIG. At the same time, the copper hydride is changed to metallic copper, and the produced metallic copper fine particles are melted and bonded together to form a conductor having good adhesion to the substrate 3.
 これに対して、水素化銅微粒子との結合性がアルキルアミンのアミノ基より大きい加水分解性基を有するシランカップリング剤S2を使用した場合には、以下に示す理由で、得られる導体の体積抵抗率が大きくなると推定される。 On the other hand, when the silane coupling agent S2 having a hydrolyzable group larger than the amino group of the alkylamine is used for binding to the copper hydride fine particles, the volume of the obtained conductor is as follows. It is estimated that the resistivity increases.
 すなわち、シランカップリング剤S2の水素化銅微粒子との結合性がアルキルアミンのアミノ基の結合性より大きい場合、導電インクの状態では、図2(a)に示すように、水素化銅微粒子1の周りに、より結合性が大きいシランカップリング剤S2が結合し、この状態で水素化銅微粒子1は溶媒中に分散している。分散剤であるアルキルアミン2はフリーの状態で溶媒中に存在している。 That is, when the binding property of the silane coupling agent S2 to the copper hydride fine particles is larger than the binding property of the amino group of the alkylamine, as shown in FIG. A silane coupling agent S2 having a higher binding property is bonded around the copper hydride particles, and the copper hydride fine particles 1 are dispersed in the solvent in this state. Alkylamine 2 as a dispersant is present in the solvent in a free state.
 このような導電インクが塗布・乾燥された状態(導電インクの塗布層)では、図2(b)に示すように、シランカップリング剤S2が外周に結合された状態の水素化銅微粒子1が、塗布層中に存在する。シランカップリング剤S2は基材3との間にも結合性を有するので、このシランカップリング剤S2を介して、水素化銅微粒子1の基材3との密着性が確保されている。アルキルアミン2も塗布層中に存在する。 In a state where the conductive ink is applied and dried (conductive ink coating layer), as shown in FIG. 2B, the copper hydride fine particles 1 in a state where the silane coupling agent S2 is bonded to the outer periphery are formed. , Present in the coating layer. Since the silane coupling agent S2 also has bonding properties with the base material 3, the adhesion of the copper hydride fine particles 1 to the base material 3 is ensured through the silane coupling agent S2. Alkylamine 2 is also present in the coating layer.
 加熱途中では、図2(c)に示すように、塗布層中に存在するアルキルアミン2は揮発するが、シランカップリング剤S2は水素化銅微粒子1の外周から脱離せず、そのまま水素化銅微粒子1の周りに存在する。そして、加熱後、図2(d)に示すように、シランカップリング剤S2は水素化銅微粒子1の表面に残存したままである。したがって、水素化銅から生じた金属銅微粒子同士の溶融、結合が、シランカップリング剤S2により阻害されるので、形成される導体の体積抵抗率が高くなり、導電性の良好な導体が得られない。 In the middle of heating, as shown in FIG. 2C, the alkylamine 2 present in the coating layer volatilizes, but the silane coupling agent S2 does not desorb from the outer periphery of the copper hydride fine particles 1 and remains as it is. Present around the microparticles 1. Then, after the heating, as shown in FIG. 2 (d), the silane coupling agent S 2 remains on the surface of the copper hydride fine particles 1. Therefore, melting and bonding between the metal copper fine particles generated from the copper hydride are hindered by the silane coupling agent S2, so that the volume resistivity of the formed conductor is increased and a conductor having good conductivity is obtained. Absent.
[導体付き基材およびその製造方法]
 本発明の実施形態の導体付き基材は、基材上に上述した導電インクの塗布層を加熱して形成された導体を有する。この導体付き基材は、実施形態の導電インクを基材の表面に塗布して塗布層を形成した後、加熱して揮発成分を除去するとともに、水素化銅から変化した金属銅微粒子同士を溶融、結合して導体を形成することにより、製造できる。
[Substrate with conductor and method for producing the same]
The base material with a conductor according to an embodiment of the present invention has a conductor formed by heating the above-described conductive ink coating layer on the base material. This base material with conductor is formed by applying the conductive ink of the embodiment to the surface of the base material to form a coating layer, and then heating to remove volatile components and melt the metallic copper fine particles changed from copper hydride. Can be manufactured by bonding to form a conductor.
 基材としては、ガラス基板、ポリイミド、ポリエチレンフタレート(PET)、ポリエチレンナフタレート(PEN)等のプラスチックからなるフィルム状基材や基板、繊維強化複合材料からなる基板(例えば、ガラス繊維強化プラスチック基板。)等を使用できる。 As the substrate, a film substrate or substrate made of plastic such as glass substrate, polyimide, polyethylene phthalate (PET), polyethylene naphthalate (PEN), or substrate made of fiber reinforced composite material (for example, glass fiber reinforced plastic substrate). ) Etc. can be used.
 導体インクを塗布する方法としては、インクジェット印刷法、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。なかでも、インクジェット印刷が特に好ましい。 Examples of the method for applying the conductive ink include known methods such as an inkjet printing method, a screen printing method, a roll coating method, an air knife coating method, a blade coating method, a bar coating method, a gravure coating method, a die coating method, and a slide coating method. It is done. Of these, inkjet printing is particularly preferred.
 インクジェット印刷の場合、所望のパターンの導体の形成が容易な点から、インク吐出孔の孔径を0.5~100μmとし、基材上に付着した際の導電インクの直径が1~100μmとなるように調整することが好ましい。 In the case of inkjet printing, from the viewpoint of easy formation of a conductor having a desired pattern, the diameter of the ink ejection holes is set to 0.5 to 100 μm, and the diameter of the conductive ink when adhered on the substrate is set to 1 to 100 μm. It is preferable to adjust to.
 基材上に導電インクを塗布した後の加熱温度は、60~300℃が好ましく、60~150℃がより好ましい。
 加熱時間は、導電インクの溶媒である非水溶性の有機溶媒、銅(II)塩から遊離した酸、および水素化銅微粒子表面から脱離したアルキルアミン等を揮発させて導体が形成できる時間を、加熱温度に応じて設定すればよい。
 また、加熱は、形成する導体の酸化を抑制しやすい点から、窒素雰囲気等の不活性雰囲気下で行うことが好ましい。
The heating temperature after applying the conductive ink on the substrate is preferably 60 to 300 ° C, more preferably 60 to 150 ° C.
The heating time is the time that the conductor can be formed by volatilizing the water-insoluble organic solvent that is the solvent of the conductive ink, the acid liberated from the copper (II) salt, and the alkylamine released from the surface of the copper hydride fine particles. What is necessary is just to set according to heating temperature.
Moreover, it is preferable to perform heating in inert atmosphere, such as nitrogen atmosphere, from the point which is easy to suppress the oxidation of the conductor to form.
 こうして形成される導体の厚さは、安定な導電性を確保しかつ配線形状を維持し易くする観点から、0.1~5.0μmが好ましく、0.2~2.0μmがより好ましい。また、導体の体積抵抗率は、3~35μΩ・cmが好ましく、3~20μΩ・cmがより好ましい。導体の体積抵抗率が35μΩ・cmを超えると、電子機器用の導体として充分な導電性を得られないおそれがある。
 導体の体積抵抗率は、四探針式抵抗計(例えば、三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体の表面抵抗値を測定し、測定された表面抵抗値に導体の厚さを乗じることで求めることができる。
The thickness of the conductor thus formed is preferably from 0.1 to 5.0 μm, more preferably from 0.2 to 2.0 μm, from the viewpoint of ensuring stable conductivity and easily maintaining the wiring shape. The volume resistivity of the conductor is preferably 3 to 35 μΩ · cm, and more preferably 3 to 20 μΩ · cm. When the volume resistivity of the conductor exceeds 35 μΩ · cm, there is a possibility that sufficient conductivity as a conductor for electronic equipment cannot be obtained.
The volume resistivity of the conductor was determined by measuring the surface resistance value of the conductor using a four-probe resistance meter (for example, manufactured by Mitsubishi Yuka Co., Ltd., device name: Loresta GP MCP-T610). It can be determined by multiplying the value by the conductor thickness.
 以上説明した導体付き基材の製造方法によれば、150℃以下の加熱でも導体を形成できるので、PET、PEN等の耐熱性が低い基材を使用する場合でも、基材との密着性が良好で体積抵抗率の小さい導体を有する導体付き基材が得られる。 According to the manufacturing method of a base material with a conductor explained above, since a conductor can be formed even by heating at 150 ° C. or less, even when using a base material with low heat resistance such as PET, PEN, etc., the adhesion to the base material is good. A conductor-equipped substrate having a conductor having a good volume resistivity is obtained.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の実施例に限定されない。例1~3は実施例であり、例4~6は比較例である。実施例および比較例における微粒子の同定、微粒子の平均粒子径の測定、導体の厚さの測定、導体の体積抵抗率の測定の各方法、および導体の剥離性試験の方法を、それぞれ以下に示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples. Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples. Examples of identification of fine particles, measurement of average particle diameter of fine particles, measurement of conductor thickness, measurement of conductor volume resistivity, and method of conductor peelability test in Examples and Comparative Examples are shown below. .
[微粒子の同定]
 微粒子の同定は、X線回折装置(リガク機器社製、装置名:RINT2500)を使用して行った。
[Identification of fine particles]
The identification of the fine particles was performed using an X-ray diffraction apparatus (manufactured by Rigaku Instruments Co., Ltd., apparatus name: RINT2500).
[微粒子の平均粒子径]
 無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(日立製作所社製、装置名:H-9000)または走査型電子顕微鏡(日立製作所社製、装置名:S-800)を使用して測定し、それらの値を平均して平均粒子径を求めた。粒子が球形でない場合は、最大粒径を測定して平均粒子径を求めるものとする。
[Average particle size of fine particles]
Using a transmission electron microscope (manufactured by Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (manufactured by Hitachi, Ltd., device name: S-800) The average particle size was determined by averaging the values. If the particles are not spherical, the maximum particle size is measured to determine the average particle size.
[導体の厚さ]
 接触式膜厚測定装置(Veeco社製、装置名:DEKTAK150)を使用して測定した。
[Conductor thickness]
It measured using the contact-type film thickness measuring apparatus (the product made by Veeco, apparatus name: DEKTAK150).
[導体の体積抵抗率]
 四探針式抵抗計(三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体の表面抵抗値を測定した。測定された表面抵抗値に導体の厚さを乗じて、体積抵抗率を求めた。
[Volume resistivity of conductor]
Using a four-probe resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., apparatus name: Loresta GP MCP-T610), the surface resistance value of the conductor was measured. The volume resistivity was determined by multiplying the measured surface resistance value by the thickness of the conductor.
[導体の剥離性試験]
 導体表面にセロハンテープ(ニチバン社製、商品名:ニチバン18mm)を貼った後、セロハンテープを瞬間的に引き剥がして、導体の剥離性を評価した。セロハンテープは、上から消しゴムで擦り導体の表面に接着させた。セロハンテープテープを接着させてから1~2分後に、テープの端部を持って導体の膜面に直角に保ち、瞬間的に引き剥がした。
 テープを引き剥がした後、導体表面を観察し判定を行った。導体の剥離が全く観察されない場合を◎、導体の一部に剥離が観察される場合を△、大部分の導体が剥離される場合を×と評価した。
[Peelability test of conductor]
A cellophane tape (manufactured by Nichiban Co., Ltd., trade name: Nichiban 18 mm) was applied to the conductor surface, and then the cellophane tape was peeled off instantaneously to evaluate the peelability of the conductor. The cellophane tape was rubbed from the top with an eraser and adhered to the surface of the conductor. One to two minutes after the cellophane tape was adhered, the tape was held at a right angle to the conductor film surface and peeled off instantaneously.
After peeling off the tape, the conductor surface was observed and judged. A case where no peeling of the conductor was observed was evaluated as ◎, a case where peeling was observed in a part of the conductor was evaluated as Δ, and a case where most of the conductor was peeled off was evaluated as ×.
[例1]
(水素化銅粒子の製造)
 ガラス容器に、トルエン300gと、銅(II)塩としてギ酸銅(II)四水和物30g、およびn-ヘプチルアミン(沸点157℃)15gを加えて撹拌した。次いで、ヒドリド系還元剤であるNaBHの4.5gを添加し、撹拌することによって、微粒子がトルエン中に分散した黒色の分散液を得た。
[Example 1]
(Manufacture of copper hydride particles)
To a glass container, 300 g of toluene, 30 g of copper (II) formate tetrahydrate as a copper (II) salt, and 15 g of n-heptylamine (boiling point 157 ° C.) were added and stirred. Next, 4.5 g of NaBH 4 which is a hydride reducing agent was added and stirred to obtain a black dispersion liquid in which fine particles were dispersed in toluene.
 得られた分散液中の微粒子を回収し、X線回折で同定を行ったところ、水素化銅微粒子であることが確認された。水素化銅微粒子(一次粒子)の平均一次粒子径は10nmであった。また、得られた水素化銅微粒子分散液の固形分濃度は4質量%であった。 When the fine particles in the obtained dispersion were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average primary particle diameter of the copper hydride fine particles (primary particles) was 10 nm. Further, the solid content concentration of the obtained copper hydride fine particle dispersion was 4% by mass.
(導電インクの調製)
 得られた水素化銅微粒子分散液に対して、減圧下で溶媒置換を行い、導電インクを調製した。すなわち、前記水素化銅微粒子分散液を減圧濃縮した後、ドデカン(沸点216.3℃、20℃での表面張力25.44dyn/cm)に0.1質量%の3-メルカプトプロピルトリメトキシシランを添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となるようにした。
(Preparation of conductive ink)
The obtained copper hydride fine particle dispersion was subjected to solvent substitution under reduced pressure to prepare a conductive ink. That is, after the copper hydride fine particle dispersion was concentrated under reduced pressure, 0.1% by mass of 3-mercaptopropyltrimethoxysilane was added to dodecane (boiling point 216.3 ° C., surface tension 25.44 dyn / cm at 20 ° C.). The added solvent was added to perform solvent substitution so that the solid content concentration of the copper hydride fine particles was 30% by mass.
(導体パターンの形成)
 前記で得られた導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、長さ5cm、幅2mmの配線パターンをPETフィルム上に印刷した。印刷後のPETフィルムを、窒素雰囲気下、150℃で1時間加熱し、導体付きPETフィルムを得た。導体の厚さは0.51μm、体積抵抗率は25μΩ・cmであった。
(Conductor pattern formation)
Using the conductive ink obtained above, a wiring pattern having a length of 5 cm and a width of 2 mm was printed on a PET film by an industrial ink jet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The printed PET film was heated at 150 ° C. for 1 hour in a nitrogen atmosphere to obtain a PET film with a conductor. The thickness of the conductor was 0.51 μm, and the volume resistivity was 25 μΩ · cm.
[例2]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、ドデカンに0.1質量%の3-メルカプトプロピルメチルジメトキシシランを添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となる導電インクを調製した。
[Example 2]
After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, 0.1% by mass of 3-mercaptopropylmethyldimethoxysilane was added to dodecane and the solvent was replaced. A conductive ink having a partial concentration of 30% by mass was prepared.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンをPETフィルム上に印刷して、導体付きPETフィルムを得た。導体の厚さは0.53μm、体積抵抗率は17μΩ・cmであった。 Then, using the obtained conductive ink, a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor. The thickness of the conductor was 0.53 μm, and the volume resistivity was 17 μΩ · cm.
[例3]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、デカン(沸点174.1℃、20℃での表面張力23.92dyn/cm)に0.1質量%の3-アミノプロピルトリメトキシシランを添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となる導電インクを調製した。
[Example 3]
After concentrating the copper hydride fine particle dispersion shown in Example 1 under reduced pressure, 0.1 mass% of 3-aminopropyltrimethoxy was added to decane (boiling point 174.1 ° C., surface tension 23.92 dyn / cm at 20 ° C.). Solvent substitution was performed by adding the silane added to prepare a conductive ink having a solid content concentration of copper hydride fine particles of 30% by mass.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンをPETフィルム上に印刷して、導体付きPETフィルムを得た。導体の厚さは0.55μm、体積抵抗率は11μΩ・cmであった。 Then, using the obtained conductive ink, a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor. The thickness of the conductor was 0.55 μm, and the volume resistivity was 11 μΩ · cm.
[例4]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、ドデカンを溶媒として添加し、水素化銅粒子の固形分濃度が30質量%となるように、溶媒置換を行った。
[Example 4]
After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, dodecane was added as a solvent, and solvent substitution was performed so that the solid content concentration of the copper hydride particles was 30% by mass.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンをPETフィルム上に印刷して、導体付きPETフィルムを得た。導体の厚さは0.56μm、体積抵抗率は20μΩ・cmであった。 Then, using the obtained conductive ink, a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor. The thickness of the conductor was 0.56 μm, and the volume resistivity was 20 μΩ · cm.
[例5]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、デカンに0.1質量%の3-アクリロキシプロピルトリメトキシシランを添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となる導電インクを調製した。
[Example 5]
After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, 0.1 mass% of 3-acryloxypropyltrimethoxysilane added to decane was added to perform solvent substitution. A conductive ink having a solid content concentration of 30% by mass was prepared.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンをPETフィルム上に印刷して、導体付きPETフィルムを得た。導体の厚さは0.51μm、体積抵抗率は24μΩ・cmであった。
[例6]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、デカンに0.1質量%の3-メタクリロキシプロピルトリエトキシシランを添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となる導電インクを調製した。
Next, using the obtained conductive ink, a wiring pattern was printed on a PET film in the same manner as in Example 1 to obtain a PET film with a conductor. The thickness of the conductor was 0.51 μm, and the volume resistivity was 24 μΩ · cm.
[Example 6]
After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, 0.1 mass% of 3-methacryloxypropyltriethoxysilane added to decane was added to perform solvent substitution. A conductive ink having a solid content concentration of 30% by mass was prepared.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンをPETフィルム上に印刷して、導体付きPETフィルムを得た。導体の厚さは0.53μm、体積抵抗率は35μΩ・cmであった。 Then, using the obtained conductive ink, a wiring pattern was printed on the PET film in the same manner as in Example 1 to obtain a PET film with a conductor. The thickness of the conductor was 0.53 μm, and the volume resistivity was 35 μΩ · cm.
 次に、例1~例6で得られた導体付きPETフィルムについて、導体のテープ剥離性試験を行った。試験結果を体積抵抗率の測定結果等とともに表1に示す。 Next, a conductor tape peelability test was conducted on the PET films with conductors obtained in Examples 1 to 6. The test results are shown in Table 1 together with the measurement results of the volume resistivity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、分散剤である沸点が250℃以下のアルキルアミンとともに、メルカプト基またはアミノ基とアルコキシル基を有するシランカップリング剤が配合された導電インクを用いた例1~3では、PET基材との密着性が充分で、体積抵抗率の小さい導体を形成できることがわかる。 From Table 1, in Examples 1 to 3 using a conductive ink in which a silane coupling agent having a mercapto group or an amino group and an alkoxyl group is blended with an alkylamine having a boiling point of 250 ° C. or less as a dispersant, It can be seen that a conductor having a small volume resistivity can be formed.
 これに対して、シランカップリング剤を含有しない導電インクを使用した例4では、形成された導体とPET基材との間の密着性が充分でなく、テープ剥離試験で導体の大部分に剥離が観察される。 On the other hand, in Example 4 in which the conductive ink containing no silane coupling agent was used, the adhesion between the formed conductor and the PET substrate was not sufficient, and the tape peel test peeled off most of the conductor. Is observed.
 また、メルカプト基またはアミノ基を持たず、アクリロキシ基またはメタクリロキシ基を有するシランカップリング剤を使用した例5および例6の導電インクでは、このシランカップリング剤がPET基材との間の密着性向上に寄与することが少なく、テープ剥離試験で導体の一部または大部分に剥離が観察される。特に、シランカップリング剤として3-メタクリロキシプロピルトリエトキシシランを使用した例6の導電インクでは、形成された導体の体積抵抗率も大きくなり、充分な導電性が得らないことがわかる。 Further, in the conductive inks of Example 5 and Example 6 using a silane coupling agent having no mercapto group or amino group and having an acryloxy group or a methacryloxy group, the adhesion between the silane coupling agent and the PET base material There is little contribution to improvement, and peeling is observed in part or most of the conductor in the tape peeling test. In particular, it can be seen that in the conductive ink of Example 6 using 3-methacryloxypropyltriethoxysilane as the silane coupling agent, the volume resistivity of the formed conductor increases and sufficient conductivity cannot be obtained.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2012年3月21日出願の日本特許出願2012-063430に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-063430 filed on March 21, 2012, the contents of which are incorporated herein by reference.
 本発明の導電インクによれば、基材との密着性が良好で、体積抵抗率の小さい導体を形成できる。また、本発明の導体付き基材の製造方法によれば、基材上に密着性が良好で体積抵抗率の小さい導体を有する導体付き基材が得られる。そして、得られた導体付き基材は、信頼性の高い配線基板として好適に使用できる。 According to the conductive ink of the present invention, it is possible to form a conductor having good adhesion to the substrate and having a small volume resistivity. Moreover, according to the manufacturing method of the base material with a conductor of this invention, the base material with a conductor which has a favorable adhesiveness and a small volume resistivity on a base material is obtained. And the obtained base material with a conductor can be used conveniently as a highly reliable wiring board.
1…水素化銅微粒子、2…アルキルアミン、3…基材、S1,S2…シランカップリング剤 DESCRIPTION OF SYMBOLS 1 ... Copper hydride fine particle, 2 ... Alkylamine, 3 ... Base material, S1, S2 ... Silane coupling agent

Claims (6)

  1.  非水溶性の有機溶媒と、
     前記有機溶媒中に分散された水素化銅微粒子と、
     炭素数7以上のアルキル基を有する沸点が250℃以下のアルキルアミンと、
     式(1):R SiR 4-m-n
    (式(1)において、Rは、グリシドキシアルキル基、イソシアネートアルキル基、メルカプトアルキル基、アミノアルキル基、N-アミノアルキル-アミノアルキル基から選ばれる1価の有機基であり、Rは、アルキル基または水素原子であり、Rは、アルコキシル基である。mは1から3の整数、nは0から2の整数であり、m+nは3以下である。)、または
     式(2):R SiR-S-RSiR
    (式(2)において、Rはアルコキシル基であり、Rはアルキレン基であり、kは1から4の整数である。)で表わされるシランカップリング剤と、
    を含有することを特徴とする導電インク。
    A water-insoluble organic solvent,
    Copper hydride fine particles dispersed in the organic solvent;
    An alkylamine having an alkyl group having 7 or more carbon atoms and a boiling point of 250 ° C. or lower;
    Formula (1): R 1 m R 2 n SiR 3 4-mn
    (In the formula (1), R 1, glycidoxy group, an isocyanate group, a mercaptoalkyl group, an aminoalkyl group, N- aminoalkyl - is a monovalent organic group selected from an amino group, R 2 Is an alkyl group or a hydrogen atom, R 3 is an alkoxyl group, m is an integer of 1 to 3, n is an integer of 0 to 2, and m + n is 3 or less. ): R 4 3 SiR 5 —S k —R 5 SiR 4 3
    (In the formula (2), R 4 is an alkoxyl group, R 5 is an alkylene group, and k is an integer of 1 to 4),
    A conductive ink comprising:
  2.  前記水素化銅微粒子の含有割合は、10~50質量%である請求項1に記載の導電インク。 The conductive ink according to claim 1, wherein the content of the copper hydride fine particles is 10 to 50% by mass.
  3.  前記アルキルアミンの含有割合は、2~10質量%である請求項1または2に記載の導電インク。 The conductive ink according to claim 1 or 2, wherein a content ratio of the alkylamine is 2 to 10% by mass.
  4.  前記シランカップリング剤の含有割合は、有機溶媒に対して0.01~2.00質量%である請求項1乃至3のいずれか1項に記載の導電インク。 The conductive ink according to any one of claims 1 to 3, wherein a content ratio of the silane coupling agent is 0.01 to 2.00 mass% with respect to the organic solvent.
  5.  前記水素化銅微粒子の平均一次粒子径は、100nm以下である請求項1乃至4のいずれか1項に記載の導電インク。 The conductive ink according to any one of claims 1 to 4, wherein an average primary particle diameter of the copper hydride fine particles is 100 nm or less.
  6.  基材を準備する工程と、
     前記基材上に、請求項1乃至5のいずれか1項に記載の導電インクの塗布層を形成する工程と、
     前記塗布層を加熱して、銅を含む導体を形成する工程と
     を有することを特徴とする導体付き基材の製造方法。
    Preparing a substrate;
    Forming a conductive ink coating layer according to any one of claims 1 to 5 on the substrate;
    And a step of heating the coating layer to form a conductor containing copper.
PCT/JP2013/057525 2012-03-21 2013-03-15 Conductive ink and production method for base material including conductor WO2013141172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-063430 2012-03-21
JP2012063430A JP2015110682A (en) 2012-03-21 2012-03-21 Conductive ink, substrate with conductor, and production method of substrate with conductor

Publications (1)

Publication Number Publication Date
WO2013141172A1 true WO2013141172A1 (en) 2013-09-26

Family

ID=49222631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057525 WO2013141172A1 (en) 2012-03-21 2013-03-15 Conductive ink and production method for base material including conductor

Country Status (3)

Country Link
JP (1) JP2015110682A (en)
TW (1) TW201339255A (en)
WO (1) WO2013141172A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686567B2 (en) * 2016-03-14 2020-04-22 株式会社リコー Copper nanoparticle ink and method for producing the same
KR102153212B1 (en) * 2019-01-25 2020-09-07 제이플래닛 주식회사 Preparation method of gel type copper precursor
JP7269565B2 (en) * 2019-03-29 2023-05-09 学校法人 関西大学 Conductive ink composition and conductive laminate
JP7121173B1 (en) 2021-07-19 2022-08-17 大陽日酸株式会社 Composite copper nanoparticles and method for producing composite copper nanoparticles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425573A (en) * 1990-05-21 1992-01-29 Seiko Epson Corp Ink for ink jet printer
JPH04190502A (en) * 1990-11-22 1992-07-08 Sumitomo Metal Ind Ltd Copper conductor paste
WO2004110925A1 (en) * 2003-06-10 2004-12-23 Asahi Glass Company, Limited Metal hydride fine particle, method for producing same, liquid dispersion containing metal hydride fine particle, and metallic material
JP2005113059A (en) * 2003-10-09 2005-04-28 Shin Etsu Chem Co Ltd Curable resin composition and electrically conductive adhesive
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
WO2006109410A1 (en) * 2005-04-12 2006-10-19 Asahi Glass Company, Limited Ink composition and metallic material
JP2007257869A (en) * 2006-03-20 2007-10-04 Mitsui Mining & Smelting Co Ltd Conductive ink
JP2008263129A (en) * 2007-04-13 2008-10-30 Asahi Glass Co Ltd Manufacturing method of printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425573A (en) * 1990-05-21 1992-01-29 Seiko Epson Corp Ink for ink jet printer
JPH04190502A (en) * 1990-11-22 1992-07-08 Sumitomo Metal Ind Ltd Copper conductor paste
WO2004110925A1 (en) * 2003-06-10 2004-12-23 Asahi Glass Company, Limited Metal hydride fine particle, method for producing same, liquid dispersion containing metal hydride fine particle, and metallic material
JP2005113059A (en) * 2003-10-09 2005-04-28 Shin Etsu Chem Co Ltd Curable resin composition and electrically conductive adhesive
JP2006210301A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Conductive ink
WO2006109410A1 (en) * 2005-04-12 2006-10-19 Asahi Glass Company, Limited Ink composition and metallic material
JP2007257869A (en) * 2006-03-20 2007-10-04 Mitsui Mining & Smelting Co Ltd Conductive ink
JP2008263129A (en) * 2007-04-13 2008-10-30 Asahi Glass Co Ltd Manufacturing method of printed wiring board

Also Published As

Publication number Publication date
JP2015110682A (en) 2015-06-18
TW201339255A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
EP2114114B1 (en) Bimetallic nanoparticles for conductive ink applications
US8017044B2 (en) Bimodal metal nanoparticle ink and applications therefor
JP5556176B2 (en) Particles and inks and films using them
KR102076540B1 (en) Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
CN104080562B (en) The manufacture method and Nano silver grain and silver coating composition of Nano silver grain
JP5151476B2 (en) Ink composition and metallic material
KR101020844B1 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticels, and method for low temperature sintering using the same
JP5131191B2 (en) Method for producing dispersion containing metal fine particles
CN104136154A (en) Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
TW201117231A (en) Ink for printing, metal nanoparticle utilized in ink, wiring, circuit substrate and semiconductor package
CN104245192A (en) Synthetic method of suppressing metal nano-particle from having oxidezed film and method of manufacturing conductive metal thin film via solution-processed
WO2012074200A2 (en) Low temperature sintering conductive metal film and preparation method thereof
WO2012053456A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
WO2013141172A1 (en) Conductive ink and production method for base material including conductor
KR20100083391A (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
KR20090018538A (en) Aqueous conductive ink composition for inkjet printer using high concentration nano-silver colloidal solution and method forming electrode pattern by inkjet printing
WO2013141174A1 (en) Conductive ink, base material including conductor, and production method for base material including conductor
WO2013146389A1 (en) Method for producing conductor film
TW201315685A (en) Fine silver particles, conductive paste containing fine silver particles, conductive film and electronic device
JP5773147B2 (en) Silver fine particles, and conductive paste, conductive film and electronic device containing the silver fine particles
WO2014104737A1 (en) Low-viscosity metal ink composition, and printed circuit board using same
US20220388060A1 (en) A method to form copper nanoparticles
CN110809806B (en) Conductive paste
JP2009176605A (en) Method of manufacturing substrate with conductive film
JP2008016360A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP