JP2007048907A - Electric double layer capacitor electrode and capacitor using same - Google Patents

Electric double layer capacitor electrode and capacitor using same Download PDF

Info

Publication number
JP2007048907A
JP2007048907A JP2005231195A JP2005231195A JP2007048907A JP 2007048907 A JP2007048907 A JP 2007048907A JP 2005231195 A JP2005231195 A JP 2005231195A JP 2005231195 A JP2005231195 A JP 2005231195A JP 2007048907 A JP2007048907 A JP 2007048907A
Authority
JP
Japan
Prior art keywords
electrode
double layer
electric double
substrate
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231195A
Other languages
Japanese (ja)
Inventor
Hisahiro Ando
寿浩 安藤
Kiyoharu Nakagawa
清晴 中川
Mika Gamo
美香 蒲生
Yoichi Sato
洋一 佐藤
Yosuke Takazawa
要介 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Sekisui Chemical Co Ltd
Original Assignee
National Institute for Materials Science
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Sekisui Chemical Co Ltd filed Critical National Institute for Materials Science
Priority to JP2005231195A priority Critical patent/JP2007048907A/en
Publication of JP2007048907A publication Critical patent/JP2007048907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor using a carbon nanotube as a polarization electrode, in which a means for improving its capacity characteristic and a means for simplifying a structure of a lamination cell and a production step are provided. <P>SOLUTION: During a process of growing a carbon nanotube from a substrate, a different element except carbon is introduced into its carbon structure. This different element is an element of a group IIIB and/or a group VB of a periodic table, and in particular, the element of the group IIIB is boron and the element of the group VB is nitrogen, preferably. Further, the different element of the group IIIB is introduced into the carbon nanotube of a positive electrode, and the different element of the group VB is introduced into a negative electrode, respectively. Further, the electrode is used in which the carbon nanotube is simultaneously grown on both faces of the substrate, and is laminated via a separator, thereby constituting a lamination cell of the electric double layer capacitor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基板から直接成長したカーボンナノチューブを分極性電極として用いた電気二重層キャパシタの電極、およびこの電極を用いた電気二重層キャパシタに関し、とくに炭素以外の元素をカーボンナノチューブに混入することにより、分極性電極のキャパシタ容量を高めた電極と電気二重層キャパシタに関する。   The present invention relates to an electrode of an electric double layer capacitor using carbon nanotubes grown directly from a substrate as a polarizable electrode, and an electric double layer capacitor using this electrode, in particular by mixing elements other than carbon into the carbon nanotubes. The present invention relates to an electrode having an increased capacitance of a polarizable electrode and an electric double layer capacitor.

電気二重層キャパシタは、電極を構成する固体(導電体)とこれに含浸させた電解液との固液界面に形成される電気二重層を誘電体として利用するもので、単位面積当りの容量は小さくても、比表面積のきわめて大きい活性炭粉末や活性炭素繊維を電極(分極性電極)として用いることにより、大きな容量を得ることが可能になっている。   An electric double layer capacitor uses an electric double layer formed at a solid-liquid interface between a solid (conductor) constituting an electrode and an electrolytic solution impregnated therein as a dielectric, and the capacity per unit area is Even if it is small, it is possible to obtain a large capacity by using activated carbon powder or activated carbon fiber having a very large specific surface area as an electrode (polarizable electrode).

しかし、活性炭や活性炭素繊維は、比表面積は大きいが、細孔が微細なため、イオンの細孔内への浸入が容易でないという問題がある。活性炭の細孔の大部分は、その径が2nm程度以下と云われており、かかる細孔においてはイオンの急速な移動が難しい。したがって、瞬時に大電流を供給するような場合にはイオンの移動が追い付かず、充放電の応答性が制限される。   However, activated carbon and activated carbon fiber have a large specific surface area, but have a problem that ions cannot easily enter into the pores because the pores are fine. Most of the pores of the activated carbon are said to have a diameter of about 2 nm or less, and rapid movement of ions is difficult in such pores. Therefore, when a large current is supplied instantaneously, the movement of ions does not catch up and the charge / discharge response is limited.

そのため、イオンの移動がより容易な微細構造を有する分極性電極の材料として、カーボンナノチューブが着目されており、これを分極性電極として用いた電気二重層キャパシタが提案されている(下記特許文献1,2)。   For this reason, carbon nanotubes have attracted attention as a material for a polarizable electrode having a fine structure in which ions can be easily moved, and an electric double layer capacitor using this as a polarizable electrode has been proposed (Patent Document 1 below). , 2).

カーボンナノチューブの製造方法には、アーク放電法、レーザー蒸発法、化学的気相成長(CVD)法などがある。CVD法は製造条件の制御が容易で、大量生産に向いていることから、近年活発に研究され、種々の新技術が提案されている。一方、その表面に金属元素(触媒)の薄膜又は島状微粒子を堆積した基板を、有機液体内で加熱し、基板上に高配向整列したカーボンナノチューブを形成させる技術が提案されている(下記特許文献3)。この方法(以下、「液相合成法」という)は、大量かつ安価にカーボンナノチューブを製造しうる上に、基板に強固かつ高密度・高配向に整列配列したカーボンナノチューブが製造できる特色を有している。   Carbon nanotube production methods include arc discharge, laser evaporation, and chemical vapor deposition (CVD). Since the CVD method is easy to control the manufacturing conditions and is suitable for mass production, it has been actively researched in recent years and various new technologies have been proposed. On the other hand, a technique has been proposed in which a thin film of metal element (catalyst) or island-like fine particles deposited on the surface is heated in an organic liquid to form highly aligned aligned carbon nanotubes on the substrate (the following patents) Reference 3). This method (hereinafter referred to as “liquid phase synthesis method”) has the feature that it can produce carbon nanotubes in large quantities and at low cost, and can produce carbon nanotubes that are aligned on a substrate in a strong, high-density, highly oriented manner. ing.

特開2001−307951号公報JP 2001-307951 A 特開2004−284921号公報Japanese Patent Laid-Open No. 2004-289421 特開2003−012312号公報JP 2003-012312 A 特開2004−131853号公報JP 2004-131853 A 特開2004−003097号公報JP 2004-003097 A

カーボンナノチューブやカーボンナノファイバーに炭素以外の元素を添加することにより、その物理的、化学的性質が変化することが考えられる。そのため、炭素構造の中に異元素を含ませたカーボンナノチューブを製造する試みが多数報告されている。また、かかる異元素の添加によりカーボンナノチューブの特定の物性を改善する提案もなされている(例えば上記特許文献4,5など)。   The addition of elements other than carbon to carbon nanotubes or carbon nanofibers may change their physical and chemical properties. For this reason, many attempts have been reported to produce carbon nanotubes containing different elements in the carbon structure. In addition, proposals have been made to improve specific physical properties of carbon nanotubes by adding such different elements (for example, Patent Documents 4 and 5 above).

カーボンナノチューブを電気二重層キャパシタの分極性電極として用いる場合、炭素のみで構成された理想的なナノチューブでは、吸着能力には限界があり、容量等の特性の更なる改善は難しいと考えられる。   When carbon nanotubes are used as the polarizable electrode of an electric double layer capacitor, an ideal nanotube composed only of carbon has a limit in adsorption capacity, and it is considered difficult to further improve characteristics such as capacity.

また、一般的にキャパシタセルの使用電圧は、用いられる電解液によって決定され、非水系でも2.5V程度である。そのため、このセルを直列に接続(積層)することで、所望の出力電圧を得ている。基板に直接ナノチューブを析出させる場合は、基板そのものが集電電極を兼ねるため、基板の両側に同時にナノチューブを析出させれば、これを積み重ねて積層セルを形成することができる。これにより、効率的に積層セルを製造することができ、その厚みも低減することができる。   In general, the working voltage of the capacitor cell is determined by the electrolyte used, and is about 2.5 V even in non-aqueous systems. Therefore, a desired output voltage is obtained by connecting (stacking) the cells in series. When the nanotubes are deposited directly on the substrate, the substrate itself also serves as a collecting electrode. Therefore, if the nanotubes are deposited simultaneously on both sides of the substrate, they can be stacked to form a stacked cell. Thereby, a laminated cell can be manufactured efficiently and the thickness can also be reduced.

しかし、前述の特許文献1では、基板上にカーボンナノチューブを成長させる段階は、熱化学蒸着やプラズマ化学蒸着法を用いるとしており、基板両面への同時成長は考慮されていない。   However, in Patent Document 1 described above, the step of growing carbon nanotubes on a substrate uses thermal chemical vapor deposition or plasma chemical vapor deposition, and simultaneous growth on both surfaces of the substrate is not considered.

そこで本発明は、カーボンナノチューブを用いた電気二重層キャパシタの分極性電極において、その容量特性を改善することができる手段を提供することを課題としている。   Therefore, an object of the present invention is to provide means capable of improving the capacity characteristics of a polarizable electrode of an electric double layer capacitor using carbon nanotubes.

また本発明は、その両面にカーボンナノチューブを析出させた基板を用い、積層セルの構造及び製造工程の簡略化を図ることのできる手段を提供することを課題としている。   Another object of the present invention is to provide means capable of simplifying the structure of a stacked cell and the manufacturing process using a substrate on which carbon nanotubes are deposited on both sides.

本発明の電極は、導電性の基板を集電電極として用い、該基板から直接成長させたカーボンナノチューブを分極性電極として有する電気二重層キャパシタの電極であって、前記カーボンナノチューブの炭素構造内に異元素を導入し、該異元素の周辺に電荷の特異的状態を形成せしめたことを特徴とする。   The electrode of the present invention is an electrode of an electric double layer capacitor having a conductive substrate as a collecting electrode and carbon nanotubes grown directly from the substrate as polarizable electrodes. It is characterized in that a different element is introduced and a specific state of electric charge is formed around the different element.

カーボンナノチューブの炭素構造中に異元素が導入されると、該カーボンナノチューブの表面及び/又は局所的部位に電荷の特異状態が形成される。これにより、カーボンナノチューブの表面や局所的な電荷状態が変化し、吸着等の化学的性質が改善される。   When a foreign element is introduced into the carbon structure of the carbon nanotube, a singular state of charge is formed on the surface and / or local site of the carbon nanotube. Thereby, the surface and local charge state of the carbon nanotube are changed, and chemical properties such as adsorption are improved.

この電極を構成する分極性電極は、カーボンナノチューブの成長過程で、その結晶構造内に炭素以外の異元素を導入することにより、カーボンナノチューブの少なくとも表面全般にわたって略均一に異元素が存在するようにしたものであることが好ましい。   The polarizable electrode constituting this electrode introduces foreign elements other than carbon into the crystal structure during the growth process of the carbon nanotubes so that the foreign elements are present almost uniformly over at least the entire surface of the carbon nanotubes. It is preferable that

カーボンナノチューブの成長過程で炭素構造内に炭素以外の異元素を導入することは好適である。また、異元素を含む化合物を溶解したアルコール溶液中で前記基板を加熱することにより、炭素以外の異元素をカーボンナノチューブの成長過程で導入することは好ましい。カーボンナノチューブの成長過程で異元素を導入することにより、均一に炭素構造内に異元素を導入できる。また、異元素が溶解した有機溶媒中で基板を加熱し、カーボンナノチューブを成長させる液相合成法は好適である。   It is preferable to introduce a different element other than carbon into the carbon structure during the growth of the carbon nanotube. Moreover, it is preferable to introduce foreign elements other than carbon in the process of growing carbon nanotubes by heating the substrate in an alcohol solution in which a compound containing the foreign element is dissolved. By introducing a foreign element during the growth process of the carbon nanotube, the foreign element can be uniformly introduced into the carbon structure. A liquid phase synthesis method in which a carbon nanotube is grown by heating a substrate in an organic solvent in which a different element is dissolved is suitable.

また、上記の電極を構成する分極性電極においては、前記異元素が、周期表第IIIB族及び/又は第VB族の元素であることが好ましく、とくに第IIIB族元素がボロンであり、第VB族元素が窒素であることが好ましい。   In the polarizable electrode constituting the above electrode, the different element is preferably a group IIIB and / or group VB element of the periodic table, and in particular, the group IIIB element is boron, The group element is preferably nitrogen.

本発明の電極を構成する分極性電極は、カーボンナノチューブの表面全体に異元素が導入されているため、カーボンナノチューブ表面の構造や局所的な電荷状態が変化する。また、炭素のみからなるカーボンナノチューブに比較し比表面積が増大する。この結果、実施例に示すようにキャパシタとしての容量特性を向上させることができる。   In the polarizable electrode constituting the electrode of the present invention, the foreign element is introduced to the entire surface of the carbon nanotube, so that the structure of the carbon nanotube surface and the local charge state change. In addition, the specific surface area is increased as compared with carbon nanotubes made of only carbon. As a result, the capacitance characteristics as a capacitor can be improved as shown in the embodiment.

本発明の電気二重層キャパシタの第一は、一対の電極をセパレータを介して対向させた電気二重層キャパシタにおいて、この電極のいずれか一方又は双方に、上記の異元素入りカーボンナノチューブの電極を用いたことを特徴とするもである。   The first of the electric double layer capacitors of the present invention is an electric double layer capacitor in which a pair of electrodes are opposed to each other via a separator, and the electrode of the carbon nanotube containing a different element is used for either or both of the electrodes. It is characterized by the fact that

このキャパシタにおいては、前記電極のプラス極のカーボンナノチューブに第IIIB族元素を、マイナス極のカーボンナノチューブに第VB族異元素をそれぞれ導入することが好ましい。   In this capacitor, it is preferable to introduce a Group IIIB element into the positive carbon nanotube of the electrode and a Group VB foreign element into the negative carbon nanotube.

これにより、プラス極では電解液中のマイナスイオンの吸着能を、マイナス極ではプラスイオンの吸着能を高めることができ、キャパシタ容量の一層の向上を図ることができる。   As a result, it is possible to increase the adsorption capacity of negative ions in the electrolytic solution at the positive electrode, and to increase the adsorption capacity of positive ions at the negative electrode, thereby further improving the capacitor capacity.

本発明の電極の第二は、両表面に触媒を含む、又は触媒を担持した状態の導電性基板の両面に、カーボンナノチューブを同時に成長させてなるものである。   The second electrode of the present invention is obtained by simultaneously growing carbon nanotubes on both surfaces of a conductive substrate containing a catalyst on both surfaces or carrying a catalyst.

また、この第二の電極においては、導電性基板の両面に形成された分極性電極が、ともに前記の異元素入りカーボンナノチューブ電極のいずれかであることが好ましい。   In the second electrode, it is preferable that the polarizable electrodes formed on both surfaces of the conductive substrate are both carbon nanotube electrodes containing different elements.

本発明の電気二重層キャパシタの第二は、上記第二発明の電極を、セパレータを介して面方向に積層するとともに、前記導電性基板を集電電極として用いたことを特徴とするものである。この構成によれば、セパレータを挾んで上記第二発明の電極を積み重ねるだけで、多層に積層された電気二重層キャパシタを作成することができ、積層セルの構造の簡略化・小型化と低コスト化を図ることができる。   The electric double layer capacitor according to the second aspect of the present invention is characterized in that the electrode according to the second aspect of the present invention is laminated in a plane direction through a separator, and the conductive substrate is used as a collecting electrode. . According to this configuration, it is possible to create a multilayered electric double layer capacitor by simply stacking the electrodes of the second invention with the separator interposed therebetween, and simplifying and downsizing the structure of the stacked cell and reducing the cost. Can be achieved.

本発明により、カーボンナノチューブを分極性電極の材料として用いた電気二重層キャパシタの容量を増大させることが可能になった。また、基板両面にカーボンナノチューブを成長させた本発明の電極を用いることにより、多層に積層された電気二重層キャパシタの構造の簡略化・小型化と低コスト化が可能になった。   According to the present invention, it is possible to increase the capacity of an electric double layer capacitor using carbon nanotubes as a material for a polarizable electrode. Further, by using the electrode of the present invention in which carbon nanotubes are grown on both surfaces of the substrate, the structure of the electric double layer capacitor laminated in multiple layers can be simplified, reduced in size, and reduced in cost.

本発明の電極の第一は、導電性基板を集電電極として用い、これから直接成長させたカーボンナノチューブ(以下、「CNT」と略記する)を分極性電極として用いた電気二重層キャパシタの電極であって、CNTに炭素以外の異元素を導入したことを特徴とするものである。とくに、CNTの成長過程で、その炭素構造内に異元素を導入することにより、CNTの炭素構造全体に、あるいは少なくともその表面全般にわたって、異元素が略均一に存在するようにしたものであることが好ましい。   The first of the electrodes of the present invention is an electrode of an electric double layer capacitor using a conductive substrate as a collecting electrode and a carbon nanotube (hereinafter abbreviated as “CNT”) directly grown from the conductive substrate as a polarizable electrode. In addition, a different element other than carbon is introduced into the CNT. In particular, by introducing foreign elements into the carbon structure during the growth of CNTs, the foreign elements should be present substantially uniformly throughout the carbon structure of the CNT or at least over the entire surface. Is preferred.

異元素を導入したCNTを製造するには、製造方法の選択が重要である。一般に、アーク放電法やレーザー蒸発法では、異元素の混入割合を制御することが難しく、かかる目的に適さない。これに対して、炭化水素等を熱分解しつつ、触媒上に炭素結晶を成長させる熱分解法(CVD法や液相合成法)では、炭化水素等の被分解物に異元素のソースを混合することにより、CNTの炭素構造全体に異元素を略均一に導入することができる。   In order to produce CNTs introduced with different elements, selection of the production method is important. In general, the arc discharge method and the laser evaporation method are difficult to control the mixing ratio of different elements, and are not suitable for this purpose. On the other hand, in the pyrolysis method (CVD method or liquid phase synthesis method) that grows carbon crystals on the catalyst while pyrolyzing hydrocarbons, etc., a source of a different element is mixed with a substance to be decomposed such as hydrocarbons. By doing so, foreign elements can be introduced substantially uniformly into the entire carbon structure of the CNT.

熱分解法の中でも、液相合成法は、常温で液体の化合物を異元素のソースとすることができるため、かかる目的により好適である。また、本発明者らの知見によれば、液相合成法で製造したCNTは、とくに電気二重層キャパシタの分極性電極に適した構造を有する。その理由の説明に先立って、まず液相合成法について簡単に説明する。図1は、後述する実施例の電極製造に用いたCNT製造装置の概念図である。   Among the pyrolysis methods, the liquid phase synthesis method is more suitable for this purpose because a compound that is liquid at room temperature can be used as a source of a different element. Further, according to the knowledge of the present inventors, the CNT produced by the liquid phase synthesis method has a structure particularly suitable for a polarizable electrode of an electric double layer capacitor. Prior to explaining the reason, the liquid phase synthesis method will be briefly described first. FIG. 1 is a conceptual diagram of a CNT manufacturing apparatus used for manufacturing electrodes according to examples described later.

水冷された容器1内には、CNTの原料となる有機液体2が充填されている。この液体の中に基板3が浸漬され、この基板は加熱手段4により、700〜1000℃程度まで加熱される。基板3から熱を受けて蒸発した有機液体は、凝縮手段5により、冷却・液化されて容器1内に還流される。容器1の上部空間は不活性ガス(窒素)雰囲気が維持されている。基板3は、その表面に触媒金属の薄膜又は島状微粒子を堆積したもの、又は触媒金属を含有する金属材料からなる。有機液体2は基板3の表面で熱分解し、触媒の作用により基板表面にCNTが形成される。有機液体2には、メタノール、エタノール等のアルコール類や、常温で液体の炭化水素(ヘキサン、オクタン等)を用いることができる。   The water-cooled container 1 is filled with an organic liquid 2 as a CNT raw material. The substrate 3 is immersed in the liquid, and the substrate is heated to about 700 to 1000 ° C. by the heating means 4. The organic liquid evaporated by receiving heat from the substrate 3 is cooled and liquefied by the condensing means 5 and refluxed into the container 1. An inert gas (nitrogen) atmosphere is maintained in the upper space of the container 1. The substrate 3 is formed by depositing a thin film or island-shaped fine particles of catalyst metal on the surface thereof, or a metal material containing the catalyst metal. The organic liquid 2 is thermally decomposed on the surface of the substrate 3, and CNTs are formed on the substrate surface by the action of the catalyst. As the organic liquid 2, alcohols such as methanol and ethanol, and hydrocarbons (hexane, octane, etc.) that are liquid at room temperature can be used.

かかる装置では、基板3の表面にきわめて大きな温度勾配が形成される。そのため、CNTは基板表面に垂直な方向に配向し、かつ結晶の成長速度が大きくなる。本発明者らの知見によれば、単体のCNT又はこれが絡み合った集合体が、基板表面から繊維状に延びて、この繊維の隙間が電解液のイオンの吸着に適した大きさ(数nm〜数十nm)になっている。したがって、この液相合成法は、電気二重層キャパシタの分極性電極として用いるCNTを製造するのに、とくに好適である。   In such an apparatus, a very large temperature gradient is formed on the surface of the substrate 3. Therefore, the CNTs are oriented in the direction perpendicular to the substrate surface, and the crystal growth rate is increased. According to the knowledge of the present inventors, a single CNT or an assembly in which the CNTs are intertwined extends in a fiber shape from the substrate surface, and the gap between the fibers is a size suitable for adsorption of electrolyte ions (several nm to Several tens of nm). Therefore, this liquid phase synthesis method is particularly suitable for producing CNTs used as polarizable electrodes of electric double layer capacitors.

本発明において、CNTに導入する異元素としては、長周期型周期表第IIIB族と第VB族の元素が好ましく、そのいずれか一方でも、双方を同時に添加してもよい。ドーピング元素としてIIIB族とVB族の元素が適する理由は、原子の性質がIVB族の炭素に類似し、炭素構造の中に導入するのが容易なためである。   In the present invention, the different elements to be introduced into the CNT are preferably elements of Group IIIB and Group VB of the long-period periodic table, and either one of them may be added simultaneously. The reason why Group IIIB and Group VB elements are suitable as doping elements is that the nature of the atoms is similar to that of Group IVB carbon and can be easily introduced into the carbon structure.

また、IIIB族ではボロン(B)が、VB族では窒素(N)が、炭素と原子半径が近似しているため、とくに好適である。   In addition, boron (B) in group IIIB and nitrogen (N) in group VB are particularly suitable because their atomic radii are close to those of carbon.

液相合成法で、異元素としてB又はNを導入するには、前述の有機液体中に液状のボロン含有化合物又は窒素含有化合物を添加して、CNTの製造を行なえばよい。具体的には、Bを含むものとして、ジヒドロキシフェニルボラン、オルト−カルボラン、メタ−カルボラン、ホウ酸トリ−n−ブチル等が、Nを含むものとして、ピリジン、ピリダジン、ピリミジン、ピラジン等が好適である。いずれの場合にも、有機液体中への添加化合物の混合比率を変えることにより、CNTへの異元素の混入量を制御することができる。   In order to introduce B or N as a different element by the liquid phase synthesis method, a liquid boron-containing compound or a nitrogen-containing compound may be added to the organic liquid described above to produce CNTs. Specifically, those containing B include dihydroxyphenyl borane, ortho-carborane, meta-carborane, tri-n-butyl borate, etc., and those containing N include pyridine, pyridazine, pyrimidine, pyrazine and the like. is there. In any case, the mixing amount of the foreign element into the CNT can be controlled by changing the mixing ratio of the additive compound in the organic liquid.

このようにして、CNTの炭素構造の中に導入された異元素の周囲には、電荷の特異状態が形成され、官能基のような化学的親和力が生じることが考えられる。例えば、炭素構造の中にCより電気陰性度の低いBが導入されると、その周囲には電子の欠乏状態が生じ、これに接している電解液中のマイナスイオンを引き付け易くなる可能性がある。したがって、異元素としてBを導入したCNTを、電気二重層キャパシタのプラス極として用いれば、マイナスイオンの吸着能が増大し、キャパシタの容量が大きくなることが期待される。   In this way, it is considered that a specific state of charge is formed around the foreign element introduced into the carbon structure of the CNT, and chemical affinity such as a functional group is generated. For example, when B, which has an electronegativity lower than C, is introduced into the carbon structure, an electron deficiency state is generated around the carbon structure, and it may be easy to attract negative ions in the electrolyte in contact therewith. is there. Therefore, if CNTs introduced with B as a different element are used as the positive electrode of the electric double layer capacitor, it is expected that the negative ion adsorption capacity increases and the capacity of the capacitor increases.

一方、Cより電気陰性度の高いNが導入されると、その周囲には電子の過剰状態が生じ、これに接している電解液中のプラスイオンを引き付け易くなるから、これをマイナス極として用いれば、プラスイオンの吸着能が増大する。このように電極の正負に応じて、導入する異元素を変えて、キャパシタ容量の一層の増大を図ることが、本発明のポイントの一つである。   On the other hand, when N, which has an electronegativity higher than C, is introduced, an excess state of electrons is generated around it, and it becomes easy to attract positive ions in the electrolyte in contact therewith. If so, the adsorption capacity of positive ions is increased. Thus, it is one of the points of the present invention to further increase the capacitor capacity by changing the different elements to be introduced according to the polarity of the electrode.

本発明の電極の第二は、導電性基板の両面にCNTを同時に成長させてなるものである。このCNTは、カーボンのみからなるものであってもよいが、これに異元素を導入することにより、その特性の改善が期待できることは、すでに述べたとおりである。   The second electrode of the present invention is obtained by simultaneously growing CNTs on both surfaces of a conductive substrate. This CNT may be composed of only carbon, but it has already been described that improvement of the characteristics can be expected by introducing a different element into the CNT.

このように、導電性基板の両面に分極性電極が形成されていれば、これをセパレータを介して面方向に積層するこより、多層セルの電気二重層キャパシタを容易に構成することができる。この場合、導電性基板は集電電極として用いることができるから、多層セルの構造が簡略化・小型化され、コスト低減が期待される。このように、基板両面にCNTを同時成長させた分極性電極を用いて、多層セルの構造の簡略化と低コスト化を図ることが、本発明の第二のポイントである。   Thus, if polarizable electrodes are formed on both surfaces of a conductive substrate, an electric double layer capacitor of a multilayer cell can be easily constructed by laminating them in the surface direction via a separator. In this case, since the conductive substrate can be used as a collecting electrode, the structure of the multilayer cell is simplified and miniaturized, and cost reduction is expected. Thus, the second point of the present invention is to simplify the structure of the multilayer cell and reduce the cost by using polarizable electrodes in which CNTs are simultaneously grown on both surfaces of the substrate.

基板両面へ同時にCNTを成長させる場合も、CNTの製造方法の選択が重要であり、液相合成法が最も好適である。その理由として、基板の調製が容易なことがあげられる。液相合成法の触媒(一般にはFe,Ni,Co等の金属)は、基板の表面に薄膜又は島状微粒子の堆積物として存在すればよく、金属や非金属の基板を水素プラズマに晒して、触媒を付着させてもよいし、触媒元素を含む金属基板をそのまま使用することもできる。かかる基板を有機液体中に浸漬して加熱すれば、基板の両面にCNTが成長する。   Even when CNTs are grown simultaneously on both surfaces of the substrate, the selection of the CNT production method is important, and the liquid phase synthesis method is most suitable. The reason is that the substrate can be easily prepared. The catalyst of the liquid phase synthesis method (generally a metal such as Fe, Ni, Co, etc.) may be present on the surface of the substrate as a deposit of a thin film or island-like fine particles. A catalyst may be attached, or a metal substrate containing a catalytic element can be used as it is. If such a substrate is immersed in an organic liquid and heated, CNTs grow on both sides of the substrate.

一方、CVD法は、事前に基板の表面に触媒の薄膜を形成して気相成長させる必要がある。この触媒層は、通常はスパッタ、蒸着、スピンコート法等により形成される。基板の両面に触媒層を形成することが不可能ではないにしても、一般には容易ではないから、基板両面へ同時にCNTを成長させる方法として好適とは言い難い。勿論、アーク放電法やレーザー蒸発法では、基板の両面にCNTを析出させることは難しい。   On the other hand, in the CVD method, it is necessary to form a catalyst thin film on the surface of the substrate in advance and to perform vapor phase growth. This catalyst layer is usually formed by sputtering, vapor deposition, spin coating or the like. Even if it is not impossible to form a catalyst layer on both sides of the substrate, it is generally not easy, so it is difficult to say that it is suitable as a method for growing CNTs on both sides of the substrate at the same time. Of course, it is difficult to deposit CNTs on both sides of the substrate by the arc discharge method or the laser evaporation method.

次に、本発明の電気二重層キャパシタについて説明する。図2は、本発明の電気二重層キャパシタの構成例を示す模式図で、図2(a)は基本セルの構成を、図2(b)は積層セルの構成を示す。図2(a)では、基板3の片側にカーボンナノチューブ(CNT)6を成長させた電極7が、セパレータ8を介して対向して配置され、その間隙は電解液10で満たされている。基板3に端子9が取り付けられ、これが集電電極となって、充放電を行なう。CNT6には、異元素が導入されている。この異元素は、対向する電極7で、同種であっても良いが、プラス極にBを導入したCNTを、マイナス極にNを導入したCNTを用いることにより、一層の蓄電容量の増大を図ることができる。   Next, the electric double layer capacitor of the present invention will be described. 2A and 2B are schematic diagrams showing a configuration example of the electric double layer capacitor of the present invention. FIG. 2A shows a configuration of a basic cell, and FIG. 2B shows a configuration of a stacked cell. In FIG. 2 (a), electrodes 7 on which carbon nanotubes (CNT) 6 are grown on one side of the substrate 3 are arranged to face each other with a separator 8 therebetween, and the gap is filled with the electrolytic solution 10. A terminal 9 is attached to the substrate 3 and serves as a collecting electrode for charging and discharging. Different elements are introduced into the CNT 6. This different element may be of the same type at the opposing electrode 7, but the storage capacity is further increased by using CNT with B introduced into the positive electrode and CNT with N introduced into the negative electrode. be able to.

図2(b)では、左右両端の基板3aには、片側にCNT6を成長させた電極7aが用いられ、それ以外の基板3bには、両側にCNT6を成長させた電極7bが用いられている。両端の基板3aに取り付けられた端子9から充放電が行われるが、中間の基板3bが両側のセルを結び付ける集電電極の役割を果たしていることに相違はない。CNT6は異元素が導入されていることが好ましい。プラス極とマイナス極に導入されている元素が同種であっても、後述の実施例に示すように、蓄電容量の増大を図ることができる。   In FIG. 2 (b), electrodes 7a with CNT6 grown on one side are used for the substrates 3a at both left and right ends, and electrodes 7b with CNT6 grown on both sides are used for the other substrates 3b. . Charging / discharging is performed from the terminals 9 attached to the substrates 3a at both ends, but there is no difference that the intermediate substrate 3b serves as a collecting electrode for connecting the cells on both sides. CNT6 is preferably introduced with a different element. Even if the elements introduced into the positive electrode and the negative electrode are of the same type, the storage capacity can be increased as shown in the examples described later.

なお、上記のいずれの構成においても、セパレータ8や電解液10には、従来の通常の電気二重層キャパシタに使用するのと同種のものを用いることができる。ただし、極間電圧を高めるため、電解液10には非水系のものを用いることが好ましい。   In any of the above-described configurations, the separator 8 and the electrolytic solution 10 can be the same type as those used in conventional ordinary electric double layer capacitors. However, in order to increase the interelectrode voltage, it is preferable to use a non-aqueous electrolyte solution 10.

分極性電極を構成するカーボンナノチューブ(CNT)に異元素を導入した本発明の電極を用い、電気二重層キャパシタのセルを構成して、その充放電特性を調査し、CNTに異元素を含まない場合との特性の比較を行なった。   Using the electrode of the present invention in which a different element is introduced into a carbon nanotube (CNT) constituting a polarizable electrode, a cell of an electric double layer capacitor is formed, its charge / discharge characteristics are investigated, and the CNT does not contain a different element. The characteristics were compared with the case.

CNTの製造に用いた装置は、図1に示すような液相合成法の装置で、基板には厚さ100μmのニクロム基板を用い、反応容器の材料には石英を用いた。また、基板を加熱する手段として、ニクロム基板が位置する反応容器の外側に誘導加熱用のコイルを巻き、これに高周波電流を流して基板を誘導加熱した。有機液体としては、メタノールを用いた。   The apparatus used for the production of CNT was a liquid phase synthesis apparatus as shown in FIG. 1, a nichrome substrate having a thickness of 100 μm was used as the substrate, and quartz was used as the material of the reaction vessel. In addition, as a means for heating the substrate, an induction heating coil was wound outside the reaction vessel where the nichrome substrate is located, and a high frequency current was passed through the coil to inductively heat the substrate. Methanol was used as the organic liquid.

上記の条件で、下記の3種の分極性電極を作成した。
(1)ボロンを含むCNTからなる電極(A電極):
メタノールにホウ酸トリ−n−ブチルを14wt%混入し、反応容器に入れた。容器上部を封止した後に窒素を流し、反応容器から空気を排出した。窒素を流したまま、400kHzの高周波電流をコイルに流してニクロム基板を900℃に加熱し、そのまま90秒間維持した。なお、基板温度は放射温度計にて測定した。
(2)窒素を含むCNTからなる電極(B電極):
メタノールにピリジンを6wt%混入した。上記と同様にニクロム基板を900℃に加熱し、そのまま90秒間反応させた。
(3)異元素を含まないCNTからなる比較用電極(C電極):
メタノールのみで、上記と同様に900℃、90秒間反応させた。
Under the above conditions, the following three polarizable electrodes were prepared.
(1) Electrode made of CNT containing boron (A electrode):
Methanol was mixed with 14 wt% of tri-n-butyl borate and placed in a reaction vessel. After sealing the upper part of the container, nitrogen was flowed to discharge air from the reaction container. While flowing nitrogen, a high frequency current of 400 kHz was passed through the coil to heat the nichrome substrate to 900 ° C. and maintained for 90 seconds. The substrate temperature was measured with a radiation thermometer.
(2) Electrode made of CNT containing nitrogen (B electrode):
6 wt% of pyridine was mixed in methanol. The nichrome substrate was heated to 900 ° C. and reacted for 90 seconds as it was.
(3) Comparative electrode (C electrode) made of CNT containing no foreign element:
The reaction was carried out with methanol alone at 900 ° C. for 90 seconds in the same manner as described above.

これらの3種の電極においては、いずれもニクロム基板から、直径10〜20nm、長さ約2μmのCNTが成長していた。図3にその走査型電子顕微鏡(SEM)写真の例を示す。この写真から、CNTが高密度に成長していることが知れる。   In each of these three types of electrodes, CNTs having a diameter of 10 to 20 nm and a length of about 2 μm were grown from the nichrome substrate. FIG. 3 shows an example of the scanning electron microscope (SEM) photograph. From this photograph, it is known that CNT grows with high density.

この電極を用い、以下の方法で図2(a)に示すようなキャパシタセルを作成した。前記の電極においては、基板の両面にCNTが成長していたが、単セルとしての比較を行なうため、その片面からCNTをはぎ取った。まず、基板ごとに所定の面積に切り出し、裏側に充放電特性測定用のリード線を取り付けてから、セルロース系のセパレータを介して対向させた。その基板の外側を2枚のテフロン(登録商標)板にて挟み込んで固定した。これを窒素雰囲気にて、電解液であるホウフッ化水素酸アミジン塩のポリプロピレンカーボネート溶液(三洋化成製、商品名パワーエレック)に入れ、リード線を取り出して密閉することで電気二重層キャパシタを作成した。   Using this electrode, a capacitor cell as shown in FIG. In the above electrode, CNTs were grown on both surfaces of the substrate, but for comparison as a single cell, CNTs were peeled off from one surface. First, each substrate was cut into a predetermined area, and a lead wire for measuring charge / discharge characteristics was attached to the back side, and then faced through a cellulose-based separator. The outside of the substrate was sandwiched between two Teflon (registered trademark) plates and fixed. This was put in a polypropylene carbonate solution (trade name Power Elec, manufactured by Sanyo Kasei Co., Ltd.) of borohydrofluoric acid amidine salt as an electrolyte in a nitrogen atmosphere, and an electric double layer capacitor was created by taking out the lead wire and sealing it. .

このキャパシタを、25℃に保たれた恒温槽の中に入れてしばらく放置してから、電流50μAおよび200μAの定電流で、0〜2.5Vの範囲で充放電を行なった。この充放電は30回繰り返すこととし、その最後の特性からキャパシタの容量を計算した。図4に、200μAで測定した充放電のカーブの一例を示す。この図から、安定的に充放電が行われていることが知れる。   This capacitor was placed in a thermostat kept at 25 ° C. and left for a while, and then charged and discharged in a range of 0 to 2.5 V with a constant current of 50 μA and 200 μA. This charging / discharging was repeated 30 times, and the capacitance of the capacitor was calculated from the last characteristic. FIG. 4 shows an example of a charge / discharge curve measured at 200 μA. From this figure, it is known that charging / discharging is performed stably.

以上の条件で、(a)A電極を両極に使ったもの、(b)B電極を両極に使ったもの、(c)プラス極にA電極、マイナス極にB電極を使ったもの、(d)C電極を両極に使ったものの4種のキャパシタについて容量を測定した。測定結果を表1に示す。   Under the above conditions, (a) A electrode used for both electrodes, (b) B electrode used for both electrodes, (c) A electrode for the positive electrode, B electrode for the negative electrode, (d ) Capacitance was measured for four types of capacitors, although the C electrode was used for both electrodes. The measurement results are shown in Table 1.

この結果から、異元素を導入した(a)〜(c)のキャパシタは、いずれも比較例である(d)のキャパシタより容量が向上していることが知れる。とくに両電極に異なる異元素を導入した(c)のキャパシタは、さらに容量が向上することが確認された。   From this result, it is known that the capacitors (a) to (c) introduced with different elements have higher capacities than the capacitor (d) of the comparative example. In particular, it was confirmed that the capacity of the capacitor (c) in which different elements were introduced into both electrodes was further improved.

本実施例ではニクロム基板を使用しているが、これに限定する必要はなく、集電電極として使用可能な導電性を有する材料であれば、広く基板として使用可能である。このとき基板が触媒作用を有する金属元素を含まない場合は、CNTを成長させる工程の前に、Fe等の触媒金属を基板表面に付着させる工程を設ければよい。   Although a nichrome substrate is used in this embodiment, it is not necessary to limit to this, and any material having conductivity that can be used as a collecting electrode can be used as a substrate. At this time, if the substrate does not contain a catalytic metal element, a step of attaching a catalytic metal such as Fe to the substrate surface may be provided before the step of growing CNTs.

本実施例で用いたカーボンナノチューブの製造装置の概念図である。It is a conceptual diagram of the manufacturing apparatus of the carbon nanotube used in the present Example. 本発明の電気二重層キャパシタの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the electric double layer capacitor of this invention. 本実施例で作成したカーボンナノチューブの走査型電子顕微鏡写真の例である。It is an example of the scanning electron micrograph of the carbon nanotube created in the present Example. 本実施例における充放電特性の測定結果の例を示す図である。It is a figure which shows the example of the measurement result of the charging / discharging characteristic in a present Example.

符号の説明Explanation of symbols

1 容器
2 有機液体
3,3a,3b 基板
4 加熱手段
5 凝縮手段
6 カーボンナノチューブ
7,7a,7b 電極
8 セパレータ
9 端子
10 電解液
DESCRIPTION OF SYMBOLS 1 Container 2 Organic liquid 3, 3a, 3b Substrate 4 Heating means 5 Condensing means 6 Carbon nanotubes 7, 7a, 7b Electrode 8 Separator 9 Terminal 10 Electrolyte

Claims (9)

集電電極として用いられる基板と、該基板から成長したカーボンナノチューブを分極性電極として有する電気二重層キャパシタの電極であって、
前記分極性電極は、カーボンナノチューブの成長過程でその炭素構造内に炭素以外の異元素を導入したものであることを特徴とする電気二重層キャパシタの電極。
An electrode of an electric double layer capacitor having a substrate used as a collecting electrode and a carbon nanotube grown from the substrate as a polarizable electrode,
The electrode of an electric double layer capacitor, wherein the polarizable electrode is obtained by introducing a different element other than carbon into the carbon structure during the growth of carbon nanotubes.
前記異元素を含む化合物を溶解した有機溶媒中で前記基板を加熱することにより、その異元素をカーボンナノチューブの成長過程で導入したことを特徴とする請求項1に記載の電気二重層キャパシタの電極。   2. The electrode of an electric double layer capacitor according to claim 1, wherein the foreign element is introduced during the growth process of the carbon nanotubes by heating the substrate in an organic solvent in which the compound containing the foreign element is dissolved. . 前記異元素が、周期表第IIIB族及び/又は第VB族の元素である請求項1又は2に記載の電気二重層キャパシタの電極。   The electrode of the electric double layer capacitor according to claim 1 or 2, wherein the foreign element is an element of Group IIIB and / or Group VB of the periodic table. 前記の第IIIB族元素がボロンであり、第VB族元素が窒素である請求項3に記載の電気二重層キャパシタの電極。   The electrode of an electric double layer capacitor according to claim 3, wherein the Group IIIB element is boron and the Group VB element is nitrogen. 一対の電極をセパレータを介して対向させた電気二重層キャパシタにおいて、前記電極のいずれか一方又は双方に、請求項1乃至4のいずれかに記載の電極を用いたことを特徴とする電気二重層キャパシタ。   5. An electric double layer capacitor having a pair of electrodes opposed to each other via a separator, wherein the electrode according to any one of claims 1 to 4 is used for one or both of the electrodes. Capacitor. 前記電極のプラス極のカーボンナノチューブに第IIIB族異元素を、マイナス極のカーボンナノチューブに第VB族異元素をそれぞれ導入したことを特徴とする請求項5に記載の電気二重層キャパシタ。   6. The electric double layer capacitor according to claim 5, wherein a Group IIIB foreign element is introduced into the positive carbon nanotube of the electrode, and a Group VB foreign element is introduced into the negative carbon nanotube. 両表面に触媒を含む、又は触媒を担持した状態の基板の両面に、カーボンナノチューブを同時に成長させてなる電気二重層キャパシタの電極。   An electrode of an electric double layer capacitor in which carbon nanotubes are simultaneously grown on both surfaces of a substrate containing or carrying a catalyst on both surfaces. 前記カーボンナノチューブは、成長過程でその炭素構造内に炭素以外の異元素が導入されたものであることを特徴とする請求項7に記載の電気二重層キャパシタの電極。   8. The electrode of an electric double layer capacitor according to claim 7, wherein the carbon nanotube is obtained by introducing a different element other than carbon into the carbon structure during the growth process. 請求項7又は8に記載の電極を、セパレータを介して面方向に積層するとともに、前記基板を集電電極として用いたことを特徴とする電気二重層キャパシタ。   An electric double layer capacitor, wherein the electrode according to claim 7 or 8 is laminated in a plane direction through a separator, and the substrate is used as a collecting electrode.
JP2005231195A 2005-08-09 2005-08-09 Electric double layer capacitor electrode and capacitor using same Pending JP2007048907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231195A JP2007048907A (en) 2005-08-09 2005-08-09 Electric double layer capacitor electrode and capacitor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231195A JP2007048907A (en) 2005-08-09 2005-08-09 Electric double layer capacitor electrode and capacitor using same

Publications (1)

Publication Number Publication Date
JP2007048907A true JP2007048907A (en) 2007-02-22

Family

ID=37851495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231195A Pending JP2007048907A (en) 2005-08-09 2005-08-09 Electric double layer capacitor electrode and capacitor using same

Country Status (1)

Country Link
JP (1) JP2007048907A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158961A (en) * 2007-12-27 2009-07-16 Qinghua Univ Super capacitor
JP2010521819A (en) * 2007-03-15 2010-06-24 矢崎総業株式会社 Capacitor comprising an organized assembly of carbon and non-carbon compounds
US7813108B2 (en) 2007-11-02 2010-10-12 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7826198B2 (en) 2007-12-29 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7826199B2 (en) 2007-11-02 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes
WO2012018062A1 (en) * 2010-08-04 2012-02-09 アイシン精機株式会社 Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube
JP2012036022A (en) * 2010-08-04 2012-02-23 Aisin Seiki Co Ltd Carbon nanotube production method and carbon nanotube production apparatus
JP2012035345A (en) * 2010-08-04 2012-02-23 Aisin Seiki Co Ltd Carbon nanotube device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
JP2002348108A (en) * 2001-03-12 2002-12-04 Futaba Corp Method for producing nanocarbon and nanocarbon produced using the same, composite material or mixed material each containing nanocarbon and metallic fine particles, device for producing nanocarbon, method for forming pattern of nanocarbon and patterned nanocarbon substrate using the same, and electron emission source using patterned nanocarbon substrate
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2004003097A (en) * 1999-03-25 2004-01-08 Showa Denko Kk Carbon fiber, process for producing the same and electrode for electric batteries
JP2004010383A (en) * 2002-06-04 2004-01-15 Japan Science & Technology Corp Process for synthesizing diamond-like carbon film
JP2005145743A (en) * 2003-11-13 2005-06-09 Kenjiro Oura Carbon nanotube, its manufacturing method, carbon nanotube device and electrical double layer capacitor
JP2005183443A (en) * 2003-12-16 2005-07-07 Hitachi Zosen Corp Printed circuit board comprising capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003097A (en) * 1999-03-25 2004-01-08 Showa Denko Kk Carbon fiber, process for producing the same and electrode for electric batteries
JP2002266170A (en) * 2000-12-20 2002-09-18 Showa Denko Kk Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
JP2002348108A (en) * 2001-03-12 2002-12-04 Futaba Corp Method for producing nanocarbon and nanocarbon produced using the same, composite material or mixed material each containing nanocarbon and metallic fine particles, device for producing nanocarbon, method for forming pattern of nanocarbon and patterned nanocarbon substrate using the same, and electron emission source using patterned nanocarbon substrate
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2004010383A (en) * 2002-06-04 2004-01-15 Japan Science & Technology Corp Process for synthesizing diamond-like carbon film
JP2005145743A (en) * 2003-11-13 2005-06-09 Kenjiro Oura Carbon nanotube, its manufacturing method, carbon nanotube device and electrical double layer capacitor
JP2005183443A (en) * 2003-12-16 2005-07-07 Hitachi Zosen Corp Printed circuit board comprising capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943238B2 (en) 2007-03-15 2011-05-17 Yazaki Corporation Capacitors comprising organized assemblies of carbon and non-carbon compounds
JP2010521819A (en) * 2007-03-15 2010-06-24 矢崎総業株式会社 Capacitor comprising an organized assembly of carbon and non-carbon compounds
US7794840B2 (en) 2007-03-15 2010-09-14 Yazaki Corporation Capacitors comprising organized assemblies of carbon and non-carbon compounds
US7826199B2 (en) 2007-11-02 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7813108B2 (en) 2007-11-02 2010-10-12 Tsinghua University Electrochemical capacitor with carbon nanotubes
JP2010245556A (en) * 2007-12-27 2010-10-28 Qinghua Univ Supercapacitor
JP2009158961A (en) * 2007-12-27 2009-07-16 Qinghua Univ Super capacitor
US7826198B2 (en) 2007-12-29 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes
WO2012018062A1 (en) * 2010-08-04 2012-02-09 アイシン精機株式会社 Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube
JP2012036022A (en) * 2010-08-04 2012-02-23 Aisin Seiki Co Ltd Carbon nanotube production method and carbon nanotube production apparatus
JP2012035345A (en) * 2010-08-04 2012-02-23 Aisin Seiki Co Ltd Carbon nanotube device
US20130084235A1 (en) * 2010-08-04 2013-04-04 Aisin Seiki Kabushiki Kaisha Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube
CN103052593A (en) * 2010-08-04 2013-04-17 爱信精机株式会社 Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube
CN103052593B (en) * 2010-08-04 2015-04-29 爱信精机株式会社 Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube

Similar Documents

Publication Publication Date Title
Zhang et al. MXene-based materials for electrochemical energy storage
Li et al. A High‐Energy‐Density Hybrid Supercapacitor with P‐Ni (OH) 2@ Co (OH) 2 Core–Shell Heterostructure and Fe2O3 Nanoneedle Arrays as Advanced Integrated Electrodes
Wu et al. A scalable free‐standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte
JP6370835B2 (en) Method for forming part of energy storage device and method for forming capacitor
JP2007048907A (en) Electric double layer capacitor electrode and capacitor using same
KR101745449B1 (en) Hierarchical architecture with nanosized metal oxide and porous graphene for lithium ion battery anode with ultra-fast charge/discharge rate and extremely robust cycle life using thereof
US10763511B2 (en) Method for producing porous graphite, and porous graphite
Huang et al. TiC/NiO core/shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-ion battery
Ning et al. Superior pseudocapacitive storage of a novel Ni 3 Si 2/NiOOH/graphene nanostructure for an all-solid-state supercapacitor
Al-Asadi et al. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications
Ouyang et al. Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors
JP2007194354A (en) Polarizable electrode, and electric double layer capacitor comprising same
Wu et al. In Situ Monitored (N, O)‐Doping of Flexible Vertical Graphene Films with High‐Flux Plasma Enhanced Chemical Vapor Deposition for Remarkable Metal‐Free Redox Catalysis Essential to Alkaline Zinc–Air Batteries
WO2010050484A1 (en) Composite electrode for electricity storage device, method for producing same and electricity storage device
Kim et al. Additive-free synthesis of Li 4 Ti 5 O 12 nanowire arrays on freestanding ultrathin graphite as a hybrid anode for flexible lithium ion batteries
Chen et al. Modified metal− organic frameworks for electrochemical applications
US10546698B2 (en) Structure for electric energy storage using carbon nanotubes
Xiao et al. Engineering surface oxygenated functionalities on commercial carbon toward ultrafast sodium storage in ether-based electrolytes
Sheikh et al. Recent advances in the rational design of 2D MXenes in energy conversion and storage systems
JP6312598B2 (en) Negative electrode for lithium ion secondary battery and method for producing the same
Wang et al. Boosting charge transfer via heterostructure engineering of Ti2CTx/Na2Ti3O7 nanobelts array for superior sodium storage performance
KR101060288B1 (en) composite electrode and method for manufacturing the same
Fan et al. Self‐Supported Gold‐Silk‐Chrysanthemum‐Like Superstructures Arrays Derived from Mn‐doped CoPS Nanowires with Superhydrophilic and Superaerophobic Surface for Enhanced Oxygen Evolution
CN117480119A (en) Graphene nanoribbons as electrode materials in energy storage devices
Nozawa et al. Metal-Catalyzed Nanostructured Silicon Films as Potential Anodes for Flexible Rechargeable Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110303