JP2002210494A - Device for manufacturing extrapure water - Google Patents

Device for manufacturing extrapure water

Info

Publication number
JP2002210494A
JP2002210494A JP2001010433A JP2001010433A JP2002210494A JP 2002210494 A JP2002210494 A JP 2002210494A JP 2001010433 A JP2001010433 A JP 2001010433A JP 2001010433 A JP2001010433 A JP 2001010433A JP 2002210494 A JP2002210494 A JP 2002210494A
Authority
JP
Japan
Prior art keywords
water
ion exchange
membrane
toc
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001010433A
Other languages
Japanese (ja)
Other versions
JP4552327B2 (en
Inventor
Kazuki Hayashi
一樹 林
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18877745&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002210494(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001010433A priority Critical patent/JP4552327B2/en
Publication of JP2002210494A publication Critical patent/JP2002210494A/en
Application granted granted Critical
Publication of JP4552327B2 publication Critical patent/JP4552327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture high purity extra-pure water in which concentrations of oxidants such as DO, TOC and H2O2 are remarkably low. SOLUTION: This device for manufacturing extra-pure water has a UV ray oxidation device 13 for radiating UV rays having wavelength near 185 nm, an oxidant catalytically decomposing device 14, a degassing device 15, a mixed bed type ion exchange equipment 16 and a fine particle separating membrane device 17 and water can be passed therethrough in this order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超純水製造装置に係
り、特に溶存酸素(DO)、全有機態酸素(TOC)及
び過酸化水素(H)等の酸化性物質濃度が極めて
低い超純水を製造することができる超純水製造装置に関
する。
The present invention relates to relates to ultrapure water production system, particularly the dissolved oxygen (DO), oxidizing agent concentration, such as total organic state oxygen (TOC) and hydrogen peroxide (H 2 O 2) is very The present invention relates to an ultrapure water production device capable of producing low ultrapure water.

【0002】[0002]

【従来の技術】従来、半導体洗浄用水として用いられて
いる超純水は、図3に示すように前処理システム1、一
次純水システム2及びサブシステム3から構成される超
純水製造装置で原水(工業用水、市水、井水等)を処理
することにより製造されている。図3において、各シス
テムの役割は次の通りである。
2. Description of the Related Art Conventionally, ultrapure water used as semiconductor cleaning water is an ultrapure water producing apparatus comprising a pretreatment system 1, a primary pure water system 2 and a subsystem 3, as shown in FIG. It is manufactured by treating raw water (industrial water, city water, well water, etc.). In FIG. 3, the role of each system is as follows.

【0003】凝集、加圧浮上(沈殿)、濾過装置等より
なる前処理システム1では、原水中の懸濁物質やコロイ
ド物質の除去を行う。逆浸透(RO)膜分離装置、脱気
装置及びイオン交換装置(混床式、2床3塔式又は4床
5塔式)を備える一次純水システム2では原水中のイオ
ンや有機成分の除去を行う。なお、RO膜分離装置で
は、塩類除去のほかにイオン性、コロイド性のTOCを
除去する。イオン交換装置では、塩類除去のほかにイオ
ン交換樹脂によって吸着又はイオン交換されるTOC成
分を除去する。脱気装置(窒素脱気又は真空脱気)では
溶存酸素の除去を行う。
[0003] In a pretreatment system 1 including a coagulation, pressure flotation (sedimentation), and a filtration device, suspended substances and colloid substances in raw water are removed. In the primary pure water system 2 equipped with a reverse osmosis (RO) membrane separation device, a degassing device, and an ion exchange device (mixed bed type, two beds three columns type or four beds five columns type), removal of ions and organic components in raw water is performed. I do. The RO membrane separation device removes ionic and colloidal TOC in addition to removing salts. The ion exchange device removes TOC components adsorbed or ion-exchanged by an ion exchange resin in addition to removing salts. In a deaerator (nitrogen deaeration or vacuum deaeration), dissolved oxygen is removed.

【0004】熱交換器、低圧紫外線(UV)酸化装置、
混床式イオン交換装置及び限外濾過(UF)膜分離装置
を備えるサブシステム3では、水の純度をより一層高め
超純水にする。なお、低圧UV酸化装置では、低圧UV
ランプより出される波長185nmの紫外線によりTO
Cを有機酸さらにはCOまで分解する。分解された有
機物及びCOは後段のイオン交換樹脂で除去される。
UF膜分離装置では、微小粒子が除去されイオン交換樹
脂の流出粒子も除去される。
Heat exchangers, low pressure ultraviolet (UV) oxidizers,
In the subsystem 3 including the mixed-bed ion exchange device and the ultrafiltration (UF) membrane separation device, the purity of water is further increased to ultrapure water. In the low-pressure UV oxidation device, low-pressure UV
TO with UV of 185nm wavelength emitted from lamp
Decomposing C and organic acids to CO 2. The decomposed organic matter and CO 2 are removed by the subsequent ion exchange resin.
In the UF membrane separation device, the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.

【0005】特開平9−29251号公報には、このよ
うな超純水製造装置において、サブシステム3の混床式
イオン交換装置とUF膜分離装置との間に膜式脱気装置
を設けることにより、得られる超純水のDOを低減する
ことが提案されている。この超純水製造装置であれば、
UV酸化装置から混床式イオン交換装置を通ることによ
り発生したDOを膜式脱気装置で除去することにより、
得られる超純水中のDOの値を低下させることができ
る。即ち、水中のTOCに対しUV酸化装置のUV照射
量が過剰になるとHが発生し、生成したH
が後段の混床式イオン交換装置のイオン交換樹脂と接触
して分解され、酸素が生成し、これがDOを増加させる
原因となっていることから、特開平9−29251号公
報の超純水製造装置では、混床式イオン交換装置の後段
に膜式脱気装置を設け、この膜式脱気装置でDOを除去
する。
Japanese Patent Application Laid-Open No. 9-29251 discloses that in such an ultrapure water production apparatus, a membrane deaerator is provided between the mixed bed type ion exchange apparatus of the subsystem 3 and the UF membrane separation apparatus. It has been proposed to reduce the DO of ultrapure water obtained. With this ultrapure water production device,
By removing DO generated by passing through the mixed bed type ion exchange device from the UV oxidation device with the membrane type deaerator,
The value of DO in the obtained ultrapure water can be reduced. That is, when the UV irradiation amount of the UV oxidizing device becomes excessive with respect to the TOC in water, H 2 O 2 is generated, and the generated H 2 O 2
Is decomposed by contact with the ion-exchange resin of the subsequent mixed-bed type ion-exchange device, and oxygen is generated, which causes an increase in DO. Therefore, the production of ultrapure water disclosed in JP-A-9-29251 is disclosed. In the apparatus, a membrane deaerator is provided downstream of the mixed bed ion exchanger, and DO is removed by the membrane deaerator.

【0006】ところで、UV酸化装置で発生したH
は混床式イオン交換装置のイオン交換樹脂と接触する
と分解されるが、その際、イオン交換樹脂を劣化させ、
イオン交換樹脂の分解でイオン交換樹脂由来のTOCが
生成し、得られる超純水の水質低下の原因となる。ま
た、混床式イオン交換装置に通水後もなお残留するH
は、混床式イオン交換装置の後段の膜式脱気装置の
脱気膜を劣化させる。
[0006] By the way, H 2 O generated by the UV oxidation device
2 is decomposed when it comes into contact with the ion exchange resin of the mixed bed type ion exchange device.
TOC derived from the ion exchange resin is generated by the decomposition of the ion exchange resin, which causes a deterioration in the quality of the obtained ultrapure water. Further, H 2 still remaining after passing water through the mixed bed type ion exchange device.
O 2 degrades the degassing membrane of the membrane degasser located downstream of the mixed bed ion exchange device.

【0007】そこで、このようなHに起因する問
題を解決するために、UV酸化装置と混床式イオン交換
装置との間にアニオン交換樹脂を充填したアニオン交換
塔や、炭素系吸着剤を充填した吸着塔を設け、UV酸化
装置で生成したHを混床式イオン交換装置の前段
で除去した後、混床式イオン交換装置に通水することも
提案されている。
[0007] In order to solve such problems caused by H 2 O 2 , an anion exchange tower filled with an anion exchange resin between a UV oxidizer and a mixed bed type ion exchanger has been proposed. It has also been proposed to provide an adsorption tower filled with an agent, remove H 2 O 2 generated by a UV oxidizer at a stage preceding the mixed bed ion exchanger, and then pass water through the mixed bed ion exchanger.

【0008】[0008]

【発明が解決しようとする課題】アニオン交換塔や吸着
塔を設けて混床式イオン交換装置の前段でHを除
去することにより、Hに起因する混床式イオン交
換装置のイオン交換樹脂の劣化や膜式脱気装置の脱気膜
の劣化の問題は解消されるが、従来の超純水製造装置で
は、TOCの発生に対しての十分な配慮がなされていな
いために、TOC濃度の低い超純水を得ることができな
いという問題があった。
A mixed bed type ion exchange apparatus caused by H 2 O 2 is provided by providing an anion exchange tower or an adsorption tower and removing H 2 O 2 in a stage preceding the mixed bed type ion exchange apparatus. Although the problems of deterioration of the ion exchange resin and deterioration of the deaeration membrane of the membrane deaerator can be solved, the conventional ultrapure water production apparatus does not give sufficient consideration to the generation of TOC. In addition, there is a problem that ultrapure water having a low TOC concentration cannot be obtained.

【0009】即ち、Hがアニオン交換樹脂と接触
することにより、Hが分解除去されるが、これに
より、アニオン交換樹脂の劣化による樹脂由来のTOC
の溶出の問題がある。また、炭素系吸着剤でもTOC溶
出の問題がある。また、アニオン交換樹脂や活性炭によ
るH分解では、分解により酸素が生成して後段の
脱気装置の負荷を増加させる問題がある。
That is, when H 2 O 2 comes into contact with the anion exchange resin, H 2 O 2 is decomposed and removed.
There is a problem of elution. Further, there is a problem of TOC elution even with a carbon-based adsorbent. In addition, in the decomposition of H 2 O 2 using an anion exchange resin or activated carbon, there is a problem that oxygen is generated by the decomposition and the load on the subsequent deaerator is increased.

【0010】本発明は上記従来の問題点を解決し、D
O、TOC、H等の酸化性物質濃度が著しく低い
高純度の超純水を製造することができる超純水製造装置
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and
It is an object of the present invention to provide an ultrapure water production apparatus capable of producing high purity ultrapure water having extremely low concentrations of oxidizing substances such as O, TOC, and H 2 O 2 .

【0011】[0011]

【課題を解決するための手段】本発明の超純水製造装置
は、185nm付近の波長を有する紫外線を照射する紫
外線酸化装置と、触媒式酸化性物質分解装置と、脱気装
置と、混床式イオン交換装置と、微粒子分離膜装置とを
有し、この順に通水可能としたことを特徴とする。
An ultrapure water producing apparatus according to the present invention comprises an ultraviolet oxidizing apparatus for irradiating an ultraviolet ray having a wavelength of about 185 nm, a catalytic oxidizing substance decomposing apparatus, a deaerator and a mixed bed. It has a characteristic ion exchange device and a fine particle separation membrane device, and water can be passed in this order.

【0012】酸化性物質を触媒で分解する触媒式酸化性
物質分解装置であれば、酸化性物質の分解効率が高く、
しかもH等の酸化性物質と接触することによる劣
化及びTOC溶出の問題もない。さらに、触媒式酸化性
物質分解装置の場合、H を分解すると水が生成す
るが、酸素は殆ど生成せず、後段の脱気装置の負荷を増
大させることがない。
Catalytic oxidization in which oxidizing substances are decomposed with a catalyst
With a substance decomposition device, the decomposition efficiency of oxidizing substances is high,
And H2O2Poor contact with oxidizing substances such as
There is no problem of conversion and TOC elution. In addition, catalytic oxidation
In the case of a material decomposition device, H2O 2Decomposes to produce water
However, almost no oxygen was generated, increasing the load on the downstream degasser.
I won't make it big.

【0013】また、この触媒を活性炭やイオン交換樹脂
等の担体に担持して用いる場合でも、担体表面に触媒が
担持され、Hは触媒表面で直ちに分解されるた
め、H により担体が劣化してTOCを溶出させる
こともない。
[0013] The catalyst may be activated carbon or ion exchange resin.
Even when used on a carrier such as
Carried, H2O2Is immediately decomposed on the catalyst surface
H 2O2Degrades carrier and elutes TOC
Not even.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の超
純水製造装置を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ultrapure water production apparatus of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明の超純水製造装置の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus according to the present invention.

【0016】この超純水製造装置では、各種前処理工程
より得られた一次純水(通常の場合、TOC濃度2pp
b以下の純水)をサブタンク11、ポンプP、熱交換器
12、UV酸化装置13、触媒式酸化性物質分解装置1
4、脱気装置15、混床式イオン交換装置16及び微粒
子分離膜装置17に順次に通水し、得られた超純水をユ
ースポイント18に送る。
In this ultrapure water producing apparatus, primary pure water obtained from various pretreatment steps (usually, a TOC concentration of 2 pp
b or less pure water) into a sub-tank 11, a pump P, a heat exchanger 12, a UV oxidizer 13, a catalytic oxidizer 1
4. Water is sequentially passed through the deaerator 15, the mixed bed type ion exchange device 16 and the fine particle separation membrane device 17, and the obtained ultrapure water is sent to the use point 18.

【0017】UV酸化装置13としては、通常、超純水
製造装置に用いられる185nm付近の波長を有するU
Vを照射するUV酸化装置、例えば低圧水銀ランプを用
いたUV酸化装置を用いることができる。このUV酸化
装置13で、一次純水中のTOCが有機酸、更にはCO
に分解される。また、このUV酸化装置13では過剰
に照射されたUVにより、水からHが発生する。
As the UV oxidizing device 13, a UV oxidizing device having a wavelength of around 185 nm, which is usually used in
A UV oxidizer that irradiates V, for example, a UV oxidizer using a low-pressure mercury lamp can be used. In this UV oxidizer 13, TOC in the primary purified water is converted into an organic acid,
Decomposed into 2 . Further, in the UV oxidizing apparatus 13, H 2 O 2 is generated from water due to excessively irradiated UV.

【0018】UV酸化装置の処理水は、次いで触媒式酸
化性物質分解装置14に通水される。触媒式酸化性物質
分解装置14の酸化性物質分解触媒としては、酸化還元
触媒として知られる貴金属触媒、例えば、金属パラジウ
ム、酸化パラジウム、水酸化パラジウム等のパラジウム
(Pd)化合物又は白金(Pt)、なかでも還元作用の
強力なパラジウム触媒を好適に使用することができる。
このような貴金属触媒はそのままで用いても良く、二酸
化チタン、アルミナ、活性炭、ゼオライト、イオン交換
樹脂等の担体に担持させて用いても良い。触媒を担体に
担持させる場合、触媒の担持量は通常担体に対する触媒
の担持重量で0.1〜10重量%とすることが好まし
い。
The treated water of the UV oxidizing device is then passed through a catalytic oxidizing substance decomposing device 14. As the oxidizing substance decomposition catalyst of the catalytic oxidizing substance decomposition apparatus 14, a noble metal catalyst known as a redox catalyst, for example, palladium (Pd) compound such as metal palladium, palladium oxide, palladium hydroxide or platinum (Pt), Among them, a palladium catalyst having a strong reducing action can be suitably used.
Such a noble metal catalyst may be used as it is, or may be used by being supported on a carrier such as titanium dioxide, alumina, activated carbon, zeolite, or ion exchange resin. When the catalyst is supported on a carrier, the amount of the supported catalyst is usually preferably 0.1 to 10% by weight based on the weight of the catalyst supported on the carrier.

【0019】担体としては、TOC溶出の恐れが全くな
い二酸化チタン、アルミナ、ゼオライトが好ましいが、
活性炭やイオン交換樹脂を担体として使用した場合で
も、担体表面に触媒が担持され、Hと接触しても
触媒表面で直ちにHが分解されるため、H
が担体を劣化させることは殆どない。
As the carrier, titanium dioxide, alumina and zeolite, which have no possibility of TOC elution, are preferable.
Activated carbon or ion exchange resins even when used as a carrier, since the catalyst on the carrier surface is supported immediately H 2 O 2 at the catalyst surface is decomposed on contact with the H 2 O 2, H 2 O 2
Hardly degrades the carrier.

【0020】なお、アニオン交換樹脂にパラジウムを担
持させるにはアニオン交換樹脂をカラムに充填し、次い
で塩化パラジウムの酸性溶液を通水すればよい。金属パ
ラジウムとして担持させるのであれば、さらにホルマリ
ンなどを加えて還元すればよい。
In order to carry palladium on the anion exchange resin, the column may be filled with the anion exchange resin and then an acidic solution of palladium chloride may be passed through. If it is carried as metal palladium, it may be reduced by further adding formalin or the like.

【0021】触媒の形状は、粉末状、粒状、ベレット状
など何れの形状でも利用できる。粉末状のものを使用す
る場合には、反応槽を設けてこの反応槽に適当量添加す
れば良い。また、粒状又はペレット状のものはカラム等
に充填し、UV酸化装置13の処理水を連続的に通水し
て処理することができ、有利である。ただし、粉末状の
ものでも、流動床を形成することによって連続処理に使
用することができる。
The catalyst can be used in any shape such as powder, granule, and bellet. When a powdery material is used, a reaction tank may be provided and an appropriate amount may be added to the reaction tank. In addition, the granular or pellet-like material is advantageously packed in a column or the like, and the treated water of the UV oxidation device 13 can be continuously passed through for treatment. However, a powdery material can be used for continuous processing by forming a fluidized bed.

【0022】この触媒式酸化性物質分解装置14によ
り、TOCの溶出の問題を生じることなく、UV酸化装
置13で発生したH、その他の酸化性物質が触媒
により効率的に分解除去される。そして、Hの分
解により、水は生成するが、アニオン交換樹脂や活性炭
のように酸素を生成させることは殆どなく、DO増加の
原因とならない。
The catalytic oxidizing substance decomposing device 14 efficiently decomposes and removes H 2 O 2 and other oxidizing substances generated in the UV oxidizing device 13 without causing the problem of TOC elution. You. Water is generated by the decomposition of H 2 O 2 , but hardly generates oxygen unlike an anion exchange resin or activated carbon, and does not cause an increase in DO.

【0023】酸化性物質14の処理水は、次いで脱気装
置15に通水される。脱気装置15としては、従来の一
次純水システム2に用いられるような真空脱気装置、窒
素脱気装置や特開平9−29251号公報に記載される
ような膜式脱気装置を用いることができる。
The treated water of the oxidizing substance 14 is then passed through a deaerator 15. As the deaerator 15, a vacuum deaerator, a nitrogen deaerator or a membrane deaerator as described in JP-A-9-29251, which is used in the conventional primary pure water system 2, is used. Can be.

【0024】膜式脱気装置としては、脱気膜の一方の側
に水を流し、他方の側を真空ポンプで排気し、溶存酸素
を膜を透過させて真空側に移行させて除去するようにし
たものが用いられる。なお、この膜の真空側には若干の
水分が脱気膜を透過して出てくるので、この真空側に窒
素等のガスを流し、水分を除去して膜性能の低下を防止
するのが好ましい。N流量は一定でも良く、変動させ
ても良い。
The membrane type deaerator is configured such that water flows on one side of the deaeration membrane and the other side is evacuated by a vacuum pump, and dissolved oxygen is permeated through the membrane and transferred to the vacuum side for removal. Is used. Since a small amount of moisture permeates through the degassing membrane on the vacuum side of this film, it is necessary to flow a gas such as nitrogen to the vacuum side to remove moisture and prevent the film performance from deteriorating. preferable. N 2 flow rate may be constant or may be varied.

【0025】脱気膜は、酸素、窒素、蒸気等のガスは通
過するが水は透過しない膜であれば良く、例えば、シリ
コンゴム系、ポリテトラフルオロエチレン系、ポリオレ
フィン系、ポリウレタン系等がある。この脱気膜として
は市販の各種のものを用いることができる。
The degassing film may be a film through which gases such as oxygen, nitrogen, steam, etc. pass but water does not permeate. Examples thereof include silicone rubber, polytetrafluoroethylene, polyolefin, and polyurethane. . Various commercially available deaeration membranes can be used.

【0026】この膜式脱気装置の真空度は40〜70T
orr、N等のガスの真空側流量は水流量の5〜25
%とするのが好ましい。なお、この運転条件は、膜性能
により任意に設定できるが、通常上記のような範囲が好
ましい。真空度が過度に低いと脱気効率が低下し、逆に
過度に大きいと膜を通して水も透過側に出てきて効率が
悪くなる。N流量は過度に少ないと水分除去が十分で
なく脱気効率が低下し、大きすぎると真空度が上がらず
脱気効率が低下する。
The degree of vacuum of this membrane deaerator is 40 to 70 T
orr, vacuum side flow rate of gas such as N 2 is the water flow rate 5-25
% Is preferable. The operating conditions can be arbitrarily set depending on the membrane performance, but usually the above ranges are preferable. If the degree of vacuum is excessively low, the degassing efficiency is reduced. Conversely, if the degree of vacuum is excessively large, water also comes out to the permeate side through the membrane and the efficiency is reduced. If the N 2 flow rate is excessively small, moisture removal is not sufficient and the deaeration efficiency is reduced. If the N 2 flow rate is too large, the degree of vacuum is not increased and the deaeration efficiency is reduced.

【0027】この脱気装置15により、水中のDOやC
が効率的に除去される。
The deaerator 15 allows DO and C in water to be removed.
O 2 is efficiently removed.

【0028】脱気装置15の処理水は次いで混床式イオ
ン交換装置16に通水される。混床式イオン交換装置1
6としては、アニオン交換樹脂とカチオン交換樹脂とを
イオン負荷に応じて混合充填した非再生型混床式イオン
交換装置を用いるのが好ましく、この混床式イオン交換
装置16により、水中のカチオン及びアニオンが除去さ
れ、水の純度が高められる。
The treated water from the deaerator 15 is then passed through a mixed bed type ion exchanger 16. Mixed bed type ion exchanger 1
As 6, it is preferable to use a non-regenerative mixed bed type ion exchange apparatus in which an anion exchange resin and a cation exchange resin are mixed and filled according to the ion load. Anions are removed and water purity is increased.

【0029】混床式イオン交換装置16の処理水は次い
で微粒子分離膜装置17に通水される。微粒子分離膜装
置17としては、通常の超純水製造装置に用いられるU
F膜分離装置等を用いることができ、この微粒子分離膜
装置17で水中の微粒子、例えば混床式イオン交換装置
16からのイオン交換樹脂の流出微粒子等が除去され、
これにより、TOC、CO、DO、H、イオン
性物質及び微粒子が高度に除去された高純度の超純水が
得られる。
The treated water of the mixed bed type ion exchange device 16 is then passed through a fine particle separation membrane device 17. As the fine particle separation membrane device 17, U
An F membrane separation device or the like can be used, and fine particles in water, for example, fine particles of an ion exchange resin flowing out of a mixed bed type ion exchange device 16 are removed by the fine particle separation membrane device 17,
Thereby, high-purity ultrapure water from which TOC, CO 2 , DO, H 2 O 2 , ionic substances, and fine particles are highly removed is obtained.

【0030】図1の構成は本発明の超純水製造装置の一
例であり、本発明の超純水製造装置は、従来の装置と同
様に前処理システム、一次純水システム、サブシステム
から構成され、その一連の構成単位装置のうちのサブシ
ステムにおいて、UV酸化装置、触媒式酸化性物質分解
装置、脱気装置、混床式イオン交換装置及び微粒子分離
膜装置をこの順で備えている限り、各種の機器を組み合
わせることができる。例えば、混床式イオン交換装置の
後にRO膜分離装置を設置しても良い。また、原水をp
H4.5以下の酸性下、かつ、酸化剤存在下で加熱分解
処理して原水中の尿素及び他のTOC成分を分解した
後、脱イオン処理する装置を組み込むこともできる。U
V酸化装置や混床式イオン交換装置、脱気装置等は多段
に設置されても良い。また、前処理システム1や一次純
水システム2についても、何ら図3に示すものに限定さ
れるものではなく、他の様々な装置の組み合せを採用し
得る。
The configuration shown in FIG. 1 is an example of the ultrapure water production apparatus of the present invention. The ultrapure water production apparatus of the present invention comprises a pretreatment system, a primary pure water system, and subsystems as in the conventional apparatus. As long as the subsystem of the series of constituent unit devices includes a UV oxidizing device, a catalytic oxidizing substance decomposing device, a degassing device, a mixed-bed ion exchange device and a fine particle separation membrane device in this order, , Various devices can be combined. For example, an RO membrane separation device may be installed after the mixed bed type ion exchange device. In addition, raw water
It is also possible to incorporate a device for deionizing after decomposing urea and other TOC components in raw water by heat decomposition treatment under an acid of H4.5 or less and in the presence of an oxidizing agent. U
A V oxidation device, a mixed-bed ion exchange device, a degassing device, and the like may be provided in multiple stages. Further, the pretreatment system 1 and the primary pure water system 2 are not limited to those shown in FIG. 3 at all, and combinations of other various devices can be adopted.

【0031】[0031]

【実施例】以下に比較例及び実施例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically with reference to comparative examples and examples.

【0032】実施例1 水道水(野木町水)を原水として、図1の装置により超
純水を製造した。
Example 1 Ultrapure water was produced by using the apparatus shown in FIG. 1 using tap water (Nogimachi water) as raw water.

【0033】まず、原水を活性炭塔、UF膜分離装置、
2段RO膜分離装置、膜式脱気装置及び混床式イオン交
換装置に順次通水して一次純水を得、この一次純水を6
/hrの流量で図1に示すサブシステム3に通水し
て超純水を製造した。サブシステム3に用いた各装置の
仕様は次の通りである。 UV酸化装置(日本フォトサイエンス社製低圧UV酸化
装置(波長185nm付近、0.32kW・hr/
)) 触媒式酸化性物質分解装置(二酸チタンを担体としたパ
ラジウム触媒充填塔) 脱気装置(ヘキスト社製Liqui−Celを充填した
膜式脱気装置) 混床式イオン交換装置(非再生型混床式イオン交換装
置) 微粒子分離膜装置(栗田工業(株)製UF膜分離装置
「KU−1510」)
First, raw water is converted into an activated carbon tower, a UF membrane separation device,
Water is sequentially passed through a two-stage RO membrane separator, a membrane deaerator, and a mixed-bed ion exchanger to obtain primary pure water.
Ultrapure water was produced by passing water through the subsystem 3 shown in FIG. 1 at a flow rate of m 3 / hr. The specifications of each device used in the subsystem 3 are as follows. UV oxidizer (Low pressure UV oxidizer manufactured by Nippon Photo Science Co., Ltd. (wavelength around 185 nm, 0.32 kW · hr /
m 3 )) Catalytic oxidizing substance decomposer (palladium catalyst packed column using titanium dioxide as a carrier) Deaerator (membrane deaerator filled with Hoquist's Liqui-Cel) Mixed bed ion exchanger ( Non-regenerative mixed-bed ion exchange device) Particle separation membrane device (KU-1510 manufactured by Kurita Water Industries Ltd.)

【0034】なお、触媒式酸化性物質分解装置の通水S
Vは800hr−1とし、膜脱気装置の真空度は50T
orr、N流量は0.9Nm/hrとした。また、
混床式イオン交換装置の通水SVは80hr−1とし
た。
The water flow S of the catalytic oxidizing substance decomposition apparatus
V is 800 hr -1 and the degree of vacuum of the membrane deaerator is 50 T
The flow rate of orr and N 2 was 0.9 Nm 3 / hr. Also,
The flow SV of the mixed bed type ion exchange device was set to 80 hr -1 .

【0035】この処理において、UV酸化装置の入口水
及び出口水と得られた超純水(UF膜分離装置の出口
水)の水質は表1に示す通りであった。
In this treatment, the water qualities of the inlet water and outlet water of the UV oxidation apparatus and the obtained ultrapure water (outlet water of the UF membrane separator) were as shown in Table 1.

【0036】比較例1 実施例1において図2に示す如く、触媒式酸化性物質分
解装置14の代りにアニオン交換塔19を設け、UV酸
化装置13の出口水をアニオン交換塔19にSV50h
−1で通水した後、脱気装置15、混床式イオン交換
装置16、微粒子分離膜装置17に順次通水したこと以
外は同様に処理を行ったところ、得られた超純水の水質
は表1に示す通りであった。
COMPARATIVE EXAMPLE 1 In Example 1, as shown in FIG. 2, an anion exchange column 19 was provided in place of the catalytic oxidizing substance decomposer 14, and the outlet water of the UV oxidizer 13 was supplied to the anion exchange column 19 by the SV 50 h.
After passing water at r- 1 , the same treatment was performed except that water was sequentially passed through the deaerator 15, the mixed bed type ion exchange device 16, and the fine particle separation membrane device 17, and the resulting ultrapure water was obtained. The water quality was as shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より次のことが明らかである。The following is clear from Table 1.

【0039】即ち、比較例1では、UV酸化装置13の
処理水をアニオン交換塔19に通水してHを分解
除去し、次いで脱気装置15で脱気処理するため、H
及びDOを低減することができるが、H等の
酸化性物質とアニオン交換樹脂との反応で樹脂から溶出
するTOCのために、得られる超純水のTOCは十分低
減できない。
[0039] That is, in Comparative Example 1, since by passed therethrough treated water UV oxidation apparatus 13 to the anion exchange column 19 H 2 O 2 was decomposed and removed, followed by degassing treatment in the deaerator 15, H 2
Although O 2 and DO can be reduced, the TOC eluted from the resin due to the reaction between the oxidizing substance such as H 2 O 2 and the anion exchange resin cannot be sufficiently reduced due to the TOC eluted from the resin.

【0040】これに対して、実施例1では、触媒式酸化
性物質分解装置14でH等の酸化性物質を除去
し、この酸化性物質の除去に当たりTOCの溶出の問題
がないため、H、DO、TOCがいずれも極低濃
度にまで低減された超純水を得ることができる。特に、
TOCは比較例1に比べ著しく低減されており、また、
触媒式酸化性物質分解装置で酸素の生成が殆どないた
め、DOも比較例1に比べ一層低減されている。
On the other hand, in Example 1, the oxidizing substance such as H 2 O 2 was removed by the catalytic oxidizing substance decomposer 14, and there was no problem of elution of TOC in removing the oxidizing substance. , H 2 O 2 , DO, and TOC can all be obtained to ultra-pure water in which the concentration is reduced to an extremely low concentration. In particular,
TOC is significantly reduced as compared with Comparative Example 1, and
Since almost no oxygen is generated in the catalytic oxidizing substance decomposing apparatus, DO is further reduced as compared with Comparative Example 1.

【0041】[0041]

【発明の効果】以上詳述した通り、本発明の超純水製造
装置によれば、DO、TOC、H 等の酸化性物質
濃度が著しく低い高純度超純水を製造することができ
る。
As described in detail above, the production of ultrapure water of the present invention
According to the device, DO, TOC, H2O 2Oxidizing substances such as
High purity ultrapure water with extremely low concentration can be produced.
You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超純水製造装置の実施の形態を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus according to the present invention.

【図2】比較例1の超純水製造装置を示す系統図であ
る。
FIG. 2 is a system diagram showing an ultrapure water production apparatus of Comparative Example 1.

【図3】従来の超純水製造装置を示す系統図である。FIG. 3 is a system diagram showing a conventional ultrapure water production apparatus.

【符号の説明】[Explanation of symbols]

1 前処理システム 2 一次純水システム 3 サブシステム 11 サブタンク 12 熱交換器 13 UV酸化装置 14 触媒式酸化性物質分解装置 15 脱気装置 16 混床式イオン交換装置 17 微粒子分離膜装置 18 ユースポイント 19 アニオン交換塔 Reference Signs List 1 Pretreatment system 2 Primary pure water system 3 Subsystem 11 Subtank 12 Heat exchanger 13 UV oxidizer 14 Catalytic oxidizing substance decomposer 15 Deaerator 16 Mixed-bed ion exchanger 17 Fine particle separation membrane device 18 Use point 19 Anion exchange tower

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年1月24日(2001.1.2
4)
[Submission Date] January 24, 2001 (2001.1.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】この超純水製造装置では、各種前処理工程
より得られた一次純水(通常の場合、TOC濃度2pp
b以の純水)をサブタンク11、ポンプP、熱交換器
12、UV酸化装置13、触媒式酸化性物質分解装置1
4、脱気装置15、混床式イオン交換装置16及び微粒
子分離膜装置17に順次に通水し、得られた超純水をユ
ースポイント18に送る。
In this ultrapure water producing apparatus, primary pure water obtained from various pretreatment steps (usually, a TOC concentration of 2 pp
b pure water or more) sub-tank 11, the pump P, the heat exchanger 12, UV oxidation apparatus 13, catalytic oxidizing material decomposition apparatus 1
4. Water is sequentially passed through the deaerator 15, the mixed bed type ion exchange device 16 and the fine particle separation membrane device 17, and the obtained ultrapure water is sent to the use point 18.

【手続補正書】[Procedure amendment]

【提出日】平成13年1月25日(2001.1.2
5)
[Submission date] January 25, 2001 (2001.1.2)
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】この超純水製造装置では、各種前処理工程
より得られた一次純水(通常の場合、TOC濃度2pp
b以の純水)をサブタンク11、ポンプP、熱交換器
12、UV酸化装置13、触媒式酸化性物質分解装置1
4、脱気装置15、混床式イオン交換装置16及び微粒
子分離膜装置17に順次に通水し、得られた超純水をユ
ースポイント18に送る。
In this ultrapure water producing apparatus, primary pure water obtained from various pretreatment steps (usually, a TOC concentration of 2 pp
b pure water or more) sub-tank 11, the pump P, the heat exchanger 12, UV oxidation apparatus 13, catalytic oxidizing material decomposition apparatus 1
4. Water is sequentially passed through the deaerator 15, the mixed bed type ion exchange device 16 and the fine particle separation membrane device 17, and the obtained ultrapure water is sent to the use point 18.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 502 C02F 9/00 502Z 504 504B 504E B01D 19/00 B01D 19/00 H C02F 1/20 C02F 1/20 A 1/32 1/32 1/42 1/42 A 1/44 1/44 J 1/72 101 1/72 101 Fターム(参考) 4D006 GA06 GA41 KA01 KB04 KB11 KB12 KB17 MC22 MC30 MC53 MC65 PB06 PB62 PB63 PB65 PC02 4D011 AA17 4D025 AA04 BA08 BA13 BA22 BB04 DA01 DA03 DA04 DA10 4D037 AA03 BA18 BA23 CA01 CA03 CA11 CA15 4D050 AA05 BC09 BD06 CA03 CA06 CA08 CA09 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C02F 9/00 502 C02F 9/00 502Z 504 504B 504E B01D 19/00 B01D 19/00 H C02F 1/20 C02F 1/20 A 1/32 1/32 1/42 1/42 A 1/44 1/44 J 1/72 101 1/72 101 F term (reference) 4D006 GA06 GA41 KA01 KB04 KB11 KB12 KB17 MC22 MC30 MC53 MC65 PB06 PB62 PB63 PB65 PC02 4D011 AA17 4D025 AA04 BA08 BA13 BA22 BB04 DA01 DA03 DA04 DA10 4D037 AA03 BA18 BA23 CA01 CA03 CA11 CA15 4D050 AA05 BC09 BD06 CA03 CA06 CA08 CA09

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 185nm付近の波長を有する紫外線を
照射する紫外線酸化装置と、 触媒式酸化性物質分解装置と、 脱気装置と、 混床式イオン交換装置と、 微粒子分離膜装置とを有し、この順に通水可能とした超
純水製造装置。
1. An apparatus for irradiating an ultraviolet ray having a wavelength of about 185 nm with an ultraviolet ray, a catalytic oxidizing substance decomposing apparatus, a degassing apparatus, a mixed bed type ion exchange apparatus, and a fine particle separation membrane apparatus. , An ultrapure water production system that allows water to flow in this order.
JP2001010433A 2001-01-18 2001-01-18 Ultrapure water production equipment Expired - Lifetime JP4552327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010433A JP4552327B2 (en) 2001-01-18 2001-01-18 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001010433A JP4552327B2 (en) 2001-01-18 2001-01-18 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JP2002210494A true JP2002210494A (en) 2002-07-30
JP4552327B2 JP4552327B2 (en) 2010-09-29

Family

ID=18877745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010433A Expired - Lifetime JP4552327B2 (en) 2001-01-18 2001-01-18 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP4552327B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181369A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making apparatus
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
JP2008119658A (en) * 2006-11-15 2008-05-29 Kurita Water Ind Ltd Ultraviolet oxidation apparatus and organic matter removal apparatus
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010069460A (en) * 2008-09-22 2010-04-02 Japan Organo Co Ltd Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP2011167633A (en) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus
JP2011183245A (en) * 2010-03-04 2011-09-22 Kurita Water Ind Ltd Method and apparatus for producing ultrapure water
JP2011218248A (en) * 2010-04-05 2011-11-04 Japan Organo Co Ltd Pure water production method and device
JP2011245380A (en) * 2010-05-25 2011-12-08 Japan Organo Co Ltd Method and device for producing pure water
US20180044205A1 (en) * 2015-02-23 2018-02-15 Kurita Water Industries Ltd. Device for removing microparticles contained in water and ultrapure-water prouction and supply system
KR20190089877A (en) * 2016-12-05 2019-07-31 쿠리타 고교 가부시키가이샤 Operation method of ultrapure water producing apparatus and ultrapure water producing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217994A (en) * 1988-07-07 1990-01-22 Toshiba Corp Ultrapure water producer
JPH0818040B2 (en) * 1991-05-17 1996-02-28 株式会社荏原総合研究所 Purification method and device for pure water or ultrapure water
JP2500968B2 (en) * 1991-11-20 1996-05-29 栗田工業株式会社 Pure water production equipment
JPH1177091A (en) * 1997-09-03 1999-03-23 Japan Organo Co Ltd Ultrapure water making apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181369A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making apparatus
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
JPWO2005095280A1 (en) * 2004-03-31 2008-02-21 栗田工業株式会社 Ultrapure water production equipment
JP5045099B2 (en) * 2004-03-31 2012-10-10 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2008119658A (en) * 2006-11-15 2008-05-29 Kurita Water Ind Ltd Ultraviolet oxidation apparatus and organic matter removal apparatus
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2010069460A (en) * 2008-09-22 2010-04-02 Japan Organo Co Ltd Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP2011167633A (en) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus
JP2011183245A (en) * 2010-03-04 2011-09-22 Kurita Water Ind Ltd Method and apparatus for producing ultrapure water
JP2011218248A (en) * 2010-04-05 2011-11-04 Japan Organo Co Ltd Pure water production method and device
JP2011245380A (en) * 2010-05-25 2011-12-08 Japan Organo Co Ltd Method and device for producing pure water
US20180044205A1 (en) * 2015-02-23 2018-02-15 Kurita Water Industries Ltd. Device for removing microparticles contained in water and ultrapure-water prouction and supply system
KR20190089877A (en) * 2016-12-05 2019-07-31 쿠리타 고교 가부시키가이샤 Operation method of ultrapure water producing apparatus and ultrapure water producing apparatus
KR102497591B1 (en) * 2016-12-05 2023-02-07 쿠리타 고교 가부시키가이샤 Ultrapure water production device and operation method of ultrapure water production device

Also Published As

Publication number Publication date
JP4552327B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
EP0634364B1 (en) Pure water manufacturing method
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
TWI408107B (en) Extra-pure water production equipment and operating method thereof
TWI640482B (en) Ultrapure water manufacturing method and ultrapure water manufacturing equipment
WO2010013677A1 (en) Process and equipment for the treatment of water containing organic matter
JP2002210494A (en) Device for manufacturing extrapure water
JP6533359B2 (en) Ultra pure water production method
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JPH0638953B2 (en) High-purity water manufacturing equipment
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JPH0929251A (en) Ultrapure water preparing apparatus
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
JP6629383B2 (en) Ultrapure water production method
JP4826864B2 (en) Ultrapure water production equipment
JP2000308815A (en) Producing device of ozone dissolved water
WO2019188309A1 (en) Anion exchange resin and water treatment method using same
JPH08173978A (en) Method for removing organic substance
JP3528287B2 (en) Pure water production method
JP3727156B2 (en) Desalination equipment
US20230242419A1 (en) Ultrapure water production system and ultrapure water production method
WO2022190608A1 (en) Method and apparatus for treating water
JP2022124773A (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

RVTR Cancellation due to determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3