JP2007304215A - Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film - Google Patents

Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film Download PDF

Info

Publication number
JP2007304215A
JP2007304215A JP2006130833A JP2006130833A JP2007304215A JP 2007304215 A JP2007304215 A JP 2007304215A JP 2006130833 A JP2006130833 A JP 2006130833A JP 2006130833 A JP2006130833 A JP 2006130833A JP 2007304215 A JP2007304215 A JP 2007304215A
Authority
JP
Japan
Prior art keywords
liquid crystal
photo
irradiation
light
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006130833A
Other languages
Japanese (ja)
Inventor
Takeya Sakai
丈也 酒井
Yoshihiro Kawatsuki
喜弘 川月
Emi Uchida
江美 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2006130833A priority Critical patent/JP2007304215A/en
Publication of JP2007304215A publication Critical patent/JP2007304215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for suitably providing an optical element with controlled molecular orientation, such as a retardation film or a polarization diffraction element, and a liquid crystal alignment film. <P>SOLUTION: The optical element with controlled molecular orientation, such as the retardation film or the polarization diffraction element is manufactured by a process including photoirradiation, heating and cooling of a photo-alignment material having photoreactive groups in side chains, which form a dimer through at least one hydrogen bond moiety. The liquid crystal alignment film and the method for manufacturing those are also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、位相差フィルムや偏光回折素子などの分子配向を制御した光学素子や液晶配向膜の製造に好適である光配向材に関するものである。   The present invention relates to an optical alignment material suitable for the production of an optical element or a liquid crystal alignment film in which molecular alignment is controlled, such as a retardation film or a polarization diffraction element.

本発明者は、特開2002−202409号、特開2003−307618号などに、光照射または光照射と加熱冷却により複屈折を誘起する側鎖型液晶高分子(以降、光配向材という)に光照射する操作または光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムおよびその製造法や、特開2002−90750号には光照射より液晶配向能を付与させた液晶配向膜およびその製造法を提案してきた。これら材料では、基材に塗布して製膜した後、直線偏光性紫外線を照射すると、高分子側鎖の軸選択的な光架橋反応によって異方性を付与できる。更に、このような膜を加熱すると、材料自体が液晶性を有することから未反応側鎖が軸選択的に光架橋した側鎖に沿って配向することから膜全体を分子配向させることができる。このような膜では、分子配向により複屈折性が発現することから位相差フィルムとして利用することがでる。また、膜表面に液晶分子を接触させると液晶分子が配向することから液晶配向膜としても機能する。
このように光照射と加熱により分子配向するという特性からこれら材料は様々な用途で利用することができる。しかしながら、これら提案の材料では光反応性が充分であるとはいえず、照射時間の長時間化など製造上好ましくない。
このような問題点を鑑みて、特願2006−53086号には、光増感成分を添加することにより光反応速度を増強する方法も提案している。
しかしながら、このような光増感成分を添加する手法では、光配向材の感光性基の光増感に好適な材料を別途製造する必要がある。このため材料を製造する上でコストが増大し好ましくない。また、工業的には、より光反応速度を向上させることが好適であることはいうまでもない。
特開2002−202409号 特開2003−307618号 特開2002−90750号 特願2006−53086号
The present inventor disclosed in Japanese Patent Application Laid-Open No. 2002-202409, Japanese Patent Application Laid-Open No. 2003-307618, etc. on a side-chain liquid crystal polymer (hereinafter referred to as a photo-alignment material) that induces birefringence by light irradiation or light irradiation and heating and cooling. A retardation film produced by a process including an operation of irradiating with light or an operation of irradiating with light and heating and cooling, and a method for producing the same, and Japanese Patent Application Laid-Open No. 2002-90750 include a liquid crystal alignment film provided with liquid crystal alignment ability by light irradiation and The manufacturing method has been proposed. In these materials, anisotropy can be imparted by an axis-selective photocrosslinking reaction of a polymer side chain when irradiated with linearly polarized ultraviolet light after being applied to a substrate and formed into a film. Further, when such a film is heated, since the material itself has liquid crystallinity, the unreacted side chain is aligned along the side chain that has been photocrosslinked selectively, so that the entire film can be molecularly aligned. Such a film can be used as a retardation film because it exhibits birefringence due to molecular orientation. Further, when liquid crystal molecules are brought into contact with the film surface, the liquid crystal molecules are aligned, so that the film functions as a liquid crystal alignment film.
Thus, these materials can be used in various applications due to the property of molecular orientation by light irradiation and heating. However, it cannot be said that these proposed materials have sufficient photoreactivity, which is not preferable in production such as a longer irradiation time.
In view of such problems, Japanese Patent Application No. 2006-53086 also proposes a method of enhancing the photoreaction rate by adding a photosensitizing component.
However, in the method of adding such a photosensitizing component, it is necessary to separately manufacture a material suitable for photosensitization of the photosensitive group of the photoalignment material. For this reason, when manufacturing a material, cost increases and it is unpreferable. Moreover, it is needless to say that it is suitable to improve the photoreaction rate more industrially.
JP 2002-202409 A JP 2003-307618 A JP 2002-90750 A Japanese Patent Application No. 2006-53086

本発明は、光配向材に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムや偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜の製造法において、従来技術を用いて工業的に提供するにあたり問題となる上記課題を解決しようとするものである。   The present invention relates to a conventional technique for producing an optical element or liquid crystal alignment film in which molecular alignment is controlled, such as a retardation film or a polarization diffraction element, produced by a process including light irradiation and heating / cooling operations on a photo-alignment material. The present invention intends to solve the above-mentioned problem which becomes a problem in providing industrially using the.

側鎖に少なくとも1種類以上の化学式1で示す構造を有する光配向材を用いることによって上記課題を解決することができる。   The above-mentioned problem can be solved by using a photo-alignment material having a structure represented by Chemical Formula 1 in at least one kind in the side chain.

以下に、本発明の詳細を説明する。
前述の従来技術における本発明者が提案している光照射または光照射と加熱冷却により複屈折を誘起する材料は、液晶化合物のメソゲン基として用いられているビフェニル、ターフェニル、フェニルベンゾエート、トラン、アゾベンゼンなどの剛直な置換基とシンナモイル基またはその誘導体などの感光性基を結合した構造の側鎖を有する液晶性高分子である。このような材料では、先に記載のメソゲン基が比較的大きな共役系を有することから感光性基の光反応に寄与する波長の光を吸収してしまうため光反応効率が低下するという問題点があった。
本発明の光配向材は、側鎖末端にカルボキシル基を有する液晶性高分子である。この光配向材は、側鎖末端のカルボキシル基の水素結合による2量体の形成により、従来技術の材料のようなメソゲン基を構造に含まなくとも液晶相を発現する材料である。図2に本発明の代表的な材料における水素結合による2量体の形成を示す模式図を示す。このような材料では、メソゲン基をその構造に含まないことから、感光性基の光反応を進行する波長の光を吸収することがない。このことで、照射された光は感光性基の吸収にのみ消費され光反応が促進される。結果として、光反応効率を大きく向上することができる。
このような光配向材は、同一の繰り返し単位からなる単一重合体または構造の異なる側鎖を有する単位の共重合体でもよく、あるいは感光性基を含まない側鎖を有する単位を共重合させることも可能である。
更には、液晶性を損なわない程度に耐熱性を向上させるための架橋剤を添加することや、液晶性を損なうことなく液晶性を示さない単量体を感光性の重合体に共重合してもかまわない。
Details of the present invention will be described below.
The materials proposed by the present inventors in the above-mentioned prior art for inducing birefringence by light irradiation or light irradiation and heating and cooling are biphenyl, terphenyl, phenylbenzoate, tolan, which are used as mesogenic groups of liquid crystal compounds. A liquid crystalline polymer having a side chain having a structure in which a rigid substituent such as azobenzene is bonded to a photosensitive group such as a cinnamoyl group or a derivative thereof. In such a material, since the mesogenic group described above has a relatively large conjugated system, it absorbs light having a wavelength that contributes to the photoreaction of the photosensitive group, so that the photoreaction efficiency is lowered. there were.
The photo-alignment material of the present invention is a liquid crystalline polymer having a carboxyl group at the end of the side chain. This photo-alignment material is a material that develops a liquid crystal phase even if the structure does not contain a mesogenic group as in the prior art material by forming a dimer by hydrogen bonding of the carboxyl group at the end of the side chain. FIG. 2 is a schematic diagram showing formation of a dimer by hydrogen bonding in a representative material of the present invention. In such a material, since the mesogenic group is not included in the structure, it does not absorb light having a wavelength that promotes the photoreaction of the photosensitive group. Thus, the irradiated light is consumed only for absorption of the photosensitive group, and the photoreaction is promoted. As a result, the photoreaction efficiency can be greatly improved.
Such a photo-alignment material may be a single polymer composed of the same repeating unit or a copolymer of units having side chains with different structures, or a unit having side chains not containing a photosensitive group may be copolymerized. Is also possible.
Furthermore, it is possible to add a crosslinking agent for improving heat resistance to the extent that liquid crystallinity is not impaired, or to copolymerize a monomer that does not exhibit liquid crystallinity without impairing liquid crystallinity with a photosensitive polymer. It doesn't matter.

本発明により、光配向材に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムや偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜を製造するにあたり、光反応性に優れた光照射工程を短縮できると共に、その材料を低コストで提供できる。これにより従来技術の問題点を解決することができる。   In the production of an optical element or liquid crystal alignment film in which the alignment of molecules such as a retardation film and a polarization diffraction element, which are produced by a process including an operation of light irradiation and heating / cooling to a photo-alignment material, is produced according to the present invention, In addition to shortening the light irradiation process with excellent properties, the material can be provided at low cost. Thereby, the problems of the prior art can be solved.

本発明の光学素子の実施例において用いた光配向材の原料化合物に関する合成方法を以下に示す。   A synthesis method relating to the raw material compound of the photo-alignment material used in the examples of the optical element of the present invention is shown below.

(単量体1)
p−クマル酸と6−クロロ−1−ヘキサノールを、アルカリ条件下で加熱することにより、4−(6−ヒドロキシヘキシルオキシ)桂皮酸を合成した。この生成物にp−トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、化学式2に示される単量体1を合成した。

Figure 2007304215
(Monomer 1)
4- (6-Hydroxyhexyloxy) cinnamic acid was synthesized by heating p-coumaric acid and 6-chloro-1-hexanol under alkaline conditions. A large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid for esterification to synthesize monomer 1 represented by Chemical Formula 2.
Figure 2007304215

(単量体2)
6−ブロモヘキサノールと4ヒドロキシベンズアルデヒドよりウイリアムソン合成で4−(6ヒドロキシヘキシルオキシ)ベンズアルデヒドを合成した。これと4−ブロモメチル安息香酸トリフェニルフォスフィンより合成したビッティヒ試薬を反応させて4−(6−ヒドロキシヘキシルオキシ)−4’−カルボン酸スチルベンを合成した。これにメタクリル酸クロライドを反応させて単量体2を合成した。

Figure 2007304215
(Monomer 2)
4- (6hydroxyhexyloxy) benzaldehyde was synthesized from 6-bromohexanol and 4-hydroxybenzaldehyde by Williamson synthesis. This was reacted with a Bittig reagent synthesized from triphenylphosphine 4-bromomethylbenzoate to synthesize stilbene 4- (6-hydroxyhexyloxy) -4′-carboxylate. This was reacted with methacrylic acid chloride to synthesize monomer 2.
Figure 2007304215

(単量体3)
4,4’−ビフェニルジオールと1,2−ジブロモエタンを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−(2−ブロモエチルオキシ)ビフェニルを合成した。この生成物に、リチウムメタクリレートを反応させ、4−ヒドロキシ−4’−(2−メタクリロイルオキシエチルオキシ)ビフェニルを合成した。最後に、塩基性の条件下において、p−メトキシ桂皮酸クロライドを加え、化学式4に示される単量体3を合成した。

Figure 2007304215
(Monomer 3)
4-Hydroxy-4 ′-(2-bromoethyloxy) biphenyl was synthesized by heating 4,4′-biphenyldiol and 1,2-dibromoethane under alkaline conditions. This product was reacted with lithium methacrylate to synthesize 4-hydroxy-4 ′-(2-methacryloyloxyethyloxy) biphenyl. Finally, p-methoxycinnamic acid chloride was added under basic conditions to synthesize monomer 3 represented by Chemical Formula 4.
Figure 2007304215

(重合体1)
単量体1をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体1を得た。この重合体1は135℃から187℃の温度範囲で液晶性を呈した。また、可視光域に全く吸収を示さなかった。
(Polymer 1)
The monomer 1 was dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. The polymer 1 exhibited liquid crystallinity in the temperature range of 135 ° C. to 187 ° C. In addition, no absorption was observed in the visible light region.

(重合体2)
単量体2をテトラヒドロフラン中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体2を得た。この重合体2も液晶相を呈した。
(Polymer 2)
The monomer 2 was dissolved in tetrahydrofuran, and AIBN was added as a reaction initiator for polymerization to obtain a photosensitive polymer 2. This polymer 2 also exhibited a liquid crystal phase.

(重合体3)
単量体3をテトラヒドロフラン中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体3を得た。この重合体3も液晶相を呈した。
(Polymer 3)
The monomer 3 was dissolved in tetrahydrofuran, and AIBN was added as a reaction initiator for polymerization to obtain a photosensitive polymer 3. This polymer 3 also exhibited a liquid crystal phase.

(実施例1) 重合体1をテトラヒドロフランに溶解し、スピンコーターを用いて石英ガラス基板上に0.1μmの厚みで塗布した。該基板の塗布面に高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して照射し、続いて、150℃で10分間加熱処理した後、室温まで冷却した。このようにして作製した試料の分子配向性は偏光UV−vis吸収スペクトルの測定により確認できる。図1に作製した試料の偏光UV−vis吸収スペクトルを示す。この図において、実線aは、塗布後(照射前)の試料の偏光UV−vis吸収スペクトル、破線bは直線偏光性の紫外光照射後の照射光電界振動方向に対して垂直方向の偏光UV−vis吸収スペクトル、実線b’は直線偏光性の紫外光照射後の照射光電界振動方向に対して平行方向の偏光UV−vis吸収スペクトル、破線cは続く加熱処理後の照射光電界振動方向に対して垂直方向の偏光UV−vis吸収スペクトル、実線c’は加熱処理後の照射光電界振動方向に対して平行方向の偏光UV−vis吸収スペクトルの測定結果をそれぞれ示す。照射後の加熱処理により、照射した直線偏光性の紫外光の電界振動方向に対して平行方向の波長315nmでの吸光度(A//)は大幅に低下し、照射した直線偏光性の紫外光の電界振動方向に対して垂直方向の波長315nmでの吸光度(A)は大幅に増大することから、分子配向が誘起されていることが分かる。
ここで試料の配向程度は偏光UV−vis吸収スペクトルから算出した配向度(S)〔S=(A//−A)/(Alarger+2Asmaller)、ここで、AlargerはA//またはAのうち吸光度の大きい方、AsmallerはA//またはAのうち吸光度の小さい方である。〕によって評価できる。図2には、照射直線偏光の照射エネルギー量と配向度(S)の関係を示す。重合体1では、照射エネルギー量10mJ/cmで配向度が最大となりその値は0.61であった。また、複屈折率は0.15であった。
従来提案してきた後述の比較例の材料と比較して、低い照射エネルギー量でも大きな配向性を示す材料であることが確認された。
Example 1 Polymer 1 was dissolved in tetrahydrofuran and applied to a quartz glass substrate with a thickness of 0.1 μm using a spin coater. The application surface of the substrate was irradiated with light from a high-pressure mercury lamp converted into linearly polarized light by a Grand Taylor prism, followed by heat treatment at 150 ° C. for 10 minutes, and then cooled to room temperature. The molecular orientation of the sample thus prepared can be confirmed by measuring a polarized UV-vis absorption spectrum. FIG. 1 shows a polarized UV-vis absorption spectrum of the prepared sample. In this figure, the solid line a is the polarized UV-vis absorption spectrum of the sample after application (before irradiation), and the broken line b is the polarized UV-perpendicular to the irradiation light electric field oscillation direction after irradiation with linearly polarized ultraviolet light. The vis absorption spectrum, solid line b ′ is a polarized UV-vis absorption spectrum parallel to the irradiation light electric field vibration direction after irradiation with linearly polarized ultraviolet light, and the broken line c is the irradiation light electric field vibration direction after the subsequent heat treatment. In addition, the polarized UV-vis absorption spectrum in the vertical direction and the solid line c ′ show the measurement results of the polarized UV-vis absorption spectrum in the direction parallel to the irradiation light electric field vibration direction after the heat treatment. By the heat treatment after irradiation, the absorbance (A // ) at a wavelength of 315 nm in the direction parallel to the electric field oscillation direction of the irradiated linearly polarized ultraviolet light is greatly reduced. Since the absorbance (A ) at a wavelength of 315 nm in the direction perpendicular to the electric field oscillation direction is greatly increased, it can be seen that molecular orientation is induced.
Here about orientation of the sample orientation degree calculated from the polarization UV-vis absorption spectra (S) [S = (A // -A ⊥) / (A larger +2 Asmaller), wherein, A Larger is A // or a larger absorbance of ⊥, a smaller is smaller absorbance of a // or a ⊥. ] Can be evaluated. FIG. 2 shows the relationship between the irradiation energy amount of the irradiated linearly polarized light and the degree of orientation (S). In polymer 1, the degree of orientation became maximum at an irradiation energy amount of 10 mJ / cm 2 and the value was 0.61. The birefringence was 0.15.
It has been confirmed that the material exhibits a large orientation even with a low irradiation energy amount as compared with a material of a comparative example which has been conventionally proposed.

(実施例2) 重合体1をテトラヒドロフランに溶解し、スピンコーターを用いて石英ガラス基板上に0.3μmの厚みで塗布した。該基板を165℃に加熱して、塗布面に高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して10mJ/cm照射し、室温まで冷却した。このようにして作製した試料の配向度(S)は、0.62で複屈折率は0.15であった。 (Example 2) Polymer 1 was dissolved in tetrahydrofuran and applied to a quartz glass substrate with a thickness of 0.3 µm using a spin coater. The substrate was heated to 165 ° C., and light from a high-pressure mercury lamp was converted into linearly polarized light by a Grand Taylor prism on the coated surface, irradiated with 10 mJ / cm 2 and cooled to room temperature. The sample thus prepared had an orientation degree (S) of 0.62 and a birefringence of 0.15.

(実施例3) 重合体2をテトラヒドロフランに溶解し、スピンコーターを用いて石英ガラス基板上に0.1μmの厚みで塗布した。該基板の塗布面に高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して照射し、続いて加熱処理した後、室温まで冷却した。このようにして作製した試料を偏光顕微鏡で観察したところ異方性が確認された。   (Example 3) The polymer 2 was dissolved in tetrahydrofuran and applied to a quartz glass substrate with a thickness of 0.1 µm using a spin coater. The coated surface of the substrate was irradiated with light from a high-pressure mercury lamp converted into linearly polarized light by a Grand Taylor prism, followed by heat treatment, and then cooled to room temperature. Anisotropy was confirmed when the thus prepared sample was observed with a polarizing microscope.

(実施例4) 重合体1をテトラヒドロフランに溶解し、スピンコーターを用いてガラス基板上に0.1μmの厚みで塗布した。該基板を165℃に加熱して、塗布面に高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して10mJ/cm照射し、室温まで冷却した。このようにして作製したガラス基板を2枚用意し、12μmのポリイミドスペーサーを挟持し、塗布面を対向させて配置し、ガラス基板間に低分子液晶ZLI4792(メルク社)を注入してパラレル型液晶セルを作製した。このように作製した液晶セルを偏光顕微鏡で観察すると低分子液晶が良好に配向していることが確認された。 (Example 4) Polymer 1 was dissolved in tetrahydrofuran and applied to a glass substrate with a thickness of 0.1 µm using a spin coater. The substrate was heated to 165 ° C., and light from a high-pressure mercury lamp was converted into linearly polarized light by a Grand Taylor prism on the coated surface, irradiated with 10 mJ / cm 2 and cooled to room temperature. Two glass substrates prepared in this manner were prepared, 12 μm polyimide spacers were sandwiched between them, the coating surfaces were placed facing each other, and a low-molecular liquid crystal ZLI4792 (Merck) was injected between the glass substrates to produce parallel type liquid crystals. A cell was produced. When the liquid crystal cell thus prepared was observed with a polarizing microscope, it was confirmed that the low-molecular liquid crystals were well aligned.

(比較例1) 従来の材料である重合体4をジクロロメタンに溶解し、実施例と同様にスピンコーターを用いて石英ガラス基板上に0.1μmの厚みで塗布し、高圧水銀灯からの光をグランテーラープリズムにより直線偏光性に変換して照射し、続いて、190℃で10分間加熱処理した後、室温まで冷却した。図3には、重合体4を用いて作製した試料での照射直線偏光の照射エネルギー量と配向度(S)の関係を示す。配向度は0.52が最大となり、そのときの照射エネルギー量は150mJ/cmであり、実施例と比較するとより多くの照射エネルギー量を必要とすることが確認された。 (Comparative example 1) The polymer 4 which is a conventional material is dissolved in dichloromethane and applied to a quartz glass substrate with a thickness of 0.1 μm using a spin coater in the same manner as in the examples, and light from a high-pressure mercury lamp is granulated. Irradiation was carried out after conversion to linear polarization with a Taylor prism, followed by heat treatment at 190 ° C. for 10 minutes and then cooling to room temperature. In FIG. 3, the relationship between the irradiation energy amount and the degree of orientation (S) of the irradiation linearly polarized light in the sample produced using the polymer 4 is shown. The degree of orientation becomes maximum at 0.52, and the irradiation energy amount at that time is 150 mJ / cm 2 , and it was confirmed that a larger amount of irradiation energy was required as compared with the Examples.

実施例1〜実施例5および従来材料を用いた比較例1から、光配向材に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムや偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜の製造法において、側鎖に光反応性基を有し、かつその側鎖が少なくとも1つの水素結合部位により、2量体を形成することを特徴とする光配向材を用いることによって従来課題を解決した光学素子、液晶配向膜およびその製造法が得られることが立証された。   From Example 1 to Example 5 and Comparative Example 1 using conventional materials, control of the orientation of molecules such as retardation films and polarization diffractive elements produced by processes including light irradiation and heating and cooling operations on the photo-alignment material A photoalignment material characterized by having a photoreactive group in a side chain and forming a dimer by at least one hydrogen bonding site in the method for producing an optical element or a liquid crystal alignment film. It has been proved that an optical element, a liquid crystal alignment film, and a method for producing the same, which have solved the conventional problems, can be obtained by using.

実施例1で作製した試料の偏光UV−vis吸収スペクトルの変化を示す図The figure which shows the change of the polarization UV-vis absorption spectrum of the sample produced in Example 1. 本発明の材料における水素結合による2量体を示す模式図Schematic diagram showing dimerization by hydrogen bonding in the material of the present invention 本発明の材料を用いた実施例1における照射直線偏光の照射エネルギー量と配向度(S)の関係Relationship between irradiation energy amount of linearly polarized light and degree of orientation (S) in Example 1 using the material of the present invention 従来技術の材料を用いた比較例1における照射直線偏光の照射エネルギー量と配向度(S)の関係Relationship between irradiation energy amount of linearly polarized light and degree of orientation (S) in Comparative Example 1 using materials of the prior art

符号の説明Explanation of symbols

a・・・塗布後(照射前)の試料の偏光UV−vis吸収スペクトル測定結果
b・・・直線偏光性の紫外光照射後の照射光電界振動方向に対して垂直方向の偏光UV−vis吸収スペクトル
b´・・・直線偏光性の紫外光照射後の照射光電界振動方向に対して平行方向の偏光UV−vis吸収スペクトル
c・・・加熱処理後の照射光電界振動方向に対して垂直方向の偏光UV−vis吸収スペクトル
c´・・・加熱処理後の照射光電界振動方向に対して平行方向の偏光UV−vis吸収スペクトル
d・・・水素結合
a ... Result of measurement of polarized UV-vis absorption spectrum of sample after application (before irradiation) b ... Polarized UV-vis absorption perpendicular to irradiation light electric field vibration direction after irradiation with linearly polarized ultraviolet light Spectrum b ′: Polarization UV-vis absorption spectrum parallel to irradiation light electric field vibration direction after irradiation with linearly polarized ultraviolet light c—Perpendicular to irradiation light electric field vibration direction after heat treatment Polarized UV-vis absorption spectrum of c ′: polarized UV-vis absorption spectrum parallel to the direction of electric field vibration of irradiated light after heat treatment d—hydrogen bond

Claims (4)

高分子構造の複数の側鎖に光反応性基を有し、前記側鎖が相互に水素結合して2量体を形成していることを特徴とする光配向材。    A photoalignment material having a photoreactive group in a plurality of side chains of a polymer structure, wherein the side chains are hydrogen-bonded to each other to form a dimer. 前記光反応性基を有する側鎖には、化学式1で示す構造を少なくとも含むことを特徴とする、請求項1に記載の光配向材。
Figure 2007304215
ここで、m=0,1、n=1〜3、c=0,1、X=なし,O,CH,N=N,C=C,C≡C,COO,OCO、R,Rは、それぞれHないしはアルキル基,アルキルオキシ基,ハロゲンを示す。
2. The photo-alignment material according to claim 1, wherein the side chain having the photoreactive group includes at least a structure represented by Chemical Formula 1. 3.
Figure 2007304215
Here, m = 0, 1, n = 1-3, c = 0, 1, X = none, O, CH 2 , N = N, C = C, C≡C, COO, OCO, R 1 , R 2 represents H or an alkyl group, an alkyloxy group and a halogen, respectively.
請求項1または請求項2に記載の光配向材に直線偏光成分を含む光を照射する工程と、直線偏光成分を含む光の照射後の光配向材を加熱する工程をもってなることを特徴とする光学素子の製造方法。    3. The method according to claim 1, further comprising a step of irradiating the photo-alignment material according to claim 1 with light containing a linearly polarized light component and a step of heating the photo-alignment material after irradiation with light containing the linearly polarized light component. A method for manufacturing an optical element. 請求項1または請求項2に記載の光配向材に直線偏光成分を含む光を照射して液晶配向能を付与することを特徴とする液晶配向膜の製造方法。   A method for producing a liquid crystal alignment film, wherein the photo-alignment material according to claim 1 or 2 is irradiated with light containing a linearly polarized light component to impart liquid crystal alignment ability.
JP2006130833A 2006-05-09 2006-05-09 Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film Pending JP2007304215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006130833A JP2007304215A (en) 2006-05-09 2006-05-09 Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130833A JP2007304215A (en) 2006-05-09 2006-05-09 Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film

Publications (1)

Publication Number Publication Date
JP2007304215A true JP2007304215A (en) 2007-11-22

Family

ID=38838204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130833A Pending JP2007304215A (en) 2006-05-09 2006-05-09 Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP2007304215A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2010101140A1 (en) * 2009-03-04 2010-09-10 林テレンプ株式会社 Depolarization film
JP2011039510A (en) * 2009-08-07 2011-02-24 Jds Uniphase Corp Liquid crystal layer having spatially-varying tilt angle
JP2012087286A (en) * 2010-09-22 2012-05-10 Jnc Corp Photosensitive compound and photosensitive polymer composed of the compound
KR20130006325A (en) * 2011-07-07 2013-01-16 스미또모 가가꾸 가부시키가이샤 Photoreactive liquid crystal aligning agent, and liquid crystal alignment device and method for production thereof
WO2013081066A1 (en) * 2011-11-29 2013-06-06 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2013115628A1 (en) * 2012-02-02 2013-08-08 주식회사 엘지화학 Liquid crystal composition
KR20140006960A (en) 2011-02-23 2014-01-16 오사카 유키가가쿠고교 가부시키가이샤 Method for producing phase difference film
JP2014501831A (en) * 2010-12-23 2014-01-23 ロリク アーゲー Photoactive polymer material
WO2014054785A2 (en) * 2012-10-05 2014-04-10 日産化学工業株式会社 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
WO2014148569A1 (en) * 2013-03-19 2014-09-25 日産化学工業株式会社 Method for manufacturing in-plane-switching-type liquid-crystal display element
WO2014185411A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014192922A1 (en) * 2013-05-31 2014-12-04 日産化学工業株式会社 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
WO2015002291A1 (en) * 2013-07-05 2015-01-08 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
WO2015025937A1 (en) * 2013-08-22 2015-02-26 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
JP2015106018A (en) * 2013-11-29 2015-06-08 林テレンプ株式会社 Manufacturing method of optical element having optical anisotropy and optical element having optical anisotropy
KR20160007638A (en) * 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20160016915A (en) * 2013-06-05 2016-02-15 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
JP2016060857A (en) * 2014-09-19 2016-04-25 林テレンプ株式会社 Liquid crystal polymer film and production process therefor
CN105593308A (en) * 2013-07-31 2016-05-18 日产化学工业株式会社 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
US9348073B2 (en) 2012-02-13 2016-05-24 Samsung Display Co., Ltd. Photoreactive material layer and method of manufacturing the same
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
CN103959152B (en) * 2011-11-29 2016-11-30 日产化学工业株式会社 The manufacture method of liquid crystal orientation film, liquid crystal orientation film and liquid crystal display cells
CN106232733A (en) * 2014-04-09 2016-12-14 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
US9745514B2 (en) 2014-07-15 2017-08-29 Samsung Display Co., Ltd. Photo-alignment composition and method of manufacturing a display panel using the same
JP2018109788A (en) * 2018-03-16 2018-07-12 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element
WO2019039486A1 (en) * 2017-08-23 2019-02-28 国立大学法人長岡技術科学大学 Polarization image capturing device
KR102058769B1 (en) 2012-07-24 2019-12-23 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent
WO2020017622A1 (en) * 2018-07-20 2020-01-23 公立大学法人兵庫県立大学 Photoreactive composition, liquid crystal cell using photoreactive composition, and method for producing liquid crystal cell
KR20210096099A (en) 2018-11-29 2021-08-04 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film and phase difference material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219071A (en) * 1997-02-06 1998-08-18 Asahi Denka Kogyo Kk Thermosetting composition
JP2005097377A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Alignment layer, polymer, retardation plate using it, its preparing method and liquid crystal display device
JP2005266401A (en) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd Retardation plate and image display apparatus
JP2005301235A (en) * 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd Retardation plate and image display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219071A (en) * 1997-02-06 1998-08-18 Asahi Denka Kogyo Kk Thermosetting composition
JP2005097377A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Alignment layer, polymer, retardation plate using it, its preparing method and liquid crystal display device
JP2005266401A (en) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd Retardation plate and image display apparatus
JP2005301235A (en) * 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd Retardation plate and image display apparatus

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2010101140A1 (en) * 2009-03-04 2010-09-10 林テレンプ株式会社 Depolarization film
US8724220B2 (en) 2009-03-04 2014-05-13 Hayashi Telempu Co., Ltd. Depolarizing film having an optically anisotropic volumetric region
JP2011039510A (en) * 2009-08-07 2011-02-24 Jds Uniphase Corp Liquid crystal layer having spatially-varying tilt angle
JP2012087286A (en) * 2010-09-22 2012-05-10 Jnc Corp Photosensitive compound and photosensitive polymer composed of the compound
JP2017160448A (en) * 2010-12-23 2017-09-14 ロリク アーゲーRolic Ag Photoactive polymeric material
JP2014501831A (en) * 2010-12-23 2014-01-23 ロリク アーゲー Photoactive polymer material
US11261377B2 (en) 2010-12-23 2022-03-01 Rolic Ag Photoactive polymer materials
JP2020023707A (en) * 2010-12-23 2020-02-13 ロリク アーゲーRolic Ag Photoactive polymer materials
US10465116B2 (en) 2010-12-23 2019-11-05 Rolic Ag Photoactive polymer materials
KR20140006960A (en) 2011-02-23 2014-01-16 오사카 유키가가쿠고교 가부시키가이샤 Method for producing phase difference film
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
KR20130006325A (en) * 2011-07-07 2013-01-16 스미또모 가가꾸 가부시키가이샤 Photoreactive liquid crystal aligning agent, and liquid crystal alignment device and method for production thereof
KR101945053B1 (en) * 2011-07-07 2019-02-01 스미또모 가가꾸 가부시키가이샤 Photoreactive liquid crystal aligning agent, and liquid crystal alignment device and method for production thereof
JPWO2013081066A1 (en) * 2011-11-29 2015-04-27 日産化学工業株式会社 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2017090934A (en) * 2011-11-29 2017-05-25 日産化学工業株式会社 Method of manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN103959152B (en) * 2011-11-29 2016-11-30 日产化学工业株式会社 The manufacture method of liquid crystal orientation film, liquid crystal orientation film and liquid crystal display cells
WO2013081066A1 (en) * 2011-11-29 2013-06-06 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN103959152A (en) * 2011-11-29 2014-07-30 日产化学工业株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20190099085A (en) * 2011-11-29 2019-08-23 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR102012533B1 (en) 2011-11-29 2019-08-20 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR102157012B1 (en) 2011-11-29 2020-09-16 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR20140105446A (en) * 2011-11-29 2014-09-01 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
TWI593710B (en) * 2011-11-29 2017-08-01 日產化學工業股份有限公司 Method of manufacturing liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
US9045686B2 (en) 2012-02-02 2015-06-02 Lg Chem, Ltd. Liquid crystal composition
JP2015508107A (en) * 2012-02-02 2015-03-16 エルジー・ケム・リミテッド Liquid crystal composition
WO2013115628A1 (en) * 2012-02-02 2013-08-08 주식회사 엘지화학 Liquid crystal composition
US9157029B2 (en) 2012-02-02 2015-10-13 Lg Chem, Ltd. Liquid crystal composition
US9157028B2 (en) 2012-02-02 2015-10-13 Lg Chem, Ltd. Liquid crystal composition
CN104080888A (en) * 2012-02-02 2014-10-01 Lg化学株式会社 Liquid crystal composition
US9348073B2 (en) 2012-02-13 2016-05-24 Samsung Display Co., Ltd. Photoreactive material layer and method of manufacturing the same
KR102058769B1 (en) 2012-07-24 2019-12-23 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent
CN104903785A (en) * 2012-10-05 2015-09-09 日产化学工业株式会社 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
JP2019023744A (en) * 2012-10-05 2019-02-14 日産化学株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching type liquid crystal display element
WO2014054785A2 (en) * 2012-10-05 2014-04-10 日産化学工業株式会社 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
KR20150067217A (en) * 2012-10-05 2015-06-17 닛산 가가쿠 고교 가부시키 가이샤 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
WO2014054785A3 (en) * 2012-10-05 2014-06-12 日産化学工業株式会社 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
CN104903785B (en) * 2012-10-05 2017-08-15 日产化学工业株式会社 The manufacture method of substrate with the driving liquid crystal orientation film used for liquid crystal display element of horizontal component of electric field
KR102113892B1 (en) * 2012-10-05 2020-05-21 닛산 가가쿠 가부시키가이샤 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
JPWO2014054785A1 (en) * 2012-10-05 2016-08-25 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2014148569A1 (en) * 2013-03-19 2014-09-25 日産化学工業株式会社 Method for manufacturing in-plane-switching-type liquid-crystal display element
CN105339837B (en) * 2013-03-19 2019-02-12 日产化学工业株式会社 The driving liquid crystal of transverse electric field indicates the manufacturing method of element
TWI620757B (en) * 2013-03-19 2018-04-11 日產化學工業股份有限公司 Manufacturing method of transverse electric field driving type liquid crystal display element
CN105339837A (en) * 2013-03-19 2016-02-17 日产化学工业株式会社 Method for manufacturing in-plane-switching-type liquid-crystal display element
KR102258545B1 (en) * 2013-03-19 2021-05-28 닛산 가가쿠 가부시키가이샤 Method for manufacturing in-plane-switching-type liquid-crystal display element
JPWO2014148569A1 (en) * 2013-03-19 2017-02-16 日産化学工業株式会社 Method of manufacturing lateral electric field drive type liquid crystal display element
KR20160002795A (en) * 2013-03-19 2016-01-08 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing in-plane-switching-type liquid-crystal display element
TWI626266B (en) * 2013-05-13 2018-06-11 日產化學工業股份有限公司 Manufacturing method of substrate with liquid crystal alignment film for lateral electric field drive type liquid crystal display element
CN105392866B (en) * 2013-05-13 2020-11-03 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
KR20160007635A (en) * 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR102261699B1 (en) * 2013-05-13 2021-06-04 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR102254609B1 (en) * 2013-05-13 2021-05-20 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR102214302B1 (en) * 2013-05-13 2021-02-08 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR20200125757A (en) * 2013-05-13 2020-11-04 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR20160007638A (en) * 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
CN105378033B (en) * 2013-05-13 2020-10-27 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
JPWO2014185412A1 (en) * 2013-05-13 2017-02-23 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
KR102165624B1 (en) * 2013-05-13 2020-10-14 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
JPWO2014185410A1 (en) * 2013-05-13 2017-02-23 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
JPWO2014185411A1 (en) * 2013-05-13 2017-02-23 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
CN105378033A (en) * 2013-05-13 2016-03-02 日产化学工业株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
CN105393167A (en) * 2013-05-13 2016-03-09 日产化学工业株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2014185411A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
CN105393167B (en) * 2013-05-13 2019-05-10 日产化学工业株式会社 The manufacturing method of the substrate of element liquid crystal orientation film is indicated with the driving liquid crystal of transverse electric field
CN105392866A (en) * 2013-05-13 2016-03-09 日产化学工业株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI628219B (en) * 2013-05-13 2018-07-01 日產化學工業股份有限公司 Manufacturing method of substrate with liquid crystal alignment film for lateral electric field drive type liquid crystal display element
KR20160007636A (en) * 2013-05-13 2016-01-20 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
JPWO2014192922A1 (en) * 2013-05-31 2017-02-23 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
KR102191954B1 (en) * 2013-05-31 2020-12-16 닛산 가가쿠 가부시키가이샤 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
KR20160014691A (en) * 2013-05-31 2016-02-11 닛산 가가쿠 고교 가부시키 가이샤 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
WO2014192922A1 (en) * 2013-05-31 2014-12-04 日産化学工業株式会社 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
CN105431770A (en) * 2013-05-31 2016-03-23 日产化学工业株式会社 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
CN105431770B (en) * 2013-05-31 2021-06-04 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
KR102244413B1 (en) * 2013-06-05 2021-04-23 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR20160016915A (en) * 2013-06-05 2016-02-15 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
CN105492964B (en) * 2013-06-05 2020-04-10 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
CN105492964A (en) * 2013-06-05 2016-04-13 日产化学工业株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR20160030959A (en) * 2013-07-05 2016-03-21 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
WO2015002291A1 (en) * 2013-07-05 2015-01-08 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
JPWO2015002291A1 (en) * 2013-07-05 2017-02-23 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for lateral electric field drive type liquid crystal display device
CN105518521A (en) * 2013-07-05 2016-04-20 日产化学工业株式会社 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
KR102324602B1 (en) * 2013-07-05 2021-11-09 닛산 가가쿠 가부시키가이샤 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
CN105518521B (en) * 2013-07-05 2020-04-10 日产化学工业株式会社 Polymer composition and liquid crystal alignment film for in-plane switching liquid crystal display element
CN105593308A (en) * 2013-07-31 2016-05-18 日产化学工业株式会社 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
JPWO2015025937A1 (en) * 2013-08-22 2017-03-02 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
TWI644931B (en) * 2013-08-22 2018-12-21 Nissan Chemical Industries, Ltd. Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
KR20160048848A (en) * 2013-08-22 2016-05-04 닛산 가가쿠 고교 가부시키 가이샤 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
KR102204768B1 (en) 2013-08-22 2021-01-18 닛산 가가쿠 가부시키가이샤 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
WO2015025937A1 (en) * 2013-08-22 2015-02-26 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
JP2015106018A (en) * 2013-11-29 2015-06-08 林テレンプ株式会社 Manufacturing method of optical element having optical anisotropy and optical element having optical anisotropy
CN106232733A (en) * 2014-04-09 2016-12-14 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
US9745514B2 (en) 2014-07-15 2017-08-29 Samsung Display Co., Ltd. Photo-alignment composition and method of manufacturing a display panel using the same
JP2016060857A (en) * 2014-09-19 2016-04-25 林テレンプ株式会社 Liquid crystal polymer film and production process therefor
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
TWI689543B (en) * 2015-01-15 2020-04-01 日商日產化學工業股份有限公司 Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
JPWO2016113930A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JPWO2016113931A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen bonding polymer liquid crystal and liquid crystal alignment film
JPWO2019039486A1 (en) * 2017-08-23 2020-10-15 国立大学法人長岡技術科学大学 Polarized imager
WO2019039486A1 (en) * 2017-08-23 2019-02-28 国立大学法人長岡技術科学大学 Polarization image capturing device
CN111247405A (en) * 2017-08-23 2020-06-05 国立大学法人长冈技术科学大学 Polarization camera device
JP7101356B2 (en) 2017-08-23 2022-07-15 国立大学法人長岡技術科学大学 Polarized imager
JP2018109788A (en) * 2018-03-16 2018-07-12 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element
WO2020017622A1 (en) * 2018-07-20 2020-01-23 公立大学法人兵庫県立大学 Photoreactive composition, liquid crystal cell using photoreactive composition, and method for producing liquid crystal cell
JP7471577B2 (en) 2018-07-20 2024-04-22 兵庫県公立大学法人 Photoreactive composition, liquid crystal cell using photoreactive composition, and method for manufacturing liquid crystal cell
KR20210096099A (en) 2018-11-29 2021-08-04 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film and phase difference material

Similar Documents

Publication Publication Date Title
JP2007304215A (en) Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP5075483B2 (en) Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
TWI593710B (en) Method of manufacturing liquid crystal alignment film, liquid crystal alignment film and liquid crystal display element
JP5162985B2 (en) Trifunctional compound, composition and polymer thereof
CN105518035B (en) Compound, polymer, liquid crystal alignment film, liquid crystal display element, and optical anisotropic body
JP5898404B2 (en) Composition for photo-alignment film and optical anisotropic film
JPH11189665A (en) Birefringent film and its production
JP2007232934A (en) Photo-alignment material
KR20190141014A (en) Photoreactive compounds
TW201011036A (en) Polymeric chiral compound
KR19990023378A (en) Liquid crystalline composition, hardened | cured material, and its manufacturing method
CN105339837A (en) Method for manufacturing in-plane-switching-type liquid-crystal display element
JP2008248061A (en) Polymer-stabilizing liquid crystal composition and polymer-stabilized liquid crystal-displaying element
KR101648041B1 (en) Polymerizable compound
KR102311602B1 (en) Cured film-forming composition, alignment material, and phase difference material
JP4333914B2 (en) Method for manufacturing polarization diffraction element
Kawatsuki et al. Photoinduced birefringent pattern and photoinactivation of liquid-crystalline copolymer films with benzoic acid and phenylaldehyde side groups
TW201422650A (en) Photo-alignment copolymer, optical anistropic film and its preparation method
JP6989895B2 (en) Optical element and its manufacturing method
Andersson et al. Synthesis and Polymerization of Liquid Crystalline Donor− Acceptor Monomers
CN102040521B (en) Polymerizable compound
JP6727555B2 (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using the composition and method for producing the same, liquid crystal display device having liquid crystal alignment film and method for producing the same
JP7106059B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2006308878A (en) Method for manufacturing optical element and optical element
JP4655348B2 (en) Acrylic acid derivative compound, polymer liquid crystal obtained by polymerizing the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327