JP5072228B2 - Method for producing metal coating - Google Patents

Method for producing metal coating Download PDF

Info

Publication number
JP5072228B2
JP5072228B2 JP2006016583A JP2006016583A JP5072228B2 JP 5072228 B2 JP5072228 B2 JP 5072228B2 JP 2006016583 A JP2006016583 A JP 2006016583A JP 2006016583 A JP2006016583 A JP 2006016583A JP 5072228 B2 JP5072228 B2 JP 5072228B2
Authority
JP
Japan
Prior art keywords
metal
copper
producing
organic solvent
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006016583A
Other languages
Japanese (ja)
Other versions
JP2007200660A (en
Inventor
博信 小野
高明 橋本
昌秀 島
暢文 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006016583A priority Critical patent/JP5072228B2/en
Publication of JP2007200660A publication Critical patent/JP2007200660A/en
Application granted granted Critical
Publication of JP5072228B2 publication Critical patent/JP5072228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は金属被膜の製造方法、詳しくは電極、配線、回路などの導電性被膜を形成するに好適な金属被膜の製造方法に関する。   The present invention relates to a method for producing a metal film, and more particularly to a method for producing a metal film suitable for forming a conductive film such as an electrode, wiring, or circuit.

金属被膜の形成方法の一つとして金属ペースト法があることはよく知られているところであり、例えば、特許文献1には、粒子径が200nm以下の還元可能な金属酸化物を分散させた有機溶剤分散体を基材に塗布した後、不活性雰囲気中で焼成し、引き続き還元性雰囲気中で焼成して金属被膜を形成する方法が提案されている。   It is well known that there is a metal paste method as one method for forming a metal film. For example, Patent Document 1 discloses an organic solvent in which a reducible metal oxide having a particle size of 200 nm or less is dispersed. There has been proposed a method in which a metal film is formed by applying a dispersion to a substrate, followed by firing in an inert atmosphere, followed by firing in a reducing atmosphere.

特開2004−164876号公報Japanese Patent Application Laid-Open No. 2004-164876

しかし、特許文献1に記載の方法によって得られる金属被膜は、比抵抗値が高く、電極、配線、回路などとして用いる導電性被膜としては満足できるものではなかった。そこで、本発明は、比抵抗値が低く導電性被膜として好適な金属被膜を形成し得る新規な金属被膜の製造方法を提供しようとするものである。   However, the metal film obtained by the method described in Patent Document 1 has a high specific resistance value and is not satisfactory as a conductive film used as an electrode, wiring, circuit, or the like. Accordingly, the present invention is intended to provide a novel method for producing a metal film which can form a metal film suitable for a conductive film having a low specific resistance value.

本発明者らの研究のよれば、前記課題は下記発明により解決できることが分かった。
(1)金属ナノ微粒子と下記の少なくとも一種の有機溶媒とからなる金属ナノ微粒子分散体を基板に塗布した後、還元性雰囲気中、0.5〜1MPaの圧力下にて焼成することを特徴とする金属被膜の製造方法。
(有機溶媒)
ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、トリデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロパノール、ブタノール
(2)50〜600℃の温度で焼成する上記(1)の金属被膜の製造方法。
(3)還元性雰囲気が水素ガスである上記(1)または(2)の金属被膜の製造方法。
(4)金属が銀および/または銅である上記(1)、(2)または(3)の金属被膜の製造方法。

According to the studies by the present inventors, it has been found that the above problem can be solved by the following invention.
(1) A metal nanoparticle dispersion comprising metal nanoparticles and at least one organic solvent described below is applied to a substrate and then fired in a reducing atmosphere at a pressure of 0.5 to 1 MPa. A method for producing a metal coating.
(Organic solvent)
Normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, terpineol, decane, tridecane, tetradecane , Hexadecane, methanol, ethanol, propanol, butanol (2) The method for producing a metal coating according to the above (1), which is baked at a temperature of 50 to 600 ° C.
(3) The method for producing a metal film according to the above (1) or (2), wherein the reducing atmosphere is hydrogen gas.
(4) The method for producing a metal film according to (1), (2) or (3), wherein the metal is silver and / or copper.

本発明の方法によれば、従来では十分な還元が困難であった低温においても金属被膜の還元を容易に進行させられるので、得られる金属被膜の導電性が高くなる。したがって、本発明の方法によれば、比抵抗値が低く、電極、配線、回路などとして用いるに好適な導電性被膜を形成することができる。   According to the method of the present invention, since the reduction of the metal film can be easily advanced even at a low temperature, which has been difficult to reduce sufficiently in the past, the conductivity of the obtained metal film is increased. Therefore, according to the method of the present invention, a conductive film having a low specific resistance value and suitable for use as an electrode, wiring, circuit, or the like can be formed.

本発明で用いる「金属ナノ粒子分散体」とは、粒子径が200nm以下のナノサイズの金属微粒子が有機溶媒中などに均一に分散されているものであれば、いずれでもよく、その製造方法により限定されるものではない。なお、本発明の「金属ナノ粒子」とは、金属(0価)のナノ粒子、金属酸化物のナノ粒子、およびこれらの混合物を包含するものである。
上記金属ナノ粒子の具体例としては、粒子径が1〜200nm、好ましくは2〜100nmの、白金、金、パラジウム、ルテニウム、銀、鉄、コバルト、ニッケル、銅、モリブデン、インジウム、イリジウム、チタンおよびアルミニウムから選ばれる少なくとも1種の金属からなるナノ粒子を挙げることができる。なかでも、平均粒子径が10nm以下であって、しかも均一性に優れた金属ナノ粒子が好適に用いられる。また、銀および/または銅からなるナノ粒子が好適に用いられる。なお、本発明において、粒子径は電界放射型走査電子顕微鏡(FE−SEM)により測定したものである。
The “metal nanoparticle dispersion” used in the present invention may be any metal nanoparticle having a particle size of 200 nm or less that is uniformly dispersed in an organic solvent or the like. It is not limited. The “metal nanoparticles” of the present invention include metal (zero-valent) nanoparticles, metal oxide nanoparticles, and mixtures thereof.
Specific examples of the metal nanoparticles include platinum, gold, palladium, ruthenium, silver, iron, cobalt, nickel, copper, molybdenum, indium, iridium, titanium, and a particle diameter of 1 to 200 nm, preferably 2 to 100 nm. Mention may be made of nanoparticles made of at least one metal selected from aluminum. Among these, metal nanoparticles having an average particle diameter of 10 nm or less and excellent in uniformity are preferably used. Moreover, the nanoparticle which consists of silver and / or copper is used suitably. In the present invention, the particle diameter is measured by a field emission scanning electron microscope (FE-SEM).

金属ナノ粒子分散体としては、上記のような金属ナノ粒子を有機溶媒に分散した金属ナノ粒子コロイド、あるいは金属ナノ粒子ペーストを挙げることができる。上記有機溶媒としては、この種の金属微粒子分散体の調製に一般に用いられているものであればいずれでもよく、例えば、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、トリデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロパノール、ブタノールなどを用いることができる。   Examples of the metal nanoparticle dispersion include a metal nanoparticle colloid obtained by dispersing the above metal nanoparticles in an organic solvent, or a metal nanoparticle paste. The organic solvent may be any organic solvent that is generally used for the preparation of this kind of fine metal particle dispersion. For example, normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, Benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, terpineol, decane, tridecane, tetradecane, hexadecane, methanol, ethanol, propanol, butanol, and the like can be used.

金属ナノ粒子分散体中の金属ナノ粒子の含有量については、適宜、決定することができるが、通常、3〜80質量%であり、好ましくは5〜70質量%である。金属ナノ粒子分散体中には、焼成により形成される金属被膜の性能などに著しい悪影響を与えないかぎり、その製造過程で生成した不純物や原料の未反応物などが含まれていてもよいが、金属被膜の性能などを考慮して、このような不純物などはできるだけ除去して使用するのが望ましい。   Although it can determine suitably about content of the metal nanoparticle in a metal nanoparticle dispersion, it is 3-80 mass% normally, Preferably it is 5-70 mass%. The metal nanoparticle dispersion may contain impurities generated during the production process, unreacted materials, etc., as long as it does not significantly adversely affect the performance of the metal film formed by firing, In consideration of the performance of the metal coating, it is desirable to remove such impurities as much as possible.

本発明によれば、金属ナノ粒子分散体を基板に塗布した後、この塗布基板を還元性雰囲気中、1気圧より高い圧力下に焼成して、還元処理を行い、金属被膜を形成する。上記還元性雰囲気は、一酸化炭素、水素などの還元性を有するガスで100%満たされた状態でも、このような還元性ガスが窒素やヘリウムなどの不活性ガスで希釈された状態であってもよい。上記処理を行う際の圧力は、1気圧(0.1013MPa)より高ければ特に制限はないが、その上限は装置や基板の耐圧性などを考慮して適宜決定され、好ましくは0.2〜1MPaである。   According to this invention, after apply | coating a metal nanoparticle dispersion to a board | substrate, this application | coating board | substrate is baked under pressure higher than 1 atmosphere in a reducing atmosphere, a reduction process is performed, and a metal film is formed. The reducing atmosphere is a state in which such a reducing gas is diluted with an inert gas such as nitrogen or helium even when it is 100% filled with a reducing gas such as carbon monoxide or hydrogen. Also good. The pressure at the time of performing the above treatment is not particularly limited as long as it is higher than 1 atm (0.1013 MPa), but the upper limit is appropriately determined in consideration of the pressure resistance of the apparatus and the substrate, and preferably 0.2 to 1 MPa. It is.

本発明における焼成は、通常、50〜600℃で行うが、好ましくは50〜300℃、より好ましくは50〜200℃である。   The calcination in the present invention is usually performed at 50 to 600 ° C., preferably 50 to 300 ° C., more preferably 50 to 200 ° C.

金属ナノ粒子分散体を基板に塗布する方法については特に制限はなく、この種の分散体の塗布に一般に用いられている方法にしたがって行うことができる。具体的には、例えば、スクリーン印刷法、ディップコーティング法、スプレー法、スピンコーティング法などを採用することができる。また、インクジェットヘッドを用いて分散体を基板上の必要な部分のみに塗布し、配線や回路となる金属被膜を形成させることもできる。   There is no restriction | limiting in particular about the method of apply | coating a metal nanoparticle dispersion to a board | substrate, It can carry out according to the method generally used for application | coating of this kind of dispersion. Specifically, for example, a screen printing method, a dip coating method, a spray method, a spin coating method, or the like can be employed. Alternatively, the dispersion can be applied only to a necessary portion on the substrate using an ink jet head to form a metal film that becomes a wiring or a circuit.

上記基板としては、電極、配線、回路などを構成するのに一般に用いられている、焼成によって焼失、劣化しない耐熱性のものであればいずれでもよい。具体的には、例えば、鉄、銅、アルミニウムなどの金属基板、ポリイミドフィルムなどの耐熱性樹脂基板、ガラス基板などを挙げることができる。   As the substrate, any substrate may be used as long as it has a heat resistance generally used for constituting electrodes, wirings, circuits, etc. and does not burn and deteriorate due to firing. Specific examples include metal substrates such as iron, copper, and aluminum, heat resistant resin substrates such as polyimide films, and glass substrates.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。なお、比抵抗値は、低抵抗率計ロレスターGP(三菱化学株式会社製)を用いて測定した。
(銅ナノ粒子分散体の調製例)
酢酸銅一水和物(和光純薬工業株式会社製)15.7gとオクチルアミン(和光純薬工業株式会社製)103.3gを40℃にて20分攪拌混合した後、20質量%水素化ホウ素ナトリウム水溶液20gを徐々に添加することにより還元処理を実施した。還元処理後の溶液を攪拌しながらアセトンを200g添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を分離した。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention. In addition, the specific resistance value was measured using the low resistivity meter Lorester GP (made by Mitsubishi Chemical Corporation).
(Preparation example of copper nanoparticle dispersion)
Copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 15.7 g and octylamine (manufactured by Wako Pure Chemical Industries, Ltd.) 103.3 g were stirred and mixed at 40 ° C. for 20 minutes, and then 20 mass% hydrogenated. Reduction treatment was performed by gradually adding 20 g of an aqueous sodium boron solution. While stirring the solution after the reduction treatment, 200 g of acetone was added and allowed to stand for a while, and then a precipitate composed of copper and organic matter was separated by filtration.

沈殿物にトルエンを添加し再溶解した後、10℃以下まで冷却した。余分な固形物をろ過により除去し、銅ナノ粒子がトルエンに分散した液を得た。次に、この銅ナノ粒子−トルエン分散液からトルエンを留去することにより、銅ナノ粒子含有量が60質量%の銅ナノ粒子ペーストを調製した。この銅ナノ粒子ペースト中の銅ナノ粒子の平均粒子径を電界放射型透過電子顕微鏡(FE−SEM)で測定したところ5nmであった。   Toluene was added to the precipitate and redissolved, and then cooled to 10 ° C. or lower. Excess solid was removed by filtration to obtain a liquid in which copper nanoparticles were dispersed in toluene. Next, a copper nanoparticle paste having a copper nanoparticle content of 60% by mass was prepared by distilling toluene from the copper nanoparticle-toluene dispersion. It was 5 nm when the average particle diameter of the copper nanoparticle in this copper nanoparticle paste was measured with the field emission transmission electron microscope (FE-SEM).

上記銅ナノ粒子ペーストに適量のデカン(和光純薬工業株式会社製)を加えて攪拌混合することにより、銅ナノ粒子を30質量%含有する銅ナノ粒子分散体を得た。
(実施例1)
上記調製例で得られた銅ナノ粒子分散体を、1cm×3cmの面積で、ガラス基板上に塗布した。
A copper nanoparticle dispersion containing 30% by mass of copper nanoparticles was obtained by adding an appropriate amount of decane (manufactured by Wako Pure Chemical Industries, Ltd.) to the copper nanoparticle paste and stirring and mixing.
Example 1
The copper nanoparticle dispersion obtained in the above preparation example was applied on a glass substrate with an area of 1 cm × 3 cm.

上記ガラス基板をオートクレーブに入れ、オートクレーブ内を一酸化炭素で充満させて加圧密閉した後、室温から150℃まで1時間で昇温した。温度が150℃に到達してから0.5時間150℃に保持して、0.5MPaの圧力下で焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は8x10−6Ω・cmであった。
(実施例2)
上記調製例で得られた銅ナノ粒子分散体を、1cm×3cmの面積で、ガラス基板上に塗布した。
The glass substrate was placed in an autoclave, and the autoclave was filled with carbon monoxide and pressurized and sealed, and then heated from room temperature to 150 ° C. over 1 hour. After the temperature reached 150 ° C., the temperature was held at 150 ° C. for 0.5 hours, and firing was performed under a pressure of 0.5 MPa to obtain a copper film having a thickness of 0.5 μm. The specific resistance value of the obtained copper film was 8 × 10 −6 Ω · cm.
(Example 2)
The copper nanoparticle dispersion obtained in the above preparation example was applied on a glass substrate with an area of 1 cm × 3 cm.

上記ガラス基板をオートクレーブに入れ、オートクレーブ内を水素で充満させて加圧密閉した後、室温から120℃まで1時間で昇温した。温度が120℃に到達してから1時間120℃に保持して、0.5MPaの圧力下で焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜の比抵抗値は7x10−6Ω・cmであった。
(比較例1)
実施例1における一酸化炭素の代わりに、酸素を用いた以外は実施例1と同様にして、膜厚0.5μmの銅被膜を得た。得られた銅被膜は導電性を示さなかった。
(比較例2)
上記調製例で得られた銅ナノ粒子分散体を、1cm×3cmの面積で、ガラス基板上に塗布した。
The glass substrate was placed in an autoclave, and the autoclave was filled with hydrogen and sealed under pressure, and then heated from room temperature to 120 ° C. over 1 hour. After the temperature reached 120 ° C., the temperature was maintained at 120 ° C. for 1 hour, and firing was performed under a pressure of 0.5 MPa to obtain a copper film having a thickness of 0.5 μm. The specific resistance value of the obtained copper film was 7 × 10 −6 Ω · cm.
(Comparative Example 1)
A copper film having a thickness of 0.5 μm was obtained in the same manner as in Example 1 except that oxygen was used instead of carbon monoxide in Example 1. The obtained copper film did not show electrical conductivity.
(Comparative Example 2)
The copper nanoparticle dispersion obtained in the above preparation example was applied on a glass substrate with an area of 1 cm × 3 cm.

上記ガラス基板をオートクレーブに入れ、オートクレーブ内に1気圧の水素を通過させながら、室温から120℃まで1時間で昇温した。温度が120℃に到達してから1時間120℃に保持して、1気圧の圧力下で焼成を行い、膜厚0.5μmの銅被膜を得た。得られた銅被膜は導電性を示さなかった。

The glass substrate was placed in an autoclave, and the temperature was raised from room temperature to 120 ° C. over 1 hour while passing 1 atm of hydrogen through the autoclave. After the temperature reached 120 ° C., it was held at 120 ° C. for 1 hour, and baked under a pressure of 1 atm to obtain a copper film having a thickness of 0.5 μm. The obtained copper film did not show electrical conductivity.

Claims (4)

金属ナノ微粒子と下記の少なくとも一種の有機溶媒とからなる金属ナノ微粒子分散体を基板に塗布した後、還元性雰囲気中、0.5〜1MPaの圧力下にて焼成することを特徴とする金属被膜の製造方法。
(有機溶媒)
ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、トリデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロパノール、ブタノール
A metal film characterized by applying a metal nanoparticle dispersion comprising metal nanoparticles and at least one organic solvent described below to a substrate and then firing in a reducing atmosphere under a pressure of 0.5 to 1 MPa. Manufacturing method.
(Organic solvent)
Normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, terpineol, decane, tridecane, tetradecane , Hexadecane, methanol, ethanol, propanol, butanol
50〜600℃の温度で焼成する請求項1記載の金属被膜の製造方法。 The method for producing a metal coating according to claim 1, wherein the firing is performed at a temperature of 50 to 600 ° C. 還元性雰囲気が水素ガスである請求項1または2記載の金属被膜の製造方法。 The method for producing a metal film according to claim 1 or 2, wherein the reducing atmosphere is hydrogen gas. 金属が銀および/または銅である請求項1、2または3記載の金属被膜の製造方法。 The method for producing a metal coating according to claim 1, 2 or 3, wherein the metal is silver and / or copper.
JP2006016583A 2006-01-25 2006-01-25 Method for producing metal coating Expired - Fee Related JP5072228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016583A JP5072228B2 (en) 2006-01-25 2006-01-25 Method for producing metal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016583A JP5072228B2 (en) 2006-01-25 2006-01-25 Method for producing metal coating

Publications (2)

Publication Number Publication Date
JP2007200660A JP2007200660A (en) 2007-08-09
JP5072228B2 true JP5072228B2 (en) 2012-11-14

Family

ID=38455063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016583A Expired - Fee Related JP5072228B2 (en) 2006-01-25 2006-01-25 Method for producing metal coating

Country Status (1)

Country Link
JP (1) JP5072228B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914704B2 (en) * 2006-12-08 2012-04-11 ハリマ化成株式会社 Method for forming a fine copper-based wiring pattern
JP5260923B2 (en) * 2007-09-14 2013-08-14 ハリマ化成株式会社 Method for forming metal nanoparticle sintered body layer having fine pattern shape
JP4838219B2 (en) * 2007-10-01 2011-12-14 ハリマ化成株式会社 Method for producing metal nanoparticle sintered body
JP5176205B2 (en) * 2008-04-30 2013-04-03 ハリマ化成株式会社 Manufacturing method of multilayer wiring board
JP5858374B2 (en) 2010-09-27 2016-02-10 国立大学法人山形大学 Method for producing coated copper fine particles
CN103996457B (en) * 2014-05-29 2018-11-20 京东方科技集团股份有限公司 Silver nanowires film and preparation method thereof, array substrate, display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164876A (en) * 2002-11-11 2004-06-10 Asahi Kasei Corp Manufacturing method of metal coating film
JP2004296424A (en) * 2003-03-11 2004-10-21 Advanced Lcd Technologies Development Center Co Ltd Method for forming metal layer, metal layer, and display device using metal layer
JP2004327229A (en) * 2003-04-24 2004-11-18 Konica Minolta Holdings Inc Composition for forming conductive pattern, forming method for conductive pattern, and manufacturing method of composition
JP4318966B2 (en) * 2003-06-12 2009-08-26 旭化成イーマテリアルズ株式会社 Metal oxide fine particle dispersion
JP2006009120A (en) * 2004-06-29 2006-01-12 Asahi Kasei Corp Metal particulate-dispersed body

Also Published As

Publication number Publication date
JP2007200660A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
TWI655090B (en) Transparent electrode and method of manufacturing same
JP5706998B2 (en) Transparent conductive ink and transparent conductive pattern forming method
KR101276237B1 (en) Low sintering temperatures Conducting metal layer and the preparation method thereof
KR101207363B1 (en) Composition for Conductive Paste Containing Nanometer-Thick Metal Microplates
JP5072228B2 (en) Method for producing metal coating
KR101020844B1 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticels, and method for low temperature sintering using the same
US20090053400A1 (en) Ink jet printable compositions for preparing electronic devices and patterns
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP2009515023A (en) Metal ink, and electrode forming method and substrate using the same
JP2008176951A (en) Silver-based particulate ink paste
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP2009074054A (en) Non-aqueous electroconductive nano ink composition
CN109074919B (en) Method for forming transparent conductive pattern
JP5562512B2 (en) Method for producing metal coating
WO2012053456A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
WO2014059798A1 (en) Nano-copper ink and copper conductive film preparation method
JP4931063B2 (en) Method for producing metal nanoparticle paste
US11274224B2 (en) Ink composition, method for forming a conductive member, and conductive device
CN109074917A (en) The forming method of transparent conductive patterns
KR20100137633A (en) Metal-glass nano composite powders
JP2012079933A (en) Wiring material, manufacturing method of wiring, and nanoparticle dispersion
JP5170989B2 (en) Method for producing conductive copper coating
JP4995491B2 (en) Method for producing copper coating
JP2008016360A5 (en)
JP2007324025A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees