JP2007251028A - Superconducting element and its manufacturing method - Google Patents

Superconducting element and its manufacturing method Download PDF

Info

Publication number
JP2007251028A
JP2007251028A JP2006075098A JP2006075098A JP2007251028A JP 2007251028 A JP2007251028 A JP 2007251028A JP 2006075098 A JP2006075098 A JP 2006075098A JP 2006075098 A JP2006075098 A JP 2006075098A JP 2007251028 A JP2007251028 A JP 2007251028A
Authority
JP
Japan
Prior art keywords
superconducting
carbon nanotube
mwnt
catalyst
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006075098A
Other languages
Japanese (ja)
Other versions
JP5036027B2 (en
Inventor
Junshi Haruyama
純志 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006075098A priority Critical patent/JP5036027B2/en
Publication of JP2007251028A publication Critical patent/JP2007251028A/en
Application granted granted Critical
Publication of JP5036027B2 publication Critical patent/JP5036027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting element which includes a multilayered carbon nanotube in its superconducting state, and also a method of manufacturing the superconducting element. <P>SOLUTION: In the superconducting element including a multilayered carbon nanotube and a metallic electrode, the multilayered carbon nanotube has a diameter of 5-20nm, is made up of 2-20 layers, and has a cross section cut vertically to its longitudinal direction. The metallic electrode is contacted at the above cross section with the multilayered carbon nanotube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超伝導素子及びその作製方法に関し、とくに多層カーボンナノチューブを用いた超伝導素子及びその作製方法に関する。   The present invention relates to a superconducting element and a manufacturing method thereof, and more particularly to a superconducting element using multi-walled carbon nanotubes and a manufacturing method thereof.

カーボンナノチューブは、その発見以来、次世代の高機能材料として注目されている。カーボンナノチューブには、カーボンナノチューブを構成するグラファイトシートが一層である単層カーボンナノチューブ(SWNT)と、2以上のグラファイトシートが同心円状に重なった多層カーボンナノチューブ(MWNT)とがある。   Since its discovery, carbon nanotubes have attracted attention as next-generation high-performance materials. The carbon nanotube includes a single-walled carbon nanotube (SWNT) in which a graphite sheet constituting the carbon nanotube is a single layer and a multi-walled carbon nanotube (MWNT) in which two or more graphite sheets are concentrically overlapped.

SWNTについては、その水素貯蔵機能や、電界放出機能などを中心に様々な研究がなされてきたが、超伝導に関する報告はまだ1件のみ(非特許文献1参照)であり、これは転移温度が非常に低く、追試結果がなかった。また、MWNTについても、近年、様々な研究報告がなされているが、超伝導に関する報告は、本発明の発明者らによるMWNTを用いた超伝導近接効果を発現させる素子が提案されているのみである(非特許文献2及び3参照)。ここで、超伝導近接効果とは、常伝導体に超伝導体が接合した構造において、超伝導体からクーパー対の波動関数が拡散することにより、常伝導体が見かけ上、超伝導体になるというものである。このような超伝導近接効果をMWNT内において発現させるために、本発明の発明者らは、Al基板上にポーラスアルミナ膜を形成後、ポーラスアルミナ膜の細孔中にMWNTを成長させ、MWNTの先端に超伝導体であるNb膜を形成し、さらにその上に電極としてのAu膜を形成し、Al/MWNT/Nb/Auという常伝導−超伝導接合を有する4層構造からなる素子を作製した。そして、この4層構造素子に電圧を印加し、低温下でNbが超伝導状態になると、クーパー対の波動関数が超伝導体から常伝導体に拡散することで常伝導体であるMWNTが9Kから見かけ上超伝導状態になることを確認した。
Z.K.Tang et.al., Science 292, 2462(2001) J.Haruyama et.al., Applied Physics Letters, vol.84, 2004, 23, 4714-4716 春山純志、社団法人電気学会、電子材料研究会資料、資料番号EFM−03−41
As for SWNTs, various studies have been made centering on its hydrogen storage function and field emission function, but there is only one report on superconductivity (see Non-Patent Document 1). Very low, no follow-up results. In addition, various research reports have been made on MWNT in recent years, but the superconductivity report has only been proposed by the inventors of the present invention as a device that exhibits the superconducting proximity effect using MWNT. Yes (see Non-Patent Documents 2 and 3). Here, the superconducting proximity effect means that in a structure in which a superconductor is joined to a normal conductor, the wave function of the Cooper pair diffuses from the superconductor, so that the normal conductor apparently becomes a superconductor. That's it. In order to express such a superconducting proximity effect in MWNTs, the inventors of the present invention formed a porous alumina film on an Al substrate, and then grew MWNTs in the pores of the porous alumina film. An Nb film, which is a superconductor, is formed at the tip, and an Au film as an electrode is further formed on the Nb film. A device having a normal-superconducting junction of Al / MWNT / Nb / Au is produced. did. When a voltage is applied to this four-layer structure element and Nb becomes a superconducting state at a low temperature, the wave function of the Cooper pair diffuses from the superconductor to the normal conductor, so that the normal conductor MWNT is 9K. It was confirmed that the superconducting state appeared.
ZKTang et.al., Science 292, 2462 (2001) J. Haruyama et.al., Applied Physics Letters, vol.84, 2004, 23, 4714-4716 Junji Haruyama, Institute of Electrical Engineers of Japan, Electronic Materials Research Group, Document No. EFM-03-41

しかしながら、この素子においても、MWNTは見かけ上超伝導になるだけで、MWNT自体が超伝導状態になるものではない。MWNT自体を超伝導状態にする技術が知られていないのは、カーボンナノチューブが1次元系であるために、カーボンナノチューブに電圧を印加すると朝永−ラッティンジャーリキッド(TLL)状態が発現し、カーボンナノチューブ内の電子が互いに反発してクーパー対を形成することができないためであると考えられていた。   However, even in this element, the MWNT only appears to be superconductive, and the MWNT itself does not enter the superconductive state. The technology that makes the MWNT itself a superconducting state is not known because the carbon nanotube is a one-dimensional system, and when a voltage is applied to the carbon nanotube, a Tomonaga-Luttinger Liquid (TLL) state appears, and the carbon nanotube It was thought that this was because the electrons inside repel each other and could not form a Cooper pair.

ところで、カーボンナノチューブ自体を超伝導状態にできれば、カーボンナノチューブ内のクーパー対が強いスピン・エンタングルメントを維持できると考えられている。従って、かかる超伝導状態のカーボンナノチューブを量子コンピュータや量子テレポーテーションへの応用することが期待できる。   By the way, it is believed that if the carbon nanotube itself can be brought into a superconducting state, the Cooper pair in the carbon nanotube can maintain strong spin entanglement. Therefore, it can be expected that such superconducting carbon nanotubes will be applied to quantum computers and quantum teleportation.

そこで、本発明は、MWNT自体を超伝導状態にすることができる超伝導素子及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the superconducting element which can make MWNT itself into a superconducting state, and its manufacturing method.

本発明の超伝導素子は、多層カーボンナノチューブと金属電極とを備えた超伝導素子であって、前記多層カーボンナノチューブは、その直径が5〜20nm、その層数が2〜20であり、かつ、その長手方向に対し垂直に切断された切断面を有し、前記金属電極は、この切断面で多層カーボンナノチューブと接触していることを特徴とする。   The superconducting device of the present invention is a superconducting device comprising multi-walled carbon nanotubes and metal electrodes, the multi-walled carbon nanotubes having a diameter of 5 to 20 nm and a number of layers of 2 to 20, and The metal electrode has a cut surface cut perpendicular to the longitudinal direction, and the metal electrode is in contact with the multi-walled carbon nanotube at the cut surface.

金属電極から電圧を印加した場合に、MWNTを構成する各層(各グラファイトシート)がその切断面で金属電極と接触していることで、MWNT全体が電気的に活性となって、MWNTでの層間相互作用が強まり、TLL状態を克服してMWNTが超伝導状態になることが可能となる。このように層間相互作用を強め、超伝導状態を発現させるためには、前記MWNTの直径は5〜20nmであり、かつ、その層数は2〜20でなければならない。   When a voltage is applied from the metal electrode, each layer (each graphite sheet) constituting the MWNT is in contact with the metal electrode at the cut surface, so that the entire MWNT is electrically activated, and the interlayer in the MWNT The interaction becomes stronger, and it becomes possible to overcome the TLL state and make the MWNT into a superconducting state. Thus, in order to strengthen the interlayer interaction and develop a superconducting state, the diameter of the MWNT must be 5 to 20 nm and the number of layers must be 2 to 20.

前記MWNTが、強磁性体を含んでおらず、かつ、欠陥がないことが好ましい。強磁性体を含んでいないことで、超伝導の破壊が抑制される。また、欠陥がないことでクーパー対が走行しやすく、超伝導が発現しやすい。ここでいう欠陥とは、ナノチューブに6員環以外の5員環などが形成されたり、ナノチューブの一部がアモルファスカーボンになっていることをいう。   It is preferable that the MWNT does not contain a ferromagnetic material and has no defects. By not including a ferromagnetic material, destruction of superconductivity is suppressed. Moreover, since there is no defect, the Cooper pair is easy to travel and superconductivity is likely to appear. The defect here means that a five-membered ring other than the six-membered ring is formed on the nanotube, or a part of the nanotube is amorphous carbon.

前記MWNTが、多孔質膜の細孔中に形成されていることが好ましい。また、金属電極はAu、Pd及びTiから選ばれた少なくとも1種の金属を含むことが好ましい。   The MWNT is preferably formed in the pores of the porous membrane. The metal electrode preferably contains at least one metal selected from Au, Pd and Ti.

前記超伝導素子に金属電極から電圧を印加した場合の超伝導素子の超伝導転移温度は、12K以下である。これは、従来のSWNTを用いた素子の超伝導転移温度に比べて約30倍も高い。   When a voltage is applied from the metal electrode to the superconducting element, the superconducting transition temperature of the superconducting element is 12K or less. This is about 30 times higher than the superconducting transition temperature of a device using conventional SWNTs.

本発明の超伝導素子の形成方法は、触媒にカーボンナノチューブ成長ガスを接触させてMWNTを形成するカーボンナノチューブ形成工程と、形成されたMWNTの一端を切断する切断工程と、金属電極をMWNTの切断面に接触するように形成する電極形成工程とを含むことを特徴とする。このように超伝導素子を形成することで、MWNT自体を超伝導状態にすることが可能である。   The method of forming a superconducting device of the present invention includes a carbon nanotube forming step of forming a MWNT by bringing a carbon nanotube growth gas into contact with a catalyst, a cutting step of cutting one end of the formed MWNT, and a cutting of the metal electrode of the MWNT. And an electrode forming step of forming the electrode so as to be in contact with the surface. By forming a superconducting element in this way, the MWNT itself can be brought into a superconducting state.

前記触媒が強磁性からなることが好ましく、特にFe及びCoから選ばれた少なくとも1種を含むことなることが好ましい。触媒としてこれらの金属を用いることで、欠陥の少ないMWNTを形成でき、その結果、MWNTを超伝導状態にすることが可能である。   The catalyst is preferably made of ferromagnetism, and particularly preferably contains at least one selected from Fe and Co. By using these metals as a catalyst, it is possible to form a MWNT with few defects, and as a result, it is possible to make the MWNT into a superconducting state.

前記カーボンナノチューブ成長ガスがアルコールガスを含むガスであることが好ましい。アルコールガスを含むガスを用いてMWNTを形成することで、MWNT中の欠陥が少なくなりMWNTを超伝導状態にすることが可能である。   The carbon nanotube growth gas is preferably a gas containing an alcohol gas. By forming the MWNT using a gas containing an alcohol gas, defects in the MWNT are reduced and the MWNT can be brought into a superconducting state.

前記切断工程が、超音波処理により行なわれることが好ましい。超音波処理することで、簡易に、カーボンナノチューブをその長手方向に対し垂直に切断しうる。   It is preferable that the cutting step is performed by ultrasonic treatment. By performing ultrasonic treatment, the carbon nanotube can be easily cut perpendicular to the longitudinal direction.

前記カーボンナノチューブ形成工程が、多孔質膜を形成する膜工程と、多孔質膜の細孔内に触媒を形成する触媒形成工程と、カーボンナノチューブ成長ガスを触媒に接触させ細孔中でMWNTを成長させる成長工程とを含むことが好ましい。多孔質膜を形成し、この多孔質膜の細孔中でMWNTを成長させることで、細孔内のMWNTは細孔の直径以上の太さには成長できず、成長時間が十分に長いと、MWNTの内側に多くの層が密に形成される。その結果、本発明の超伝導素子に用いられるMWNTは、通常のMWNTと比較すると、同じ半径であっても、層数が多い。このようなMWNTは層間相互作用が強くなる傾向にあり、超伝導を発現しやすい。また、多孔質膜の細孔から該膜上部へはみ出たMWNTを簡易に切断できる。さらに、多孔質膜上に金属電極を形成すれば、切断面で露出したMWNTを構成する全ての層に簡易に金属電極を接触させることができ、MWNTを電気的に活性な状態とすることができる。   The carbon nanotube forming process includes a film forming process for forming a porous film, a catalyst forming process for forming a catalyst in the pores of the porous film, and a carbon nanotube growth gas is brought into contact with the catalyst to grow MWNTs in the pores. It is preferable to include a growing step. By forming a porous film and growing MWNTs in the pores of the porous film, the MWNTs in the pores cannot grow to a thickness larger than the diameter of the pores, and the growth time is sufficiently long. Many layers are densely formed inside the MWNT. As a result, the MWNT used in the superconducting element of the present invention has a larger number of layers even when the radius is the same as that of a normal MWNT. Such MWNTs tend to have strong interlayer interaction, and easily develop superconductivity. Further, MWNTs protruding from the pores of the porous membrane to the upper portion of the membrane can be easily cut. Furthermore, if a metal electrode is formed on the porous membrane, the metal electrode can be easily brought into contact with all layers constituting the MWNT exposed at the cut surface, and the MWNT can be brought into an electrically active state. it can.

前記触媒形成工程が、電界析出法を用いて触媒を形成する工程であって、印加電圧が6〜12Vであることが好ましい。この範囲で電圧を印加すれば、細孔内に触媒を微量析出することができ、強磁性体である触媒がMWNT中に残らないので、触媒によって超伝導状態が破壊されることを防止できる。   The catalyst forming step is a step of forming a catalyst using an electric field deposition method, and the applied voltage is preferably 6 to 12V. If a voltage is applied within this range, a very small amount of catalyst can be deposited in the pores, and the catalyst that is a ferromagnetic material does not remain in the MWNT, so that the superconducting state can be prevented from being destroyed by the catalyst.

前記電極形成工程が、金属電極を形成した後に、550〜650℃でアニールするアニール工程を含むことが好ましい。金属電極形成後にアニールをすることで、MWNTと金属電極との界面抵抗を減少させ、各層が電気的に活性となり、超伝導が発現しやすくなる。加えて、多孔質膜の細孔中に存在していた強磁性体である触媒を基板中へ拡散させることもできるので、超伝導が破壊されることを防止できる。   The electrode forming step preferably includes an annealing step of annealing at 550 to 650 ° C. after forming the metal electrode. By annealing after forming the metal electrode, the interface resistance between the MWNT and the metal electrode is reduced, each layer becomes electrically active, and superconductivity is easily developed. In addition, since the catalyst, which is a ferromagnetic substance existing in the pores of the porous film, can be diffused into the substrate, the superconductivity can be prevented from being destroyed.

本発明の超伝導素子は、MWNT自体を超伝導状態にすることができるという優れた効果を奏する。また、本発明の超伝導素子の形成方法によれば、MWNT自体を超伝導状態にすることが可能となる超伝導素子を形成することがきるという優れた効果を奏する。   The superconducting element of the present invention has an excellent effect that the MWNT itself can be brought into a superconducting state. In addition, according to the method for forming a superconducting element of the present invention, there is an excellent effect that it is possible to form a superconducting element that enables the MWNT itself to be in a superconducting state.

本発明の超伝導素子について、図1を参照して以下説明する。図1は、本発明の超伝導素子の断面図であり、1は、本発明の超伝導素子である。超伝導素子1は、基板S上に形成された多孔質膜2と、多孔質膜2の細孔21中に形成され、長手方向に対して垂直に切断されたMWNT3と、多孔質膜上に形成され、MWNTの切断面に接触する金属電極4とからなる。   The superconducting element of the present invention will be described below with reference to FIG. FIG. 1 is a cross-sectional view of the superconducting element of the present invention, and 1 is the superconducting element of the present invention. Superconducting element 1 includes porous film 2 formed on substrate S, MWNT 3 formed in pores 21 of porous film 2 and cut perpendicularly to the longitudinal direction, and on the porous film. The metal electrode 4 is formed and contacts the cut surface of the MWNT.

基板Sとしては、通常基板として用いられる金属からなるものであればよい。この場合、Al基板を用いれば、Al基板を陽極酸化することによって基板表層に多孔質膜としてのポーラスアルミナ膜を簡易に形成することが可能であるため、好ましい。   The substrate S may be made of a metal that is usually used as a substrate. In this case, it is preferable to use an Al substrate because a porous alumina film as a porous film can be easily formed on the surface layer of the substrate by anodizing the Al substrate.

多孔質膜2は、厚さが0.5〜1.5μmであり、細孔21が周期的に形成されているものであればよい。このような多孔質膜としては、例えば、ポーラスアルミナ膜や、ゼオライト、ポーラスシリコンなどがあげられる。細孔21は、その直径が5〜20nm程度であることが好ましい。この範囲であれば、細孔内に所望のMWNTを形成することができる。   The porous membrane 2 has only to have a thickness of 0.5 to 1.5 μm and the pores 21 are periodically formed. Examples of such a porous film include a porous alumina film, zeolite, and porous silicon. The diameter of the pore 21 is preferably about 5 to 20 nm. If it is this range, desired MWNT can be formed in a pore.

MWNT3は、その直径が5〜20nm、好ましくは10〜20nmであり、その層数が2〜20である。図1中では、例として5層からなるMWNT3を示しており、各層は同心円状に配置されている。この場合、MWNT3は、欠陥がなく、触媒が残っていないことが好ましい。欠陥があるとクーパー対が走行しにくいために超伝導状態になりにくいからであり、触媒が残っていると、強磁性体である触媒によって超伝導が破壊されてしまうからである。さらに、MWNT3はその一端が多孔質膜2の上面に対して水平になるように平坦に切断される。この切断面に金属電極4が接触するように形成されているので、金属電極によってMWNTに電圧が印加されることによって、MWNTを構成する各層に電圧が印加され、MWNT全体が電気的に活性な状態となって、層間相互作用が強まり、超伝導状態が発現しうる。   MWNT3 has a diameter of 5 to 20 nm, preferably 10 to 20 nm, and a number of layers of 2 to 20. In FIG. 1, MWNT3 which consists of five layers is shown as an example, and each layer is arrange | positioned concentrically. In this case, it is preferable that MWNT3 has no defects and no catalyst remains. This is because if there is a defect, it is difficult for the Cooper pair to travel so that it is difficult to be in the superconducting state. If the catalyst remains, the superconducting material is destroyed by the ferromagnetic catalyst. Further, the MWNT 3 is cut flat so that one end thereof is horizontal with respect to the upper surface of the porous membrane 2. Since the metal electrode 4 is formed in contact with the cut surface, when a voltage is applied to the MWNT by the metal electrode, a voltage is applied to each layer constituting the MWNT, and the entire MWNT is electrically active. As a result, interlayer interaction is strengthened and a superconducting state can be developed.

金属電極4としては、Au、Pd及びTiから選ばれた少なくとも1種の金属又は合金を用いることができる。金属電極4は、MWNT3の切断面31でMWNTと接触しているので、各層を電気的に活性化させ、超伝導を発現させることが可能となる。従来のカーボンナノチューブを用いた素子では、カーボンナノチューブを基板上に平行にのせ、カーボンナノチューブの上から電極を形成していたため、一番外側の層しか電極が接触できなかった。その結果、カーボンナノチューブを電気的に活性とすることができず、層間相互作用が小さく、超伝導状態にならなかったものと考えられる。本発明では、MWNT3を多孔質膜2中の細孔中で垂直に成長させるので、MWNTの切断面に金属電極を形成できる。このため、MWNTの各層に電極を接触させて、MWNT全体を電気的に活性とすることができるという利点がある。   As the metal electrode 4, at least one metal or alloy selected from Au, Pd, and Ti can be used. Since the metal electrode 4 is in contact with the MWNT at the cut surface 31 of the MWNT 3, it is possible to electrically activate each layer and develop superconductivity. In the conventional device using carbon nanotubes, since the carbon nanotubes are placed on the substrate in parallel and the electrodes are formed on the carbon nanotubes, only the outermost layer can contact the electrodes. As a result, it is considered that the carbon nanotubes could not be electrically activated, the interlayer interaction was small, and the superconducting state was not achieved. In the present invention, since the MWNT 3 is grown vertically in the pores in the porous film 2, a metal electrode can be formed on the cut surface of the MWNT. For this reason, there exists an advantage that an electrode is made to contact each layer of MWNT and the whole MWNT can be made electrically active.

この超伝導素子1に、基板Sを負極とし、金属電極4を正極として電圧を印加すると、12K付近からMWNTの超伝導転移がはじまる。前述したように、カーボンナノチューブのような1次元系においては各電子同士が互いに反発しあう状態にあるTLL状態が生じるにも関わらず、本素子においてこのような超伝導転移が始まるのは、2つの理由があると考えられる。一つ目の理由は、本発明で用いるMWNTが多層であり層間相互作用が働くことで、純粋な1次元系とはもはや言えず、MWNT内でのTLL状態が弱まっているからである。この場合においても、TLL状態が完全に消滅するわけではなく、超伝導状態に比べて弱まっているだけであると考えられる。超伝導転移が始まる2つ目の理由は、MWNTを構成する各層が全て金属電極に接触して電気的に活性化され、強い層間相互作用が起きることで、電子がフォノンを介して互いに結合してクーパー対を形成しているからである。   When a voltage is applied to the superconducting element 1 with the substrate S as the negative electrode and the metal electrode 4 as the positive electrode, the superconducting transition of MWNT starts from around 12K. As described above, in a one-dimensional system such as a carbon nanotube, despite the occurrence of a TLL state in which electrons repel each other, such superconducting transition starts in this element. There may be one reason. The first reason is that the MWNT used in the present invention is multi-layered and interlayer interaction works, so that it is no longer a pure one-dimensional system, and the TLL state in the MWNT is weakened. Even in this case, it is considered that the TLL state is not completely extinguished but only weakened as compared with the superconducting state. The second reason for the start of the superconducting transition is that all the layers composing the MWNT are electrically activated by contact with the metal electrodes, and strong interlayer interactions occur, so that electrons are coupled to each other via phonons. This is because a Cooper pair is formed.

この2つ目の理由において、超伝導を発現させるほどの強い層間相互作用は、本発明の超伝導素子1を構成するMWNTによって初めて生じるものである。即ち、この多孔質膜2の細孔21中でMWNT3を成長させるので、細孔中のMWNT3の内側に密に多くの層が形成される。従って、本発明の超伝導素子に用いられるMWNTは、通常のMWNTと比較すると、同じ半径であっても、層数が多い。その結果、一番内側の層のナノチューブは、直径が1nm以下と非常に細いので、層間相互作用が非常に強くなっているか、又は、層数が多いので層間の距離が小さいか、もしくは層間の数が多いかにより、層間相互作用が非常に強くなっていると考えれられる。これらのいずれかの理由によって電子間相互作用が大きくなって、フォノンを介して電子がクーパー対を形成し、超伝導状態を発現させていると考えられる。   For this second reason, the interlayer interaction strong enough to develop superconductivity is first caused by the MWNT constituting the superconducting element 1 of the present invention. That is, since MWNT3 is grown in the pores 21 of the porous film 2, many layers are densely formed inside the MWNT3 in the pores. Therefore, the MWNT used in the superconducting device of the present invention has a larger number of layers even when the radius is the same as that of a normal MWNT. As a result, the nanotube in the innermost layer has a very thin diameter of 1 nm or less, so the interlayer interaction is very strong, or the distance between the layers is small due to the large number of layers, or It is thought that the interlayer interaction is very strong depending on whether the number is large. For any of these reasons, it is considered that the interaction between electrons is increased, and electrons form a Cooper pair via the phonon to develop a superconducting state.

上記の超伝導素子1は、触媒にカーボンナノチューブ成長ガスを接触させてMWNTを形成する形成工程と、形成されたMWNTをその長手方向に対して垂直に切断しする切断工程と、金属電極をMWNTの切断面に接触するように形成する電極形成工程とを含む工程により形成される。以下、各作製工程について、作製工程を示すフローに対応した基板の模式的断面図である図2を用いて説明する。なお、図2において図1と同じ構成要素については同じ参照記号を付してある。   The superconducting device 1 includes a forming step of forming a MWNT by bringing a carbon nanotube growth gas into contact with a catalyst, a cutting step of cutting the formed MWNT perpendicularly to its longitudinal direction, and a metal electrode of the MWNT. And an electrode forming step of forming the electrode so as to be in contact with the cut surface. Hereinafter, each manufacturing process will be described with reference to FIG. 2 which is a schematic cross-sectional view of a substrate corresponding to the flow showing the manufacturing process. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference symbols.

初めに、基板S上に多孔質膜2を形成する(図2(a)参照)。多孔質膜2の形成方法としては、多孔質膜の種類に応じて、公知の方法を用いることができる。基板Sとしてアルミ基板を用いる場合には、多孔質膜2を形成する面以外に公知の絶縁塗料を塗布してから、アルミ基板の陽極酸化により、MWNT3を成長させる多孔質膜2としてのポーラスアルミナ膜を形成する。   First, the porous film 2 is formed on the substrate S (see FIG. 2A). As a method for forming the porous membrane 2, a known method can be used depending on the type of the porous membrane. When an aluminum substrate is used as the substrate S, porous alumina as a porous film 2 for growing MWNT3 by applying a known insulating paint to the surface on which the porous film 2 is formed and then anodizing the aluminum substrate. A film is formed.

絶縁塗料の塗布前に、基板を研磨してもよい。この研磨は、電解研磨法など公知の研磨方法を用いて行なうことができ、例えば、蒸留水、燐酸及び硫酸を混合した研磨溶液(例えば、容積比で19:66:25)を作製して、この研磨溶液中で、基板を陽極、炭素棒を陰極とし、初めに電流を流さずに基板を2分間溶液に浸漬させ、その後、直流電流(例えば、250mA/cm)を流して研磨を行なう。この研磨によって、基板表面の凹凸が無くなり、基板表面に平坦な多孔質膜を形成することが可能となる。この研磨後、基板の裏面又は側面からの酸化を抑制すべく、これらの面に絶縁塗料を塗布し、陽極酸化する。 The substrate may be polished before applying the insulating paint. This polishing can be performed using a known polishing method such as an electrolytic polishing method. For example, a polishing solution in which distilled water, phosphoric acid and sulfuric acid are mixed (for example, 19:66:25 by volume ratio) is prepared, In this polishing solution, the substrate is the anode, the carbon rod is the cathode, the substrate is first immersed in the solution for 2 minutes without passing an electric current, and then a direct current (for example, 250 mA / cm 2 ) is applied to perform polishing. . By this polishing, the unevenness of the substrate surface is eliminated, and a flat porous film can be formed on the substrate surface. After this polishing, in order to suppress oxidation from the back surface or side surface of the substrate, an insulating paint is applied to these surfaces and anodized.

前記陽極酸化について、以下説明する。初めに、硫酸と蒸留水とを混合した溶液(例えば、硫酸が総容量基準で6.4%)を作製する。この溶液を低温(−5℃)に保ったまま、基板を陽極、炭素棒を陰極として電極間に直流電圧を印加する。この電圧は15V程度、時間は2時間程度である。この印加電圧・印加時間を制御することで、細孔21の直径を制御することが可能である。その後、電圧を段階的に下げながら陽極酸化を終了し、その後、超音波洗浄によって基板を洗浄する。   The anodic oxidation will be described below. First, a solution in which sulfuric acid and distilled water are mixed (for example, sulfuric acid is 6.4% based on the total volume) is prepared. While this solution is kept at a low temperature (−5 ° C.), a DC voltage is applied between the electrodes using the substrate as the anode and the carbon rod as the cathode. This voltage is about 15V, and the time is about 2 hours. By controlling the applied voltage and time, the diameter of the pores 21 can be controlled. Thereafter, the anodic oxidation is finished while stepping down the voltage, and then the substrate is cleaned by ultrasonic cleaning.

この陽極酸化は、2回以上に分けて行なうことが好ましい。これは、ポーラスアルミナ膜を連続して成長させると、膜厚・細孔直径・細孔周期が一定ではない場合があるからである。このような場合に、陽極酸化を2回以上に分けて行ない、ポーラスアルミナ膜の成長速度を揃えることで、細孔の直径や膜厚の均一なポーラスアルミナ膜を形成することができる。この場合には、1回目の陽極酸化終了後、ポーラスアルミナ膜の膜厚等を均一にすべく、溶液(例えば、重量比で燐酸:酸化クロム=10:3とし、これを蒸留水で希釈したもの)中に浸漬させてエッチングを行い、形成されたポーラスアルミナ膜の膜厚を一定にする。その後、1回目の陽極酸化時の電圧・温度・溶液濃度と同一条件で陽極酸化を行なう。1回目の陽極酸化時の要件と同一条件でないと、形成されたポーラスアルミナ膜の孔の直径が異なるようになり、直径の均一なMWNTを形成することができない。このようにして得られたポーラスアルミナ膜の細孔の直径は5〜20nmであり、膜の厚さは、2回目の陽極酸化の時間に依存するが、0.5〜1.5μmであればよい。例えば、2回目の陽極酸化の時間が35分である場合、多孔質膜の膜厚は0.8μm程度である。陽極酸化終了後、次工程(触媒形成工程)でアルミナ膜の細孔中に触媒が入りやすいように、燐酸エッチングを行なう。   This anodization is preferably performed in two or more steps. This is because when the porous alumina film is continuously grown, the film thickness, pore diameter, and pore period may not be constant. In such a case, a porous alumina film having a uniform pore diameter and film thickness can be formed by performing anodic oxidation twice or more and adjusting the growth rate of the porous alumina film. In this case, after the first anodic oxidation, the solution (for example, phosphoric acid: chromium oxide = 10: 3 by weight ratio was diluted with distilled water to make the porous alumina film uniform, etc. Etching is carried out by immersing the film in the substrate), and the film thickness of the formed porous alumina film is made constant. Thereafter, anodization is performed under the same conditions as the voltage, temperature, and solution concentration during the first anodic oxidation. Unless the conditions are the same as the requirements for the first anodic oxidation, the diameters of the holes in the formed porous alumina film are different, and MWNTs having a uniform diameter cannot be formed. The pore diameter of the porous alumina membrane thus obtained is 5 to 20 nm, and the thickness of the membrane depends on the time of the second anodic oxidation, but is 0.5 to 1.5 μm. Good. For example, when the time of the second anodic oxidation is 35 minutes, the thickness of the porous film is about 0.8 μm. After the completion of the anodization, phosphoric acid etching is performed in the next step (catalyst formation step) so that the catalyst can easily enter the pores of the alumina film.

次いで、MWNT3を多孔質膜2の細孔21中に形成するためにポーラスアルミナ膜2の細孔21内に触媒22を形成する(図2(b)参照)。MWNT形成時の触媒22としては、Fe、Coなどの強磁性体を用いることができ、特に、Fe及びCoを両方用いることが好ましい。触媒の形成方法としては、蒸着法や電解析出法を用いることができる。電解析出法の場合には、コバルトや鉄を含む金属塩(例えば、硫酸塩、硝酸塩、燐酸塩等)と、活性化剤(例えばホウ酸)と、アスコルビン酸とを、蒸留水で希釈する。この場合の各添加量は、活性化剤と金属塩との重量比が、1:6〜8であり、アスコルビン酸と活性化剤との重量比が1:40程度である。その後、この溶液を攪拌しながら、溶液温度を40〜55℃程度に保ったまま、基板を溶液中に浸漬させて6〜12V、好ましくは6〜9Vの電圧を2〜10秒間印加して、多孔質膜の細孔中に触媒を析出させる。この触媒は微量であることが望ましい。触媒が多すぎると、MWNTを形成した場合にMWNT中に触媒である強磁性体が残ってしまい、超伝導状態を破壊するからである。溶液温度・電圧・電圧印加時間のいずれかが上記範囲を上回ると、触媒が増えすぎてMWNT3中に残ってしまい、超伝導にはならない一方で、上記範囲を下回ると形成された触媒が少なすぎてMWNTが十分に成長することができない。   Next, in order to form MWNT 3 in the pores 21 of the porous membrane 2, a catalyst 22 is formed in the pores 21 of the porous alumina membrane 2 (see FIG. 2B). As the catalyst 22 at the time of MWNT formation, ferromagnetic materials such as Fe and Co can be used, and it is particularly preferable to use both Fe and Co. As a method for forming the catalyst, an evaporation method or an electrolytic deposition method can be used. In the case of electrolytic deposition, a metal salt containing cobalt or iron (for example, sulfate, nitrate, phosphate, etc.), an activator (for example, boric acid), and ascorbic acid are diluted with distilled water. . In this case, the weight ratio between the activator and the metal salt is 1: 6 to 8 and the weight ratio between ascorbic acid and the activator is about 1:40. Thereafter, while stirring the solution, the substrate temperature is kept at about 40 to 55 ° C., the substrate is immersed in the solution, and a voltage of 6 to 12 V, preferably 6 to 9 V is applied for 2 to 10 seconds. A catalyst is deposited in the pores of the porous membrane. It is desirable that the amount of the catalyst is very small. This is because if the catalyst is too much, when the MWNT is formed, the ferromagnetic material that is the catalyst remains in the MWNT and destroys the superconducting state. If any of the solution temperature, voltage, and voltage application time exceeds the above range, the catalyst increases too much and remains in the MWNT3, and superconductivity does not occur. On the other hand, if it falls below the above range, too little catalyst is formed. Therefore, MWNT cannot grow sufficiently.

次いで、基板Sを真空チャンバー内に設置し、CVD法によって、触媒22からMWNT3を成長させる(図2(c)参照)。初めに、真空チャンバー内の温度を600℃にし、クリーニングのため、一酸化炭素を導入する(流量は、例えば100ml/分、導入時間は、約4時間)。その後、真空チャンバー内に温度650℃、圧力800Torr程度でアルコールガスを含むガスを10〜20分間、好ましくは15分間導入する。このアルコールガスによって触媒からMWNTが成長するので、アルコールガスの導入時間が短いと、又は導入量が少ないと、MWNT3がポーラスアルミナ膜2の膜厚よりも短くなってしまい、本発明の超伝導素子を形成することができない。この場合、アルコールガスとしては、メタノールやエタノールを含むガスなどを用いることができる。   Next, the substrate S is placed in a vacuum chamber, and the MWNT 3 is grown from the catalyst 22 by the CVD method (see FIG. 2C). First, the temperature in the vacuum chamber is set to 600 ° C., and carbon monoxide is introduced for cleaning (flow rate is, for example, 100 ml / min, introduction time is about 4 hours). Thereafter, a gas containing alcohol gas is introduced into the vacuum chamber at a temperature of 650 ° C. and a pressure of about 800 Torr for 10 to 20 minutes, preferably 15 minutes. Since the MWNT grows from the catalyst by this alcohol gas, if the introduction time of the alcohol gas is short or the introduction amount is small, the MWNT 3 becomes shorter than the film thickness of the porous alumina film 2, and the superconducting element of the present invention. Can not form. In this case, a gas containing methanol or ethanol can be used as the alcohol gas.

その後、窒素雰囲気中、高温(例えば、650℃)でアニールを約15時間行なう。このようにして成長したMWNT3の場合、触媒22はMWNT3の上方に移動するか、又は細孔21の底部に残る。なお、残った触媒は後述するようにアニール工程によって基板中へ拡散する。   Thereafter, annealing is performed in a nitrogen atmosphere at a high temperature (for example, 650 ° C.) for about 15 hours. In the case of MWNT3 grown in this way, the catalyst 22 moves above the MWNT3 or remains at the bottom of the pores 21. The remaining catalyst diffuses into the substrate by an annealing process as will be described later.

次いで、MWNT3をその長手方向に対し垂直に切断する切断工程を行なう(図2(d)参照)。この切断工程によりMWNT3の成長時にその上部に移動した強磁性体である触媒22を含んだ部分を切断することで、強磁性体を除去し、超伝導状態の破壊を防ぐことが可能となる。切断方法としては、例えば、超音波洗浄が挙げられ、MWNTに対して不活性な溶液(例えば蒸留水)中で超音波洗浄を30分間以上行うことで、MWNTを切断することが可能である。また、30分より短いと、切断面が平坦にならないので、金属電極がMWNTの全ての層と十分に接触することができず、MWNTが十分に電気的に活性な状態とはならないため、電子間相互作用が弱まり超伝導状態を生じない。その後、MWNT3を構成する各層に完全に金属電極が接触するように、多孔質膜2の表面を燐酸などでエッチングし、MWNT3の頭出しを行なう(図2(e)参照)。   Next, a cutting step for cutting the MWNT 3 perpendicularly to the longitudinal direction is performed (see FIG. 2D). By cutting the portion including the catalyst 22 that is a ferromagnetic material that has moved to the upper part during the growth of the MWNT 3 by this cutting step, the ferromagnetic material can be removed and the destruction of the superconducting state can be prevented. Examples of the cutting method include ultrasonic cleaning, and the MWNT can be cut by performing ultrasonic cleaning in a solution inert to MWNT (for example, distilled water) for 30 minutes or more. In addition, if it is shorter than 30 minutes, the cut surface does not become flat, so the metal electrode cannot sufficiently contact with all layers of the MWNT, and the MWNT is not sufficiently electrically active. The interaction is weakened and a superconducting state does not occur. Thereafter, the surface of the porous film 2 is etched with phosphoric acid or the like so that the metal electrode is completely in contact with each layer constituting the MWNT 3 (see FIG. 2E).

次いで、多孔質膜2上に金属電極4を形成する電極形成工程を行なう(図2(f)参照)。金属電極4の形成方法としては、公知のスパッタリング法や真空蒸着法があげられ、例えば、基板Sを真空チャンバー内に設置して、圧力4×10−3Pa下で金属を多孔質膜上に蒸着させる。 Next, an electrode forming process for forming the metal electrode 4 on the porous film 2 is performed (see FIG. 2F). Examples of the method for forming the metal electrode 4 include a known sputtering method and a vacuum deposition method. For example, the substrate S is placed in a vacuum chamber, and the metal is placed on the porous film under a pressure of 4 × 10 −3 Pa. Evaporate.

最後に、上記のように金属電極を形成した基板をアニール装置内に載置して、高温アニールを行なう。アニールによって、触媒がポーラスアルミナ膜の細孔からアルミ基板内へ拡散し、ナノチューブ内に強磁性体である触媒が残らず(図2(g)参照)、超伝導状態になりやすい。また、金属電極とMWNTとの界面抵抗を低減することができる。アニール温度は、電極や基板に用いられた金属によって適宜設定すればよく、Al基板の場合、550〜650℃である。650℃を超えると、Al基板が変形するからであり、550℃未満であると、アニールの効果を得ることができない。電極として金を用いた場合には、アニール温度は600℃程度が好ましい。また、アニール時間は約30分である。   Finally, the substrate on which the metal electrode is formed as described above is placed in an annealing apparatus, and high temperature annealing is performed. Due to the annealing, the catalyst diffuses from the pores of the porous alumina film into the aluminum substrate, and the catalyst that is a ferromagnetic substance does not remain in the nanotube (see FIG. 2 (g)), and is likely to be in a superconducting state. In addition, the interface resistance between the metal electrode and the MWNT can be reduced. The annealing temperature may be appropriately set depending on the metal used for the electrode and the substrate, and is 550 to 650 ° C. in the case of an Al substrate. If the temperature exceeds 650 ° C., the Al substrate is deformed. If the temperature is less than 550 ° C., the effect of annealing cannot be obtained. When gold is used as the electrode, the annealing temperature is preferably about 600 ° C. The annealing time is about 30 minutes.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

本実施例では、本発明の超伝導素子に用いられるMWNTを含む構造を作製し、その物性を評価した。   In this example, a structure containing MWNT used for the superconducting element of the present invention was fabricated and its physical properties were evaluated.

基板として、Al基板を用意した。そして、硫酸及び燐酸を総容量基準で34%とした研磨溶液中で、基板を陽極、炭素棒を陰極とし、初めに電流を流さずに基板を2分間溶液に浸漬させ、その後、250mA/cmの直流電流を基板に流して電解研磨を行なった。研磨終了後、基板を研磨溶液から取り出して、絶縁塗料を裏面及び側面に塗布した。次いで、硫酸12.8mlを蒸留水で希釈した溶液200mlを作製し、この溶液を−5℃に保ったまま、基板を陽極、炭素棒を陰極として電極間に15Vの直流電圧を2時間印加した後、電圧を段階的に下げながら(10Vで10分とした後に5Vで10分)陽極酸化を終了し、さらに、溶液(燐酸:酸化クロム=30g:9gを蒸留水で希釈して500mlとしたもの)に浸漬させてエッチングを行い、その後、1回目の陽極酸化時の電圧・温度・溶液濃度と同一条件で陽極酸化を行なった。陽極酸化により、Al基板上に多孔質膜としてのポーラスアルミナ膜が形成された。ポーラスアルミナ膜の細孔は規則正しく基板に対して垂直に形成されており、その直径は10〜20nmであった。 An Al substrate was prepared as the substrate. Then, in a polishing solution in which sulfuric acid and phosphoric acid were 34% based on the total volume, the substrate was an anode, the carbon rod was a cathode, and the substrate was first immersed in the solution for 2 minutes without flowing current, and then 250 mA / cm. Electrolytic polishing was performed by passing a direct current of 2 through the substrate. After the polishing was completed, the substrate was taken out from the polishing solution, and an insulating paint was applied to the back and side surfaces. Next, 200 ml of a solution obtained by diluting 12.8 ml of sulfuric acid with distilled water was prepared, and a DC voltage of 15 V was applied between the electrodes for 2 hours using the substrate as the anode and the carbon rod as the cathode while keeping this solution at −5 ° C. Thereafter, the anodic oxidation was completed while stepping down the voltage (10 V for 10 minutes and then 5 V for 10 minutes), and the solution (phosphoric acid: chromium oxide = 30 g: 9 g was diluted with distilled water to 500 ml. Etching was carried out by immersing the substrate in the material), followed by anodic oxidation under the same conditions as the voltage, temperature and solution concentration during the first anodic oxidation. A porous alumina film as a porous film was formed on the Al substrate by anodic oxidation. The pores of the porous alumina film were regularly formed perpendicular to the substrate, and the diameter thereof was 10 to 20 nm.

次いで、硫酸コバルト24g、硫酸第一鉄24g、ホウ酸8g、アスコルビン酸0.2gを蒸留水で希釈して得た溶液(200ml)を攪拌しながら、溶液温度を51.5℃程度に保ったまま、基板を溶液中に浸漬させて12Vの電圧を10秒間印加して、アルミナ膜細孔中に触媒を析出させた。そして、真空チャンバー内に基板を載置して、装置内温度を600℃に設定した。そして、初めに一酸化炭素を毎分100mlで導入した。導入時間は、4時間であった。そして、真空チャンバー内を温度650℃に設定し、加熱して得たメタノールガスを圧力800Torrで導入した。   Next, while stirring a solution (200 ml) obtained by diluting 24 g of cobalt sulfate, 24 g of ferrous sulfate, 8 g of boric acid and 0.2 g of ascorbic acid with distilled water, the solution temperature was maintained at about 51.5 ° C. The substrate was immersed in the solution, and a voltage of 12 V was applied for 10 seconds to deposit the catalyst in the alumina membrane pores. And the board | substrate was mounted in the vacuum chamber and the temperature in an apparatus was set to 600 degreeC. First, carbon monoxide was introduced at 100 ml per minute. The introduction time was 4 hours. The inside of the vacuum chamber was set to a temperature of 650 ° C., and methanol gas obtained by heating was introduced at a pressure of 800 Torr.

その後、窒素ガスを100ml/分で導入し650℃でアニールを15時間行なった。最後に、蒸留水中で超音波洗浄を30分間行って、MWNTの先端を切断した。   Thereafter, nitrogen gas was introduced at 100 ml / min, and annealing was performed at 650 ° C. for 15 hours. Finally, ultrasonic cleaning was performed in distilled water for 30 minutes to cut the tip of the MWNT.

このようにして得られたMWNTを作製した基板の上面TEM写真を図3(a)に、切断されたMWNTの断面TEM写真を図3(b)に示す。図3(a)から各細孔内にMWNTが形成されていることが分かる。また、図3(b)から、MWNTの直径は約10nmであり、通常形成される同じ直径のMWNTに比べ、層数が多く(11層)、一番内側に形成されたナノチューブの直径が1nm程度と細いことが確認された。さらに、MWNTの切断面が平坦であることも確認された。   FIG. 3A shows an upper surface TEM photograph of the substrate on which the MWNTs thus obtained were produced, and FIG. 3B shows a cross-sectional TEM photograph of the cut MWNT. It can be seen from FIG. 3A that MWNTs are formed in each pore. Further, from FIG. 3B, the diameter of the MWNT is about 10 nm, which is larger than that of the normally formed MWNT (11 layers), and the diameter of the nanotube formed on the innermost side is 1 nm. It was confirmed to be thin. Furthermore, it was confirmed that the cut surface of MWNT was flat.

また、このMWNTを作製した基板をラマン分光法により解析した結果を図4に示す。図4によれば、Gバンドである1600cm−1あたりにピークがきていることから、形成したMWNTに5員環やアモルファスカーボンなどが形成されておらず、欠陥がなく、強磁性体も残っていないことがわかる。 Moreover, the result of having analyzed the board | substrate which produced this MWNT by the Raman spectroscopy is shown in FIG. According to FIG. 4, since a peak is observed around 1600 cm −1 which is the G band, no 5-membered ring, amorphous carbon or the like is formed in the formed MWNT, there is no defect, and a ferromagnetic material remains. I understand that there is no.

本実施例では、実施例1の条件で形成したMWNTを含む構造に、金属電極を形成し、超伝導素子の抵抗値の温度依存性を調べた。   In this example, a metal electrode was formed on the structure containing MWNT formed under the conditions of Example 1, and the temperature dependence of the resistance value of the superconducting element was examined.

実施例1と同一の条件でポーラスアルミナ膜の細孔中に欠陥が少ないMWNTを形成し、その後、多孔質膜の表面を燐酸によってウェットエッチングし、MWNTの頭だしを行なった。次いで、基板を真空チャンバー内に設置して、圧力4×10−3Pa下で金をポーラスアルミナ膜上に蒸着させ、金属電極とした。その後、基板をアニール装置内に設置して、600℃でアニールを30分間行なって、本発明の超伝導素子を作製した。このようにして得られた本発明の超伝導素子の抵抗値の温度依存性を、クライオスタットを用いて調べた。結果を図5に示す。 MWNTs with few defects were formed in the pores of the porous alumina film under the same conditions as in Example 1, and then the surface of the porous film was wet etched with phosphoric acid to cue the MWNT. Next, the substrate was placed in a vacuum chamber, and gold was deposited on the porous alumina film under a pressure of 4 × 10 −3 Pa to obtain a metal electrode. Thereafter, the substrate was placed in an annealing apparatus and annealed at 600 ° C. for 30 minutes to produce the superconducting element of the present invention. The temperature dependence of the resistance value of the superconducting element of the present invention thus obtained was examined using a cryostat. The results are shown in FIG.

図5から明らかなように、温度を下げるにつれて上昇していた抵抗値が12Kから急激にさがり、超伝導転移が始まったことが確認された。そして、約7K付近で完全に抵抗値が0となり、超伝導状態となったことが確認された。   As is clear from FIG. 5, it was confirmed that the resistance value, which had increased as the temperature was lowered, suddenly dropped from 12K, and the superconducting transition started. Then, it was confirmed that the resistance value was completely zero in the vicinity of about 7K and a superconducting state was achieved.

表1に示す触媒の形成条件で触媒を形成し(sample No.2及び3)、実施例2と同様の手順で金電極を形成し、各場合における超伝導転移温度を調べた。この結果から、本発明の超伝導素子の作製方法における触媒形成工程によれば、MWNTを超伝導状態にすることができる超伝導素子を形成できることがわかった。
(表1)
(比較例1)
Catalysts were formed under the catalyst formation conditions shown in Table 1 (sample Nos. 2 and 3), gold electrodes were formed in the same procedure as in Example 2, and the superconducting transition temperature in each case was examined. From this result, it was found that according to the catalyst forming step in the method for producing a superconducting element of the present invention, a superconducting element capable of bringing the MWNT into a superconducting state can be formed.
(Table 1)
(Comparative Example 1)

比較例として、超音波切断時間を10分、0分とした以外は実施例2と同一の条件で素子を作製し、それぞれ抵抗の温度依存性を調べた。10分とした場合には、ナノチューブの切断面が平坦ではなく、素子中においてもMWNTの切り残しが多く、MWNTを構成する全ての層に電極が接触しているとは考えにくい。また、0分の場合には、切断されていないのでMWNTの一番外側の層のみ電極が接触していると考えられる。それぞれの結果を図6及び7に示す。超音波切断時間を10分とした場合(図6)には、温度を下げるにつれて3.5K程度からやや抵抗が減少し、超伝導転移がはじまったかのようにみえたが、抵抗値が0になることはなかった。また、0分とした場合(図7)には、温度を下げるにつれて抵抗は上がり続けた。   As a comparative example, an element was fabricated under the same conditions as in Example 2 except that the ultrasonic cutting time was set to 10 minutes and 0 minutes, and the temperature dependence of the resistance was examined. In the case of 10 minutes, the cut surface of the nanotube is not flat, and many MWNTs are left uncut in the device, and it is unlikely that the electrodes are in contact with all the layers constituting the MWNT. Moreover, in the case of 0 minutes, since it is not cut | disconnected, it is thought that the electrode is contacting only the outermost layer of MWNT. The respective results are shown in FIGS. When the ultrasonic cutting time was 10 minutes (FIG. 6), the resistance decreased slightly from about 3.5 K as the temperature was lowered, and it seemed as if the superconducting transition had started, but the resistance value became zero. It never happened. When the time was 0 minutes (FIG. 7), the resistance continued to increase as the temperature was lowered.

従って、切断が十分ではなかった場合には、MWNTを構成する全ての層と金属電極とが接触しないため、MWNTが電気的に活性とはならず超伝導状態が発現しないことが分かった。   Therefore, it was found that when the cutting was not sufficient, all the layers constituting the MWNT and the metal electrode were not in contact, so that the MWNT was not electrically active and the superconducting state was not exhibited.

本実施例では、実施例2の作製条件で超伝導素子を作製し、磁場をかけずに(0テスラ)、温度を変化させて各温度での微分抵抗の温度依存性を調べた。結果を図8に示す。   In this example, a superconducting element was produced under the production conditions of Example 2, and the temperature dependence of the differential resistance at each temperature was examined by changing the temperature without applying a magnetic field (0 Tesla). The results are shown in FIG.

図8から、12K付近では電流に対する微分抵抗は平坦であったが、温度が低くなるにつれ、電流に対する微分抵抗が0となる超伝導ギャップが生じ始めたことがわかる。そして、9K以下で超伝導ギャップがはっきりと生じていることがわかる。この場合に、{1−(T/Tc)3/2に対する電流値を調べると(式中、T:温度(K)、Tc:転移温度(K)を示す)、これはBCS理論によく一致した。これにより、この抵抗値のギャップが超伝導に起因するものであり、本発明の超伝導素子においてMWNTが超伝導状態になっていることがわかった。
(比較例2)
From FIG. 8, it can be seen that the differential resistance with respect to the current was flat in the vicinity of 12 K, but a superconducting gap in which the differential resistance with respect to the current became zero was generated as the temperature decreased. It can be seen that a superconducting gap is clearly generated at 9K or less. In this case, when the current value for {1- (T / Tc) 2 } 3/2 is examined (where T: temperature (K) and Tc: transition temperature (K) are indicated), this is based on BCS theory. Matched well. Thus, it was found that this resistance gap is caused by superconductivity, and that the MWNT is in a superconducting state in the superconducting element of the present invention.
(Comparative Example 2)

実施例2とはMWNTの超音波切断時間を10分に変えた以外は同一条件で超伝導素子を作製した。そして、磁場をかけずに(0テスラ)、温度を変化させて各温度での微分抵抗の温度依存性を調べた。結果を図9に示す。   A superconducting element was produced under the same conditions as in Example 2 except that the ultrasonic cutting time of MWNT was changed to 10 minutes. Then, the temperature dependence of the differential resistance at each temperature was examined by changing the temperature without applying a magnetic field (0 Tesla). The results are shown in FIG.

図9から、微分抵抗の減少が見られた4K付近からそれぞれ小さな微分抵抗ギャップが観察されたが、微分抵抗が0になることはなかった。これにより、切断面が平坦でない場合には、超伝導転移は開始されたが、完全な超伝導状態にはならないことが確認された。   From FIG. 9, a small differential resistance gap was observed from around 4K where a decrease in differential resistance was observed, but the differential resistance did not become zero. As a result, it was confirmed that when the cut surface was not flat, the superconducting transition was started, but the superconducting state was not achieved.

本実施例では、実施例2の作製条件で超伝導素子を作製し、温度を一定とし(1.5K)、磁場を0テスラ(T)から1.4テスラの間で変化させながら各磁場における微分抵抗の電流依存性を調べた。結果を図10に示す。   In this example, a superconducting element was produced under the production conditions of Example 2, the temperature was kept constant (1.5 K), and the magnetic field was varied between 0 Tesla (T) and 1.4 Tesla, while changing the magnetic field. The current dependence of differential resistance was investigated. The results are shown in FIG.

図10から、磁場を大きくしていくと、だんだん抵抗のギャップが小さくなり、その後、1.4テスラ程度で抵抗のギャップが消えてしまったことが確認された。これにより、本発明の超伝導素子の場合には、MWNTが完全に超伝導状態になったことが分かった。
(比較例3)
From FIG. 10, it was confirmed that as the magnetic field was increased, the resistance gap gradually decreased, and then the resistance gap disappeared at about 1.4 Tesla. Thereby, in the case of the superconducting element of the present invention, it was found that the MWNT was completely in the superconducting state.
(Comparative Example 3)

実施例4とはMWNTの超音波切断時間を10分に変えた以外は同一条件で超伝導素子をそれぞれ作製し、温度を一定とし(1.5K)、磁場を変化させて(0〜0.25テスラ)、各温度での微分抵抗の電流依存性を調べた。結果を図11に示す。   Example 4 is different from Example 4 except that the ultrasonic cutting time of MWNT is changed to 10 minutes, and superconducting elements are respectively produced under the same conditions, the temperature is kept constant (1.5 K), and the magnetic field is changed (0 to 0. 25 Tesla), the current dependence of the differential resistance at each temperature was examined. The results are shown in FIG.

図11では、抵抗の減少が見られた0.2テスラあたりまで微分抵抗のギャップが観察されたが、抵抗が0になることはなかった。   In FIG. 11, a differential resistance gap was observed up to around 0.2 Tesla where a decrease in resistance was observed, but the resistance did not become zero.

本発明の超伝導素子は、MWNT自体が超伝導状態になっている 。MWNT自体が超伝導状態となれば、各MWNTは強いスピンエンタングルメントを維持することができるので、量子コンピュータや量子テレポーテーションなどの次世代量子エレクトロニクス分野において利用することが可能である。   In the superconducting element of the present invention, the MWNT itself is in a superconducting state. Since each MWNT can maintain strong spin entanglement if the MWNT itself becomes a superconducting state, it can be used in the next-generation quantum electronics field such as quantum computers and quantum teleportation.

本発明の超伝導素子の模式的断面図である。It is typical sectional drawing of the superconducting element of this invention. 本発明の超伝導素子の作製方法を説明するためのフロー図であり、(a)〜(g)は各工程での基板の模式的断面図である。It is a flowchart for demonstrating the manufacturing method of the superconducting element of this invention, (a)-(g) is typical sectional drawing of the board | substrate in each process. 本発明の超伝導素子を構成するポーラスアルミナ膜の(a)上面TEM写真及び(b)MWNTの断面TEM写真である。It is the (a) upper surface TEM photograph of the porous alumina film | membrane which comprises the superconducting element of this invention, and (b) the cross-sectional TEM photograph of MWNT. 本発明の超伝導素子のラマン分光解析の結果を示すグラフである。It is a graph which shows the result of the Raman spectroscopic analysis of the superconducting element of this invention. 実施例2における本発明の超伝導素子の抵抗の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of resistance of the superconducting element of this invention in Example 2. FIG. 比較例1における超音波切断時間を10分に変えた場合の抵抗の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of resistance at the time of changing the ultrasonic cutting time in the comparative example 1 into 10 minutes. 比較例1における超音波切断時間を0分に変えた場合の抵抗の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of resistance at the time of changing the ultrasonic cutting time in the comparative example 1 into 0 minutes. 実施例4における本発明の超伝導素子の温度変化に対する微分抵抗の電流依存性を示すグラフである。It is a graph which shows the electric current dependence of the differential resistance with respect to the temperature change of the superconducting element of this invention in Example 4. 比較例2における超音波切断時間を10分に変えた場合の温度変化に対する抵抗の電流依存性を示すグラフである。It is a graph which shows the electric current dependence of resistance with respect to the temperature change at the time of changing the ultrasonic cutting time in the comparative example 2 into 10 minutes. 実施例5における本発明の超伝導素子の磁場変化に対する微分抵抗の電流依存性を示すグラフである。It is a graph which shows the electric current dependence of the differential resistance with respect to the magnetic field change of the superconducting element of this invention in Example 5. FIG. 比較例3における超音波切断時間を10分に変えた場合の磁場変化に対する微分抵抗の電流依存性を示すグラフである。It is a graph which shows the electric current dependence of the differential resistance with respect to the magnetic field change at the time of changing the ultrasonic cutting time in the comparative example 3 into 10 minutes.

符号の説明Explanation of symbols

1 超伝導素子 2 多孔質膜
3 MWNT 4 金属電極
21 細孔 22 触媒
31 切断面 S 基板
DESCRIPTION OF SYMBOLS 1 Superconducting element 2 Porous film 3 MWNT 4 Metal electrode 21 Pore 22 Catalyst 31 Cut surface S Substrate

Claims (13)

多層カーボンナノチューブと金属電極とを備えた超伝導素子であって、前記多層カーボンナノチューブは、その直径が5〜20nm、その層数が2〜20であり、かつ、その長手方向に対し垂直に切断された切断面を有し、前記金属電極は、この切断面で多層カーボンナノチューブと接触していることを特徴とする超伝導素子。   A superconducting device comprising a multi-walled carbon nanotube and a metal electrode, wherein the multi-walled carbon nanotube has a diameter of 5-20 nm, a number of layers of 2-20, and is cut perpendicularly to the longitudinal direction. A superconducting device having a cut surface, wherein the metal electrode is in contact with the multi-walled carbon nanotube at the cut surface. 前記多層カーボンナノチューブが、強磁性体を含んでおらず、かつ、欠陥がないことを特徴とする請求項1の超伝導素子。   2. The superconducting device according to claim 1, wherein the multi-walled carbon nanotube does not contain a ferromagnetic material and has no defects. 前記多層カーボンナノチューブが、多孔質膜の細孔中に形成されたことを特徴とする請求項1又は2に記載の超伝導素子。   The superconducting device according to claim 1, wherein the multi-walled carbon nanotube is formed in a pore of a porous film. 前記金属電極が、Au、Pd及びTiから選ばれた少なくとも1種の金属を含むことを特徴とする請求項1〜3のいずれかに記載の超伝導素子。   The superconductive element according to any one of claims 1 to 3, wherein the metal electrode contains at least one metal selected from Au, Pd, and Ti. 前記超伝導素子に金属電極から電圧を印加した場合の超伝導転移温度が、12K以下であることを特徴とする請求項1〜4のいずれかに記載の超伝導素子。   The superconducting element according to any one of claims 1 to 4, wherein a superconducting transition temperature when a voltage is applied to the superconducting element from a metal electrode is 12K or less. 触媒にカーボンナノチューブ成長ガスを接触させて多層カーボンナノチューブを形成するカーボンナノチューブ形成工程と、形成された多層カーボンナノチューブをその長手方向に対して垂直に切断する切断工程と、金属電極を多層カーボンナノチューブの切断面に接触するように形成する電極形成工程とを含むことを特徴とする超伝導素子の作製方法。   A carbon nanotube forming process for forming a multi-walled carbon nanotube by bringing a carbon nanotube growth gas into contact with the catalyst, a cutting process for cutting the formed multi-walled carbon nanotube perpendicularly to its longitudinal direction, and a metal electrode for the multi-walled carbon nanotube. A method of manufacturing a superconducting element, comprising: an electrode forming step of forming an electrode so as to be in contact with a cut surface. 前記触媒が強磁性体からなることを特徴とする請求項6記載の超伝導素子の作製方法。   The method of manufacturing a superconducting element according to claim 6, wherein the catalyst is made of a ferromagnetic material. 前記カーボンナノチューブ成長ガスがアルコールガスを含むガスであることを特徴とする請求項6又は7に記載の超伝導素子の作製方法。   The method of manufacturing a superconducting device according to claim 6 or 7, wherein the carbon nanotube growth gas is a gas containing an alcohol gas. 前記切断工程を、超音波処理により行なうことを特徴とする請求項6〜8のいずれかに記載の超伝導素子の作製方法。   The method for manufacturing a superconducting element according to claim 6, wherein the cutting step is performed by ultrasonic treatment. 前記カーボンナノチューブ形成工程が、多孔質膜を形成する膜形成工程と、多孔質膜の細孔内に触媒を形成する触媒形成工程と、カーボンナノチューブ成長ガスを触媒に接触させ多層カーボンナノチューブを成長させる成長工程とを含むことを特徴とする請求6〜9のいずれかに記載の超伝導素子の作製方法。   The carbon nanotube forming process includes a film forming process for forming a porous film, a catalyst forming process for forming a catalyst in the pores of the porous film, and a carbon nanotube growth gas is brought into contact with the catalyst to grow multi-walled carbon nanotubes. A method for producing a superconducting element according to claim 6, further comprising a growth step. 前記触媒形成工程が、電界析出法を用いて触媒を形成する工程であって、印加電圧が6〜12Vであることを特徴とする請求項10記載の超伝導素子の作製方法。   The method for producing a superconducting device according to claim 10, wherein the catalyst forming step is a step of forming a catalyst using an electric field deposition method, and an applied voltage is 6 to 12V. 前記電極形成工程が、金属電極を形成した後に、550〜650℃でアニールするアニール工程を含むことを特徴とする請求項6〜11のいずれかに記載の超伝導素子の作製方法。   The method for manufacturing a superconducting device according to claim 6, wherein the electrode forming step includes an annealing step of annealing at 550 to 650 ° C. after forming the metal electrode. 前記触媒が、Fe及びCoから選ばれた少なくとも1種を含むことを特徴とする請求項6〜12のいずれかに記載の超伝導素子の作製方法。   The method for producing a superconducting device according to any one of claims 6 to 12, wherein the catalyst contains at least one selected from Fe and Co.
JP2006075098A 2006-03-17 2006-03-17 Superconducting element and method for producing the same Expired - Fee Related JP5036027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075098A JP5036027B2 (en) 2006-03-17 2006-03-17 Superconducting element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075098A JP5036027B2 (en) 2006-03-17 2006-03-17 Superconducting element and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007251028A true JP2007251028A (en) 2007-09-27
JP5036027B2 JP5036027B2 (en) 2012-09-26

Family

ID=38594971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075098A Expired - Fee Related JP5036027B2 (en) 2006-03-17 2006-03-17 Superconducting element and method for producing the same

Country Status (1)

Country Link
JP (1) JP5036027B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201626A (en) * 2007-02-20 2008-09-04 Toray Ind Inc Carbon nanotube assembly and its manufacturing method
JP2009295887A (en) * 2008-06-06 2009-12-17 Japan Science & Technology Agency Superconductive element, and manufacturing method thereof
JP2010245430A (en) * 2009-04-09 2010-10-28 National Institute For Materials Science Superconducting element
CN102544804A (en) * 2010-12-16 2012-07-04 富士康(昆山)电脑接插件有限公司 Electric connector and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260113A (en) * 2004-03-15 2005-09-22 Nippon Telegr & Teleph Corp <Ntt> Superconductor three-terminal device and manufacturing method therefor
JP2006024617A (en) * 2004-07-06 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> Superconducting three-terminal element and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260113A (en) * 2004-03-15 2005-09-22 Nippon Telegr & Teleph Corp <Ntt> Superconductor three-terminal device and manufacturing method therefor
JP2006024617A (en) * 2004-07-06 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> Superconducting three-terminal element and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201626A (en) * 2007-02-20 2008-09-04 Toray Ind Inc Carbon nanotube assembly and its manufacturing method
JP2009295887A (en) * 2008-06-06 2009-12-17 Japan Science & Technology Agency Superconductive element, and manufacturing method thereof
JP2010245430A (en) * 2009-04-09 2010-10-28 National Institute For Materials Science Superconducting element
CN102544804A (en) * 2010-12-16 2012-07-04 富士康(昆山)电脑接插件有限公司 Electric connector and manufacturing method thereof

Also Published As

Publication number Publication date
JP5036027B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP3886082B2 (en) Nanostructure and manufacturing method thereof
US6325909B1 (en) Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
US7319069B2 (en) Structure having pores, device using the same, and manufacturing methods therefor
US7252749B2 (en) Deposition method for nanostructure materials
JP3740295B2 (en) Carbon nanotube device, manufacturing method thereof, and electron-emitting device
JP4272700B2 (en) Nanostructure and manufacturing method thereof
JP2000031462A (en) Nano-structure and manufacture thereof, electron emission element and manufacture of carbon nano-tube device
US20170342550A1 (en) Method for controlled growth of carbon nanotubes in a vertically aligned array
JP5036027B2 (en) Superconducting element and method for producing the same
JP3729449B2 (en) Structure and device having pores
Jeong et al. Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer
JP2004284921A (en) Method of manufacturing carbon nanotube, carbon nanotube device and electrical double layer capacitor
JP2010046788A (en) Catalyst particle on tip
EP0913850B1 (en) Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device
JP5246653B2 (en) Superconducting element and method for producing the same
JP2007048907A (en) Electric double layer capacitor electrode and capacitor using same
JP4245438B2 (en) Carbon thin film and field emission electron source and working electrode using the same
Kaatz et al. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition
JP5831009B2 (en) MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL
Tazlaoanu et al. Transport properties of electrodeposited ZnO nanowires
JP2003342791A (en) Structure having hole and method for producing the same
EP2958854A1 (en) Method for producing a carbon nanotube having multiple walls; nanotube, and associated electron source and device
JP2005059135A (en) Device using carbon nano-tube, and its manufacturing method
Gras et al. Template synthesis of carbon nanotubes from porous alumina matrix on silicon
Yen et al. Density control for carbon nanotube arrays synthesized by ICP-CVD using AAO/Si as a nanotemplate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080121

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees