JP2007185581A - Purification method and purification apparatus for oxidizing agent - Google Patents

Purification method and purification apparatus for oxidizing agent Download PDF

Info

Publication number
JP2007185581A
JP2007185581A JP2006004432A JP2006004432A JP2007185581A JP 2007185581 A JP2007185581 A JP 2007185581A JP 2006004432 A JP2006004432 A JP 2006004432A JP 2006004432 A JP2006004432 A JP 2006004432A JP 2007185581 A JP2007185581 A JP 2007185581A
Authority
JP
Japan
Prior art keywords
oxidant
inorganic
impurities
adsorbent
inorganic adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004432A
Other languages
Japanese (ja)
Inventor
Masamitsu Iiyama
真充 飯山
Senri Kojima
泉里 小島
Tsugi Abe
嗣 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2006004432A priority Critical patent/JP2007185581A/en
Publication of JP2007185581A publication Critical patent/JP2007185581A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification method and purification apparatus for an oxidizing agent capable of preparing a stable and high-quality oxidizing agent with a high productivity. <P>SOLUTION: The purification method for the oxidizing agent comprises the step of bringing a solution of an oxidizing agent that contains impurities into a contact with an inorganic adsorbent to remove the impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化剤の精製方法及びその精製装置に係り、特に酸化剤溶液を無機吸着材と接触させて不純物を除去するようにした酸化剤の精製方法及びその精製装置に関する。   The present invention relates to an oxidant purification method and an apparatus for purifying the same, and more particularly to an oxidant purification method and an apparatus for purifying the oxidant in which an oxidant solution is brought into contact with an inorganic adsorbent to remove impurities.

半導体の製造プロセスにおいて、シリコン基板等の洗浄水に例えば過酸化水素水のような酸化剤を添加して洗浄性を改善することが行われている。近年、半導体素子(LSI)の集積度の向上にともない、これらの酸化剤には、金属イオンや有機化合物のような不純物質の極めて少ない高純度のものが要求されている。特に、イオン性の不純物は、得られる半導体の信頼性を著しく低下させるため、イオン性不純物を含む使用済みの酸化剤水溶液を循環再使用する場合には、これらの不純物をイオン交換樹脂等により除去して精製することが行われている。   In a semiconductor manufacturing process, an oxidant such as a hydrogen peroxide solution is added to cleaning water for a silicon substrate or the like to improve cleaning performance. In recent years, as the degree of integration of semiconductor elements (LSIs) has been improved, these oxidizing agents are required to have high purity having very little impurities such as metal ions and organic compounds. In particular, ionic impurities significantly reduce the reliability of the resulting semiconductor. Therefore, when the used aqueous oxidizer solution containing ionic impurities is circulated and reused, these impurities are removed with an ion exchange resin or the like. And purification is carried out.

過酸化水素水の精製方法としては、過酸化水素水にイオン交換樹脂を接触させて、金属イオン不純物を吸着除去する方法が知られている(例えば、特許文献1)。
特開2002−80207号公報
As a method for purifying hydrogen peroxide, a method is known in which an ion exchange resin is brought into contact with hydrogen peroxide to adsorb and remove metal ion impurities (for example, Patent Document 1).
JP 2002-80207 A

しかしながら、イオン交換樹脂は有機質であるため、過酸化水素によって酸化劣化し分解生成物が酸化剤を含む超純水中に混入してしまうという問題がある。また、イオン交換樹脂の交換も頻繁に行わなければならないため、処理コストが高くなる上に連続的に安定した高品質の酸化剤を得ることが難しいという問題もある。   However, since the ion exchange resin is organic, there is a problem that it is oxidized and deteriorated by hydrogen peroxide and the decomposition product is mixed into ultrapure water containing an oxidizing agent. In addition, since the exchange of the ion exchange resin must be performed frequently, there is a problem that the processing cost becomes high and it is difficult to obtain a continuous and stable high quality oxidant.

本発明は、かかる従来の問題を解消すべくなされたもので、安定した高品質の酸化剤を容易に再生することのできる酸化剤の精製方法及びその精製装置を提供することを目的とする。   The present invention has been made to solve such conventional problems, and an object of the present invention is to provide a method of purifying an oxidant and a purification apparatus thereof that can easily regenerate a stable and high-quality oxidant.

上記目的を達成するため、本発明に係る酸化剤の精製方法は、不純物を含む酸化剤溶液を無機吸着材と接触させて前記不純物を除去することを特徴とする。   In order to achieve the above object, a method for purifying an oxidant according to the present invention is characterized in that an oxidant solution containing impurities is brought into contact with an inorganic adsorbent to remove the impurities.

本発明が適用される酸化剤は、全て溶液状態であり、通常は水溶液で用いられる。
このような酸化剤としては、過酸化水素(H22),過酸化ナトリウム(Na22),過酸化バリウム(BaO2),無水安息香酸((C65CO)2O)のような過酸化物;酸素(O),オゾン(O)のような酸素類;四酸化二窒素(N),三酸化二窒素(N),一酸化二窒素(NO)のような無機窒素化合物;ペルオキソ二硫酸ナトリウム(Na228),ペルオキソ二硫酸カリウム(K228),ペルオキソ一硫酸ナトリウム(Na2SO5),ペルオキシ酢酸(CHCOOOH),ペルオキソ二硫酸アンモニウム((NH228)のようなペルオキソ酸及びペルオキソ酸塩;F,Cl,Br,I,塩化鉄(FeCl3)のようなハロゲン及びその化合物;過マンガン酸(HMnO4),過マンガン酸ナトリウム(NaMnO4),過マンガン酸カリウム(KMnO4)のような過マンガン酸及び過マンガン酸塩;無水クロム酸(CrO3),二塩化二酸化クロム(CrO2Cl2),クロム酸ナトリウム(Na2CrO4),重クロム酸ナトリウム(Na2Cr27),塩化クロム酸ナトリウム(Na2CrO3Cl)のようなクロム化合物;二酸化鉛(PbO2),酢酸鉛(Pb(CH3COO)4)のような鉛化合物;酢酸水銀(Hg(CH3COO)2)のような水銀化合物;酢酸ビスマス(Bi(CH3COO)3)等の金属酢酸塩;硝酸アンモニウム(NH4NO3),硝酸カリウム(KNO3),硝酸銅(Cu(NO32)のような硝酸塩;次亜塩素酸ナトリウム(NaClO),次亜臭素酸ナトリウム(NaBrO),次亜ヨウ素酸ナトリウム(NaIO),塩素酸ナトリウム(NaClO3),過ヨウ素酸(HIO、HIO4),過ヨウ素酸カリウム(KIO4),過塩素酸ナトリウム(NaClO4),ヨウ素酸水素ナトリウム(Na32IO6)のような酸素酸及び酸素酸塩等が例示される。
All oxidizing agents to which the present invention is applied are in a solution state and are usually used in an aqueous solution.
Such oxidizing agents include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoic anhydride ((C 6 H 5 CO) 2 O). Oxides such as oxygen (O 2 ) and ozone (O 3 ); dinitrogen tetroxide (N 2 O 4 ), dinitrogen trioxide (N 2 O 3 ), dinitrogen monoxide Inorganic nitrogen compounds such as (N 2 O); sodium peroxodisulfate (Na 2 S 2 O 8 ), potassium peroxodisulfate (K 2 S 2 O 8 ), sodium peroxomonosulfate (Na 2 SO 5 ), peroxy Peroxoacids and peroxoacid salts such as acetic acid (CH 3 COOOH), ammonium peroxodisulfate ((NH 4 ) 2 S 2 O 8 ); F 2 , Cl 2 , Br 2 , I 2 , iron chloride (FeCl 3 ) Such halogens and their compounds; Gansan (HMnO 4), sodium permanganate (NaMnO 4), permanganic acid and permanganate such as potassium permanganate (KMnO 4); chromic anhydride (CrO 3), dichloride chromium dioxide (CrO Chromium compounds such as 2 Cl 2 ), sodium chromate (Na 2 CrO 4 ), sodium dichromate (Na 2 Cr 2 O 7 ), sodium chlorochromate (Na 2 CrO 3 Cl); lead dioxide (PbO 2) ), Lead compounds such as lead acetate (Pb (CH 3 COO) 4 ); mercury compounds such as mercury acetate (Hg (CH 3 COO) 2 ); metals such as bismuth acetate (Bi (CH 3 COO) 3 ) acetate; ammonium nitrate (NH 4 NO 3), potassium nitrate (KNO 3), nitrates such as copper nitrate (Cu (NO 3) 2) ; sodium hypochlorite (NaClO), following Sodium bromate (NaBrO), sodium hypoiodite (NaIO), sodium chlorate (NaClO 3), periodic acid (H 5 IO 6, HIO 4 ), potassium periodate (KIO 4), sodium perchlorate Examples thereof include oxyacids and oxyacid salts such as (NaClO 4 ) and sodium hydrogen iodate (Na 3 H 2 IO 6 ).

本発明に使用する無機吸着材としては、無機質からなる無機イオン交換材や無機非イオン成分吸着材を適用することができる。無機イオン交換材は、イオン交換現象を示すもので、正負のイオンの吸引現象により吸着するものである。無機非イオン成分吸着材は、非イオン成分の不純物を表面現象により吸着するもので、吸着を効果的に行うために吸着表面積の大きい物質が利用される。   As the inorganic adsorbent used in the present invention, inorganic inorganic ion exchange materials and inorganic nonionic component adsorbents can be applied. The inorganic ion exchange material exhibits an ion exchange phenomenon, and is adsorbed by a suction phenomenon of positive and negative ions. The inorganic nonionic component adsorbent adsorbs nonionic component impurities by a surface phenomenon, and a substance having a large adsorption surface area is used for effective adsorption.

無機イオン交換材としては、無機質からなる陽イオン交換材、陰イオン交換材、両イオン交換材を挙げることができる。   Examples of inorganic ion exchange materials include cation exchange materials, anion exchange materials, and both ion exchange materials made of an inorganic material.

無機不純物が例えば金属イオンである場合には、陽イオン交換材及び/又は両イオン交換材が適している。
陽イオン交換材としては、例えば、リン酸塩化合物、アンチモン酸化合物、ニオブ酸化合物、タンタル酸化合物、タングステン酸化合物、モリブデン酸化合物、チタン酸化合物、ウラン酸化合物、バナジン酸化合物、ケイ酸塩化合物などが挙げられ、両イオン交換材としては、例えば、含水酸化ベリリウム、アルミナ水和物、含水酸化ガリウム、含水酸化インジウム、含水酸化鉄(III)、含水酸化マンガン(III)、含水酸化ビスマス、含水酸化ケイ素、含水酸化スズ、含水酸化ジルコニウム、含水酸化セリウム(IV)、含水酸化トリウム、などが挙げられる。これらの無機イオン交換材は、1種又は複数種を混合して用いられる。
使用する無機イオン交換材は、酸化剤の種類及び不純物イオンの価数等を考慮して適宜選択される。例えば酸化剤が金属塩である場合には、酸化剤を構成する金属イオンを吸着せずに不純物金属イオンを選択的に吸着する陽イオン交換材や両イオン交換材が選択使用される。
本発明に使用される陽イオン交換材、両イオン交換材は、少なくとも1種類の陽イオンに対する陽イオン交換容量が、中性域において0.03meq/g以上のものが特に適している。
When the inorganic impurity is, for example, a metal ion, a cation exchange material and / or a both ion exchange material are suitable.
Examples of cation exchange materials include phosphate compounds, antimonic acid compounds, niobic acid compounds, tantalum acid compounds, tungstic acid compounds, molybdate compounds, titanic acid compounds, uranic acid compounds, vanadic acid compounds, and silicate compounds. Examples of both ion exchange materials include hydrous beryllium hydroxide, hydrated alumina, hydrous gallium oxide, hydrous indium oxide, hydrous iron oxide (III), hydrous manganese oxide (III), hydrous hydrous bismuth, and hydrous water Examples thereof include silicon oxide, hydrous tin oxide, hydrous zirconium oxide, hydrous cerium (IV), hydrous thorium. These inorganic ion exchange materials are used alone or in combination.
The inorganic ion exchange material to be used is appropriately selected in consideration of the type of oxidizing agent, the valence of impurity ions, and the like. For example, when the oxidant is a metal salt, a cation exchange material or both ion exchange materials that selectively adsorb impurity metal ions without adsorbing metal ions constituting the oxidant are selectively used.
As the cation exchange material and both ion exchange materials used in the present invention, those having a cation exchange capacity for at least one kind of cation of 0.03 meq / g or more in the neutral range are particularly suitable.

精製する酸化剤水溶液の種類によっては、陽イオン交換材とともに陰イオン交換材を併用したり、あるいは両イオン交換材を用いて、酸化剤水溶液中の不純物の陰イオンも除去することができる。このような陰イオン交換材としては、例えば、含水酸化チタン、含水酸化ジルコニウム、水酸化マグネシウム、含水酸化ランタン、オキシ硝酸水酸化ビスマス、ハイドロキシアパタイト、ハイドロタルサイト類化合物等の1種又は複数種を用いることができる。この場合も酸化剤を構成する陰イオンを吸着しない陰イオン交換材や両イオン交換材が適宜選択使用される。
本発明に使用される陰イオン交換材、両イオン交換材は、少なくとも1種類の陰イオンに対する陰イオン交換容量が、中性域において0.03meq/g以上のものが特に適している。
Depending on the type of oxidant aqueous solution to be purified, an anion exchange material can be used in combination with a cation exchange material, or both anion exchange materials can be used to remove anions of impurities in the oxidant aqueous solution. Examples of such anion exchange materials include one or more of hydrous titanium oxide, hydrous zirconium oxide, magnesium hydroxide, hydrous lanthanum, bismuth oxynitrate hydroxide, hydroxyapatite, hydrotalcite compounds, and the like. Can be used. Also in this case, an anion exchange material that does not adsorb an anion constituting the oxidant or both ion exchange materials are appropriately selected and used.
As the anion exchange material and both ion exchange materials used in the present invention, those having an anion exchange capacity for at least one kind of anion of 0.03 meq / g or more in a neutral range are particularly suitable.

無機イオン交換材は、平均粒径が、0.05μm以上の粉末状、粒状又は繊維状のものが好ましい。   The inorganic ion exchange material is preferably in the form of powder, granules or fibers having an average particle size of 0.05 μm or more.

また、酸化剤水溶液をさらに無機非イオン成分吸着材と接触させたり、無機イオン交換材として多孔質のものを用いることにより、酸化剤水溶液中の有機物等の不純物や微粒子状、コロイド状の不純物を吸着除去することができる。無機非イオン成分吸着材としては、例えば、活性アルミナ、ゼオライト、活性白土、シリカゲル等が挙げられ、これらの1種又は複数種を用いることができる。無機非イオン成分吸着材は、平均粒径が、1nm〜500μmの粉末状、粒状、又は繊維状のものが好ましい。無機非イオン成分吸着材、無機イオン交換材として多孔質のものの比表面積はBET法(N)による測定値で、0.1m/g以上が好ましい。 Further, by bringing the oxidant aqueous solution into contact with the inorganic nonionic component adsorbent, or using a porous inorganic ion exchange material, impurities such as organic substances, particulates and colloidal impurities in the oxidant aqueous solution can be removed. It can be removed by adsorption. Examples of the inorganic nonionic component adsorbent include activated alumina, zeolite, activated clay, silica gel and the like, and one or more of these can be used. The inorganic nonionic component adsorbent is preferably in the form of powder, granules, or fibers having an average particle diameter of 1 nm to 500 μm. The specific surface area of a porous inorganic nonionic component adsorbent or inorganic ion exchange material is a value measured by the BET method (N 2 ) and is preferably 0.1 m 2 / g or more.

なお、無機イオン交換材及び無機非イオン成分吸着材としては、無定形、ガラス状、結晶状のものがあり、それぞれトンネル構造、層状構造、網目構造などの結晶構造を有するが、いずれも本発明に使用可能である。   In addition, the inorganic ion exchange material and the inorganic nonionic component adsorbent include amorphous, glassy, and crystalline materials, each having a crystal structure such as a tunnel structure, a layered structure, and a network structure. Can be used.

酸化剤水溶液を無機イオン交換材及び無機非イオン成分吸着材に接触させる場合には、接触させる順序は特に制限されない。酸化剤水溶液を無機イオン交換材と接触させる前又は後に無機非イオン成分吸着材と接触させてもよく、また、無機イオン交換材と無機非イオン成分吸着材を混合して接触させてもよいが、無機イオン交換材と無機非イオン成分吸着材を混合して酸化剤水溶液と接触させることが好ましい。   In the case of bringing the aqueous oxidizer solution into contact with the inorganic ion exchange material and the inorganic nonionic component adsorbent, the contacting order is not particularly limited. Before or after the aqueous oxidant solution is brought into contact with the inorganic ion exchange material, it may be brought into contact with the inorganic nonionic component adsorbent, or the inorganic ion exchange material and the inorganic nonionic component adsorbent may be mixed and brought into contact with each other. It is preferable that the inorganic ion exchange material and the inorganic nonionic component adsorbent are mixed and brought into contact with the oxidizing agent aqueous solution.

無機イオン交換材と無機非イオン成分吸着材は、5:5〜9:1の体積比で混合することが好ましい。無機イオン交換材の体積比が50%未満であると、イオン性の不純物の除去効率が低下するおそれがあり、無機イオン交換材の体積比が90%を超えると無機非イオン成分吸着材による有機物等の不純物や微粒子状、コロイド状の不純物の除去量が低下するおそれがある。   The inorganic ion exchange material and the inorganic nonionic component adsorbent are preferably mixed at a volume ratio of 5: 5 to 9: 1. If the volume ratio of the inorganic ion exchange material is less than 50%, the removal efficiency of ionic impurities may be reduced, and if the volume ratio of the inorganic ion exchange material exceeds 90%, the organic matter by the inorganic non-ion component adsorbent The removal amount of impurities such as fine particles and colloidal impurities may decrease.

酸化剤溶液に含まれる不純物としては、例えば、イオン性の不純物(不純物の陽イオン、陰イオン)、有機物等の不純物、微粒子状、コロイド状の不純物などを挙げることができる。不純物の陽イオンとしては、例えば、ナトリウム、カリウム等のアルカリ金属、カルシウム等のアルカリ土類金属、アルミニウム、鉛等の典型金属元素の金属イオン、クロム、鉄等の遷移金属の金属イオン等が挙げられる。不純物の陰イオンとしては、例えば、Cl等の非金属陰イオン、金属陰イオン錯体等が挙げられる。 Examples of the impurities contained in the oxidant solution include ionic impurities (impurity cations and anions), impurities such as organic substances, particulate and colloidal impurities, and the like. Examples of the cation of impurities include alkali metals such as sodium and potassium, alkaline earth metals such as calcium, metal ions of typical metal elements such as aluminum and lead, and metal ions of transition metals such as chromium and iron. It is done. The anion impurities, eg, Cl - nonmetal anions such, metal anion complexes.

本発明の方法は、これらの無機吸着材の過剰量を不純物を含む酸化剤溶液とともに収容して所定時間撹拌するか、もしくはこれらの無機吸着材を収容したカラムに不純物を含む酸化剤溶液を通液することにより行われる。   In the method of the present invention, an excessive amount of these inorganic adsorbents is accommodated together with an oxidant solution containing impurities and stirred for a predetermined time, or the oxidant solution containing impurities is passed through a column containing these inorganic adsorbents. This is done by liquefying.

本発明によれば、安定した高品質の酸化剤を高い生産性で得ることのできる酸化剤の精製方法及びその精製装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the purification method of the oxidizing agent which can obtain the stable high quality oxidizing agent with high productivity, and its refinement | purification apparatus can be provided.

以下、図面を参照して、本発明の実施の形態を具体的に説明する。本発明はこれらの実施の形態に何ら限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to these embodiments.

(第一の実施形態)
図1は、本発明の第一の実施形態に係る酸化剤の精製装置10の構成を示す図である。本実施の形態は、バッチ方式による酸化剤の精製装置を示している。酸化剤の精製装置10は、不純物を含む酸化剤溶液と粉末状、粒状又は繊維状の無機吸着材を収容し、この不純物を無機吸着材に吸着させる反応が行われる槽11と、槽11中の酸化剤溶液と無機吸着材を攪拌する攪拌機12と、槽11から送液された無機吸着材と酸化剤溶液とを分離する分離手段13と、分離手段13によって分離した酸化剤溶液(精製液)を収容する精製酸化剤溶液タンク14とを備えている。
(First embodiment)
FIG. 1 is a diagram showing a configuration of an oxidizer purification apparatus 10 according to the first embodiment of the present invention. This embodiment shows a batch-type oxidizing agent purification apparatus. The oxidant purification apparatus 10 contains an oxidant solution containing impurities and a powdery, granular, or fibrous inorganic adsorbent, and a tank 11 in which a reaction for adsorbing the impurities to the inorganic adsorbent is performed. The stirrer 12 for stirring the oxidant solution and the inorganic adsorbent, the separation means 13 for separating the inorganic adsorbent and the oxidant solution fed from the tank 11, and the oxidant solution (purified liquid separated by the separation means 13). ) And a purified oxidant solution tank 14 for storing the same.

分離手段13としては、例えば、膜濾過装置、沈降分離装置、遠心分離装置等が挙げられる。膜濾過装置としては、限外濾過膜、精密濾過膜等の濾過膜を備える濾過装置が挙げられる。濾過膜は、酸化剤に対して安定なポリカーボネート製濾過膜、ポリエチレン製濾過膜、セラミックス膜、ガラスフィルター等を用いることが好ましく、フィルターの孔径は無機吸着材を透過させなければ、特に限定されるものではない。膜濾過装置による濾過によって、無機吸着材で補足しきれなかった不溶性不純物を除去することもできる。   Examples of the separation means 13 include a membrane filtration device, a sedimentation separation device, and a centrifugal separation device. As a membrane filtration apparatus, a filtration apparatus provided with filtration membranes, such as an ultrafiltration membrane and a microfiltration membrane, is mentioned. The filtration membrane is preferably a polycarbonate filtration membrane, a polyethylene filtration membrane, a ceramic membrane, a glass filter, or the like that is stable against an oxidizing agent, and the pore size of the filter is particularly limited as long as it does not allow the inorganic adsorbent to permeate. It is not a thing. Insoluble impurities that could not be captured by the inorganic adsorbent can also be removed by filtration using a membrane filtration device.

槽11中に不純物を含む酸化剤溶液と粉末状、粒状又は繊維状の無機吸着材が収容され、攪拌機12によって槽11中の酸化剤溶液と無機吸着材が攪拌され、不純物が無機吸着材に吸着される。攪拌時間は、無機吸着材の種類、不純物の量等によっても異なるが、通常25℃において1時間以上であることが好ましい。送液ポンプ15により、槽11から不純物の除去された酸化剤溶液と不純物を吸着した無機吸着材が送液されて、逆流を防止する逆止弁16を経て分離手段13に供給されて分離される。図1では、分離手段13として限外濾過膜を用いた場合を示している。   An oxidant solution containing impurities and a powdery, granular or fibrous inorganic adsorbent are accommodated in the tank 11, and the oxidant solution and the inorganic adsorbent in the tank 11 are stirred by the stirrer 12, so that the impurities are converted into the inorganic adsorbent. Adsorbed. The stirring time varies depending on the kind of the inorganic adsorbent, the amount of impurities, etc., but it is usually preferably 1 hour or longer at 25 ° C. An oxidant solution from which impurities have been removed and an inorganic adsorbent that has adsorbed impurities are fed from the tank 11 by the liquid feed pump 15, supplied to the separation means 13 via a check valve 16 that prevents backflow, and separated. The FIG. 1 shows a case where an ultrafiltration membrane is used as the separation means 13.

分離手段13によって分離された濾液の酸化剤溶液(精製液)は、排出管17から精製酸化剤溶液タンク14に収容される。一方、分離手段13によって分離された残留物の無機吸着材は、排出管18を経て槽11に戻される。   The filtrate oxidant solution (purified liquid) separated by the separation means 13 is accommodated in the purified oxidant solution tank 14 from the discharge pipe 17. On the other hand, the residual inorganic adsorbent separated by the separation means 13 is returned to the tank 11 via the discharge pipe 18.

なお、調整弁19によって流量の調整がなされる。また、送液ポンプ15による送液の出力、すなわち分離手段13の限外濾過膜の作動圧力は、圧力計20と流量計21を介して制御される。また、試料採取バルブ22によって、酸化剤溶液及び/又は無機吸着材の試料を採取することができる。   The flow rate is adjusted by the adjusting valve 19. Further, the output of the liquid fed by the liquid feed pump 15, that is, the operating pressure of the ultrafiltration membrane of the separation means 13 is controlled via the pressure gauge 20 and the flow meter 21. In addition, the sample collection valve 22 can collect a sample of the oxidant solution and / or the inorganic adsorbent.

クロスフロー濾過によって分離手段13の限外濾過膜の濾過膜表面に付着した無機吸着材は、逆洗ポンプ23を用いて濾過膜を逆洗することで脱着することができるため、濾過膜は繰り返しの使用が可能である。   Since the inorganic adsorbent adhering to the surface of the ultrafiltration membrane of the separation means 13 by the crossflow filtration can be desorbed by backwashing the filtration membrane using the backwash pump 23, the filtration membrane is repeated. Can be used.

以上のように、本実施の形態では、酸化剤溶液に無機吸着材を接触させて不純物を除去している。有機質のイオン交換樹脂ではなく、無機吸着材を用いていることから、酸化剤溶液への酸化劣化した分解生成物の混入を防止でき、また、無機吸着材の頻繁な交換が不要なため、安定した高品質の酸化剤を高い生産性で得ることができる。   As described above, in the present embodiment, the inorganic adsorbent is brought into contact with the oxidant solution to remove impurities. Since inorganic adsorbents are used instead of organic ion-exchange resins, it is possible to prevent oxidation products from degrading into the oxidizer solution and to eliminate the need for frequent replacement of inorganic adsorbents. High quality oxidant can be obtained with high productivity.

(第二の実施形態)
図2は、本発明の第二の実施形態に係る酸化剤の精製装置25の構成を示す図である。図1に共通する部分には同一符合を付し、第一の実施形態と重複する説明を省略する。
(Second embodiment)
FIG. 2 is a diagram showing a configuration of the oxidant purification device 25 according to the second embodiment of the present invention. Portions common to FIG. 1 are denoted by the same reference numerals, and description overlapping with the first embodiment is omitted.

本実施の形態は、カラムを用いた連続通液方式による酸化剤の精製装置を示している。酸化剤の精製装置25は、無機吸着材が充填されており、酸化剤溶液が通液されて酸化剤溶液中の不純物を除去するカラム27と、カラム27に不純物を含む酸化剤溶液を通液させる送液系とを備えている。送液系は、例えば、不純物を含む酸化剤溶液を収容するタンク26と、タンク26からカラム27に酸化剤溶液を送液する送液ポンプ15とから構成されている。   The present embodiment shows an apparatus for purifying an oxidizing agent by a continuous liquid flow method using a column. The oxidant purification device 25 is filled with an inorganic adsorbent, and a column 27 through which an oxidant solution is passed to remove impurities in the oxidant solution, and an oxidant solution containing impurities through the column 27. And a liquid feeding system. The liquid feeding system includes, for example, a tank 26 that stores an oxidant solution containing impurities, and a liquid feed pump 15 that feeds the oxidant solution from the tank 26 to the column 27.

図3は、カラム27の一例を示す側面図である。カラム27は、カートリッジ29とフィルター30とから構成されている。カートリッジ29は、無機吸着材を内部に充填するものである。フィルター30は、酸化剤溶液の出入り口にそれぞれ設けられ、酸化剤に対して安定なポリカーボネート製フィルター、セラミックス膜、ガラスフィルター等を用いることが好ましい。フィルター30によって、無機吸着材で補足しきれなかった不溶性不純物を除去することができる。   FIG. 3 is a side view showing an example of the column 27. The column 27 includes a cartridge 29 and a filter 30. The cartridge 29 is for filling the inside with an inorganic adsorbent. It is preferable to use a filter made of polycarbonate, a ceramic film, a glass filter or the like that is provided at the entrance and exit of the oxidant solution and is stable against the oxidant. The filter 30 can remove insoluble impurities that could not be captured by the inorganic adsorbent.

タンク26中に不純物を含む酸化剤溶液が収容され、送液ポンプ15により、タンク26からカラム27へ酸化剤溶液が送液され、カラム27のカートリッジ29内に充填された無機吸着材に酸化剤溶液中の不純物は吸着される。カラム27の無機吸着材に通過させる酸化剤溶液の線速度(LV)は0.03〜1m/hr、空間速度(SV)は0.04〜30hr−1の範囲が好ましい。操作温度は、通常0〜50℃の範囲から選ばれ、操作圧力は0.1〜0.5MPaの範囲から選ばれる。カラム27に通液されて不純物が除去された酸化剤溶液(精製液)は、排出管28からタンク26に収容される。 An oxidant solution containing impurities is accommodated in the tank 26, and the oxidant solution is fed from the tank 26 to the column 27 by the liquid feed pump 15, and the oxidant is added to the inorganic adsorbent filled in the cartridge 29 of the column 27. Impurities in the solution are adsorbed. The linear velocity (LV) of the oxidant solution passed through the inorganic adsorbent of the column 27 is preferably in the range of 0.03 to 1 m / hr, and the space velocity (SV) is in the range of 0.04 to 30 hr −1 . The operating temperature is usually selected from the range of 0 to 50 ° C., and the operating pressure is selected from the range of 0.1 to 0.5 MPa. The oxidant solution (purified liquid) from which impurities have been removed by passing through the column 27 is accommodated in the tank 26 through the discharge pipe 28.

なお、調整弁19によって流量の調整がなされる。また、送液ポンプ15による送液の出力、すなわちカラム27の作動圧力は、圧力計20と流量計21を介して制御される。また、試料採取バルブ22によって、酸化剤溶液の試料を採取することができる。   The flow rate is adjusted by the adjusting valve 19. Further, the output of the liquid feed by the liquid feed pump 15, that is, the operating pressure of the column 27 is controlled via the pressure gauge 20 and the flow meter 21. A sample of the oxidant solution can be collected by the sample collection valve 22.

以上のように、本実施の形態では、酸化剤溶液に無機吸着材を接触させて不純物を除去している。有機質のイオン交換樹脂ではなく、無機吸着材を用いていることから、酸化剤溶液への酸化劣化した分解生成物の混入を防止でき、また、無機吸着材の頻繁な交換が不要なため、安定した高品質の酸化剤を高い生産性で得ることができる。   As described above, in the present embodiment, the inorganic adsorbent is brought into contact with the oxidant solution to remove impurities. Since inorganic adsorbents are used instead of organic ion-exchange resins, it is possible to prevent oxidation products from degrading into the oxidizer solution and to eliminate the need for frequent replacement of inorganic adsorbents. High quality oxidant can be obtained with high productivity.

以下に、実施例を用いて本発明の内容を説明するが、本発明はこれらの実施例によって限定されるものではない。ここでは、酸化剤として、過ヨウ素酸(HIO)を用いた。ppbは重量ppbである。 Hereinafter, the content of the present invention will be described using examples, but the present invention is not limited to these examples. Here, periodic acid (H 5 IO 6 ) was used as the oxidizing agent. ppb is the weight ppb.

(実施例1)
塩化酸化ジルコニウム八水和物(ZrCl2O・8HO:和光純薬工業株式会社製)0.2M(M=1mol・dm−3)を1.1Mのフッ化水素酸に溶解させ、この溶液に1.6Mのリン酸二水素アンモニウム(NHHPO:和光純薬工業株式会社製)水溶液を加えた。ポリエチレン製の容器内に上記の溶液を移し、湿気のある空気を送りながら減圧下、60℃で5〜7日間、溶液を撹拌混合した。得られた結晶を、洗浄水のpHが5になるまで超純水で洗浄し、リン酸ジルコニウム化合物(Zr(HPO)・2HO)を得た。
以上のように合成したリン酸ジルコニウム化合物を無機イオン交換材として、図1に示す酸化剤の精製装置10を用いて過ヨウ素酸(HIO)の精製を行った。槽11内に、リン酸ジルコニウム化合物を300g、過ヨウ素酸水溶液(50重量%)を30L加え、撹拌機12を用いて25℃で24時間反応させた。
反応後、送液ポンプ15を用いて流速3.5〜4L/minで、孔径が0.05μmのセラミックス製限外ろ過膜(UF)(分離手段13)内に送液し、クロスフローろ過を行い過ヨウ素酸の精製液が得られた。
精製前及び精製後の過ヨウ素酸中の金属成分の質量を、誘導結合プラズマ質量分析装置(ICP−MS)により測定し、下記の式(1)から、無機イオン交換材であるリン酸ジルコニウム化合物による過ヨウ素酸水溶液中の金属成分の不純物の除去率(%)を算出した。得られた結果を表1に示す。
Example 1
Zirconium chloride oxide octahydrate (ZrCl 2 O · 8H 2 O: Wako Pure Chemical Industries, Ltd.) 0.2M (M = 1 mol · dm −3 ) was dissolved in 1.1M hydrofluoric acid, 1.6M ammonium dihydrogen phosphate (NH 4 H 2 PO 4 : manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution was added to the solution. The above solution was transferred into a polyethylene container, and the solution was stirred and mixed at 60 ° C. for 5 to 7 days under reduced pressure while sending humid air. The obtained crystal was washed with ultrapure water until the washing water had a pH of 5, to obtain a zirconium phosphate compound (Zr (HPO 4 ) · 2H 2 O).
Periodic acid (H 5 IO 6 ) was purified using the oxidizing agent purification apparatus 10 shown in FIG. 1 using the zirconium phosphate compound synthesized as described above as an inorganic ion exchange material. In the tank 11, 300 g of a zirconium phosphate compound and 30 L of a periodic acid aqueous solution (50% by weight) were added and reacted at 25 ° C. for 24 hours using the stirrer 12.
After the reaction, the solution is fed into a ceramic ultrafiltration membrane (UF) (separation means 13) having a pore size of 0.05 μm at a flow rate of 3.5 to 4 L / min using a liquid feed pump 15 and subjected to cross flow filtration. A purified solution of periodic acid was obtained.
The mass of the metal component in periodic acid before and after purification is measured by an inductively coupled plasma mass spectrometer (ICP-MS), and from the following formula (1), the zirconium phosphate compound that is an inorganic ion exchange material The removal rate (%) of impurities of metal components in the periodic acid aqueous solution was calculated. The obtained results are shown in Table 1.

Figure 2007185581
Figure 2007185581

(実施例2)
五塩化アンチモン(SbCl:和光純薬工業株式会社製)を適当量ポリエチレン製の容器内に採取し、超純水を加えて30〜70℃で5〜7日間熟成することで得られたアンチモン酸化合物(SbO・4H2O)を無機イオン交換材として用いた以外は、実施例1と同様にして過ヨウ素酸の精製を行った。得られた結果を表1に示す。
(Example 2)
Antimony obtained by collecting antimony pentachloride (SbCl 5 : Wako Pure Chemical Industries, Ltd.) in an appropriate amount of polyethylene container, adding ultrapure water and aging at 30-70 ° C. for 5-7 days except for using acid compound (Sb 2 O 5 · 4H 2 O) as an inorganic ion exchange material, was to purification of periodate in the same manner as in example 1. The obtained results are shown in Table 1.

Figure 2007185581
Figure 2007185581

いずれの金属成分も、数十〜数百ppbの含有量から精製後には分析検出限界である数ppb程度まで低減された。表1において、除去率(%)が大きい値であるほど過ヨウ素酸中の金属成分の不純物の高い除去能力を有している。表1に示されるように、いずれの金属成分の不純物もリン酸ジルコニウム化合物(実施例1)、アンチモン酸化合物(実施例2)の少なくとも一方の無機イオン交換材により除去されている。特に、Na、Ca、Cr、Fe、K、Pbの金属成分の不純物については、リン酸塩化合物(実施例1)、アンチモン酸化合物(実施例2)の少なくとも一方の無機イオン交換材によって、50%以上の除去率が示された。   All the metal components were reduced from a content of several tens to several hundreds of ppb to about several ppb, which is an analytical detection limit after purification. In Table 1, the larger the removal rate (%), the higher the ability of removing impurities of the metal component in periodic acid. As shown in Table 1, impurities of any metal component are removed by at least one inorganic ion exchange material of the zirconium phosphate compound (Example 1) and the antimonic acid compound (Example 2). In particular, the impurities of the metal components Na, Ca, Cr, Fe, K, and Pb are 50 by the inorganic ion exchange material of at least one of the phosphate compound (Example 1) and the antimonic acid compound (Example 2). % Removal rate was indicated.

以上から、無機イオン交換材はNa等のアルカリ金属のイオンやCa等のアルカリ土類金属のイオンやFe等の遷移金属のイオンなどの除去に幅広く応用できる。また、無機イオン交換材は、金属イオン不純物により異なる除去能力を示すため、除去目的の金属イオン不純物の種類によって、無機イオン交換材の組成、構造を選定し、効率的な精製が可能となる。また、組成の異なる2種類以上の無機イオン交換材を用いれば、多くの種類の金属イオン不純物を除去することが可能となる。さらに、過ヨウ素酸(HIO)は強力な酸化剤であるが、無機イオン交換材の劣化や、金属の触媒作用による無機イオン交換材の分解は確認されず、安定した高品質の酸化剤を高い生産性で得ることができた。 From the above, the inorganic ion exchange material can be widely applied to the removal of ions of alkali metals such as Na, ions of alkaline earth metals such as Ca, and ions of transition metals such as Fe. In addition, since the inorganic ion exchange material exhibits different removal ability depending on the metal ion impurity, the composition and structure of the inorganic ion exchange material can be selected depending on the kind of the metal ion impurity to be removed, thereby enabling efficient purification. In addition, if two or more types of inorganic ion exchange materials having different compositions are used, many types of metal ion impurities can be removed. In addition, periodic acid (H 5 IO 6 ) is a strong oxidizer, but it has not been confirmed that the inorganic ion exchange material is degraded or decomposed due to metal catalysis, and stable high quality oxidation. The agent could be obtained with high productivity.

(実施例3)
図2に示す酸化剤の精製装置25を用いて過ヨウ素酸(HIO)の精製を行った。カラム27のポリエチレン製の直径18cm×高さ44cmの円柱型カートリッジ29内に実施例2で用いた無機イオン交換材であるアンチモン酸化合物を10kg充填し、酸化剤水溶液の出入口に孔径が0.1μmのポリカーボネート製のフィルター30を挿入した。カラム27内の洗浄のため、1N−硝酸20Lを、送液ポンプを用いて流速1L/minで、1時間、上向流で循環通液を行った後、1N−硝酸の通液を止め、超純水を上向流で流速1L/minで3時間通液した。50重量%の過ヨウ素酸水溶液を上向流で流速10ml/minで通液した後、回収した精製過ヨウ素酸水溶液中の金属成分をICP−MSで測定した。式(1)から、アンチモン酸化合物による過ヨウ素酸水溶液中の金属成分の不純物の除去率(%)を算出した。得られた結果を表2に示す。
(Example 3)
Periodic acid (H 5 IO 6 ) was purified using an oxidizer purification apparatus 25 shown in FIG. The column 27 made of polyethylene having a diameter of 18 cm and a height of 44 cm is filled with 10 kg of the antimonic acid compound, which is the inorganic ion exchange material used in Example 2, and the pore diameter is 0.1 μm at the inlet / outlet of the aqueous oxidizing agent solution. A filter 30 made of polycarbonate was inserted. In order to clean the inside of the column 27, 1N-nitric acid 20L was circulated through the liquid for 1 hour at a flow rate of 1 L / min using a liquid feed pump, and then the flow of 1N-nitric acid was stopped. Ultra pure water was passed for 3 hours in an upward flow at a flow rate of 1 L / min. After passing 50% by weight of periodic acid aqueous solution in an upward flow at a flow rate of 10 ml / min, the metal components in the collected purified periodic acid aqueous solution were measured by ICP-MS. From the formula (1), the removal rate (%) of impurities of the metal component in the periodic acid aqueous solution by the antimonic acid compound was calculated. The obtained results are shown in Table 2.

Figure 2007185581
Figure 2007185581

表2に示されるように、実施例2の結果(表1)と比較して、本実施例のカラム27を用いた連続通液方式の方が高い除去率(%)が認められ、すべての金属成分の不純物について50%以上の除去率が示された。特に、Na、Ca、Pbの金属成分の不純物については、85%以上の高い除去率(%)が認められた。精製前の過ヨウ素酸中に含まれる不純物は数百ppb程度であったが、精製後は数十ppbまたは数ppb程度まで除去できた。   As shown in Table 2, compared with the results of Example 2 (Table 1), a higher removal rate (%) was observed in the continuous liquid flow method using the column 27 of this example, A removal rate of 50% or more was shown for impurities of the metal component. In particular, a high removal rate (%) of 85% or more was recognized for impurities of metal components of Na, Ca, and Pb. Impurities contained in periodic acid before purification were about several hundred ppb, but after purification, they could be removed to several tens of ppb or several ppb.

以上から、無機イオン交換材はNa等のアルカリ金属のイオンやCa等のアルカリ土類金属のイオンやFe等の遷移金属のイオンなどの除去に幅広く応用できる。また、無機イオン交換材は、金属イオン不純物により異なる除去能力を示すため、除去目的の金属イオン不純物の種類によって、無機イオン交換材の組成、構造を選定し、効率的な精製が可能となる。また、組成の異なる2種類以上の無機イオン交換材を用いれば、多くの種類の金属イオン不純物を除去することが可能となる。さらに、過ヨウ素酸(HIO)は強力な酸化剤であるが、無機イオン交換材の劣化や、金属の触媒作用による無機イオン交換材の分解は確認されず、安定した高品質の酸化剤を高い生産性で得ることができた。
また、不純物の除去を行ったカラムを、精製のときとは逆方向の下向きに3N硝酸を流入し、同様に超純水で十分に洗浄することで、カラムの再生も可能であった。
From the above, the inorganic ion exchange material can be widely applied to the removal of ions of alkali metals such as Na, ions of alkaline earth metals such as Ca, and ions of transition metals such as Fe. In addition, since the inorganic ion exchange material exhibits different removal ability depending on the metal ion impurity, the composition and structure of the inorganic ion exchange material can be selected depending on the kind of the metal ion impurity to be removed, thereby enabling efficient purification. In addition, if two or more types of inorganic ion exchange materials having different compositions are used, many types of metal ion impurities can be removed. In addition, periodic acid (H 5 IO 6 ) is a strong oxidizer, but it has not been confirmed that the inorganic ion exchange material is degraded or decomposed due to metal catalysis, and stable high quality oxidation. The agent could be obtained with high productivity.
In addition, the column was also regenerated by flowing 3N nitric acid downward in the direction opposite to the direction of purification, and thoroughly washing with ultrapure water.

本発明の第一の実施形態に係る酸化剤の精製装置の構成を示す図である。It is a figure which shows the structure of the refiner | purifier of the oxidizing agent which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る酸化剤の精製装置の構成を示す図である。It is a figure which shows the structure of the refiner | purifier of the oxidizing agent which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に用いられるカラムの一例を示す側面図である。It is a side view which shows an example of the column used for 2nd embodiment of this invention.

符号の説明Explanation of symbols

10,25…酸化剤の精製装置、11…槽、12…攪拌機、13…分離手段、14…精製酸化剤溶液タンク、15…送液ポンプ、16…逆止弁、17、18、28…排出管、19…調整弁、20…圧力計、21…流量計、22…試料採取バルブ、23…逆洗ポンプ、26…タンク、27…カラム、29…カートリッジ、30…フィルター。   DESCRIPTION OF SYMBOLS 10,25 ... Oxidizing agent refinement | purification apparatus, 11 ... Tank, 12 ... Stirrer, 13 ... Separation means, 14 ... Purified oxidant solution tank, 15 ... Liquid feed pump, 16 ... Check valve, 17, 18, 28 ... Discharge Pipe, 19 ... Regulating valve, 20 ... Pressure gauge, 21 ... Flow meter, 22 ... Sampling valve, 23 ... Backwash pump, 26 ... Tank, 27 ... Column, 29 ... Cartridge, 30 ... Filter.

Claims (8)

不純物を含む酸化剤溶液を無機吸着材と接触させて前記不純物を除去することを特徴とする酸化剤の精製方法。   A method for purifying an oxidant, comprising: bringing an oxidant solution containing impurities into contact with an inorganic adsorbent to remove the impurities. 前記酸化剤溶液が酸化剤水溶液であり、前記無機吸着材は無機イオン交換材からなることを特徴とする請求項1に記載の酸化剤の精製方法。   The method for purifying an oxidant according to claim 1, wherein the oxidant solution is an oxidant aqueous solution, and the inorganic adsorbent is made of an inorganic ion exchange material. 前記無機吸着材は、無機非イオン成分吸着材からなることを特徴とする請求項1又は2に記載の酸化剤の精製方法。   The method for purifying an oxidant according to claim 1 or 2, wherein the inorganic adsorbent comprises an inorganic nonionic component adsorbent. 前記無機吸着材の形状が、粉末状、粒状又は繊維状であることを特徴とする請求項1乃至3のいずれか1項に記載の酸化剤の精製方法。   The method for purifying an oxidizing agent according to any one of claims 1 to 3, wherein the shape of the inorganic adsorbent is powdery, granular or fibrous. 前記無機吸着材が、多孔質の無機吸着材であることを特徴とする請求項1乃至4のいずれか1項に記載の酸化剤の精製方法。   The method for purifying an oxidant according to any one of claims 1 to 4, wherein the inorganic adsorbent is a porous inorganic adsorbent. 無機吸着材を充填したカラムと、前記カラムに不純物を含む酸化剤溶液を通液させる送液系とを具備することを特徴とする酸化剤の精製装置。   An oxidant purification apparatus comprising: a column filled with an inorganic adsorbent; and a liquid feed system for passing an oxidant solution containing impurities through the column. 不純物を含む酸化剤溶液と無機吸着材とを貯槽する撹拌機を備えた槽と、
前記槽と送液管を介して接続され、前記槽から送液される前記無機吸着材と前記酸化剤溶液から前記無機吸着材を分離する分離手段と、
前記分離手段から送液される酸化剤溶液を貯槽する精製酸化剤溶液タンクと、
を具備することを特徴とする酸化剤の精製装置。
A tank equipped with a stirrer for storing an oxidant solution containing impurities and an inorganic adsorbent;
Separation means that separates the inorganic adsorbent from the inorganic adsorbent and the oxidant solution that are connected to the tank via a liquid feed pipe and fed from the tank;
A purified oxidant solution tank for storing an oxidant solution fed from the separation means;
An apparatus for purifying an oxidant, comprising:
前記分離手段が、膜濾過装置、沈降分離装置又は遠心分離装置であることを特徴とする請求項7に記載の酸化剤の精製装置。   The oxidant purification device according to claim 7, wherein the separation means is a membrane filtration device, a sedimentation separation device, or a centrifugal separation device.
JP2006004432A 2006-01-12 2006-01-12 Purification method and purification apparatus for oxidizing agent Pending JP2007185581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004432A JP2007185581A (en) 2006-01-12 2006-01-12 Purification method and purification apparatus for oxidizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004432A JP2007185581A (en) 2006-01-12 2006-01-12 Purification method and purification apparatus for oxidizing agent

Publications (1)

Publication Number Publication Date
JP2007185581A true JP2007185581A (en) 2007-07-26

Family

ID=38341119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004432A Pending JP2007185581A (en) 2006-01-12 2006-01-12 Purification method and purification apparatus for oxidizing agent

Country Status (1)

Country Link
JP (1) JP2007185581A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285610A (en) * 2008-05-30 2009-12-10 Kurita Water Ind Ltd Method and apparatus for treating water-soluble resin component-containing alkaline wastewater
JP2011000518A (en) * 2009-06-17 2011-01-06 Tomokazu Kanda Cylinder device having ceramic composite and coating liquid circulation system using the cylinder device
JP2011036817A (en) * 2009-08-13 2011-02-24 Sumitomo Metal Mining Co Ltd Filtration method of slurry containing colloidal silica
WO2012121047A1 (en) * 2011-03-10 2012-09-13 株式会社 東芝 Water treatment system and water treatment method
JP2012250214A (en) * 2011-06-07 2012-12-20 Masanori Aritomi Seawater purification system
WO2013027403A1 (en) * 2011-08-23 2013-02-28 株式会社 東芝 Cation adsorbent and method for processing solution using same
CN107244654A (en) * 2017-07-25 2017-10-13 贵州开磷碘业有限责任公司 A kind of device for separating iodine product
CN111321423A (en) * 2020-01-17 2020-06-23 湖北永绍科技股份有限公司 Method for recovering sulfuric acid from waste sulfuric acid containing hydrogen peroxide
JPWO2019150990A1 (en) * 2018-02-05 2021-01-28 富士フイルム株式会社 Chemical solution, manufacturing method of chemical solution, processing method of substrate
CN115501681A (en) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 Adsorption tank, filter device and working solution online purification system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187616A (en) * 1993-12-24 1995-07-25 Sumitomo Chem Co Ltd Production of hydrogen peroxide solution of high purity
JPH09167752A (en) * 1995-12-14 1997-06-24 Mitsubishi Electric Corp Method and device for chemical solution treatment
JPH10259009A (en) * 1997-03-17 1998-09-29 Sumitomo Chem Co Ltd Purification of hydrogen peroxide solution
JP2001025602A (en) * 1999-07-15 2001-01-30 Japan Organo Co Ltd Replacing method of activated carbon in activated carbon treatment apparatus
JP2002080207A (en) * 2000-06-21 2002-03-19 Santoku Kagaku Kogyo Kk Manufacturing method of refined hydrogen peroxide solution
JP2003245659A (en) * 2002-02-25 2003-09-02 Nomura Micro Sci Co Ltd Method and device for treating drain water
JP2005013811A (en) * 2003-06-24 2005-01-20 Ebara Corp Material for removing contaminant in gas and method for manufacturing the material
JP2005144370A (en) * 2003-11-17 2005-06-09 Japan Organo Co Ltd Method for regenerating fluorine or phosphate adsorbent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187616A (en) * 1993-12-24 1995-07-25 Sumitomo Chem Co Ltd Production of hydrogen peroxide solution of high purity
JPH09167752A (en) * 1995-12-14 1997-06-24 Mitsubishi Electric Corp Method and device for chemical solution treatment
JPH10259009A (en) * 1997-03-17 1998-09-29 Sumitomo Chem Co Ltd Purification of hydrogen peroxide solution
JP2001025602A (en) * 1999-07-15 2001-01-30 Japan Organo Co Ltd Replacing method of activated carbon in activated carbon treatment apparatus
JP2002080207A (en) * 2000-06-21 2002-03-19 Santoku Kagaku Kogyo Kk Manufacturing method of refined hydrogen peroxide solution
JP2003245659A (en) * 2002-02-25 2003-09-02 Nomura Micro Sci Co Ltd Method and device for treating drain water
JP2005013811A (en) * 2003-06-24 2005-01-20 Ebara Corp Material for removing contaminant in gas and method for manufacturing the material
JP2005144370A (en) * 2003-11-17 2005-06-09 Japan Organo Co Ltd Method for regenerating fluorine or phosphate adsorbent

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285610A (en) * 2008-05-30 2009-12-10 Kurita Water Ind Ltd Method and apparatus for treating water-soluble resin component-containing alkaline wastewater
JP2011000518A (en) * 2009-06-17 2011-01-06 Tomokazu Kanda Cylinder device having ceramic composite and coating liquid circulation system using the cylinder device
JP2011036817A (en) * 2009-08-13 2011-02-24 Sumitomo Metal Mining Co Ltd Filtration method of slurry containing colloidal silica
CN103380085A (en) * 2011-03-10 2013-10-30 株式会社东芝 Water treatment system and water treatment method
WO2012121047A1 (en) * 2011-03-10 2012-09-13 株式会社 東芝 Water treatment system and water treatment method
JP2012187507A (en) * 2011-03-10 2012-10-04 Toshiba Corp Device and method for water treatment
JP2012250214A (en) * 2011-06-07 2012-12-20 Masanori Aritomi Seawater purification system
JPWO2013027403A1 (en) * 2011-08-23 2015-03-05 株式会社東芝 Cation adsorbent and solution treatment method using the same
WO2013027403A1 (en) * 2011-08-23 2013-02-28 株式会社 東芝 Cation adsorbent and method for processing solution using same
US9409144B2 (en) 2011-08-23 2016-08-09 Kabushiki Kaisha Toshiba Cation adsorbent for solution treatment
US10081850B2 (en) 2011-08-23 2018-09-25 Kabushiki Kaisha Toshiba Treatment method for solution containing metal ions using cation adsorbent
CN107244654A (en) * 2017-07-25 2017-10-13 贵州开磷碘业有限责任公司 A kind of device for separating iodine product
CN107244654B (en) * 2017-07-25 2023-07-21 贵州开磷碘业有限责任公司 Device for separating iodine products
JPWO2019150990A1 (en) * 2018-02-05 2021-01-28 富士フイルム株式会社 Chemical solution, manufacturing method of chemical solution, processing method of substrate
US11732190B2 (en) 2018-02-05 2023-08-22 Fujifilm Corporation Chemical solution, method for manufacturing chemical solution, and method for treating substrate
CN111321423A (en) * 2020-01-17 2020-06-23 湖北永绍科技股份有限公司 Method for recovering sulfuric acid from waste sulfuric acid containing hydrogen peroxide
CN115501681A (en) * 2021-06-23 2022-12-23 中国石油化工股份有限公司 Adsorption tank, filter device and working solution online purification system

Similar Documents

Publication Publication Date Title
JP2007185581A (en) Purification method and purification apparatus for oxidizing agent
CA2618222C (en) Process using rare earths to remove oxyanions from aqueous streams
US5082570A (en) Regenerable inorganic media for the selective removal of contaminants from water sources
EP4108633A1 (en) Lithium hydroxide production method
KR20150145220A (en) Supported Membrane Functionalized with Hexa-and Octacyanometallates, Process for the Preparation Thereof and Separation Process Using Same
JP6053325B2 (en) Sintered product, metal ion adsorbent, metal ion removal method, and metal ion removal equipment
US20220010408A1 (en) Processes for producing lithium compounds using reverse osmosis
EP1401576A1 (en) Inorganic ion exchangers for removing contaminant metal ions from liquid streams
US5078889A (en) Selective removal of contaminants from water sources using inorganic media
US20200086271A1 (en) Processes for producing lithium compounds using forward osmosis
CA3007617C (en) Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent
JP2004066161A (en) Water treatment method
JP2020109369A (en) Adsorbent of iodine ion and iodate ion and removing method thereof
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
CA3007460C (en) Treatment method of radioactive waste water containing radioactive cesium and radioactive strontium
JP2002210494A (en) Device for manufacturing extrapure water
JP2007117997A (en) Membrane filtration system and membrane filtration method
JPS5845705A (en) Enhancement of rate of adsorption of oxyacid to titanic acid
JPH09141262A (en) Use point filter system
JPS61192385A (en) Treatment of fluorine-containing waste solution
JP4617476B2 (en) Method for removing potassium ions
EP3389054B1 (en) Method for treating radioactive waste liquid containing radioactive cesium and radioactive strontium
JP6470354B2 (en) Silicotitanate molded body and method for producing the same, cesium or strontium adsorbent containing silicotitanate molded body, and decontamination method of radioactive liquid waste using the adsorbent
JPS61167404A (en) Separation module
JPS62244486A (en) Method of purifying brine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703