WO2019039486A1 - Polarization image capturing device - Google Patents

Polarization image capturing device Download PDF

Info

Publication number
WO2019039486A1
WO2019039486A1 PCT/JP2018/030902 JP2018030902W WO2019039486A1 WO 2019039486 A1 WO2019039486 A1 WO 2019039486A1 JP 2018030902 W JP2018030902 W JP 2018030902W WO 2019039486 A1 WO2019039486 A1 WO 2019039486A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
carbon atoms
single bond
photoreactive
Prior art date
Application number
PCT/JP2018/030902
Other languages
French (fr)
Japanese (ja)
Inventor
盛嗣 坂本
浩平 野田
小野 浩司
喜弘 川月
皇晶 筒井
耕平 後藤
Original Assignee
国立大学法人長岡技術科学大学
公立大学法人兵庫県立大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長岡技術科学大学, 公立大学法人兵庫県立大学, 日産化学株式会社 filed Critical 国立大学法人長岡技術科学大学
Priority to JP2019537643A priority Critical patent/JP7101356B2/en
Priority to KR1020207007575A priority patent/KR102645233B1/en
Priority to CN201880068721.2A priority patent/CN111247405B/en
Publication of WO2019039486A1 publication Critical patent/WO2019039486A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to a polarization imaging apparatus having an anisotropic diffraction grating.
  • the most representative polarization measurement methods are a rotating analyzer method and a rotating retarder method that use rotating polarizers and wave plates.
  • a time waveform of light intensity corresponding to the polarization state of the incident light is observed while rotating the polarization element.
  • the obtained time waveform is subjected to Fourier analysis to restore the Stokes parameter information.
  • This method has a long history of research and is characterized by various error reductions and high measurement accuracy.
  • this method in order to acquire information necessary for restoration of Stokes parameters in multiple times while rotating the polarization element temporally, this method is not suitable for an object whose polarization state changes temporally. is there.
  • the necessity of measuring the polarization state of a dynamic object is extremely high, and polarization spatial distribution measurement in snapshot is required.
  • the position of the array of the light receiving elements and the array of the polarizing elements need to be accurately aligned, and the fabrication is not easy.
  • the discontinuity of the phase difference that occurs at the boundary of the polarizing element array may cause diffracted light that is undesirable for measurement.
  • Non-patent Document 3 Another example of prior work enabling polarization imaging with snapshots is an imaging polarimeter using a polarization Savart plate that utilizes spatial carriers during polarization interference.
  • this method the influence of diffraction as in the array element described above does not occur.
  • this method requires expensive optical elements such as a Savart plate, so that the cost is large.
  • a polarization imaging device having an anisotropic diffraction grating element, a lens element, and a light receiving element in which optical anisotropy is periodically modulated.
  • the anisotropic diffraction grating element has an anisotropic diffraction grating having a plurality of grating vectors different from each other, and the grating vector has at least an anisotropic orientation or a birefringence. It should be periodically modulated.
  • the anisotropic diffraction grating element spatially separates the information of the Stokes parameter of the incident light according to the distribution of the anisotropic direction and the birefringence, and the intensity information It is preferable to have an anisotropic diffraction grating that converts it into
  • the anisotropic diffraction grating device is at least one selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. It is preferable to include an anisotropic diffraction grating having a photoreactive polymer film having a photoreactive side chain causing the reaction of ⁇ 5>
  • the anisotropic diffraction grating element preferably includes an anisotropic diffraction grating made of a photoreactive polymer film.
  • the anisotropic diffraction grating element is And I) a first transparent substrate layer; and II) a first photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization.
  • it includes an anisotropic diffraction grating having a first photoreactive polymer film.
  • the anisotropic diffraction grating element is And III) a second transparent substrate layer; and IV) a second photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization.
  • a second photoreactive polymer film having The II) first photoreactive polymer film and the IV) second photoreactive polymer film are disposed to face each other, and the II) first film and the IV) second film In between, it is preferable to include an anisotropic diffraction grating in which the low molecular weight liquid crystal layer is disposed.
  • the desired light polarization is interference-exposed on the photoreactive polymer film to form an arbitrary diffraction pattern on the polymer thin film.
  • the anisotropic diffraction grating element has an anisotropic diffraction grating with which diffraction efficiency of ⁇ 1st-order light is good.
  • a polarization imaging apparatus capable of performing polarization imaging measurement in a snapshot without requiring a mechanical operation unit, in particular, a polarization imaging apparatus which does not require highly accurate alignment of polarization elements, more particularly in cost aspect Can also provide a relatively inexpensive polarization imaging device.
  • FIG. 1 shows a schematic view of a multiple recording anisotropic diffraction grating.
  • I A ⁇ based on the diffraction properties of the PL grid
  • I B ⁇ a diagram showing the dependence of ⁇ amplitude ratio angle of the incident polarized light
  • I C ⁇ a diagram showing the dependence of ⁇ amplitude ratio angle of the incident polarized light
  • It is a figure explaining the composition of the polarization imaging device used in the example.
  • It is an image of the result of an imaging measurement using the polarization imaging device which used scarlet beetle as a to-be-photographed object and was used in the Example. From the image obtained in FIG. 5, the images of the ⁇ 1st light component (I ⁇ 1 ) and the + 1st light component (I +1 ) are extracted by image processing, and the difference image is calculated to obtain the imaging image of S 3 Show.
  • the present application provides a polarization imaging device comprising an anisotropic diffraction grating.
  • "Polarization” which is a property in which the locus of the electric field vector of the electromagnetic wave describes a bias, is widely used as one of the characteristics of the electromagnetic wave.
  • the polarization state of the electromagnetic wave changes, and the polarization change contains various information unique to the substance. That is, by measuring the polarization characteristic of the subject, it is possible to non-contact and nondestructively investigate information unique to the substance.
  • the polarization imaging apparatus can perform imaging measurement of a spatial distribution of Stokes parameters (parameters describing the polarization state) of scattered light from an object by snapshot.
  • the polarization imaging device of the present application has an anisotropic diffraction grating element, a lens element, and a light receiving element in which optical anisotropy is periodically modulated.
  • the lens element, the anisotropic diffraction grating element, and the light receiving element may be arranged in order from the object side. Other elements other than those described above may be arranged as desired.
  • the polarization imaging device of the present application has an anisotropic diffraction grating element whose optical anisotropy is periodically modulated.
  • the principle of Stokes parameter measurement using the anisotropic diffraction grating element will be described below.
  • the polarization state of the electromagnetic wave can be represented by a Stokes vector (S 0 , S 1 , S 2 , S 3 ) consisting of four elements.
  • each Stokes parameter is defined by the following equation (1).
  • the polarization characteristics of the subject can be clarified by finding these four elements from the intensity information of the light reflected, scattered and transmitted from the subject.
  • the polarization imaging apparatus of the present application is characterized in that the imaging measurement of these Stokes parameters is performed at one time of image acquisition.
  • the principle of polarization detection of this device is based on an anisotropic grating element whose optical anisotropy is modulated periodically.
  • the Jones matrix representing the induced anisotropy distribution is represented by the following formula (2).
  • ⁇ nd / ⁇ , where ⁇ n is the maximum value of polarization induced birefringence, d is the film thickness of the recording material, and ⁇ is the wavelength of the diffracted light.
  • Equation (3) the Jones matrix component contributing to the ⁇ 1st-order diffraction is represented by the following Equation (3).
  • Equation (3) the intensity of the ⁇ 1-order diffracted light I PL ⁇ represented by the following formula (5) Is required. Therefore, it is understood that the diffracted light intensity of the anisotropic grating formed by PL recording strongly depends on the amplitude ratio angle ⁇ of the incident light.
  • the lattice is referred to as a PL lattice unless otherwise specified in the present application.
  • the diffracted light intensity of the anisotropic grating formed by the OC recording recorded by the OC interference depends on the phase difference of the incident light.
  • the grid is referred to as an OC grid for the sake of simplicity.
  • the anisotropic diffraction grating formed in the polarization recording material by polarization hologram recording exhibits diffraction characteristics depending on the incident polarization state. Therefore, polarization information of incident light can be spatially separated as intensity information. Therefore, the value of the Stokes parameter can be derived from the intensity information of each diffraction order light.
  • the Stokes parameter detector with four anisotropic gratings with different grating vectors superimposed.
  • FIG. 1 A schematic of the diffraction grating is shown in FIG.
  • This anisotropic diffraction grating is one in which four gratings A, B, C, D are multiplexed and recorded in a polarization recording material.
  • A, B, and C are PL lattices
  • D is an OC lattice
  • respective lattice vectors are arranged to form an angle of 45 degrees with each other.
  • m A, B, C, D, and I A + means the intensity of + 1st order light with respect to the lattice A.
  • I A ⁇ corresponding to PL grid, I B ⁇ , I C ⁇ is sinusoidally varies depending on ⁇ amplitude ratio angle of the incident light.
  • the dependence of the incident polarized light on the amplitude ratio angle ⁇ of I A ⁇ , I B ⁇ and I C ⁇ is shown in FIG. 2 based on the diffraction characteristics of the PL grating. It can be seen from FIG. 2 that when I B > (I A + I C ) / 2, the amplitude ratio angle is ⁇ ⁇ 0, and when ⁇ (I A + I C ) / 2, the amplitude ratio angle is ⁇ > 0. That is, the sign of the amplitude ratio angle ⁇ ⁇ ⁇ can be obtained from the magnitude of I B.
  • S 2 can be obtained by substituting the obtained amplitude ratio angle ⁇ and phase difference ⁇ into the above equation (1). Therefore, all elements of the Stokes parameter of the incident light can be determined from the diffracted lights I A , I B , I C and I D ⁇ from the anisotropic diffraction grating of FIG. In addition, if intensity information necessary for deriving a Stokes parameter can be obtained, measurement of the Stokes parameter is possible even with an anisotropic pattern different from the anisotropic diffraction grating of FIG.
  • the anisotropic grating element may have an anisotropic grating having a plurality of grating vectors different in direction from one another, and at least the anisotropic orientation or the birefringence of the grating vector may be periodically modulated.
  • the anisotropic diffraction grating element has an anisotropic diffraction grating that spatially separates information of the Stokes parameter of incident light according to the distribution of anisotropic orientation and birefringence, and converts it into intensity information. That's good.
  • the anisotropic diffraction grating element has an anisotropic diffraction grating with good diffraction efficiency of ⁇ 1st-order light.
  • an anisotropic grating element can be prepared as follows. That is, the anisotropic diffraction grating element has a photoreactive side chain having at least one kind of reaction selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. It may include an anisotropic diffraction grating having a polymer film. In addition, the anisotropic diffraction grating element preferably includes an anisotropic diffraction grating made of a photoreactive polymer film.
  • the photoreactive polymer used for the photoreactive polymer film is desired Polymers capable of inducing a large retardation, specifically the retardation in the above-mentioned range, by the interference exposure of polarized light are preferable.
  • An anisotropic grating element is And I) a first transparent substrate layer; and II) a first photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization.
  • it includes an anisotropic diffraction grating having a first photoreactive polymer film.
  • anisotropic diffraction grating elements And III) a second transparent substrate layer; and IV) a second photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization.
  • a second photoreactive polymer film having The II) first photoreactive polymer film and the IV) second photoreactive polymer film are disposed to face each other, and the II) first film and the IV) second film In between, it is preferable to include an anisotropic diffraction grating in which the low molecular weight liquid crystal layer is disposed.
  • First and second transparent substrate layers are made of a transparent substrate.
  • a transparent substrate although it depends on the characteristics used as a polarization imaging device, for example, glass; plastics such as acrylic and polycarbonate; and the like can be used.
  • a transparent substrate it is preferable to have the property of transmitting polarized ultraviolet light.
  • (B) Low Molecular Weight Liquid Crystal Layer nematic liquid crystals, ferroelectric liquid crystals, etc. which are conventionally used in liquid crystal display elements and the like can be used.
  • cyanobiphenyls such as 4-cyano-4'-n-pentylbiphenyl and 4-cyano-4'-n-feptyloxybiphenyl as low-molecular liquid crystals
  • cholesteryl esters such as cholesteryl acetate and cholesteryl benzoate Carbonates such as 4-carboxyphenylethyl carbonate, 4-carboxyphenyl-n-butyl carbonate
  • phenyl esters such as phenyl benzoate and biphenyl phthalate
  • benzylidene-2-naphthylamine 4'- Schiff bases such as n-butoxybenzylidene-4-acetylaniline
  • benzidines such as N, N'-bisbenzylidene benzidine, p-dianisalbenzidine
  • 4,4'-azoxydianisole, 4,4'- Azox such as di-n-butoxy azoxybenzene Benzene; specifically shown phen
  • interference exposure of desired polarized light is performed on the above-mentioned photoreactive polymer film, and an arbitrary diffraction pattern is formed on the polymer thin film to obtain information on the Stokes parameters of light incident on the polymer thin film, It is preferable to use an anisotropic diffraction grating that is spatially separated according to the distribution of anisotropic orientation and birefringence formed in the polymer thin film, and converted to intensity information.
  • the photoreactive polymer film described above has a photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. It should be formed with a macromolecule.
  • photoreactive refers to the property of producing (A-1) photocrosslinking or (A-2) photoisomerization reaction; and both reactions.
  • the photoreactive polymer preferably has a side chain which causes (A-1) photocrosslinking reaction.
  • the photoreactive polymer is i) a polymer that exhibits liquid crystallinity in a predetermined temperature range, and is a polymer having a photoreactive side chain.
  • the photoreactive polymer should be ii) reactive with light in the wavelength range of 250 nm to 450 nm and exhibit liquid crystallinity in the temperature range of 50 to 300 ° C.
  • the photoreactive polymer preferably has a photoreactive side chain that responds to light in the wavelength range of 250 nm to 450 nm, particularly polarized ultraviolet light.
  • the photoreactive polymer preferably has a mesogenic group to exhibit liquid crystallinity in a temperature range of 50 to 300 ° C.
  • the photoreactive polymer has a photoreactive side chain having photoreactivity.
  • the structure of the side chain is not particularly limited, it has a structure that produces the reaction shown in the above (A-1) and / or (A-2), and has a structure that produces the (A-1) photocrosslinking reaction Is preferred.
  • the structure causing the photocrosslinking reaction is preferable in that the structure after the reaction can stably maintain the orientation of the photoreactive polymer for a long time even if it is exposed to external stress such as heat. .
  • the structure of the side chain of the photoreactive polymer is preferably one having a rigid mesogenic component because the alignment of the liquid crystal is stabilized.
  • mesogen component examples include, but are not limited to, biphenyl group, terphenyl group, phenylcyclohexyl group, phenylbenzoate group, azobenzene group and the like.
  • the main chain of the photoreactive polymer for example, radically polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and the like Although there can be mentioned at least one selected from the group consisting of siloxanes, it is not limited thereto.
  • the side chain of the photoreactive polymer is preferably a side chain comprising at least one of the following formulas (1) to (6).
  • S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group
  • Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents
  • 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms
  • the side chain is preferably any one type of photoreactive side chain selected from the group consisting of the following formulas (7) to (10).
  • A, B, D, Y 1 , X, Y 2 and R have the same definition as above; l represents an integer of 1 to 12; m represents an integer of 0 to 2; m1 and m2 represent an integer of 1 to 3; n represents an integer of 0 to 12 (provided that n is 0 and B is a single bond).
  • the side chain is preferably any one type of photoreactive side chain selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m1 and R have the same definition as above.
  • the side chain is preferably a photoreactive side chain represented by the following formula (14) or (15). Wherein A, Y 1 , l, m 1 and m 2 have the same definition as above.
  • the side chain is preferably a photoreactive side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the side chain may be a photoreactive side chain represented by the following formula (18) or (19). (Wherein, A, B, Y 1 and R 1 have the same definition as described above. One of q1 and q2 is 1 and the other is 0; l represents an integer of 1 to 12, m1 and m2 represent an integer of 1 to 3;
  • the side chain is preferably a photoreactive side chain represented by the following formula (20). Wherein A, Y 1 , X, l and m have the same definition as above.
  • a polymer having any one type of liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31) may be included.
  • the photoreactive side chain of the above-mentioned polymer forming the photoreactive polymer film does not have liquid crystallinity, or the above-mentioned polymer main chain forming the photoreactive polymer film is liquid crystalline If not, the component forming the photoreactive polymer film may have any one type of liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
  • Y 3 is a group selected from the group consisting of monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof
  • the hydrogen atoms bonded to them may be each independently substituted with -NO 2 , -CN, a halogen group, an alkyl group of 1 to 5 carbon atoms, or an alkyloxy group of 1 to 5 carbon atoms
  • the above-mentioned photoreactive polymer film is obtained by polymerizing a photoreactive side chain monomer having the above-mentioned photoreactive side chain, and in some cases, the photoreactive side chain monomer and the monomer having the above-mentioned liquid crystalline side chain Can be obtained by copolymerizing For example, it can be manufactured by referring to [0062] to [0090] of WO 2017/061536 (the contents of the publication are all incorporated herein by reference).
  • the polarization imaging device of the present invention has a lens element.
  • the lens element is not particularly limited as long as it has an effect of forming an image in a light receiving element described later.
  • the polarization imaging device of the present invention has a light receiving element.
  • the light receiving element is not particularly limited as long as the above-mentioned S 0 to S 3 can be obtained from the image data.
  • FIG. 3 is a view for explaining the outline of the polarization imaging apparatus of the present invention.
  • the polarization imaging apparatus of the present invention comprises an imaging lens, a color filter, an anisotropic diffraction grating, and a light receiving element array.
  • the imaging lens has a variable arrangement distance from the light receiving element array so that focus adjustment can be performed.
  • the diffraction angle of the anisotropic diffraction grating has wavelength dependency, so that for white light, angular dispersion may cause a problem of blurring of the image. Therefore, color filters are inserted to reduce the influence of dispersion.
  • the anisotropic diffraction grating is used in combination with an interference filter of a corresponding frequency band in which retardation is optimized according to the observation wavelength.
  • the imaging unit imaging lens, light receiving element array
  • the imaging unit imaging lens, light receiving element array
  • the light intensity of 0 deg linear polarization component, 90 deg linear polarization component, 45 deg linear polarization component, -45 deg linear polarization component, right-handed circularly polarized light component, left-handed circularly polarized light component shown in equation (1) can be calculated generally
  • a method of measuring is used, or a Fourier analysis method such as a rotational retarder method is used.
  • these methods are not suitable for the measurement of an object whose state changes with time, because in principle multiple measurements are required.
  • polarization imaging measurement in snapshot can be performed by spatially separating information necessary for measurement of Stokes parameters and acquiring the information at a time as intensity information. That is, it is characterized in that it can measure even a dynamic object to be measured. In addition, it is one of the features that it is inexpensive because it does not require an expensive optical element including a diffraction grating.
  • the polarization imaging value of the present invention can be measured two-dimensionally regardless of whether it is a dynamic measurement target or a static measurement target, so that it can be applied to various fields. Examples include, but are not limited to, the medical field, the field of autonomous driving technology of automobiles, the field of security, and the like.
  • the present invention will be specifically described using examples, but the present invention is not limited only by the examples.
  • P6CB photocrosslinkable polymer liquid crystal (4- (4-methoxycinnamoyloxy) biphenyl side groups (P6CB)) represented by the following formula was used.
  • P6CB was dissolved in dichloromethane, and spin-coated on a glass substrate to a film thickness of 300 nm. Two glass substrates coated with the P6CB film were prepared, and the P6CB film side was made to face each other to bond them, and an empty cell was created.
  • the produced empty cell was irradiated with an exposure energy of 600 mJ / cm 2 while causing OC interference of an ultraviolet laser having a wavelength of 325 nm emitted from a He-Cd laser. After irradiation, heat treatment was performed in an oven at 150 ° C. for 15 minutes, and after heat treatment, low molecular liquid crystal 5CB (4-cyano-4′-pentylbiphenyl) was injected into the cell to prepare a cell type OC lattice. The diameter of the produced anisotropic diffraction grating was 8 mm.
  • the polarization imaging apparatus includes, in order from the object, an imaging lens, an interference filter (FL532-3 manufactured by Throrlabs (central wavelength 532 nm), the anisotropic diffraction grating obtained above, A commercially available camera (ILCE6000S manufactured by SONY) is used as the light receiving element, and the imaging lens, interference filter, and anisotropic diffraction grating are packaged in a gauge system, and the commercially available camera is used. Designed to be worn.
  • Imaging measurement was performed using a beetle that exhibits selective reflection characteristics for circularly polarized light as a subject.
  • the image is shown in FIG. It can be seen from FIG. 5 that three image spots are obtained. From left to right, it corresponds to ⁇ 1st order light, 0th order light and + 1st order light component of the OC grating.
  • the ⁇ 1st order light component and the + 1st order light component represent a two-dimensional distribution of the left-handed circularly polarized light component and the right-handed circularly polarized light component.
  • the image of the -1st-order light component (I -1) and + 1st-order light component (I + 1) extracted by image processing Figure 6 shows the imaging image of S 3 obtained by performing the difference calculation based on the following formula .

Abstract

The present invention provides a polarization image capturing device with which polarization image measurement in a snapshot is possible, without the need for a mechanical operating unit, in particular a polarization image capturing device which does not require high precision positioning of a polarizing element, and more particularly a polarization image capturing device which, in terms of cost, is relatively inexpensive. The present invention provides a polarization image capturing device including an anisotropic diffraction grating element having periodically modulated optical anisotropy, a lens element, and a light receiving element.

Description

偏光撮像装置Polarized imaging device
 本発明は、異方性回折格子を具備する偏光撮像装置に関する。 The present invention relates to a polarization imaging apparatus having an anisotropic diffraction grating.
 偏光状態を計測する技術は古くから様々な手法が報告されている。
 最も代表的な偏光計測の手法は、回転する偏光子及び波長板を利用する回転検光子法と回転移相子法である。これらの手法では、偏光素子を回転させながら入射光の偏光状態に応じた光強度の時間波形を観測する。さらに得られた時間波形をフーリエ解析し、ストークスパラメータの情報を復元する。この手法は研究の歴史が長く、様々な誤差低減が施されており測定精度が高いことが特徴である。しかし一方で、時間的に偏光素子を回転させながら複数回に分けてストークスパラメータの復元に必要な情報を取得するため、時間的に偏光状態が変化するような被測定物には不向きな手法である。偏光計測を医療装置やリモートセンシング等へと応用することを考えると、動的な物体の偏光状態の測定の必要性は極めて高く、スナップショットでの偏光空間分布計測が求められる。
Various techniques have been reported from the old for measuring the polarization state.
The most representative polarization measurement methods are a rotating analyzer method and a rotating retarder method that use rotating polarizers and wave plates. In these methods, a time waveform of light intensity corresponding to the polarization state of the incident light is observed while rotating the polarization element. Further, the obtained time waveform is subjected to Fourier analysis to restore the Stokes parameter information. This method has a long history of research and is characterized by various error reductions and high measurement accuracy. However, on the other hand, in order to acquire information necessary for restoration of Stokes parameters in multiple times while rotating the polarization element temporally, this method is not suitable for an object whose polarization state changes temporally. is there. When applying polarization measurement to medical devices, remote sensing, etc., the necessity of measuring the polarization state of a dynamic object is extremely high, and polarization spatial distribution measurement in snapshot is required.
 スナップショットでの偏光空間分布計測を可能にする偏光カメラとしての偏光計測法には、本発明の以前に先行例がいくつか存在する。
 その一例は、光受光素子アレイ上に波長板ないし偏光子をその光学軸方位を4方位に分けたものを分布させ、4画素あたりで回転検光子法ないし回転移相子法に相当する計測を担わせるというものである(非特許文献1又は2)。本手法では、偏光素子を回転させるための機械的稼動部が不要であり、さらに一度の画像取得でストークスパラメータの取得に必要な情報が得られるので、静的且つスナップショットでのイメージング偏光計測が可能となる。しかしながら、光受光素子のアレイと偏光素子のアレイの位置を正確に合わせる必要があり、作製が容易ではない。また、偏光素子アレイの境界部で生じる位相差の不連続性により、測定上好ましくない回折光が生じるおそれもある。
There are several prior examples of the present invention prior to the present invention for polarization measurement as polarization camera enabling polarization spatial distribution measurement with snapshots.
One example is to distribute the wavelength plate or polarizer divided into four directions of the optical axis direction on the light receiving element array, and measure corresponding to the rotational analyzer method or the rotational phase retarder method for every four pixels. It is made to carry it (nonpatent literature 1 or 2). In this method, a mechanical operation unit for rotating the polarization element is not necessary, and information necessary for acquiring Stokes parameters can be obtained by one image acquisition, so imaging polarization measurement in static and snapshot can be performed. It becomes possible. However, the position of the array of the light receiving elements and the array of the polarizing elements need to be accurately aligned, and the fabrication is not easy. In addition, the discontinuity of the phase difference that occurs at the boundary of the polarizing element array may cause diffracted light that is undesirable for measurement.
 スナップショットでの偏光イメージングを可能とする先行研究のもうひとつの例が、偏光干渉の際の空間キャリアを利用した偏光サバール板を用いた撮像偏光計である(非特許文献3)。
 この手法では前述のアレイ素子のような回折の影響が生じない。ただし、本手法ではサバール板等の高額な光学素子を要するため、コストが大きくかかる難点がある。
Another example of prior work enabling polarization imaging with snapshots is an imaging polarimeter using a polarization Savart plate that utilizes spatial carriers during polarization interference (Non-patent Document 3).
In this method, the influence of diffraction as in the array element described above does not occur. However, this method requires expensive optical elements such as a Savart plate, so that the cost is large.
 そこで、本発明の目的は、機械的稼動部を必要とせず、スナップショットでの偏光イメージング計測が可能である偏光撮像装置、特に偏光素子についての高精度な位置合わせを必要としない偏光撮像装置、より特にコスト面においても比較的安価である偏光撮像装置を提供することにある。 Therefore, it is an object of the present invention to provide a polarization imaging apparatus capable of performing polarization imaging measurement in a snapshot without requiring a mechanical operation unit, in particular, a polarization imaging apparatus that does not require highly accurate alignment of polarization elements. More specifically, it is an object of the present invention to provide a polarization imaging device which is relatively inexpensive even in terms of cost.
 本発明者らは、以下の発明を見出した。
 <1> 光学異方性が周期的に変調された異方性回折格子素子、レンズ素子、及び受光素子を有する偏光撮像装置。
 <2> 上記<1>において、異方性回折格子素子が、互いに方向の異なる複数個の格子ベクトルを有する異方性回折格子を有し、前記格子ベクトルは少なくとも異方性方位又は複屈折が周期的に変調されるのがよい。
 <3> 上記<1>又は<2>において、異方性回折格子素子が、入射光のストークスパラメータの情報を、異方性方位および複屈折の分布に応じて空間的に分離し、強度情報へと変換する異方性回折格子を有するのがよい。
The present inventors have found the following invention.
<1> A polarization imaging device having an anisotropic diffraction grating element, a lens element, and a light receiving element in which optical anisotropy is periodically modulated.
<2> In the above <1>, the anisotropic diffraction grating element has an anisotropic diffraction grating having a plurality of grating vectors different from each other, and the grating vector has at least an anisotropic orientation or a birefringence. It should be periodically modulated.
<3> In the above <1> or <2>, the anisotropic diffraction grating element spatially separates the information of the Stokes parameter of the incident light according to the distribution of the anisotropic direction and the birefringence, and the intensity information It is preferable to have an anisotropic diffraction grating that converts it into
 <4> 上記<1>~<3>のいずれかにおいて、異方性回折格子素子が、(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる光反応性側鎖を有する光反応性高分子膜を有する異方性回折格子を含むのがよい。
 <5> 上記<1>~<4>のいずれかにおいて、異方性回折格子素子が、光反応性高分子膜からなる異方性回折格子を含むのがよい。
 <6> 上記<1>~<5>のいずれかにおいて、異方性回折格子素子が、
 I)第1の透明基体層;及び
 II)(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる第1の光反応性側鎖を有する第1の光反応性高分子膜
を有する異方性回折格子を含むのがよい。
<4> In any one of the above <1> to <3>, the anisotropic diffraction grating device is at least one selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. It is preferable to include an anisotropic diffraction grating having a photoreactive polymer film having a photoreactive side chain causing the reaction of
<5> In any one of the above <1> to <4>, the anisotropic diffraction grating element preferably includes an anisotropic diffraction grating made of a photoreactive polymer film.
<6> In any one of the above <1> to <5>, the anisotropic diffraction grating element is
And I) a first transparent substrate layer; and II) a first photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization. Preferably, it includes an anisotropic diffraction grating having a first photoreactive polymer film.
 <7> 上記<1>~<4>及び<6>のいずれかにおいて、異方性回折格子素子が、
 III)第2の透明基体層;及び
 IV)(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる第2の光反応性側鎖を有する第2の光反応性高分子膜;及び
を有し、
 前記II)第1の光反応性高分子膜と前記IV)第2の光反応性高分子膜とが対向するように配置し、前記II)第1の膜及び前記IV)第2の膜の間に、(B)低分子液晶層が配置される異方性回折格子を含むのがよい。
<7> In any one of the above <1> to <4> and <6>, the anisotropic diffraction grating element is
And III) a second transparent substrate layer; and IV) a second photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization. A second photoreactive polymer film having
The II) first photoreactive polymer film and the IV) second photoreactive polymer film are disposed to face each other, and the II) first film and the IV) second film In between, it is preferable to include an anisotropic diffraction grating in which the low molecular weight liquid crystal layer is disposed.
 <8> 上記<4>~<7>のいずれかにおいて、光反応性高分子膜に所望の偏光を干渉露光し、該高分子薄膜に任意の回折パターンを形成することで、該高分子薄膜に入射する光のストークスパラメータの情報を、該高分子薄膜に形成された異方性方位および複屈折の分布に応じて空間的に分離し、強度情報へと変換する異方性回折格子とするのがよい。
 <9> 上記<1>~<8>のいずれかにおいて、異方性回折格子素子が±1次光の回折効率が良い異方性回折格子を有するのがよい。
&Lt; 8 &gt; In any one of the above items &lt; 4 &gt; to &quot; 7 &quot;, the desired light polarization is interference-exposed on the photoreactive polymer film to form an arbitrary diffraction pattern on the polymer thin film. Is an anisotropic diffraction grating that spatially separates the information of the Stokes parameter of light incident on light according to the distribution of anisotropic orientation and birefringence formed in the polymer thin film, and converts it into intensity information That's good.
<9> In any one of the above <1> to <8>, it is preferable that the anisotropic diffraction grating element has an anisotropic diffraction grating with which diffraction efficiency of ± 1st-order light is good.
 <10> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(1)~(6)
(式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
からなる群から選ばれるいずれか1種の光反応性側鎖を有する光反応性高分子を有するのがよい。
<10> In any one of the above <4> to <9>, the photoreactive polymer film has the following formulas (1) to (6)
(Wherein A, B and D are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO Represents -O- or -O-CO-CH = CH-;
S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group;
Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof The hydrogen atom bonded to each independently is -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded to them are each independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH- It may be substituted by CN, a halogen group, an alkyl group of 1 to 5 carbon atoms, or an alkyloxy group of 1 to 5 carbon atoms;
One of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof Group, provided that when X is -CH = CH-CO-O- or -O-CO-CH = CH-, P or Q to which -CH = CH- is attached is an aromatic ring, When the number of P is 2 or more, P may be the same or different, and when the number of Q is 2 or more, Q may be the same or different;
l1 is 0 or 1;
l2 is an integer of 0 to 2;
When l1 and l2 are both 0, when T is a single bond, A also represents a single bond;
When l1 is 1, when T is a single bond, B also represents a single bond;
H and I each independently represent a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a combination thereof. )
It is preferable to have a photoreactive polymer having any one kind of photoreactive side chain selected from the group consisting of
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 <11> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(7)~(10)
(式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す)
からなる群から選ばれるいずれか1種の光反応性側鎖を有する光反応性高分子を有するのがよい。
<11> In any one of the above <4> to <9>, the photoreactive polymer film has the following formulas (7) to (10)
(Wherein A, B and D are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO Represents -O- or -O-CO-CH = CH-;
Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2; m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (wherein B is a single bond when n = 0);
Y 2 is a group selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof The hydrogen atom bonded to each independently is -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 )
It is preferable to have a photoreactive polymer having any one kind of photoreactive side chain selected from the group consisting of
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 <12> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(11)~(13)
(式中、Aは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 lは、1~12の整数を表し、mは0~2の整数を表し、m1は1~3の整数を表す;
 Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1~6のアルコキシ基を表す)
からなる群から選ばれるいずれか1種の光反応性側鎖を有する光反応性高分子を有するのがよい。
<12> In any one of the above <4> to <9>, the photoreactive polymer film has the following formulas (11) to (13)
(Wherein, A is each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O- Or -O-CO-CH = CH-;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 represents an integer of 1 to 3;
R represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or phase selected from their substituents And 2 to 6 different rings are bonded to each other through a bonding group B, and hydrogen atoms bonded to them are each independently —COOR 0 (wherein, R 0 is a hydrogen atom or 1 to 5 carbon atoms) The alkyl group represented by the formula: -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl having 1 to 5 carbon atoms It may be substituted by an oxy group, or represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms)
It is preferable to have a photoreactive polymer having any one kind of photoreactive side chain selected from the group consisting of
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 <13> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(14)又は(15)
(式中、Aはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 lは1~12の整数を表し、m1、m2は1~3の整数を表す)
で表される光反応性側鎖を有する光反応性高分子を有するのがよい。
<13> In any one of the above <4> to <9>, the photoreactive polymer film is represented by the following formula (14) or (15)
(Wherein, each A independently represents a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, Or -O-CO-CH = CH-;
Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
l represents an integer of 1 to 12, and m1 and m2 represent an integer of 1 to 3)
It is preferable to have a photoreactive polymer having a photoreactive side chain represented by
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 <14> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(16)又は(17)(式中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 lは、1~12の整数を表し、mは0~2の整数を表す)
で表される光反応性側鎖を有する光反応性高分子を有するのがよい。
<14> In any one of the above <4> to <9>, the photoreactive polymer film is represented by the following formula (16) or (17) (wherein A represents a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, or -O-CO-CH = CH-;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12, and m represents an integer of 0 to 2)
It is preferable to have a photoreactive polymer having a photoreactive side chain represented by
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 <15> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(18)又は(19)
(式中、A、Bはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である; 
 lは1~12の整数を表し、m1、m2は1~3の整数を表す;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す)
からなる群から選ばれるいずれか1種の感光性側鎖を有する光反応性高分子を有するのがよい。
<15> In any one of the above <4> to <9>, the photoreactive polymer film has the following formula (18) or (19)
(Wherein, A and B are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O -Or -O-CO-CH = CH-;
Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
One of q1 and q2 is 1 and the other is 0;
l represents an integer of 1 to 12, m1 and m2 represent an integer of 1 to 3;
R 1 represents a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl having 1 to 5 carbon atoms Represents an oxy group)
It is preferable to have a photoreactive polymer having any one photosensitive side chain selected from the group consisting of
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 <16> 上記<4>~<9>のいずれかにおいて、光反応性高分子膜が、下記式(20)
(式中、Aは、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 lは1~12の整数を表し、mは0~2の整数を表す)で表される光反応性側鎖を有する光反応性高分子を有するのがよい。
<16> In any one of the above <4> to <9>, the photoreactive polymer film has the following formula (20)
(Wherein, A represents a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, or -O Represents -CO-CH = CH-;
Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
It is preferable to have a photoreactive polymer having a photoreactive side chain represented by l) which represents an integer of 1 to 12 and m represents an integer of 0 to 2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明により、機械的稼動部を必要とせず、スナップショットでの偏光イメージング計測が可能である偏光撮像装置、特に偏光素子についての高精度な位置合わせを必要としない偏光撮像装置、より特にコスト面においても比較的安価である偏光撮像装置を提供することができる。 According to the present invention, a polarization imaging apparatus capable of performing polarization imaging measurement in a snapshot without requiring a mechanical operation unit, in particular, a polarization imaging apparatus which does not require highly accurate alignment of polarization elements, more particularly in cost aspect Can also provide a relatively inexpensive polarization imaging device.
多重記録異方性回折格子の概略図を示す。FIG. 1 shows a schematic view of a multiple recording anisotropic diffraction grating. PL格子の回折特性に基づいてIA±,IB±,IC±の入射偏光の振幅比角Ψに対する依存性を示す図である。I A ± based on the diffraction properties of the PL grid, I B ±, a diagram showing the dependence of Ψ amplitude ratio angle of the incident polarized light I C ±. 本発明の偏光撮像装置の概略を説明する図である。It is a figure explaining the outline of the polarization imaging device of the present invention. 実施例で用いた偏光撮像装置の構成を説明する図である。It is a figure explaining the composition of the polarization imaging device used in the example. コガネムシを被写体として用い、実施例で用いた偏光撮像装置を用いてイメージング計測の結果の画像である。It is an image of the result of an imaging measurement using the polarization imaging device which used scarlet beetle as a to-be-photographed object and was used in the Example. 図5で得られた画像から、-1次光成分(I-1)と+1次光成分(I+1)の像を画像処理により抽出し、差分計算を施して求めたSのイメージング画像を示す。From the image obtained in FIG. 5, the images of the −1st light component (I −1 ) and the + 1st light component (I +1 ) are extracted by image processing, and the difference image is calculated to obtain the imaging image of S 3 Show.
<偏光撮像装置>
 本願は、異方性回折格子を具備する偏光撮像装置を提供する。
 電磁波の電場ベクトルの軌跡が偏りを描く性質である「偏光」は、電磁波の持つ一つの特性として幅広く利用されている。電磁波が物質と相互作用(反射・散乱・吸収など)すると、電磁波の偏光状態が変わり、その偏光変化には物質固有の様々な情報が含まれている。すなわち、被写体の偏光特性を測定することで、物質固有の情報を非接触・非破壊で調べることができる。本願の偏光撮像装置は、被写体からの散乱光のストークスパラメータ(偏光状態を記述するパラメータ)の空間分布をスナップショットでイメージング計測を行うことができる。
<Polarized imaging device>
The present application provides a polarization imaging device comprising an anisotropic diffraction grating.
"Polarization", which is a property in which the locus of the electric field vector of the electromagnetic wave describes a bias, is widely used as one of the characteristics of the electromagnetic wave. When an electromagnetic wave interacts with a substance (reflection, scattering, absorption, etc.), the polarization state of the electromagnetic wave changes, and the polarization change contains various information unique to the substance. That is, by measuring the polarization characteristic of the subject, it is possible to non-contact and nondestructively investigate information unique to the substance. The polarization imaging apparatus according to the present application can perform imaging measurement of a spatial distribution of Stokes parameters (parameters describing the polarization state) of scattered light from an object by snapshot.
 本願の偏光撮像装置は、光学異方性が周期的に変調された異方性回折格子素子、レンズ素子、及び受光素子を有する。
 なお、被写体側から順に、レンズ素子、異方性回折格子素子、及び受光素子を配置するのがよい。上述の素子以外の、その他の素子を所望により配置してもよい。
The polarization imaging device of the present application has an anisotropic diffraction grating element, a lens element, and a light receiving element in which optical anisotropy is periodically modulated.
The lens element, the anisotropic diffraction grating element, and the light receiving element may be arranged in order from the object side. Other elements other than those described above may be arranged as desired.
<異方性回折格子素子>
 本願の偏光撮像装置は、光学異方性が周期的に変調された異方性回折格子素子を有する。該異方性回折格子素子を用いたストークスパラメータ測定の原理を以下に説明する。
電磁波の偏光状態は4つの要素から成るストークスベクトル(S,S,S,S)で表すことができる。
 ここで、S:全光強度、S:0deg直線偏光成分と90deg直線偏光成分の差、S:45deg直線偏光成分と-45deg直線偏光成分の差、S:右回り円偏光成分と左回り円偏光成分の差を意味しており、ストークスパラメータと呼ばれる。
 0deg直線偏光成分と90deg直線偏光成分の間の振幅比角と位相差をそれぞれΨとΔとすると、各ストークスパラメータは下記式(1)で定義される。
<Anisotropic grating element>
The polarization imaging device of the present application has an anisotropic diffraction grating element whose optical anisotropy is periodically modulated. The principle of Stokes parameter measurement using the anisotropic diffraction grating element will be described below.
The polarization state of the electromagnetic wave can be represented by a Stokes vector (S 0 , S 1 , S 2 , S 3 ) consisting of four elements.
Where S 0 : total light intensity, S 1 : difference between 0 deg linear polarization component and 90 deg linear polarization component, S 2 : difference between 45 deg linear polarization component and -45 deg linear polarization component, S 3 : clockwise circular polarization component It means the difference of the left-handed circularly polarized light component and is called the Stokes parameter.
Assuming that the amplitude ratio angle and the phase difference between the 0 deg linear polarization component and the 90 deg linear polarization component are Ψ and Δ, respectively, each Stokes parameter is defined by the following equation (1).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 被写体から反射・散乱・透過してきた光の強度情報からこれら4要素を求めることで、被写体の偏光特性を明らかにすることができる。
 本願の偏光撮像装置は、これらストークスパラメータを1度の画像取得でイメージング計測することを特徴とする。本装置の偏光検出の原理は、光学異方性が周期的に変調された異方性回折格子素子に基づく。
 装置の構成等について述べる前に、偏光ホログラム記録により作製される異方性回折格子の回折特性について述べる。
The polarization characteristics of the subject can be clarified by finding these four elements from the intensity information of the light reflected, scattered and transmitted from the subject.
The polarization imaging apparatus of the present application is characterized in that the imaging measurement of these Stokes parameters is performed at one time of image acquisition. The principle of polarization detection of this device is based on an anisotropic grating element whose optical anisotropy is modulated periodically.
Before describing the configuration and the like of the device, the diffraction characteristics of the anisotropic diffraction grating manufactured by polarization hologram recording will be described.
 一般に、偏光感受性を有する記録材料には、照射偏光の偏光方位と偏光楕円率に応じて光学異方性の方位と複屈折の大きさが記録される。今、互いに振幅の等しい2つの0deg直線偏光(即ちp偏光)を一定の交差角を与えて干渉させ、形成される光電場を偏光記録材料へと照射することを考える(本願において、特記しない限り、このケースをPL干渉(Parallel linear polarization interference)と呼ぶ)。この場合、誘起される異方性の大きさが光強度に比例すると仮定すると、誘起される異方性分布を表すJones行列は、下記式(2)で表される。ここで、Δγ=πΔnd/λであり、Δnは偏光誘起複屈折の最大値、dは記録材料の膜厚、λは被回折光の波長である。 Generally, in a recording material having polarization sensitivity, the orientation of optical anisotropy and the magnitude of birefringence are recorded according to the polarization orientation and polarization ellipticity of irradiation polarization. Now, consider that two 0 deg linear polarizations (that is, p polarizations) having equal amplitudes are caused to interfere by giving a constant crossing angle, and the formed optical electric field is irradiated to the polarization recording material (unless otherwise specified in this application) This case is called PL interference (Parallel linear polarization interference). In this case, assuming that the magnitude of the induced anisotropy is proportional to the light intensity, the Jones matrix representing the induced anisotropy distribution is represented by the following formula (2). Here, Δγ = πΔnd / λ, where Δn is the maximum value of polarization induced birefringence, d is the film thickness of the recording material, and λ is the wavelength of the diffracted light.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、式(2)をフーリエ級数展開すると、±1次の回折に寄与するJones行列成分は下記式(3)で表される。ここで、入射光のJonesベクトルを下記式(4)と定義すると、下記式(3)及び(4)を用いて、±1次の回折光の強度は下記式(5)で表すIPL ±が求められる。
 したがって、PL記録により形成された異方性格子の回折光強度は、入射光の振幅比角Ψに強く依存することが分かる。以降、本願において特記しない限り、該格子をPL格子と称する。
Here, when Equation (2) is subjected to Fourier series expansion, the Jones matrix component contributing to the ± 1st-order diffraction is represented by the following Equation (3). Here, when defining the Jones vector of the incident light following equation (4), using the following equation (3) and (4), the intensity of the ± 1-order diffracted light I PL ± represented by the following formula (5) Is required.
Therefore, it is understood that the diffracted light intensity of the anisotropic grating formed by PL recording strongly depends on the amplitude ratio angle Ψ of the incident light. Hereinafter, the lattice is referred to as a PL lattice unless otherwise specified in the present application.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 次に、互いに振幅の等しい逆回りの円偏光を干渉させて偏光記録材料へと照射することを考える(本願において、特記しない限り、このケースをOC干渉(Orthogonal circular polarization interference)と呼ぶ)。OC干渉の場合、記録により形成される異方性分布のJones行列は下記式(6)で表すことができる。
 また、式(6)を展開して下記式(7)を得ることができ、式(7)から、PL記録の場合と同様に、式(4)で与えられる入射偏光に対する回折光の強度を求めると、下記式(8)で表すTOC ±が求められる。
 したがって、OC干渉により記録されたOC記録により形成された異方性格子の回折光強度は、入射光の位相差に依存することが分かる。以降、簡単のために本格子をOC格子と称する。
Next, it is considered that the circularly polarized light having the same amplitude mutually interfere and be irradiated to the polarization recording material (in this application, this case is referred to as “Orthogonal circular polarization interference” unless otherwise specified). In the case of OC interference, the Jones matrix of the anisotropic distribution formed by recording can be expressed by the following equation (6).
Further, the following equation (7) can be obtained by expanding the equation (6), and from the equation (7), the intensity of diffracted light with respect to incident polarized light given by the equation (4) Once determined, T OC ± represented by the following equation (8) is determined.
Therefore, it is understood that the diffracted light intensity of the anisotropic grating formed by the OC recording recorded by the OC interference depends on the phase difference of the incident light. Hereinafter, the grid is referred to as an OC grid for the sake of simplicity.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 上述のとおり、偏光ホログラム記録により偏光記録材料中に形成された異方性回折格子は、入射偏光状態に依存した回折特性を示す。このため、入射光の偏光情報を強度情報として空間的に分離することが可能となる。したがって、各回折次数光の強度情報からストークスパラメータの値を導出することができる。一例として、異なる格子ベクトルを持つ4つの異方性回折格子が重ね書きされたストークスパラメータ検出素子について概説する。 As described above, the anisotropic diffraction grating formed in the polarization recording material by polarization hologram recording exhibits diffraction characteristics depending on the incident polarization state. Therefore, polarization information of incident light can be spatially separated as intensity information. Therefore, the value of the Stokes parameter can be derived from the intensity information of each diffraction order light. As an example, we will outline the Stokes parameter detector with four anisotropic gratings with different grating vectors superimposed.
 回折格子の概略図を図1に示す。
 この異方性回折格子は、4つの格子A,B,C,Dを偏光記録材料内で多重記録したものである。このうち、A,B,CはPL格子、DはOC格子であり、それぞれの格子ベクトルは互いに45度の角度を成すように配置されている。ここで、各格子は記録材料中で独立に形成されているものと仮定し、この膜に偏光した光を垂直入射させた場合にスクリーン上で観測される±1次の回折光の強度をIm+およびIm-と定義する。なお、m=A, B, C, Dであり、IA+は格子Aに対する+1次光の強度を意味する。
 ここで、上記式(5)から分かるように、PL格子に対応するIA±,IB±,IC±は入射光の振幅比角Ψに依存して正弦的に変化する。また、m式(5)からPL格子の場合は入射光の偏光状態に依存せずに±1次の回折光強度が等しくなるので、IA+=IA-=I、IB+=IB-=I、IC+=IC-=Iが成り立つ。
 一方、式(8)より、OC格子に対応するID±は入射光の位相差Δに依存して振動する。
 以上より、ストークスパラメータの内S、S、Sは式(1)から、下記式(9)が求められる。ここで、aPLとaOCは比例定数である。
 一方、式(1)から下記式(10)及び(11)が求められる。
A schematic of the diffraction grating is shown in FIG.
This anisotropic diffraction grating is one in which four gratings A, B, C, D are multiplexed and recorded in a polarization recording material. Among these, A, B, and C are PL lattices, D is an OC lattice, and respective lattice vectors are arranged to form an angle of 45 degrees with each other. Here, assuming that each grating is formed independently in the recording material, the intensity of ± 1st-order diffracted light observed on the screen when polarized light is vertically incident on this film is I Defined as m + and Im- . Here, m = A, B, C, D, and I A + means the intensity of + 1st order light with respect to the lattice A.
Here, as can be seen from the above equation (5), I A ± corresponding to PL grid, I B ±, I C ± is sinusoidally varies depending on Ψ amplitude ratio angle of the incident light. Further, according to m equation (5), in the case of the PL grating, ± 1st-order diffracted light intensities become equal regardless of the polarization state of the incident light, so I A + = I A − = I A , I B + = I B - = I B , I C + = I C- = I C
On the other hand, according to equation (8), I D ± corresponding to the OC grating oscillates depending on the phase difference Δ of the incident light.
From the above, of the Stokes parameters S 0 , S 1 and S 3 , the following equation (9) is obtained from the equation (1). Here, a PL and a OC are proportional constants.
On the other hand, the following equations (10) and (11) are obtained from the equation (1).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 すなわち、Sの情報から振幅比角Ψの絶対値を求めることができ、Sの情報から位相差Δを求めることができる。
 ここで、PL格子の回折特性に基づいてIA±,IB±,IC±の入射偏光の振幅比角Ψに対する依存性を図2に示す。
 図2から、I>(I+I)/2のとき振幅比角はΨ<0となり、<(I+I)/2のとき振幅比角はΨ>0となることがわかる。
 即ち、Iの大きさから振幅比角Ψの符号を求めることができる。さらに、得られた振幅比角Ψと位相差Δを上記式(1)に代入することによりSが求められる。したがって、図1の異方性回折格子からの回折光I,I,I,ID±から入射光のストークスパラメータの全要素を求めることができる。なお、ストークスパラメータの導出に必要な強度情報が得られるのであれば、図1の異方性回折格子とは異なる異方性パターンでもストークスパラメータの測定は可能である。
That is, it is possible to determine the absolute value of the amplitude ratio angle Ψ from the information of S 1, it is possible to determine the phase difference Δ from the information of S 3.
Here, the dependence of the incident polarized light on the amplitude ratio angle Ψ of I A ± , I B ± and I C ± is shown in FIG. 2 based on the diffraction characteristics of the PL grating.
It can be seen from FIG. 2 that when I B > (I A + I C ) / 2, the amplitude ratio angle is Ψ <0, and when <(I A + I C ) / 2, the amplitude ratio angle is Ψ> 0.
That is, the sign of the amplitude ratio angle で き る can be obtained from the magnitude of I B. Further, S 2 can be obtained by substituting the obtained amplitude ratio angle Ψ and phase difference Δ into the above equation (1). Therefore, all elements of the Stokes parameter of the incident light can be determined from the diffracted lights I A , I B , I C and I D ± from the anisotropic diffraction grating of FIG. In addition, if intensity information necessary for deriving a Stokes parameter can be obtained, measurement of the Stokes parameter is possible even with an anisotropic pattern different from the anisotropic diffraction grating of FIG.
 異方性回折格子素子は、互いに方向の異なる複数個の格子ベクトルを有する異方性回折格子を有し、前記格子ベクトルは少なくとも異方性方位又は複屈折が周期的に変調されるのがよい。
 また、異方性回折格子素子が、入射光のストークスパラメータの情報を、異方性方位および複屈折の分布に応じて空間的に分離し、強度情報へと変換する異方性回折格子を有するのがよい。さらに、異方性回折格子素子が±1次光の回折効率が良い異方性回折格子を有するのがよい。PL格子、OC格子それぞれにおいて、±1次光の回折効率が最も良い理想的な位相差は上記式(5)と(8)から求められる。
 具体的には、OC格子の場合、5%以上の回折効率、即ち位相差(δ=2πΔnd/λ)では0.448+2πm~5.82+2πm(m:自然数)の範囲、好ましくは50%以上の回折効率、即ち位相差(δ=2πΔnd/λ)では1.57+2πm~4.71+2πm(m:自然数)の範囲、理想的には100%の回折効率、即ち位相差(δ=2πΔnd/λ)では3.14+2πm(m:自然数)であるのがよい。
 また、PL格子の場合、5%以上の回折効率、即ち位相差(δ=2πΔnd/λ)では0.916~6.58、9.70~12.4、15.8~18.3、22.8~24.0の範囲、好ましくは15%以上の回折効率、即ち位相差(δ=2πΔnd/λ)では1.69~5.72の範囲、理想的には33.8%の回折効率、即ち位相差(δ=2πΔnd/λ)では3.68であるのがよい。
The anisotropic grating element may have an anisotropic grating having a plurality of grating vectors different in direction from one another, and at least the anisotropic orientation or the birefringence of the grating vector may be periodically modulated. .
In addition, the anisotropic diffraction grating element has an anisotropic diffraction grating that spatially separates information of the Stokes parameter of incident light according to the distribution of anisotropic orientation and birefringence, and converts it into intensity information. That's good. Furthermore, it is preferable that the anisotropic diffraction grating element has an anisotropic diffraction grating with good diffraction efficiency of ± 1st-order light. In each of the PL grating and the OC grating, an ideal phase difference that provides the best diffraction efficiency of ± 1st-order light can be obtained from the above equations (5) and (8).
Specifically, in the case of an OC grating, a diffraction efficiency of 5% or more, that is, a range of 0.448 + 2πm to 5.82 + 2πm (m: natural number) in phase difference (δ = 2πΔnd / λ), preferably 50% or more Efficiencies, ie, in the range of 1.57 + 2πm to 4.71 + 2πm (m: natural number) for retardation (δ = 2πΔnd / λ), ideally 100% diffraction efficiency, ie 3 for retardation (δ = 2πΔnd / λ) .14 + 2πm (m: natural number).
In the case of the PL grating, the diffraction efficiency of 5% or more, that is, the phase difference (δ = 2πΔnd / λ) is 0.916 to 6.58, 9.70 to 12.4, 15.8 to 18.3, 22 Diffraction efficiency in the range of 8 to 24.0, preferably 15% or higher, ie, in the range of 1.69 to 5.72, ideally 33.8%, for phase difference (δ = 2πΔnd / λ) That is, it is preferable that the phase difference (δ = 2πΔnd / λ) be 3.68.
 異方性回折格子素子は、次のように調製することができる。
 即ち、異方性回折格子素子は、(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる光反応性側鎖を有する光反応性高分子膜を有する異方性回折格子を含むのがよい。
 また、異方性回折格子素子が、光反応性高分子膜からなる異方性回折格子を含むのがよい。この場合、光反応性高分子膜に形成される回折パターンから得られる±1次光の回折効率を良くする必要があるため、光反応性高分子膜に用いられる光反応性高分子は、所望の偏光の干渉露光により、大きな位相差、具体的には上述の範囲の位相差が誘起できる高分子が良い。
An anisotropic grating element can be prepared as follows.
That is, the anisotropic diffraction grating element has a photoreactive side chain having at least one kind of reaction selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. It may include an anisotropic diffraction grating having a polymer film.
In addition, the anisotropic diffraction grating element preferably includes an anisotropic diffraction grating made of a photoreactive polymer film. In this case, since it is necessary to improve the diffraction efficiency of ± first-order light obtained from the diffraction pattern formed on the photoreactive polymer film, the photoreactive polymer used for the photoreactive polymer film is desired Polymers capable of inducing a large retardation, specifically the retardation in the above-mentioned range, by the interference exposure of polarized light are preferable.
 異方性回折格子素子は、
 I)第1の透明基体層;及び
 II)(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる第1の光反応性側鎖を有する第1の光反応性高分子膜
を有する異方性回折格子を含むのがよい。
 また、異方性回折格子素子は、
 III)第2の透明基体層;及び
 IV)(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる第2の光反応性側鎖を有する第2の光反応性高分子膜;及び
を有し、
 前記II)第1の光反応性高分子膜と前記IV)第2の光反応性高分子膜とが対向するように配置し、前記II)第1の膜及び前記IV)第2の膜の間に、(B)低分子液晶層が配置される異方性回折格子を含むのがよい。
An anisotropic grating element is
And I) a first transparent substrate layer; and II) a first photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization. Preferably, it includes an anisotropic diffraction grating having a first photoreactive polymer film.
In addition, anisotropic diffraction grating elements
And III) a second transparent substrate layer; and IV) a second photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization. A second photoreactive polymer film having
The II) first photoreactive polymer film and the IV) second photoreactive polymer film are disposed to face each other, and the II) first film and the IV) second film In between, it is preferable to include an anisotropic diffraction grating in which the low molecular weight liquid crystal layer is disposed.
<<第1及び第2の透明基体層>>
 第1及び第2の透明基体層は、透明基体からなる。
 透明基体として、偏光撮像装置として用いる特性に依存するが、例えば、ガラス;アクリルやポリカーボネート等のプラスチック等;を用いることができる。例えば、透明基体として、偏光紫外線を透過する特性を有するのがよい。
<< First and second transparent substrate layers >>
The first and second transparent substrate layers are made of a transparent substrate.
As a transparent substrate, although it depends on the characteristics used as a polarization imaging device, for example, glass; plastics such as acrylic and polycarbonate; and the like can be used. For example, as a transparent substrate, it is preferable to have the property of transmitting polarized ultraviolet light.
<<(B)低分子液晶層>>
 ここで、B)低分子液晶層に含まれる低分子液晶は、従来、液晶表示素子などに用いられているネマチック液晶や強誘電性液晶などを用いることができる。
 具体的には、低分子液晶として、4-シアノ-4’-n-ペンチルビフェニル、4-シアノ-4’-n-フェプチロキシビフェニル等のシアノビフェニル類;コレステリルアセテート、コレステリルベンゾエート等のコレステリルエステル類;4-カ ルボキシフェニルエチルカーボネート、4-カルボキシフェニル-n-ブチルカーボネート等の炭酸エステル類;安息香酸フェニルエステル、フタル酸ビフェニ ルエステル等のフェニルエステル類;ベンジリデン-2-ナフチルアミン、4’-n-ブトキシベンジリデン-4-アセチルアニリン等のシッフ塩基類;N,N’-ビスベンジリデンベンジジン、p-ジアニスアルベンジジン等のベンジジン類;4,4’-アゾキシジアニソール、4,4’-ジ-n-ブトキシ アゾキシベンゼン等のアゾキシベンゼン類;以下に具体的に示すフェニルシクロヘキシル系、ターフェニル系、フェニルビシクロヘキシル系などの液晶;などを挙げることができるがこれらに限定されない。
<< (B) Low Molecular Weight Liquid Crystal Layer >>
Here, as the low molecular weight liquid crystal contained in the B) low molecular weight liquid crystal layer, nematic liquid crystals, ferroelectric liquid crystals, etc. which are conventionally used in liquid crystal display elements and the like can be used.
Specifically, cyanobiphenyls such as 4-cyano-4'-n-pentylbiphenyl and 4-cyano-4'-n-feptyloxybiphenyl as low-molecular liquid crystals; cholesteryl esters such as cholesteryl acetate and cholesteryl benzoate Carbonates such as 4-carboxyphenylethyl carbonate, 4-carboxyphenyl-n-butyl carbonate; phenyl esters such as phenyl benzoate and biphenyl phthalate; benzylidene-2-naphthylamine 4'- Schiff bases such as n-butoxybenzylidene-4-acetylaniline; benzidines such as N, N'-bisbenzylidene benzidine, p-dianisalbenzidine; 4,4'-azoxydianisole, 4,4'- Azox such as di-n-butoxy azoxybenzene Benzene; specifically shown phenylcyclohexyl system below, terphenyl liquid crystal, such as phenyl bicyclohexyl system; and the like can be mentioned but not limited thereto.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 なお、上述の光反応性高分子膜に所望の偏光を干渉露光し、該高分子薄膜に任意の回折パターンを形成することで、該高分子薄膜に入射する光のストークスパラメータの情報を、該高分子薄膜に形成された異方性方位および複屈折の分布に応じて空間的に分離し、強度情報へと変換する異方性回折格子とするのがよい。 In addition, interference exposure of desired polarized light is performed on the above-mentioned photoreactive polymer film, and an arbitrary diffraction pattern is formed on the polymer thin film to obtain information on the Stokes parameters of light incident on the polymer thin film, It is preferable to use an anisotropic diffraction grating that is spatially separated according to the distribution of anisotropic orientation and birefringence formed in the polymer thin film, and converted to intensity information.
<<光反応性高分子膜>>
 上述の光反応性高分子膜は、(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる光反応性側鎖を有する光反応性高分子を有して形成されるのがよい。
 なお、本明細書において光反応性とは、(A-1)光架橋、又は(A-2)光異性化、のいずれかの反応;及び双方の反応;を生じる性質をいう。
 光反応性高分子は、好ましくは(A-1)光架橋反応を生じる側鎖を有するのがよい。
<< photoreactive polymer membrane >>
The photoreactive polymer film described above has a photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. It should be formed with a macromolecule.
In the present specification, the term “photoreactive” refers to the property of producing (A-1) photocrosslinking or (A-2) photoisomerization reaction; and both reactions.
The photoreactive polymer preferably has a side chain which causes (A-1) photocrosslinking reaction.
 光反応性高分子は、i)所定の温度範囲で液晶性を発現する高分子であって、光反応性側鎖を有する高分子である。
 光反応性高分子は、ii)250nm~450nmの波長範囲の光で反応し、かつ50~300℃の温度範囲で液晶性を示すのがよい。
 光反応性高分子は、iii)250nm~450nmの波長範囲の光、特に偏光紫外線に反応する光反応性側鎖を有することが好ましい。
 光反応性高分子は、iv)50~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
The photoreactive polymer is i) a polymer that exhibits liquid crystallinity in a predetermined temperature range, and is a polymer having a photoreactive side chain.
The photoreactive polymer should be ii) reactive with light in the wavelength range of 250 nm to 450 nm and exhibit liquid crystallinity in the temperature range of 50 to 300 ° C.
The photoreactive polymer preferably has a photoreactive side chain that responds to light in the wavelength range of 250 nm to 450 nm, particularly polarized ultraviolet light.
The photoreactive polymer preferably has a mesogenic group to exhibit liquid crystallinity in a temperature range of 50 to 300 ° C.
 光反応性高分子は、上述のように、光反応性を有する光反応性側鎖を有する。該側鎖の構造は、特に限定されないが、上記(A-1)及び/又は(A-2)に示す反応を生じる構造を有し、(A-1)光架橋反応を生じる構造を有するのが好ましい。(A-1)光架橋反応を生じる構造は、その反応後の構造が、熱などの外部ストレスに曝されたとしても、光反応性高分子の配向性を長期間安定に保持できる点で好ましい。
 光反応性高分子の側鎖の構造は、剛直なメソゲン成分を有する方が、液晶の配向が安定するため、好ましい。
As described above, the photoreactive polymer has a photoreactive side chain having photoreactivity. Although the structure of the side chain is not particularly limited, it has a structure that produces the reaction shown in the above (A-1) and / or (A-2), and has a structure that produces the (A-1) photocrosslinking reaction Is preferred. (A-1) The structure causing the photocrosslinking reaction is preferable in that the structure after the reaction can stably maintain the orientation of the photoreactive polymer for a long time even if it is exposed to external stress such as heat. .
The structure of the side chain of the photoreactive polymer is preferably one having a rigid mesogenic component because the alignment of the liquid crystal is stabilized.
 メソゲン成分として、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などを挙げることができるがこれらに限定されない。 Examples of the mesogen component include, but are not limited to, biphenyl group, terphenyl group, phenylcyclohexyl group, phenylbenzoate group, azobenzene group and the like.
 光反応性高分子の主鎖の構造として、例えば、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種を挙げることができるがこれに限定されない。
 また、光反応性高分子の側鎖として、下記式(1)~(6)の少なくとも1種からなる側鎖であるのが好ましい。
As the structure of the main chain of the photoreactive polymer, for example, radically polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and the like Although there can be mentioned at least one selected from the group consisting of siloxanes, it is not limited thereto.
The side chain of the photoreactive polymer is preferably a side chain comprising at least one of the following formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
In the formula, A, B and D are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO- Represents O- or -O-CO-CH = CH-;
S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group;
Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof The hydrogen atom bonded to each independently is -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded to them are each independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH- It may be substituted by CN, a halogen group, an alkyl group of 1 to 5 carbon atoms, or an alkyloxy group of 1 to 5 carbon atoms;
One of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof Group, provided that when X is -CH = CH-CO-O- or -O-CO-CH = CH-, P or Q to which -CH = CH- is attached is an aromatic ring, When the number of P is 2 or more, P may be the same or different, and when the number of Q is 2 or more, Q may be the same or different;
l1 is 0 or 1;
l2 is an integer of 0 to 2;
When l1 and l2 are both 0, when T is a single bond, A also represents a single bond;
When l1 is 1, when T is a single bond, B also represents a single bond;
H and I each independently represent a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a combination thereof.
 側鎖は、下記式(7)~(10)からなる群から選ばれるいずれか1種の光反応性側鎖であるのがよい。
 式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す。
The side chain is preferably any one type of photoreactive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2; m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (provided that n is 0 and B is a single bond).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 側鎖は、下記式(11)~(13)からなる群から選ばれるいずれか1種の光反応性側鎖であるのがよい。
 式中、A、X、l、m、m1及びRは、上記と同じ定義を有する。
The side chain is preferably any one type of photoreactive side chain selected from the group consisting of the following formulas (11) to (13).
In which A, X, l, m, m1 and R have the same definition as above.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 側鎖は、下記式(14)又は(15)で表される光反応性側鎖であるのがよい。
 式中、A、Y、l、m1及びm2は上記と同じ定義を有する。
The side chain is preferably a photoreactive side chain represented by the following formula (14) or (15).
Wherein A, Y 1 , l, m 1 and m 2 have the same definition as above.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 側鎖は、下記式(16)又は(17)で表される光反応性側鎖であるのがよい。
 式中、A、X、l及びmは、上記と同じ定義を有する。
The side chain is preferably a photoreactive side chain represented by the following formula (16) or (17).
In which A, X, l and m have the same definition as above.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 側鎖は、下記式(18)又は(19)で表される光反応性側鎖であるのがよい。
(式中、A、B、Y、Rは、上記と同じ定義を有する。
 q1とq2は、一方が1で他方が0である; 
 lは1~12の整数を表し、m1、m2は1~3の整数を表す;
The side chain may be a photoreactive side chain represented by the following formula (18) or (19).
(Wherein, A, B, Y 1 and R 1 have the same definition as described above.
One of q1 and q2 is 1 and the other is 0;
l represents an integer of 1 to 12, m1 and m2 represent an integer of 1 to 3;
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 側鎖は、下記式(20)で表される光反応性側鎖であるのがよい。
 式中、A、Y、X、l及びmは上記と同じ定義を有する。
The side chain is preferably a photoreactive side chain represented by the following formula (20).
Wherein A, Y 1 , X, l and m have the same definition as above.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、光反応性高分子膜を形成する成分として、下記式(21)~(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有する高分子を有してもよい。例えば、光反応性高分子膜を形成する上述の高分子の光反応性側鎖が液晶性を有しない場合、又は、光反応性高分子膜を形成する上述の高分子の主鎖が液晶性を有しない場合、光反応性高分子膜を形成する成分は、下記式(21)~(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有するのがよい。
 式中、A、B、q1及びq2は上記と同じ定義を有する;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
 lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
 Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
 Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す。
In addition, as a component for forming the photoreactive polymer film, a polymer having any one type of liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31) may be included. For example, when the photoreactive side chain of the above-mentioned polymer forming the photoreactive polymer film does not have liquid crystallinity, or the above-mentioned polymer main chain forming the photoreactive polymer film is liquid crystalline If not, the component forming the photoreactive polymer film may have any one type of liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof And the hydrogen atoms bonded to them may be each independently substituted with -NO 2 , -CN, a halogen group, an alkyl group of 1 to 5 carbon atoms, or an alkyloxy group of 1 to 5 carbon atoms;
R 3 represents a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing group A heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, and m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26) In the above, the sum of all m is 1 or more, and m1, m2 and m3 each independently represent an integer of 1 to 3;
R 2 represents a hydrogen atom, -NO 2 , -CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represent a single bond, —CO—, —CH 2 O—, —CH = N— or —CF 2 —.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<<光反応性高分子膜の製法>>
 上述の光反応性高分子膜は、上記光反応性側鎖を有する光反応性側鎖モノマーを重合することによって、場合によっては該光反応性側鎖モノマーと上記液晶性側鎖を有するモノマーとを共重合することによって、得ることができる。例えば、WO2017/061536号公報(該公報の内容は全て、参照により本願に組み込まれる)の[0062]~[0090]を参照することによって、製造することができる。
<< Manufacturing method of photoreactive polymer film >>
The above-mentioned photoreactive polymer film is obtained by polymerizing a photoreactive side chain monomer having the above-mentioned photoreactive side chain, and in some cases, the photoreactive side chain monomer and the monomer having the above-mentioned liquid crystalline side chain Can be obtained by copolymerizing For example, it can be manufactured by referring to [0062] to [0090] of WO 2017/061536 (the contents of the publication are all incorporated herein by reference).
<レンズ素子>
 本発明の偏光撮像装置は、レンズ素子を有する。該レンズ素子は、後述する受光素子において結像する作用を有すれば、特に限定されない。
<受光素子>
 本発明の偏光撮像装置は、受光素子を有する。該受光素子は、結像したデータから上述のS~Sを求めることができれば、特に限定されない。
<Lens element>
The polarization imaging device of the present invention has a lens element. The lens element is not particularly limited as long as it has an effect of forming an image in a light receiving element described later.
<Light receiving element>
The polarization imaging device of the present invention has a light receiving element. The light receiving element is not particularly limited as long as the above-mentioned S 0 to S 3 can be obtained from the image data.
 本発明の偏光撮像装置について、図を用いて説明する。
 図3は、本発明の偏光撮像装置の概略を説明する図である。
 本発明の偏光撮像装置は、結像レンズ、色フィルタ、異方性回折格子、受光素子アレイを有して成る。
 結像レンズは受光素子アレイからの配置距離を可変とし、ピント調整できるようにしている。
 異方性回折格子の回折角は波長依存性を伴うため、白色光に対しては角度分散によって像がボケる問題が生じ得る。このため、色フィルタを挿入して分散の影響を低減している。異方性回折格子は観測波長に応じてリタデーションが最適化されたものを対応する周波数帯の干渉フィルタと組み合わせて用いる。
The polarization imaging apparatus of the present invention will be described with reference to the drawings.
FIG. 3 is a view for explaining the outline of the polarization imaging apparatus of the present invention.
The polarization imaging apparatus of the present invention comprises an imaging lens, a color filter, an anisotropic diffraction grating, and a light receiving element array.
The imaging lens has a variable arrangement distance from the light receiving element array so that focus adjustment can be performed.
The diffraction angle of the anisotropic diffraction grating has wavelength dependency, so that for white light, angular dispersion may cause a problem of blurring of the image. Therefore, color filters are inserted to reduce the influence of dispersion. The anisotropic diffraction grating is used in combination with an interference filter of a corresponding frequency band in which retardation is optimized according to the observation wavelength.
 イメージング部(結像レンズ、受光素子アレイ)を導入したことで、点計測に限定されず、イメージング計測を行うことができる。
 一般にストークスパラメータを求めるには、式(1)にある0deg直線偏光成分、90deg直線偏光成分、45deg直線偏光成分、-45deg直線偏光成分、右回り円偏光成分、左回り円偏光成分の各光強度を測定する方法や、回転移相子法などのフーリエ解析法が用いられる。しかし、これらの手法では、原理上複数回の測定を要するため、状態が時間的に変化するような被写体の測定には向かない。
 これに対し、本発明の偏光撮像装置では、ストークスパラメータの計測に必要な情報を空間的に分離し、強度情報として一度に取得することで、スナップショットでの偏光イメージング計測を可能としている。即ち、動的な被測定対象であっても測定可能であることを特徴としている。また、回折格子を含めて高額な光学素子を要しないため、安価である点も特徴のひとつである。
By introducing the imaging unit (imaging lens, light receiving element array), it is possible to perform imaging measurement without being limited to point measurement.
Generally, the light intensity of 0 deg linear polarization component, 90 deg linear polarization component, 45 deg linear polarization component, -45 deg linear polarization component, right-handed circularly polarized light component, left-handed circularly polarized light component shown in equation (1) can be calculated generally A method of measuring is used, or a Fourier analysis method such as a rotational retarder method is used. However, these methods are not suitable for the measurement of an object whose state changes with time, because in principle multiple measurements are required.
On the other hand, in the polarization imaging apparatus according to the present invention, polarization imaging measurement in snapshot can be performed by spatially separating information necessary for measurement of Stokes parameters and acquiring the information at a time as intensity information. That is, it is characterized in that it can measure even a dynamic object to be measured. In addition, it is one of the features that it is inexpensive because it does not require an expensive optical element including a diffraction grating.
 本発明の偏光撮像値は、動的な被測定対象であっても静的な被測定対象であっても2次元的に測定可能であるため、種々の分野に応用することができる。例えば、医療分野、自動車の自動運転技術分野、セキュリティー分野などを挙げることができるが、これらに限定されない。
 以下、本発明について、実施例を用いて具体的に説明するが、本発明は該実施例によってのみ限定されるものではない。
The polarization imaging value of the present invention can be measured two-dimensionally regardless of whether it is a dynamic measurement target or a static measurement target, so that it can be applied to various fields. Examples include, but are not limited to, the medical field, the field of autonomous driving technology of automobiles, the field of security, and the like.
Hereinafter, the present invention will be specifically described using examples, but the present invention is not limited only by the examples.
<異方性回折格子の作製>
 記録材料として、下記式で表される光架橋性高分子液晶(4-(4-methoxycinnamoyloxy)biphenyl side groups(P6CB))を用いた。
 P6CBをジクロロメタンに溶解し、ガラス基板上に膜厚が300nmとなるようにスピンコートした。
 P6CBフィルムがコートされたガラス基板を2枚用意し、P6CBフィルム側を対向させて張り合わせて空のセルを作成した。作製した空セルに、He-Cdレーザから射出された波長325nmの紫外レーザをOC干渉させながら600mJ/cmの露光エネルギーで照射した。照射後に150℃のオーブンで15分間熱処理し、熱処理後に低分子液晶5CB(4-cyano-4'-pentylbiphenyl)をセル内に注入してセルタイプのOC格子を作製した。作製した異方性回折格子の直径は8mmであった。
<Fabrication of anisotropic diffraction grating>
As a recording material, photocrosslinkable polymer liquid crystal (4- (4-methoxycinnamoyloxy) biphenyl side groups (P6CB)) represented by the following formula was used.
P6CB was dissolved in dichloromethane, and spin-coated on a glass substrate to a film thickness of 300 nm.
Two glass substrates coated with the P6CB film were prepared, and the P6CB film side was made to face each other to bond them, and an empty cell was created. The produced empty cell was irradiated with an exposure energy of 600 mJ / cm 2 while causing OC interference of an ultraviolet laser having a wavelength of 325 nm emitted from a He-Cd laser. After irradiation, heat treatment was performed in an oven at 150 ° C. for 15 minutes, and after heat treatment, low molecular liquid crystal 5CB (4-cyano-4′-pentylbiphenyl) was injected into the cell to prepare a cell type OC lattice. The diameter of the produced anisotropic diffraction grating was 8 mm.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<偏光撮像装置の作製>
 図3に示す偏光撮像装置の概略図に従って、偏光撮像装置を作製した。
 具体的には、図4に示すように、偏光撮像装置は、被写体から順に、結像レンズ、干渉フィルタ(Throrlabs社製FL532-3(中心波長532nm)、上記で得た異方性回折格子、及び受光素子となるように配置した。なお、受光素子として市販カメラ(SONY社製ILCE6000S)を用い、結像レンズ、干渉フィルタ、及び異方性回折格子はゲージシステムにパッケージ化し、該市販カメラに装着できるように設計した。
<Fabrication of Polarized Imaging Device>
A polarization imaging device was manufactured according to the schematic view of the polarization imaging device shown in FIG.
Specifically, as shown in FIG. 4, the polarization imaging apparatus includes, in order from the object, an imaging lens, an interference filter (FL532-3 manufactured by Throrlabs (central wavelength 532 nm), the anisotropic diffraction grating obtained above, A commercially available camera (ILCE6000S manufactured by SONY) is used as the light receiving element, and the imaging lens, interference filter, and anisotropic diffraction grating are packaged in a gauge system, and the commercially available camera is used. Designed to be worn.
<イメージング計測>
 本実施例では、円偏光に対する選択反射特性を示すコガネムシを被写体として用い、イメージング計測を行った。その画像を図5に示す。
 図5から3つの画像スポットが得られていることがわかる。左から順に、OC格子の-1次光、0次光、+1次光成分に該当する。このうち、-1次光と+1次光成分が左回り円偏光成分と右回り円偏光成分の2次元分布を表している。
 -1次光成分(I-1)と+1次光成分(I+1)の像を画像処理により抽出し、下記数式に基づいて差分計算を施して求めたSのイメージング画像を図6に示す。
<Imaging measurement>
In this example, imaging measurement was performed using a beetle that exhibits selective reflection characteristics for circularly polarized light as a subject. The image is shown in FIG.
It can be seen from FIG. 5 that three image spots are obtained. From left to right, it corresponds to −1st order light, 0th order light and + 1st order light component of the OC grating. Among these, the −1st order light component and the + 1st order light component represent a two-dimensional distribution of the left-handed circularly polarized light component and the right-handed circularly polarized light component.
The image of the -1st-order light component (I -1) and + 1st-order light component (I + 1) extracted by image processing, Figure 6 shows the imaging image of S 3 obtained by performing the difference calculation based on the following formula .
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 図6から、コガネムシの外形に沿ったSの空間分布が得られていることが分かる。この画像から、コガネムシを反射・散乱した光は左回り円偏光が支配的に含まれていることが分かる。これは一般に知られている、コガネムシの円偏光の選択反射特性に一致する結果である。
 したがって、本発明の偏光撮像装置により、スナップショットでストークスパラメータの空間分布をイメージング計測できることが実証された。
From Figure 6, it can be seen that the spatial distribution of S 3 along the outer shape of the scarab is obtained. From this image, it can be seen that the light reflected / scattered from the beetle mainly contains left-handed circularly polarized light. This is a result that is consistent with the commonly known, selective reflection characteristics of circularly polarized beetles.
Therefore, it has been demonstrated that the polarization imaging apparatus of the present invention enables imaging measurement of the spatial distribution of Stokes parameters in a snapshot.

Claims (15)

  1.  光学異方性が周期的に変調された異方性回折格子素子、レンズ素子、及び受光素子を有する偏光撮像装置。 A polarization imaging device having an anisotropic diffraction grating element, a lens element, and a light receiving element in which optical anisotropy is periodically modulated.
  2.  前記異方性回折格子素子が、互いに方向の異なる複数個の格子ベクトルを有する異方性回折格子を有し、前記格子ベクトルは少なくとも異方性方位又は複屈折が周期的に変調される、請求項1記載の装置。 The anisotropic diffraction grating element has an anisotropic diffraction grating having a plurality of grating vectors different in direction from each other, and the grating vector is periodically modulated at least in anisotropic orientation or birefringence. The apparatus according to Item 1.
  3.  前記異方性回折格子素子が、入射光のストークスパラメータの情報を、異方性方位および複屈折の分布に応じて空間的に分離し、強度情報へと変換する異方性回折格子を有する、請求項1又は請求項2記載の装置。 The anisotropic diffraction grating element has an anisotropic diffraction grating that spatially separates information of Stokes parameters of incident light according to the distribution of anisotropic orientation and birefringence, and converts the information into intensity information. An apparatus according to claim 1 or 2.
  4.  前記異方性回折格子素子が、(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる光反応性側鎖を有する光反応性高分子膜を有する異方性回折格子を含む請求項1~3のいずれか1項記載の装置。 The said anisotropic diffraction grating element has a photoreactive side chain having at least one kind of reaction selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization. The device according to any of the preceding claims, comprising an anisotropic diffraction grating having a molecular film.
  5.  前記異方性回折格子素子が、前記光反応性高分子膜からなる異方性回折格子を含む請求項1~4のいずれか1項記載の装置。 The device according to any one of claims 1 to 4, wherein the anisotropic diffraction grating element includes an anisotropic diffraction grating composed of the photoreactive polymer film.
  6.  前記異方性回折格子素子が、
     I)第1の透明基体層;及び
     II)(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる第1の光反応性側鎖を有する第1の光反応性高分子膜
    を有する異方性回折格子を含む請求項1~5のいずれか1項記載の装置。
    The anisotropic diffraction grating device is
    And I) a first transparent substrate layer; and II) a first photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization. The device according to any one of claims 1 to 5, comprising an anisotropic diffraction grating having a first photoreactive polymer film having
  7.  前記異方性回折格子素子が、
     III)第2の透明基体層;及び
     IV)(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる第2の光反応性側鎖を有する第2の光反応性高分子膜;及び
    を有し、
     前記II)第1の光反応性高分子膜と前記IV)第2の光反応性高分子膜とが対向するように配置し、前記II)第1の膜及び前記IV)第2の膜の間に、(B)低分子液晶層が配置される異方性回折格子を含む請求項1~4及び6のいずれか1項記載の装置。
    The anisotropic diffraction grating device is
    And III) a second transparent substrate layer; and IV) a second photoreactive side chain which causes at least one reaction selected from the group consisting of (A-1) photocrosslinking, and (A-2) photoisomerization. A second photoreactive polymer film having
    The II) first photoreactive polymer film and the IV) second photoreactive polymer film are disposed to face each other, and the II) first film and the IV) second film The device according to any one of claims 1 to 4, which further comprises an anisotropic diffraction grating in which (B) a low molecular weight liquid crystal layer is disposed.
  8.  前記光反応性高分子膜に所望の偏光を干渉露光し、該高分子薄膜に任意の回折パターンを形成することで、該高分子薄膜に入射する光のストークスパラメータの情報を、該高分子薄膜に形成された異方性方位および複屈折の分布に応じて空間的に分離し、強度情報へと変換する異方性回折格子とする請求項4~7のいずれか1項記載の装置。 The light reactive polymer film is subjected to interference exposure of desired polarized light, and an arbitrary diffraction pattern is formed on the polymer thin film to obtain information on the Stokes parameter of light incident on the polymer thin film, the polymer thin film The device according to any one of claims 4 to 7, wherein an anisotropic diffraction grating is spatially separated according to the distribution of the anisotropic orientation and the birefringence formed on the surface and converted into intensity information.
  9.  前記光反応性高分子膜が、下記式(1)~(6)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     q3は0または1である;
     P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
     l1は0または1である;
     l2は0~2の整数である;
     l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
     l1が1であるときは、Tが単結合であるときはBも単結合を表す;
     H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
    からなる群から選ばれるいずれか1種の光反応性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000001
    The photoreactive polymer film has the following formulas (1) to (6)
    (Wherein A, B and D are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO Represents -O- or -O-CO-CH = CH-;
    S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group;
    T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded to them may be replaced by a halogen group;
    Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    Y 2 is a group selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof The hydrogen atom bonded to each independently is -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group of
    R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
    X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
    Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded to them are each independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH- It may be substituted by CN, a halogen group, an alkyl group of 1 to 5 carbon atoms, or an alkyloxy group of 1 to 5 carbon atoms;
    One of q1 and q2 is 1 and the other is 0;
    q3 is 0 or 1;
    P and Q are each independently selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof Group, provided that when X is -CH = CH-CO-O- or -O-CO-CH = CH-, P or Q to which -CH = CH- is attached is an aromatic ring, When the number of P is 2 or more, P may be the same or different, and when the number of Q is 2 or more, Q may be the same or different;
    l1 is 0 or 1;
    l2 is an integer of 0 to 2;
    When l1 and l2 are both 0, when T is a single bond, A also represents a single bond;
    When l1 is 1, when T is a single bond, B also represents a single bond;
    H and I each independently represent a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a combination thereof. )
    The device according to any one of claims 4 to 8, comprising a photoreactive polymer having any one photoreactive side chain selected from the group consisting of
    Figure JPOXMLDOC01-appb-C000001
  10.  前記光反応性高分子膜が、下記式(7)~(10)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表す;
     mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
     nは0~12の整数(ただしn=0のときBは単結合である)を表す;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す)
    からなる群から選ばれるいずれか1種の光反応性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000002
    The photoreactive polymer film has the following formulas (7) to (10)
    (Wherein A, B and D are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO Represents -O- or -O-CO-CH = CH-;
    Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
    l represents an integer of 1 to 12;
    m represents an integer of 0 to 2; m1 and m2 represent an integer of 1 to 3;
    n represents an integer of 0 to 12 (wherein B is a single bond when n = 0);
    Y 2 is a group selected from the group consisting of divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof The hydrogen atom bonded to each independently is -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group of
    R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 )
    The device according to any one of claims 4 to 8, comprising a photoreactive polymer having any one photoreactive side chain selected from the group consisting of
    Figure JPOXMLDOC01-appb-C000002
  11.  前記光反応性高分子膜が、下記式(11)~(13)
    (式中、Aは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表し、m1は1~3の整数を表す;
     Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1~6のアルコキシ基を表す)
    からなる群から選ばれるいずれか1種の光反応性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000003
    The photoreactive polymer film has the following formulas (11) to (13)
    (Wherein, A is each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O- Or -O-CO-CH = CH-;
    X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
    l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 represents an integer of 1 to 3;
    R represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or phase selected from their substituents And 2 to 6 different rings are bonded to each other through a bonding group B, and hydrogen atoms bonded to them are each independently —COOR 0 (wherein, R 0 is a hydrogen atom or 1 to 5 carbon atoms) The alkyl group represented by the formula: -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl having 1 to 5 carbon atoms It may be substituted by an oxy group, or represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms)
    The device according to any one of claims 4 to 8, comprising a photoreactive polymer having any one photoreactive side chain selected from the group consisting of
    Figure JPOXMLDOC01-appb-C000003
  12.  前記光反応性高分子膜が、下記式(14)又は(15)
    (式中、Aはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     lは1~12の整数を表し、m1、m2は1~3の整数を表す)
    で表される光反応性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000004
    The photoreactive polymer film has the following formula (14) or (15)
    (Wherein, each A independently represents a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, Or -O-CO-CH = CH-;
    Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    l represents an integer of 1 to 12, and m1 and m2 represent an integer of 1 to 3)
    The device according to any one of claims 4 to 8, comprising a photoreactive polymer having a photoreactive side chain represented by
    Figure JPOXMLDOC01-appb-C000004
  13.  前記光反応性高分子膜が、下記式(16)又は(17)(式中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表す)
    で表される光反応性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000005
    The photoreactive polymer film is represented by the following formula (16) or (17) (wherein, A represents a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH -CO-, -CH = CH-CO-O-, or -O-CO-CH = CH-;
    X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
    l represents an integer of 1 to 12, and m represents an integer of 0 to 2)
    The device according to any one of claims 4 to 8, comprising a photoreactive polymer having a photoreactive side chain represented by
    Figure JPOXMLDOC01-appb-C000005
  14.  前記光反応性高分子膜が、下記式(18)又は(19)
    (式中、A、Bはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     lは1~12の整数を表し、m1、m2は1~3の整数を表す;
     Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す)
    からなる群から選ばれるいずれか1種の感光性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000006
    The photoreactive polymer film has the following formula (18) or (19)
    (Wherein, A and B are each independently a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O -Or -O-CO-CH = CH-;
    Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    One of q1 and q2 is 1 and the other is 0;
    l represents an integer of 1 to 12, m1 and m2 represent an integer of 1 to 3;
    R 1 represents a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl having 1 to 5 carbon atoms Represents an oxy group)
    The device according to any one of claims 4 to 8, comprising a photoreactive polymer having any one photosensitive side chain selected from the group consisting of
    Figure JPOXMLDOC01-appb-C000006
  15.  前記光反応性高分子膜が、下記式(20)
    (式中、Aは、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表し、mは0~2の整数を表す)で表される光反応性側鎖を有する光反応性高分子を有する請求項4~8のいずれか1項に記載の装置。
    Figure JPOXMLDOC01-appb-C000007
    The photoreactive polymer film has the following formula (20)
    (Wherein, A represents a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, or -O Represents -CO-CH = CH-;
    Y 1 represents a ring selected from monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents And 2 to 6 different rings are bonded to each other via a bonding group B, and hydrogen atoms bonded to them are each independently -COOR 0 (wherein, R 0 is a hydrogen atom or C 1 -C 6 5) an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = X represents CH-, and when the number of X is 2, X may be the same or different;
    The photoreactive polymer according to any one of claims 4 to 8, wherein l represents an integer of 1 to 12 and m represents an integer of 0 to 2). Device.
    Figure JPOXMLDOC01-appb-C000007
PCT/JP2018/030902 2017-08-23 2018-08-22 Polarization image capturing device WO2019039486A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019537643A JP7101356B2 (en) 2017-08-23 2018-08-22 Polarized imager
KR1020207007575A KR102645233B1 (en) 2017-08-23 2018-08-22 polarization imaging device
CN201880068721.2A CN111247405B (en) 2017-08-23 2018-08-22 Polarization camera device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017160221 2017-08-23
JP2017-160221 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019039486A1 true WO2019039486A1 (en) 2019-02-28

Family

ID=65439885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030902 WO2019039486A1 (en) 2017-08-23 2018-08-22 Polarization image capturing device

Country Status (4)

Country Link
JP (1) JP7101356B2 (en)
KR (1) KR102645233B1 (en)
CN (1) CN111247405B (en)
WO (1) WO2019039486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204539A (en) * 2019-06-18 2020-12-24 国立大学法人長岡技術科学大学 Polarized image capturing device
WO2021261541A1 (en) * 2020-06-25 2021-12-30 国立大学法人長岡技術科学大学 Polarization imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121235A (en) * 2005-10-31 2007-05-17 Nagaoka Univ Of Technology Polarization analysis system using polarizing diffraction element and dispensing with requirement for mechanical drive
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
US20120268745A1 (en) * 2011-04-20 2012-10-25 Arizona Board Of Regents On Behalf Of The University Of Arizona Ultra-compact snapshot imaging fourier transform spectrometer
WO2016031567A1 (en) * 2014-08-26 2016-03-03 学校法人同志社 Birefringence measurement device and birefringence measurement method
WO2017061536A1 (en) * 2015-10-07 2017-04-13 公立大学法人兵庫県立大学 Optical element and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121235A (en) * 2005-10-31 2007-05-17 Nagaoka Univ Of Technology Polarization analysis system using polarizing diffraction element and dispensing with requirement for mechanical drive
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
US20120268745A1 (en) * 2011-04-20 2012-10-25 Arizona Board Of Regents On Behalf Of The University Of Arizona Ultra-compact snapshot imaging fourier transform spectrometer
WO2016031567A1 (en) * 2014-08-26 2016-03-03 学校法人同志社 Birefringence measurement device and birefringence measurement method
WO2017061536A1 (en) * 2015-10-07 2017-04-13 公立大学法人兵庫県立大学 Optical element and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204539A (en) * 2019-06-18 2020-12-24 国立大学法人長岡技術科学大学 Polarized image capturing device
JP7440845B2 (en) 2019-06-18 2024-02-29 国立大学法人長岡技術科学大学 polarization imaging device
WO2021261541A1 (en) * 2020-06-25 2021-12-30 国立大学法人長岡技術科学大学 Polarization imaging device

Also Published As

Publication number Publication date
JPWO2019039486A1 (en) 2020-10-15
CN111247405A (en) 2020-06-05
JP7101356B2 (en) 2022-07-15
KR20200044026A (en) 2020-04-28
KR102645233B1 (en) 2024-03-07
TW201920307A (en) 2019-06-01
CN111247405B (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US10036886B2 (en) Broadband optics for manipulating light beams and images
Escuti et al. Simplified spectropolarimetry using reactive mesogen polarization gratings
JP5462783B2 (en) Low twist chiral liquid crystal polarization gratings and related fabrication methods
Escuti et al. A polarization-independent liquid crystal spatial light modulator
EP1611189A1 (en) Polymerised liquid crystal film with retardation or orientation pattern
Sakhno et al. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer
KR102645233B1 (en) polarization imaging device
JP7440845B2 (en) polarization imaging device
Labarthet et al. Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry
US20220333987A1 (en) Hyperspectral sensor and hyperspectral camera
WO2021261541A1 (en) Polarization imaging device
JP2012073522A (en) Phase type diffraction element, manufacturing method therefor, and imaging device
TWI838344B (en) Polarized camera device
Evans et al. Bragg-matched photorefractive two-beam coupling in organic–inorganic hybrids
Khos-Ochir et al. Polarimetric measurement of Jones matrix of a twisted nematic liquid crystal spatial light modulator
US20220128747A1 (en) Filter and imaging apparatus
JP5169165B2 (en) Compound, liquid crystal composition, optically anisotropic material, and optical element
JP7355850B2 (en) Optical element manufacturing method and optical element
Muševič et al. Magnetic-field-induced biaxiality in an antiferroelectric liquid crystal
Golicha et al. Optical Techniques in the Determination of Pitch Lengths in the Cholesteric and Chiral Smectic C Phases
JP7416941B2 (en) Optical elements and image display devices
WO2024071217A1 (en) Liquid crystal diffraction element
WO2023282085A1 (en) Spectroscope
Bjorknas et al. Quantitative conoscopic imaging of cholesteric thin films
Heynderickx et al. Liquid‐crystalline ordering in polymeric networks as studied by polarized raman scattering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007575

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18848558

Country of ref document: EP

Kind code of ref document: A1