JPH11189665A - Birefringent film and its production - Google Patents

Birefringent film and its production

Info

Publication number
JPH11189665A
JPH11189665A JP36839497A JP36839497A JPH11189665A JP H11189665 A JPH11189665 A JP H11189665A JP 36839497 A JP36839497 A JP 36839497A JP 36839497 A JP36839497 A JP 36839497A JP H11189665 A JPH11189665 A JP H11189665A
Authority
JP
Japan
Prior art keywords
film
birefringent film
birefringent
producing
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36839497A
Other languages
Japanese (ja)
Other versions
JP3945790B2 (en
Inventor
Yoshihiro Kawatsuki
喜弘 川月
Hiroshi Ono
博司 小野
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP36839497A priority Critical patent/JP3945790B2/en
Publication of JPH11189665A publication Critical patent/JPH11189665A/en
Application granted granted Critical
Publication of JP3945790B2 publication Critical patent/JP3945790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process whereby a birefringent film having the optical axis tilted relatively to the film surface is mass-produced at a low cost and to prepare a birefingent film produced thereby. SOLUTION: A photosensitive side-chaine-type polymer film 4 which has a main chain formed e.g. from a hydrocarbon, an acrylate, a methacrylate or a siloxane and has substituents (e.g. biphenyl, terphenyl, phenyl benzoate or azobenzene groups), side chains having a structure contg. photosensitive groups such as cinnamate groups, and side chains having no photosensitive group in a specified ratio is irradiated with linearly polarized ultraviolet rays 7 to conduct the dimerization of the photosensitive groups, thus giving a birefringent film having the optical axis tilted to a desired direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感光性の側鎖型高
分子液晶の膜に、直線偏光性の紫外線を照射して分子を
配向させるすることによって、光軸と光の透過方向によ
る位相差を制御する構造を形成した複屈折フィルム、お
よびその製造方法に関するものである。特に、光軸がフ
ィルム面に対し傾いた複屈折フィルムが液晶表示装置に
おいて視野角拡大に有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for aligning molecules by irradiating a photosensitive side-chain type polymer liquid crystal film with a linearly polarized ultraviolet ray so as to align the optical axis and the light transmission direction. The present invention relates to a birefringent film having a structure for controlling a phase difference, and a method for manufacturing the same. In particular, a birefringent film whose optical axis is inclined with respect to the film surface is effective for expanding the viewing angle in a liquid crystal display device.

【0002】[0002]

【従来の技術】複屈折フィルムは、互いに垂直な主軸方
向に振動する直線偏光成分を透過させ、この二成分間に
必要な位相差を与える。複屈折フィルムは液晶表示分野
にも活用されてきており、特に光軸の傾いた複屈折フィ
ルムが光学補償フィルムとして液晶表示装置の視野拡大
に有効である。液晶表示装置は、ブラウン管式の表示装
置と比較して、「平板状であるため狭い空間でも設置で
きる」、「軽量で持ち運び易い」、「デジタル映像であ
るため高速の映像通信に馴染む」、「低電圧で駆動する
ため消費電力が少ない」などの利点を持っており、有力
な映像情報発生手段として急成長の途上にある。現在普
及している液晶表示装置の多くは、ねじれネマッチク液
晶を利用している。
2. Description of the Related Art A birefringent film transmits a linearly polarized light component oscillating in a direction of a main axis perpendicular to each other, and gives a necessary phase difference between the two components. Birefringent films have also been utilized in the field of liquid crystal displays, and birefringent films having an inclined optical axis are particularly effective as optical compensation films for expanding the field of view of liquid crystal display devices. Compared to CRT display devices, liquid crystal display devices are `` flat and can be installed in small spaces, '' `` light and portable, '' `` adapted to high-speed video communication because they are digital images, '' It is driven by a low voltage and consumes little power, and is rapidly growing as a powerful means of generating video information. Many of the currently popular liquid crystal display devices use twisted nematic liquid crystals.

【0003】液晶分子は、分子の長軸方向と短軸方向で
異なる屈折率を有し、複屈折性を示す。このような複屈
折体に垂直に光が入射した場合と、斜めから光が入射し
た場合では位相差が生じる。図1によって、液晶内にα
軸、β軸、γ軸をもってなる空間をとると、その屈折率
は図のような異方性の楕円体(110)で表される。液
晶を2枚の偏光子で挟んだ構造から成る液晶表示装置に
とって、液晶にこのような光学的異方性があると、見る
方向によって表示色や表示コントラストが変化するとい
う視野角特性が生じる。すなわち、同一の出射光であっ
ても屈折率楕円体の長軸(101)方向にある視野(1
11)と、屈折率楕円体の長軸からずれた方向の視野
(112)では見えかたが異なる。この種の視野角特性
は液晶表示装置の視認性を低くするため、これを解消す
るに好適な任意の光学補償作用をもつ複屈折フィルム
(およびその合理的製造方法)の開発が課題となってい
る。
[0003] Liquid crystal molecules have different refractive indices in the major axis direction and the minor axis direction of the molecules, and exhibit birefringence. A phase difference occurs when light is vertically incident on such a birefringent body and when light is obliquely incident. According to FIG. 1, α
If a space having an axis, a β axis, and a γ axis is taken, its refractive index is represented by an anisotropic ellipsoid (110) as shown in the figure. In a liquid crystal display device having a structure in which a liquid crystal is sandwiched between two polarizers, if the liquid crystal has such optical anisotropy, a viewing angle characteristic in which a display color and a display contrast change depending on a viewing direction occurs. In other words, even with the same emitted light, the field of view (1) in the major axis (101) direction of the refractive index ellipsoid.
11) and the visual field (112) in a direction shifted from the long axis of the refractive index ellipsoid have different appearances. Since this kind of viewing angle characteristic lowers the visibility of the liquid crystal display device, development of a birefringent film (and a rational manufacturing method thereof) having an optional optical compensation action suitable for solving the problem has been an issue. I have.

【0004】この光学補償作用を図2によって説明す
る。屈折率楕円体の傾斜した長軸(101)を含む液晶
層(100)の上方に、この屈折率楕円体(110)の
光学的異方性を補償する光学特性、すなわち長軸(20
1)をもった屈折率楕円体(210)で表される光学的
異方性をもった複屈折フィルム(200)を配すること
によって、視野(111)と視野(112)において感
知される明るさ等を同質化するものである。このような
特定の光学異方性を有した複屈折フィルムが偶然得られ
る可能性は非常に少ないため、任意の光学特性(光軸の
傾斜度)をもった複屈折フィルムを製造する技術が必要
になる。
[0004] This optical compensation function will be described with reference to FIG. Above the liquid crystal layer (100) including the inclined major axis (101) of the refractive index ellipsoid, the optical property for compensating the optical anisotropy of the refractive index ellipsoid (110), that is, the major axis (20)
By disposing a birefringent film (200) having an optical anisotropy represented by an index ellipsoid (210) having 1), the brightness sensed in the visual field (111) and the visual field (112). And the like. Since it is very unlikely that such a birefringent film having a specific optical anisotropy will be obtained by chance, a technique for producing a birefringent film having arbitrary optical characteristics (degree of inclination of the optical axis) is required. become.

【0005】従来、液晶表示装置の視野角特性を改良す
る複屈折フィルム(製造方法)がいくつか提案されてい
る。たとえば、特開平3−3926号、特開平3−29
1601号公報には、配向膜が形成された基板に高分子
液晶を塗布することにより、配向膜にそって液晶分子が
配向した光学補償フィルムを得る方法が記載されてい
る。この方法では、分子が基板(配向膜)に対して一様
に垂直方向に配向してしまい、任意の光学補償特性を持
たせることが困難で、視野角特性を十分に改善するには
到らなかった。延伸配向させた高分子(ポリカーボネー
ト)フィルムを用いる例も同様に分子が延伸方向に配向
するため光軸を傾斜させることが困難である。また、こ
の方法ではフィルム全面において、延伸度や厚みを正確
に制御する必要があり、位相差を精度よく均一に保つの
が困難である。これに対し、光軸を傾斜させ光学補償す
るフィルム(製造方法)も提案されている。これは、た
とえば特開平4−113301号、特開平5−8032
3号公報に記載されているように、一光軸(配向)性の
ポリカーボネート板を前記の光軸に対して斜めにスライ
スする方法である。この方法では、大面積の複屈折フィ
ルムを実用的コストで得ることが困難である。光軸を傾
斜させた複屈折素子としては、方解石などの無機結晶を
光軸に対して斜めに切り出し、表面を研磨したものも考
えられるが、これらの無機結晶は高価であり、低コスト
で大面積の光軸を傾斜させた複屈折フィルムを得ること
はできない。また、特開平5−5823号公報には、光
異性化物質を用いる方法が記載されているが、該方法に
よる複屈折フィルムは熱、光安定性が不足して、用途に
適した複屈折フィルムとならない。さらに、特開平7−
287119号、特開平7−287120号公報では、
ラビング配向膜、SiO斜方蒸着配向膜にディスコティ
ック液晶を塗布し加熱、冷却する方法も記載されている
が、大面積において均一に配向方向を均一に制御した複
屈折フィルムを低コストで得ることは難しい。
Hitherto, several birefringent films (manufacturing methods) for improving the viewing angle characteristics of liquid crystal display devices have been proposed. For example, JP-A-3-3926, JP-A-3-29
No. 1601 describes a method for obtaining an optical compensation film in which liquid crystal molecules are aligned along an alignment film by applying a polymer liquid crystal to a substrate on which the alignment film is formed. In this method, molecules are uniformly oriented in a direction perpendicular to the substrate (alignment film), so that it is difficult to provide an arbitrary optical compensation characteristic, and it is not possible to sufficiently improve the viewing angle characteristic. Did not. Similarly, in the case of using a stretch-oriented polymer (polycarbonate) film, it is difficult to tilt the optical axis because the molecules are oriented in the stretching direction. Further, in this method, it is necessary to precisely control the degree of stretching and the thickness over the entire surface of the film, and it is difficult to accurately and uniformly maintain the retardation. On the other hand, a film (manufacturing method) for tilting the optical axis and optically compensating has been proposed. This is described, for example, in JP-A-4-113301 and JP-A-5-8032.
As described in Japanese Patent Publication No. 3 (1993), this is a method of slicing a polycarbonate plate having one optical axis (orientation) obliquely with respect to the optical axis. With this method, it is difficult to obtain a large-area birefringent film at a practical cost. As a birefringent element with an inclined optical axis, an inorganic crystal such as calcite that is cut out at an angle to the optical axis and whose surface is polished can be considered, but these inorganic crystals are expensive, low cost, and large. It is not possible to obtain a birefringent film in which the optical axis of the area is inclined. JP-A-5-5823 describes a method using a photoisomerizable substance. However, a birefringent film obtained by the method lacks heat and light stability and is suitable for applications. Does not. Further, Japanese Unexamined Patent Publication No.
287119, JP-A-7-287120,
A method of applying a discotic liquid crystal to a rubbing alignment film or a SiO oblique deposition alignment film, and heating and cooling the same is also described. However, it is necessary to obtain a birefringent film having a uniform orientation direction and uniform control over a large area at low cost. Is difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明では、上記課題
を解決した合理的な複屈折フィルムの製造方法を提供す
る。
According to the present invention, there is provided a rational method for producing a birefringent film which solves the above problems.

【0007】[0007]

【課題を解決するための手段】課題を解決する本発明の
手段は、感光性の側鎖型高分子膜に直線偏光性の紫外線
を照射して任意の複屈折特性をもった複屈折フィルムを
得ることを特徴とする複屈折フィルムの製造方法、(特
にこの複屈折特性が光軸方向制御であることを特徴とす
る複屈折フィルムの製造方法)、この製造方法におい
て、感光性の側鎖型高分子の構造として、側鎖には少な
くとも化学式1、および/または化学式2で表される構
造を含み、化学式3ないし化学式4で表される構成をと
ることを特徴とする複屈折フィルムの製造方法、この複
屈折フィルムの製造方法において、直線偏光性の紫外線
を照射する際の感光性の側鎖型高分子膜の温度が、この
側鎖型高分子の等方相への転移温度(Ti )との差10
℃以内の範囲にあることを特徴とする複屈折フィルムの
製造方法、この複屈折フィルムの製造方法において、感
光性の側鎖型高分子膜ないしはその支持体を室温におい
て直線偏光性の紫外線を照射し、その後に加熱、および
/または冷却する工程を含むことを特徴とする複屈折フ
ィルムの製造方法、これらの複屈折フィルムの製造方法
によって得られることを特徴とする複屈折フィルムにあ
る。
According to the present invention, there is provided a birefringent film having an arbitrary birefringent characteristic by irradiating a photosensitive side-chain type polymer film with linearly polarized ultraviolet rays. A method of producing a birefringent film, particularly a method of producing a birefringent film characterized in that the birefringence characteristic is controlled in the direction of the optical axis. A method for producing a birefringent film, wherein a side chain of the polymer includes at least a structure represented by Formula 1 and / or Formula 2 and has a structure represented by Formula 3 or Formula 4. In the method for producing a birefringent film, the temperature of the photosensitive side-chain type polymer film when irradiating linearly polarized ultraviolet light is adjusted to the transition temperature (T i) of the side-chain type polymer to the isotropic phase. Difference from 10)
The method for producing a birefringent film, characterized in that the temperature is within the range of ° C. The method for producing a birefringent film comprises irradiating a photosensitive side-chain type polymer film or its support with linearly polarized ultraviolet rays at room temperature. And then a heating and / or cooling step, and a birefringent film obtained by these birefringent film manufacturing methods.

【0008】[0008]

【作用】本発明の製造方法(による複屈折フィルム)
は、以下のような特異的作用をもっている。直線偏光性
の紫外線の照射によって、また共重合組成によって側鎖
の配向を制御できる。その結果、光軸がフィルム面に対
し傾いた複屈折フィルムを得ることができる。高分子の
側鎖を照射した直線偏光紫外線の電界振動方向に対し平
行方向かつ照射光進行方向に対して垂直方向に配列させ
ることができる。照射をフィルム面に対して斜め方向か
らおこなうことによって、高分子の側鎖を傾斜させて配
向させることができ、この傾斜は、光の照射方向と振動
方向を変えることによって任意の方向に設定できる。側
鎖の配向度は直線偏光紫外線の照射量によって制御さ
れ、この側鎖の配向度により位相差が制御可能である。
The birefringent film according to the production method of the present invention
Has the following specific effects. The orientation of side chains can be controlled by irradiation with linearly polarized ultraviolet light and by the copolymer composition. As a result, a birefringent film whose optical axis is inclined with respect to the film surface can be obtained. The linearly polarized ultraviolet rays irradiated to the side chains of the polymer can be arranged in a direction parallel to the electric field oscillation direction and perpendicular to the irradiation light traveling direction. By irradiating the film from an oblique direction with respect to the film surface, the side chains of the polymer can be tilted and oriented, and this tilt can be set in any direction by changing the light irradiation direction and the vibration direction. . The degree of orientation of the side chain is controlled by the dose of linearly polarized ultraviolet light, and the phase difference can be controlled by the degree of orientation of the side chain.

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施形態を説明
する。本発明の複屈折フィルムの原料となる高分子は、
液晶性高分子のメソゲン成分として多用されているビフ
ェニル、ターフェニル、フェニルベンゾエート、アゾベ
ンゼンなどの置換基と、桂皮酸基(または、その誘導体
基)などの感光性基を結合した構造を含む側鎖を有する
と共に、感光性基の結合していないメソゲン成分を含む
側鎖をある割合で含有した、炭化水素、アクリレート、
メタクリレート、シロキサンなどの構造を主鎖に有する
高分子である。該高分子体の溶液を基板上に塗布(スピ
ンコート)した高分子塗布膜を形成する。この高分子塗
布膜は、製膜時には無配向であり、化学式1示される感
光性の側鎖部は特定方向を向いていない。この状態を図
3を参照して説明すると、塗布膜(10)中には長楕円
で示される感光基を有し、かつ照射偏光紫外線の振動方
向に対応した向きにある感光性の側鎖(11)と感光性
の乏しい側鎖(12)が無配向に存在している。この塗
布膜に直線偏光の紫外線を照射すると、照射した直線偏
光の電解振動方向かつ照射光進行方向に対し垂直方向に
対応した向きにある感光性の側鎖(11)の桂皮酸基
(または、その誘導体基)などの感光性基の2量化が最
も鋭敏に起こる。この2量化反応は、反応式1に示すよ
うにシクロプロパン結合を形成するものであり、この2
量化反応を進めるには、化学式1の桂皮酸基の部分が反
応し得る波長の直線偏光の照射をし、光反応部は照射し
た直線偏光の電界方向に対して垂直な方向に配向する。
この反応を誘起する光の波長は、化学式1で示された−
1 〜−R5 の種類によっても異なるが、一般に200 〜
500nm であり、中でも250 〜400nm の有効性が高い場合
が多い。
Embodiments of the present invention will be described below. The polymer as a raw material of the birefringent film of the present invention,
Side chain containing a structure in which a substituent such as biphenyl, terphenyl, phenylbenzoate, or azobenzene, which is frequently used as a mesogen component of a liquid crystalline polymer, and a photosensitive group such as a cinnamic acid group (or a derivative thereof) are bonded. Having a side chain containing a mesogen component to which a photosensitive group is not bound, in a certain ratio, a hydrocarbon, an acrylate,
It is a polymer having a structure such as methacrylate or siloxane in the main chain. The polymer solution is applied (spin-coated) on a substrate to form a polymer coating film. This polymer coating film is non-oriented at the time of film formation, and the photosensitive side chain portion represented by the chemical formula 1 does not face a specific direction. This state will be described with reference to FIG. 3. In the coating film (10), a photosensitive side chain () having a photosensitive group represented by a long ellipse and oriented in a direction corresponding to the vibration direction of the irradiation polarized ultraviolet light. 11) and the side chain (12) having poor photosensitivity exist without orientation. When this coating film is irradiated with linearly polarized ultraviolet light, the cinnamic acid group of the photosensitive side chain (11) (or, in the direction corresponding to the electrolytic oscillation direction of the irradiated linearly polarized light and the direction perpendicular to the irradiation light traveling direction) (or The dimerization of a photosensitive group such as a derivative group thereof occurs most sharply. In this dimerization reaction, a cyclopropane bond is formed as shown in the reaction formula 1.
In order to proceed with the quantification reaction, irradiation of linearly polarized light having a wavelength at which the cinnamate group of Formula 1 can react is performed, and the photoreactive portion is oriented in a direction perpendicular to the direction of the electric field of the irradiated linearly polarized light.
The wavelength of light that induces this reaction is represented by the following formula (1).
Although it varies depending on the type of R 1 to -R 5 , generally 200 to
It is 500 nm, and 250-400 nm is particularly effective in many cases.

【0010】[0010]

【化5】 反応式1中に記した長方形は、側鎖型高分子液晶におい
て、高分子の主鎖と感光基をつなぐ分子鎖であり、液晶
成分と屈曲成分を含む。
Embedded image The rectangle described in Reaction Formula 1 is a molecular chain connecting the main chain of the polymer and the photosensitive group in the side chain type polymer liquid crystal, and includes a liquid crystal component and a bending component.

【0011】紫外線の照射後の塗布膜の配向状態を図4
によって説明する。塗布膜(10)の化学式2で示され
る感光性基を有していないか、化学式1で示される感光
性基を有していても(直線偏光の電界方向に向いていな
いため)2量化を起こさなかった側鎖(12)は、該光
照射の終了後の分子運動により、2量化して側鎖(1
1’)と同じ方向に配列する。その結果、高分子塗布膜
全体において、照射した直線偏光の電界振動方向D1か
つ照射光進行方向D2に対し垂直に側鎖が配向する。
FIG. 4 shows the orientation state of the coating film after irradiation with ultraviolet rays.
It will be explained by. Even if the coating film (10) does not have the photosensitive group represented by the chemical formula 2 or has the photosensitive group represented by the chemical formula 1 (since it is not oriented in the direction of the electric field of linearly polarized light), dimerization does not occur. The side chain (12) that has not occurred is dimerized by the molecular motion after the end of the light irradiation, and is dimerized.
1 ')). As a result, in the entire polymer coating film, the side chains are oriented perpendicular to the electric field oscillation direction D1 of the irradiated linearly polarized light and the irradiation light traveling direction D2.

【0012】分子運動による配向は、高分子塗膜(塗布
する基板)を加熱することにより促進される。加熱温度
は、感光反応した部分(すなわち配向の固定された部
分)の軟化点より低く、感光反応しなかった側鎖および
感光性基を有さない側鎖部分の軟化点より高いことが望
ましい。また、高分子塗布膜をTi ±10℃、好ましく
はTi ±5℃、さらに好ましくはTi ±2℃(ここで、
Tiは液晶相から等方相へ変化するときの相転移温度)の
加温下で偏光紫外線照射することにより配向を促進する
ことができる。例えば、化学式1〜4において、a:b
=55:45、n=6、m=2、k=6、X,Y=no
ne、W=−COO−、−R1 〜−R5 =H、−R6
−CNの例はでは、85〜94℃が適当である。また
は、直線偏光紫外線を照射した後で高分子塗膜(塗布す
る基板)を加熱しても未反応側鎖を配向させた膜、また
は加熱下で直線偏光性の紫外線を照射し配向させた膜を
該高分子の軟化点温度以下まで冷却すると分子の配向が
冷却された配向膜が得られる。また、化学式2で示され
る感光性基を有さない側鎖は、光2量化反応の架橋点の
密度を下げ、配向時の分子運動の自由度を向上させ、自
身の分子配向性により再配向を促進する。このような観
点から化学式3ないし化学式4においてa:b=10
0:0〜0:99で作製可能であるが、a:b=10
0:0〜30:70であることがより望ましい。
The orientation by molecular motion is promoted by heating the polymer coating (substrate to be coated). The heating temperature is desirably lower than the softening point of the photoreacted portion (that is, the portion in which the orientation is fixed) and higher than the softening point of the side chain that has not been photoreacted and the side chain portion having no photosensitive group. Further, the polymer coating film is formed at T i ± 10 ° C., preferably T i ± 5 ° C., more preferably T i ± 2 ° C. (where,
Ti can promote the alignment by irradiating polarized ultraviolet rays under heating at a temperature of a phase transition temperature when a liquid crystal phase changes to an isotropic phase. For example, in the chemical formulas 1 to 4, a: b
= 55: 45, n = 6, m = 2, k = 6, X, Y = no
ne, W = -COO -, - R 1 ~-R 5 = H, -R 6 =
In the example of -CN, 85 to 94C is suitable. Alternatively, a film in which unreacted side chains are oriented even when the polymer coating film (substrate to be coated) is heated after irradiating with linearly polarized ultraviolet light, or a film in which linearly polarized ultraviolet light is irradiated and aligned under heating Is cooled to a temperature equal to or lower than the softening point of the polymer to obtain an alignment film in which the molecular orientation is cooled. In addition, the side chain having no photosensitive group represented by the chemical formula 2 lowers the density of cross-linking points in the photodimerization reaction, improves the degree of freedom of molecular motion during alignment, and reorients itself due to its molecular orientation. To promote. From such a viewpoint, in the chemical formulas 3 and 4, a: b = 10
Although it can be prepared at 0: 0 to 0:99, a: b = 10
More preferably, it is 0: 0 to 30:70.

【0013】高分子材料の原料化合物に関する合成方法
を以下に示す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−ヒドロキシエトキシ−4’−(6’−ビフェニ
ルオキシヘキシル)メタクリレートを合成した。最後
に、塩基性の条件下において、塩化シンナモイルを加
え、化学式5に示されるメタクリル酸エステルを合成し
た。
A method for synthesizing a raw material compound of a polymer material will be described below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is added under alkaline conditions with 1,
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Next, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic ester represented by Chemical Formula 5.

【化6】 Embedded image

【0014】(単量体2)4−ヒドロキシ−4’−シア
ノビフェニルをアルカリ条件下で1,6−ジブロモヘキ
サンと反応させ、4−(6−ブロモヘキシルオキシ)−
4’−シアノビフェニルを合成した。次いで、リチウム
メタクリレートを反応させ、4−シアノ−4’−(6’
−ビフェニルオキシヘキシル)メタクリレートを合成し
た。化学式6に示されるメタクリル酸エステルを合成し
た。
(Monomer 2) 4-hydroxy-4'-cyanobiphenyl is reacted with 1,6-dibromohexane under alkaline conditions to give 4- (6-bromohexyloxy)-
4′-cyanobiphenyl was synthesized. Next, lithium methacrylate was reacted to obtain 4-cyano-4 ′-(6 ′).
-Biphenyloxyhexyl) methacrylate was synthesized. A methacrylic acid ester represented by Chemical Formula 6 was synthesized.

【化7】 Embedded image

【0015】(単量体3)4,4’−ビフェニルジオー
ルと2−クロロヘキサノールを、アルカリ条件下で加熱
することにより、4−ヒドロキシ−4’−ヒドロキシエ
トキシビフェニルを合成した。この生成物に、アルカリ
条件下で1,6−ジブロモヘキサンを反応させ、4−
(6−ブロモヘキシルオキシ)−4’−ヒドロキシエト
キシビフェニルを合成した。次いで、リチウムメタクリ
レートを反応させ、4−ヒドロキシエトキシ−4’−
(6’−ビフェニルオキシヘキシル)メタクリレートを
合成した。最後に、塩基性の条件下において、4−メト
キシ塩化シンナモイルを加え、化学式7に示されるメタ
クリル酸エステルを合成した。
(Monomer 3) 4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chlorohexanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to obtain 4-
(6-Bromohexyloxy) -4′-hydroxyethoxybiphenyl was synthesized. Next, lithium methacrylate was reacted to give 4-hydroxyethoxy-4′-
(6′-biphenyloxyhexyl) methacrylate was synthesized. Finally, under basic conditions, 4-methoxycinnamoyl chloride was added to synthesize a methacrylate represented by the formula (7).

【化8】 Embedded image

【0016】(重合体1)単量体1をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体1
を得た。この重合体1は、47−75℃の温度領域にお
いて、液晶性を呈した。
(Polymer 1) Polymer 1 is obtained by dissolving Monomer 1 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing.
I got This polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.

【0017】(重合体2)単量体1と単量体2を様々な
割合でテトラヒドロフラン中に溶解し、反応開始剤とし
てAIBN(アゾビスイソブチロニトリル)を添加して重合
することにより重合体2を得た(a:b=55:4
5)。この重合体2は、44−95℃の温度領域におい
て、液晶性を呈した。
(Polymer 2) Monomer 1 and Monomer 2 are dissolved in tetrahydrofuran at various ratios and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Merged 2 was obtained (a: b = 55: 4)
5). This polymer 2 exhibited liquid crystallinity in a temperature range of 44 to 95 ° C.

【0018】(重合体3)単量体1と単量体2を様々な
割合でテトラヒドロフラン中に溶解し、反応開始剤とし
てAIBN(アゾビスイソブチロニトリル)を添加して重合
することにより重合体3を得た(a:b=30:7
0)。この重合体3は、45−101℃の温度領域にお
いて、液晶性を呈した。
(Polymer 3) Monomer 1 and Monomer 2 are dissolved in tetrahydrofuran at various ratios, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Merged 3 was obtained (a: b = 30: 7)
0). This polymer 3 exhibited liquid crystallinity in a temperature range of 45 to 101 ° C.

【0019】(重合体4)単量体3をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体4
を得た。この重合体4も液晶性を呈した。
(Polymer 4) Polymer 4 is obtained by dissolving monomer 3 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator, and polymerizing.
I got This polymer 4 also exhibited liquid crystallinity.

【0020】[0020]

【実施例】本発明の高分子材料は、熱分析による相転移
温度の発現、偏光顕微鏡観察による液晶温度領域での、
複屈折性の光学模様の発現から、液晶性の材料であるこ
とを確認した。化学式1〜化学式3において、a:b=
55:45、n=6、m=2、k=6、X,Y=none、
W=−COO−、R1 〜R5 =H、R6 =−CNであ
る、本発明の高分子材料の熱分析曲線は、昇温過程で4
4℃に吸熱ピーク、95℃にも吸熱ピークが認められ、
偏光顕微鏡観察で、該温度領域で複屈折性の光学模様を
発現する液晶性の材料であった。該高分子材料の直線偏
光性紫外線の照射による側鎖の配向を、基板に塗布し製
膜した高分子塗布膜に直線偏光性偏光紫外線を照射し、
高分子塗布膜の照射光の電界振動方向と平行方向、垂直
方向の偏光赤外スペクトルを比較することにより検証し
た。図6には、偏光照射30秒後の照射光の電界振動方
向に対する平行方向と垂直方向の偏光赤外の差スペクト
ルΔAを示した。偏光照射により平行方向の−CN、O
−Ph、Phの吸収が大きくなっており、照射光の電界
振動方向に側鎖が配向したことを確認した。高分子塗布
膜の複屈折の大きさは直線偏光性紫外線の照射量に依存
し、直線偏光性紫外線の照射時間によりたとえば図7の
ように変化する。図において、横軸が直線偏光性紫外線
の照射時間、たて軸が複屈折を示す値dNである。図5
には本発明の配向膜の製造方法(装置)を示す。電源
(2)によって励起された紫外線ランプ(1)で発生し
た無秩序光(6)は、光学素子(3)(例えばグランテ
ーラープリズム)によって直線偏光性紫外線(7)に変
換され、基板(5)上に塗布(コート)された樹脂膜
(4)を照射角(η)で照射する。
EXAMPLES The polymer material of the present invention exhibits a phase transition temperature by thermal analysis and a liquid crystal temperature range by observation with a polarizing microscope.
The birefringent optical pattern was confirmed to be a liquid crystal material. In Chemical Formulas 1 to 3, a: b =
55:45, n = 6, m = 2, k = 6, X, Y = none,
The thermal analysis curve of the polymer material of the present invention in which W = —COO—, R 1 to R 5 = H, and R 6 = —CN shows that 4
An endothermic peak was observed at 4 ° C, and an endothermic peak was also observed at 95 ° C.
It was a liquid crystalline material that exhibited a birefringent optical pattern in the temperature region when observed with a polarizing microscope. The orientation of the side chain by irradiation of the linearly polarized ultraviolet light of the polymer material is applied to the polymer coating film formed on the substrate by applying the linearly polarized light ultraviolet light,
It was verified by comparing polarized infrared spectra in the direction parallel to and perpendicular to the electric field oscillation direction of the irradiation light of the polymer coating film. FIG. 6 shows a difference spectrum ΔA of polarized infrared light in a direction parallel to and perpendicular to the direction of electric field oscillation of irradiation light 30 seconds after irradiation with polarized light. -CN, O in parallel direction by polarized light irradiation
It was confirmed that the absorption of -Ph and Ph was large, and the side chains were oriented in the direction of the electric field oscillation of the irradiation light. The magnitude of the birefringence of the polymer coating film depends on the irradiation amount of the linearly polarized ultraviolet light, and changes as shown in FIG. 7 depending on the irradiation time of the linearly polarized ultraviolet light. In the figure, the horizontal axis is the irradiation time of linearly polarized ultraviolet light, and the vertical axis is the value dN indicating birefringence. FIG.
Shows a method (apparatus) for producing an alignment film of the present invention. The disordered light (6) generated by the ultraviolet lamp (1) excited by the power supply (2) is converted into linearly polarized ultraviolet light (7) by the optical element (3) (for example, a Glan-Taylor prism) and the substrate (5). The resin film (4) applied (coated) is irradiated at an irradiation angle (η).

【0021】(実施例1〜実施例6)実施例1〜6につ
いては、特に液晶表示装置における視野角拡大のための
光学補償フィルムを想定し、所要の光軸傾斜をもったフ
ィルムを得ることを目的とした各実施例である。各重合
体をクロロホルムに溶解し、光学的に等方性の基板に、
600μmの厚さでスピンコートした。この基板を水平
面に対して所要の照射角だけ傾くように配置し、(各温
度条件下に)グランテーラープリズムを用いて直線偏光
に変換した紫外線を照射した後、室温まで冷却(熱処
理)した。得られた複屈折フィルムの光学特性として光
軸の傾斜度を、クリスタルローテーション法で測定し、
目標の光軸傾斜が得られたことを確認した。結果をまと
めて表1に示す。
(Embodiments 1 to 6) In Embodiments 1 to 6, in particular, an optical compensation film for enlarging a viewing angle in a liquid crystal display device is assumed to obtain a film having a required optical axis inclination. It is each Example aiming at. Each polymer is dissolved in chloroform and placed on an optically isotropic substrate.
Spin coating was performed at a thickness of 600 μm. This substrate was arranged so as to be inclined by a required irradiation angle with respect to a horizontal plane, irradiated with ultraviolet rays converted to linearly polarized light using a Glan-Taylor prism (under each temperature condition), and then cooled (heat treated) to room temperature. The optical axis of the obtained birefringent film was measured for the optical axis inclination by a crystal rotation method.
It was confirmed that the target optical axis inclination was obtained. The results are summarized in Table 1.

【0022】(実施例7〜実施例12)実施例7〜12
については、特に液晶表示装置における位相差フィルム
を想定し、所要の位相差をもったフィルムを得ることを
目的とした各実施例である。各重合体をクロロホルムに
溶解し、光学的に等方性の基板に、10μmの厚さでス
ピンコートした。こうして調整した樹脂膜にグランテー
ラープリズムを用いて直線偏光に変換した紫外線を、
(各温度条件下に)基板に対し垂直方向(照射角=90
°)に照射した。得られたフィルムの光学特性として位
相差を測定し、目的の位相差フィルムが得られたことを
確認した。結果をまとめて表2に示す。
(Embodiments 7 to 12) Embodiments 7 to 12
In each of the examples, a phase difference film in a liquid crystal display device is assumed, and the purpose is to obtain a film having a required phase difference. Each polymer was dissolved in chloroform and spin-coated on an optically isotropic substrate to a thickness of 10 μm. The ultraviolet light converted to linearly polarized light using the Glan-Taylor prism on the resin film adjusted in this way,
(Under each temperature condition) perpendicular to substrate (irradiation angle = 90
°). The retardation was measured as the optical property of the obtained film, and it was confirmed that the target retardation film was obtained. Table 2 summarizes the results.

【0023】[0023]

【発明の効果】以上に記述したように、本発明によれ
ば、光反応によって複屈折フィルムが得られる。この複
屈折フィルムを液晶ディスプレイ装置の位相差フィル
ム、その他に応用し、視野角特性等を改善できる。簡単
な操作により得られ、同一平面内に位相差の異なる領域
を形成することが可能である。光軸の傾斜した複屈折フ
ィルムは、旋光モード、複屈折モードを利用したねじれ
ネマチック液晶を用いた液晶表示装置において、視野角
拡大用の光学補償板として活用できる。従来、このよう
な光軸の傾斜した複屈折フィルムを大面積、低コストで
製造する方法がなかったが、本発明によって大画面液晶
表示装置用の複屈折フィルムが製造可能になった。本発
明の高分子材料の複屈折フィルムでは、直線偏光性紫外
線の照射により側鎖の配向したフィルムに、更に紫外線
を照射することにより感光性基の2量化反応を促進さ
せ、側鎖の配向を強固に固定することができる。このよ
うな複屈折フィルムは、耐熱性や耐光性に優れ実用性に
富む。
As described above, according to the present invention, a birefringent film can be obtained by photoreaction. This birefringent film can be applied to a retardation film of a liquid crystal display device and the like to improve viewing angle characteristics and the like. It is obtained by a simple operation, and it is possible to form regions having different phase differences in the same plane. A birefringent film having an inclined optical axis can be used as an optical compensator for expanding a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal utilizing an optical rotation mode and a birefringence mode. Conventionally, there has been no method for manufacturing such a birefringent film having an inclined optical axis at a large area and at low cost. However, the present invention has made it possible to manufacture a birefringent film for a large-screen liquid crystal display device. In the birefringent film of the polymer material of the present invention, the side-chain-oriented film is irradiated with linearly polarized ultraviolet light, and the UV-irradiation further promotes the dimerization reaction of the photosensitive group to irradiate the side chain. Can be fixed firmly. Such a birefringent film is excellent in heat resistance and light resistance and has high practicality.

【0024】[0024]

【図面の簡単な説明】[Brief description of the drawings]

図1は液晶の光学特性を示す屈折率楕円体を示し、図2
は図1の液晶上に複屈折フィルムを配して、光学補償す
る作用を説明する概念図である。図3は紫外線照射前の
高分子塗布膜内の分子(側鎖)状態を示し、図4は直線
偏光性紫外線の照射後の側鎖の配向状態を示す。図5は
本発明の複屈折フィルムの製造方法を示す概念図であ
る。図6は直線偏光性紫外線照射後の照射光の電界振動
方向に対する平行方向と垂直方向の赤外の差スペクトル
ΔAを示すグラフ、図7は直線偏光紫外線の照射時間に
よる複屈折率の変化を示すグラフである。
FIG. 1 shows a refractive index ellipsoid showing the optical characteristics of the liquid crystal.
FIG. 2 is a conceptual diagram illustrating an operation of arranging a birefringent film on the liquid crystal of FIG. 1 to optically compensate. FIG. 3 shows the state of molecules (side chains) in the polymer coating film before irradiation with ultraviolet light, and FIG. 4 shows the state of orientation of side chains after irradiation with linearly polarized ultraviolet light. FIG. 5 is a conceptual diagram showing a method for producing a birefringent film of the present invention. FIG. 6 is a graph showing the infrared difference spectrum ΔA between the direction parallel to the electric field and the direction perpendicular to the electric field oscillation direction of the irradiation light after the irradiation of the linearly polarized ultraviolet light, and FIG. 7 shows the change in the birefringence with the irradiation time of the linearly polarized ultraviolet light. It is a graph.

【符号の説明】[Explanation of symbols]

1・・・紫外線ランプ 2・・・電源 3・・・光学素子(グランテーラープリズム) 4・・・樹脂膜 5・・・基板 6・・・無秩序光 7・・・直線偏光性紫外線 η・・・照射角 DESCRIPTION OF SYMBOLS 1 ... Ultraviolet lamp 2 ... Power supply 3 ... Optical element (Glan-Taylor prism) 4 ... Resin film 5 ... Substrate 6 ... Disordered light 7 ... Linearly polarized ultraviolet light η・ Irradiation angle

【表1】 [Table 1]

【表2】 [Table 2]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 感光性の側鎖型高分子膜に直線偏光性の
紫外線を照射して任意の複屈折特性をもった複屈折フィ
ルムを得ることを特徴とする複屈折フィルムの製造方
法。
1. A method for producing a birefringent film, comprising irradiating a photosensitive side-chain polymer film with linearly polarized ultraviolet light to obtain a birefringent film having any birefringent characteristics.
【請求項2】 請求項1における任意の複屈折特性が光
軸方向制御であることを特徴とする複屈折フィルムの製
造方法。
2. The method for producing a birefringent film according to claim 1, wherein the optional birefringence characteristic is control in an optical axis direction.
【請求項3】 請求項1ないし請求項2の複屈折フィル
ムの製造方法において、感光性の側鎖型高分子の構造と
して、側鎖には少なくとも化学式1、および/または化
学式2で表される構造を含み、化学式3ないし化学式4
で表される構成をとることを特徴とする複屈折フィルム
の製造方法。 【化1】 【化2】 【化3】 【化4】 但し、化学式1〜化学式4において、 n、m、k=1〜12、 a:b=100:0〜1:99 R1 〜R6 =−H、−CN、−C=C−、−C=C(C
N)2 、−C=CH−CN、ハロゲン基、メトキシ基な
どのアルキルオキシ基、X、Y=none、−COO、
−OCO−、−N=N−、−C=C−、−C6 4 −、
Z=−H、−CH3 、−C2 5 、−C3 7 、ハロゲ
ン基、W=none、−COO、−OCO−、−(O−
CH2 )−である。
3. The method for producing a birefringent film according to claim 1, wherein the structure of the photosensitive side-chain type polymer is represented by at least chemical formula 1 and / or chemical formula 2 on the side chain. Formula 3 or 4 including the structure
The manufacturing method of the birefringent film characterized by having the structure represented by these. Embedded image Embedded image Embedded image Embedded image However, in the chemical formulas 1 to 4, n, m, k = 1 to 12, a: b = 100: 0 to 1:99 R 1 to R 6 = -H, -CN, -C = C-, -C = C (C
N) 2 , —C = CH—CN, an alkyloxy group such as a halogen group or a methoxy group, X, Y = none, —COO,
-OCO -, - N = N - , - C = C -, - C 6 H 4 -,
Z = -H, -CH 3, -C 2 H 5, -C 3 H 7, halogen, W = none, -COO, -OCO -, - (O-
CH 2) -.
【請求項4】請求項1ないし請求項2の複屈折フィルム
の製造方法において、直線偏光性の紫外線を照射する際
の感光性の側鎖型高分子膜の温度が、この側鎖型高分子
の等方相への転移温度(Ti )との差10℃以内の範囲
にあることを特徴とする複屈折フィルムの製造方法。
4. The method for producing a birefringent film according to claim 1, wherein the temperature of the photosensitive side-chain type polymer film when irradiating linearly polarized ultraviolet light is adjusted to the side-chain type polymer film. A difference from the transition temperature (T i ) to the isotropic phase within 10 ° C.
【請求項5】請求項1ないし請求項2の複屈折フィルム
の製造方法において、感光性の側鎖型高分子膜ないしは
その支持体を室温において直線偏光性の紫外線を照射
し、その後に前記高分子膜ないしはその支持体を加熱、
および/または冷却する工程を含むことを特徴とする複
屈折フィルムの製造方法。
5. The method for producing a birefringent film according to claim 1, wherein the photosensitive side-chain type polymer film or its support is irradiated with linearly polarized ultraviolet rays at room temperature, and thereafter, the high-refractive-index film is irradiated with the ultraviolet light. Heating the molecular membrane or its support,
And / or a method for producing a birefringent film, comprising a step of cooling.
【請求項6】請求項1から請求項5の複屈折フィルムの
製造方法によって得られることを特徴とする複屈折フィ
ルム。
6. A birefringent film obtained by the method for producing a birefringent film according to claim 1.
JP36839497A 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof Expired - Fee Related JP3945790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36839497A JP3945790B2 (en) 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36839497A JP3945790B2 (en) 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11189665A true JPH11189665A (en) 1999-07-13
JP3945790B2 JP3945790B2 (en) 2007-07-18

Family

ID=18491706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36839497A Expired - Fee Related JP3945790B2 (en) 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3945790B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060517A (en) * 2000-08-23 2002-02-26 Hayashi Telempu Co Ltd Film having function for orienting liquid crystal material and method for producing the same
JP2002082224A (en) * 2000-09-11 2002-03-22 Hayashi Telempu Co Ltd Birefringent film and method for manufacturing the same
JP2002090750A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002090540A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Birefringent film and method for manufacturing the same
JP2002090539A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Optical phase difference film and method for manufacturing the same
JP2002542219A (en) * 1999-04-19 2002-12-10 ロリク アーゲー Liquid crystal compound
JP2003014928A (en) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd Method for manufacturing optically anisotropic element and optically anisotropic element
JP2003014925A (en) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2003075641A (en) * 2001-09-07 2003-03-12 Hayashi Telempu Co Ltd Optical retardation film, method for manufacturing the same and liquid crystal display device using optical retardation film
JP2006293359A (en) * 2005-04-07 2006-10-26 Merck Patent Gmbh Alignment layer
JP2006308878A (en) * 2005-04-28 2006-11-09 Hayashi Telempu Co Ltd Method for manufacturing optical element and optical element
JP2008052078A (en) * 2006-08-25 2008-03-06 Fujifilm Corp Optical film manufacturing method, optical film, polarizing plate, transfer material, liquid crystal display apparatus and polarized uv ray exposure apparatus
JP2008116731A (en) * 2006-11-06 2008-05-22 Hitachi Displays Ltd Liquid crystal display device
JP2009276652A (en) * 2008-05-16 2009-11-26 Lintec Corp Light irradiation method, method for producing optical film, and light irradiation device
JP2010169752A (en) * 2009-01-20 2010-08-05 Lintec Corp Angling device and treatment device
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
JP2013120350A (en) * 2011-12-08 2013-06-17 Asahi Glass Co Ltd Optical anisotropic film
US8565058B2 (en) 2011-12-26 2013-10-22 Asahi Glass Company, Limited Liquid crystal alignment film, process for its production, optical element using the liquid crystal alignment film, and optical information writing/reading device
KR20140133511A (en) 2012-03-09 2014-11-19 닛산 가가쿠 고교 가부시키 가이샤 Polymer, composition containing said polymer, and single-layer-coated horizontally oriented film
US8902398B2 (en) 2011-06-09 2014-12-02 Hayashi Engineering Inc. Optical film laminate, method for producing the same, and liquid crystal display panel using the same
KR20150131129A (en) 2013-03-15 2015-11-24 닛산 가가쿠 고교 가부시키 가이샤 Composition and single-coat type film with horizontal alignment
KR20160046829A (en) 2013-08-23 2016-04-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming film, and single-layer-coated horizontally oriented film
KR20160067875A (en) 2013-10-04 2016-06-14 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal compound, liquid crystalline polymer, liquid crystalline composition, and single-layer-coated horizontally oriented film
JP2020056648A (en) * 2018-10-01 2020-04-09 富士フイルム株式会社 Optical measurement device and orientation degree measurement method
KR20210148158A (en) 2019-03-29 2021-12-07 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151083A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151084A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20220098362A (en) 2019-11-05 2022-07-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of patterned single-layer retardation material
KR20230079105A (en) 2020-09-30 2023-06-05 닛산 가가쿠 가부시키가이샤 Manufacturing method of single-layer retardation material
KR20240037250A (en) 2021-07-28 2024-03-21 닛산 가가쿠 가부시키가이샤 Polymer compositions and single layer phase contrast materials

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542219A (en) * 1999-04-19 2002-12-10 ロリク アーゲー Liquid crystal compound
JP2002060517A (en) * 2000-08-23 2002-02-26 Hayashi Telempu Co Ltd Film having function for orienting liquid crystal material and method for producing the same
JP4721023B2 (en) * 2000-09-11 2011-07-13 林テレンプ株式会社 Method for producing birefringent film
JP2002082224A (en) * 2000-09-11 2002-03-22 Hayashi Telempu Co Ltd Birefringent film and method for manufacturing the same
JP2002090750A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002090540A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Birefringent film and method for manufacturing the same
JP2002090539A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Optical phase difference film and method for manufacturing the same
JP4640540B2 (en) * 2000-09-19 2011-03-02 林テレンプ株式会社 Alignment film manufacturing method
JP2003014928A (en) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd Method for manufacturing optically anisotropic element and optically anisotropic element
JP2003014925A (en) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2003075641A (en) * 2001-09-07 2003-03-12 Hayashi Telempu Co Ltd Optical retardation film, method for manufacturing the same and liquid crystal display device using optical retardation film
JP2006293359A (en) * 2005-04-07 2006-10-26 Merck Patent Gmbh Alignment layer
JP2006308878A (en) * 2005-04-28 2006-11-09 Hayashi Telempu Co Ltd Method for manufacturing optical element and optical element
JP4708287B2 (en) * 2006-08-25 2011-06-22 富士フイルム株式会社 Manufacturing method of optical film, optical film, polarizing plate, transfer material, liquid crystal display device, and polarized ultraviolet exposure device
JP2008052078A (en) * 2006-08-25 2008-03-06 Fujifilm Corp Optical film manufacturing method, optical film, polarizing plate, transfer material, liquid crystal display apparatus and polarized uv ray exposure apparatus
JP2008116731A (en) * 2006-11-06 2008-05-22 Hitachi Displays Ltd Liquid crystal display device
JP2009276652A (en) * 2008-05-16 2009-11-26 Lintec Corp Light irradiation method, method for producing optical film, and light irradiation device
JP2010169752A (en) * 2009-01-20 2010-08-05 Lintec Corp Angling device and treatment device
US8902398B2 (en) 2011-06-09 2014-12-02 Hayashi Engineering Inc. Optical film laminate, method for producing the same, and liquid crystal display panel using the same
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
JPWO2013038932A1 (en) * 2011-09-12 2015-03-26 株式会社林技術研究所 Optical retardation element and manufacturing method thereof
JP2013120350A (en) * 2011-12-08 2013-06-17 Asahi Glass Co Ltd Optical anisotropic film
US8565058B2 (en) 2011-12-26 2013-10-22 Asahi Glass Company, Limited Liquid crystal alignment film, process for its production, optical element using the liquid crystal alignment film, and optical information writing/reading device
KR20140133511A (en) 2012-03-09 2014-11-19 닛산 가가쿠 고교 가부시키 가이샤 Polymer, composition containing said polymer, and single-layer-coated horizontally oriented film
KR20150131129A (en) 2013-03-15 2015-11-24 닛산 가가쿠 고교 가부시키 가이샤 Composition and single-coat type film with horizontal alignment
KR20160046829A (en) 2013-08-23 2016-04-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming film, and single-layer-coated horizontally oriented film
KR20160067875A (en) 2013-10-04 2016-06-14 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal compound, liquid crystalline polymer, liquid crystalline composition, and single-layer-coated horizontally oriented film
JP2020056648A (en) * 2018-10-01 2020-04-09 富士フイルム株式会社 Optical measurement device and orientation degree measurement method
KR20210148158A (en) 2019-03-29 2021-12-07 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151083A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151084A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20220098362A (en) 2019-11-05 2022-07-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of patterned single-layer retardation material
KR20230079105A (en) 2020-09-30 2023-06-05 닛산 가가쿠 가부시키가이샤 Manufacturing method of single-layer retardation material
KR20240037250A (en) 2021-07-28 2024-03-21 닛산 가가쿠 가부시키가이샤 Polymer compositions and single layer phase contrast materials

Also Published As

Publication number Publication date
JP3945790B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3945790B2 (en) Birefringent film and manufacturing method thereof
JP3945789B2 (en) Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film
US6743487B2 (en) Retardation film and process for producing the same
KR102157012B1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP3566180B2 (en) Liquid crystal display
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
JP2016502144A (en) Liquid crystal element (Liquid Crystal Element)
Kelly Anisotropic networks, elastomers and gels
JP2007232934A (en) Photo-alignment material
JP2990270B2 (en) Oriented resin film, method for producing the same, and optical element using the oriented resin film
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP2003508820A (en) Fabrication of aligned liquid crystal cells / films by simultaneous alignment and phase separation
JP4636353B2 (en) Retardation film
JP2000119656A (en) Liquid crystal optical element and manufacture thereof
JPH1195205A (en) Optically anisotropic film and its production as well as liquid crystal display device
JP3788746B2 (en) Method for controlling refractive index characteristics of homeotropic alignment liquid crystal film
JPH11501359A (en) Liquid crystal polymer
JP2002090750A (en) Alignment film and method for manufacturing the same
JP7471577B2 (en) Photoreactive composition, liquid crystal cell using photoreactive composition, and method for manufacturing liquid crystal cell
JP2002090540A (en) Birefringent film and method for manufacturing the same
JP2002202406A (en) Retardation film and method for manufacturing the same
JP4721023B2 (en) Method for producing birefringent film
JP2001337329A (en) Alignment film and method for manufacturing the same
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP4836335B2 (en) Phenylacetylene polymer, optical anisotropic body, and optical or liquid crystal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees