JP2012187507A - Device and method for water treatment - Google Patents

Device and method for water treatment Download PDF

Info

Publication number
JP2012187507A
JP2012187507A JP2011052812A JP2011052812A JP2012187507A JP 2012187507 A JP2012187507 A JP 2012187507A JP 2011052812 A JP2011052812 A JP 2011052812A JP 2011052812 A JP2011052812 A JP 2011052812A JP 2012187507 A JP2012187507 A JP 2012187507A
Authority
JP
Japan
Prior art keywords
adsorbent
water
reaction tank
solid
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011052812A
Other languages
Japanese (ja)
Other versions
JP5426591B2 (en
Inventor
Taro Fukaya
太郎 深谷
Atsushi Yamazaki
厚 山崎
Kenji Tsutsumi
剣治 堤
Ichiro Yamanashi
伊知郎 山梨
Atsushi Yugawa
敦司 湯川
Hiroshi Noguchi
博史 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011052812A priority Critical patent/JP5426591B2/en
Priority to PCT/JP2012/054787 priority patent/WO2012121047A1/en
Priority to CN201280009060.9A priority patent/CN103380085B/en
Publication of JP2012187507A publication Critical patent/JP2012187507A/en
Application granted granted Critical
Publication of JP5426591B2 publication Critical patent/JP5426591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation

Abstract

PROBLEM TO BE SOLVED: To increase the contact probability between an adsorbent and a specific substance, and also obtain a treatment flow rate.SOLUTION: The water treatment device includes: a reaction tank 1 for contact between the adsorbent and water to be treated; solid-liquid separation devices 4, 6 for separating the adsorbent and the treated water; a pipe 3b for delivering the water to treated to the reaction tank; a treated water discharge pump 7 for discharging the treated water from the solid-liquid separation devices; and a drain pipe 7 for directing the adsorbent back to the reaction tank from the solid-liquid separation devices. The drain pipe 7 circulates the adsorbent between the reaction tank and the solid-liquid separation devices.

Description

本発明の実施形態は、水処理装置及び水処理方法に関する。   Embodiments described herein relate generally to a water treatment apparatus and a water treatment method.

昨今、工業の発達や人口の増加により水資源の有効利用が求められている。そのためには、工業排水などの廃水の再利用が非常に重要である。これらを達成するためには水の浄化、すなわち水中から他の物質を分離することが必要である。   In recent years, effective use of water resources is required due to industrial development and population growth. For this purpose, it is very important to reuse industrial wastewater and other wastewater. In order to achieve these, it is necessary to purify the water, ie to separate other substances from the water.

液体からほかの物質を分離する方法としては、各種の方法が知られており、たとえば膜分離、遠心分離、活性炭吸着、オゾン処理、凝集、さらには所定の吸着材による浮遊物質の除去などが挙げられる。このような方法によって、水に含まれるリンや窒素などの環境に影響の大きい化学物質を除去したり、水中に分散した油類、クレイなどを除去したりすることができる。   Various methods are known as methods for separating other substances from the liquid, such as membrane separation, centrifugation, activated carbon adsorption, ozone treatment, aggregation, and removal of suspended substances with a predetermined adsorbent. It is done. By such a method, chemical substances having a great influence on the environment such as phosphorus and nitrogen contained in water can be removed, and oils and clays dispersed in water can be removed.

これらのうち、膜分離はもっとも一般的に使用されている方法のひとつであるが、水中に分散した油類を除去する場合には膜の細孔に油が詰まり易く、膜の寿命が短くなりやすいという問題がある。このため、水中の油類を除去するには膜分離は適切でない場合が多い。このため重油等の油類が含まれている水からそれらを除去する手法としては、例えば重油の浮上性を利用し、水上の設置されたオイルフェンスにより水の表面に浮いている重油を集め、表面から吸引および回収する方法、または、重油に対して吸着性をもった疎水性材料を水上に敷設し、重油を吸着させて回収する方法等が挙げられる。   Of these, membrane separation is one of the most commonly used methods. However, when oils dispersed in water are removed, the pores of the membrane are likely to be clogged with oil, which shortens the life of the membrane. There is a problem that it is easy. For this reason, membrane separation is often not appropriate for removing oils in water. For this reason, as a method of removing them from water containing oils such as heavy oil, for example, using the floating property of heavy oil, collecting heavy oil floating on the surface of the water by an oil fence installed on the water, Examples thereof include a method of sucking and collecting from the surface, or a method of laying a hydrophobic material having an adsorptivity to heavy oil on water and adsorbing and collecting heavy oil.

かかる観点より、近年においては、油分吸着材を用い、油類が分散した水中内に浸漬させることによって、前記油分吸着材に前記油類を吸着させ、前記水中から除去する試みがなされている。例えば、排水の水質をモニタリングして吸着剤の注入量を算出し、水中から吸着剤と共に有価物(被吸着物)を回収した後、吸着剤と分離させて有価物を得る方法が知られている。   From this viewpoint, in recent years, an attempt has been made to adsorb the oil to the oil adsorbent and remove it from the water by immersing it in water in which oil is dispersed using an oil adsorbent. For example, a method is known in which the amount of adsorbent injected is calculated by monitoring the quality of wastewater, and after collecting valuable material (adsorbed material) together with the adsorbent from the water, separating it from the adsorbent to obtain valuable material. Yes.

特開2009−268976号公報JP 2009-268976 A 特開2010−69395号公報JP 2010-69395 A

しかし、上記のような注入方法を用いると、水中の有価物(又は除去対象物質)の濃度が低下すると吸着剤の濃度も低下するため、接触確率が低下して吸着に時間がかかったり、十分に吸着できなかったりすることがある。また、一般的にカラムにイオン交換樹脂などの吸着剤を詰めて通水する方法では、処理対象水と吸着剤の接触は良好なものの、懸濁性物質(SS)などの不溶物質の存在下ではカラムが詰まるなどの問題が発生したり、圧損から十分な処理量が得られなかったりする場合がある。   However, when the above injection method is used, if the concentration of valuable substances (or substances to be removed) in the water decreases, the concentration of the adsorbent also decreases. May not be able to be adsorbed. In general, in a method in which a column is filled with an adsorbent such as an ion exchange resin, the water to be treated and the adsorbent are in good contact with each other, but in the presence of an insoluble substance such as a suspended substance (SS). Then, problems such as clogging of the column may occur, or a sufficient amount of processing may not be obtained due to pressure loss.

本発明が解決しようとする課題は、水中から吸着剤を用いて特定物質を取り除く方法に関し、吸着剤と特定物質の接触確率を高めると共に処理流量も得られる水処理装置及び水処理方法を提供することにある。   The problem to be solved by the present invention relates to a method for removing a specific substance from water using an adsorbent, and provides a water treatment apparatus and a water treatment method capable of increasing the contact probability between the adsorbent and the specific substance and obtaining a treatment flow rate. There is.

実施形態によれば、吸着剤と処理水を接触させる反応槽と、吸着剤と処理水を分離させる固液分離装置と、前記反応槽に被処理水を供給する供給装置と、前記固液分離装置から処理水を排出する排出機構と、前記固液分離装置から前記吸着剤を反応槽に戻す戻し機構を具備し、この戻し機構により吸着剤を前記反応槽と前記固液分離装置の間で循環させることを特徴とする水処理装置を提供できる。   According to the embodiment, the reaction tank that makes the adsorbent and the treated water contact, the solid-liquid separation device that separates the adsorbent and the treated water, the supply apparatus that supplies the treated water to the reaction tank, and the solid-liquid separation A discharge mechanism for discharging treated water from the apparatus, and a return mechanism for returning the adsorbent from the solid-liquid separator to the reaction tank, and the adsorbent is returned between the reaction tank and the solid-liquid separator by this return mechanism. A water treatment apparatus characterized by being circulated can be provided.

実施例1,2に係る水処理装置の説明図。Explanatory drawing of the water treatment apparatus which concerns on Example 1,2. 実施例3に係る水処理装置の説明図。Explanatory drawing of the water treatment apparatus which concerns on Example 3. FIG. 実施例4に係る水処理装置の説明図。Explanatory drawing of the water treatment apparatus which concerns on Example 4. FIG.

以下、本発明の実施形態について説明する。図1は、実施例1,2に係る水処理装置の一例である。
図中の符号1は、磁性体を含有する吸着剤が収容されている反応槽を示す。この反応槽1には、送液ポンプ2を介装した配管3aを介して固液分離装置としてのサイクロン4,及び回収ポット5が順次接続され、回収ポット5と反応槽1とは配管3bにより接続されている。サイクロン4には、固液分離装置としての磁気分離装置6が接続されている。この磁気分離装置6の底部には、一端が反応槽1に接続する戻し機構としての排水管7、及び一端が処理水槽(図示せず)に接続する,処理水排出ポンプ8を介装した処理水排出管9が夫々接続されている。ここで、処理水排出ポンプ8と処理水排出管9と処理水槽とにより、サイクロン4及び磁気分離装置6から処理水を排出する排出機構を構成している。前記反応槽1と原水槽(図示せず)とは、原水供給ポンプ10を介装した配管3cにより接続されている。ここで、原水供給ポンプ10と配管3cと原水槽とにより、反応槽1に被処理水を供給する供給装置を構成している。前記配管3bの途中には、一端が吸着剤回収容器11に接続する回収管12が接続されている。
Hereinafter, embodiments of the present invention will be described. FIG. 1 is an example of a water treatment apparatus according to the first and second embodiments.
Reference numeral 1 in the figure indicates a reaction vessel in which an adsorbent containing a magnetic material is accommodated. A cyclone 4 and a recovery pot 5 as a solid-liquid separator are sequentially connected to the reaction tank 1 via a pipe 3a having a liquid feed pump 2 interposed therebetween. The recovery pot 5 and the reaction tank 1 are connected by a pipe 3b. It is connected. The cyclone 4 is connected to a magnetic separation device 6 as a solid-liquid separation device. At the bottom of the magnetic separation device 6, a drain pipe 7 serving as a return mechanism having one end connected to the reaction tank 1 and a treatment water discharge pump 8 having one end connected to a treatment water tank (not shown). Water discharge pipes 9 are connected to each other. Here, the treated water discharge pump 8, the treated water discharge pipe 9 and the treated water tank constitute a discharge mechanism for discharging treated water from the cyclone 4 and the magnetic separation device 6. The reaction tank 1 and the raw water tank (not shown) are connected by a pipe 3c with a raw water supply pump 10 interposed therebetween. Here, the raw water supply pump 10, the pipe 3 c, and the raw water tank constitute a supply device that supplies water to be treated to the reaction tank 1. A recovery pipe 12 having one end connected to the adsorbent recovery container 11 is connected in the middle of the pipe 3b.

こうした構成の水処理装置の作用は次のとおりである。
まず、原水供給ポンプ10を用いて被処理水としての原水を前記反応槽1に供給する。反応槽1では、磁性体を含有する吸着剤と原水が十分に混合され、原水中の特定物質が吸着剤に吸着される。この後、スラリーは送液ポンプ2を用いてサイクロン4に送られる。このサイクロン4で分離された固体は回収ポット5に溜まる。次に、回収ポット5から吸着剤を連続的に反応槽1に戻す。また、サイクロン4で分けられた処理水には回収できなかった粒子が存在するため、これらの粒子を含む処理水は磁気分離装置6に送られ、磁力による吸着剤の回収が行われる。この磁気分離装置6から処理水は処理水排出ポンプ8を用いて処理水槽へ排出され、回収された吸着剤は定期的に逆洗され、排水管7を伝って反応槽1に戻る。吸着剤は反応槽1、サイクロン4,磁気分離装置6の間を循環し、こうした循環路内を原水が通過することにより吸着剤に特定物質が吸着され、処理水として排出される。これを吸着剤の吸着可能量まで繰り返した後、回収ポット5の吸着剤を反応槽1ではなく、回収管12を使用して吸着剤回収容器11に移送する。回収した吸着剤は洗浄などの手段で再生され、再び反応槽1に戻される。
The effect | action of the water treatment apparatus of such a structure is as follows.
First, raw water as treated water is supplied to the reaction tank 1 using a raw water supply pump 10. In the reaction tank 1, the adsorbent containing the magnetic substance and the raw water are sufficiently mixed, and a specific substance in the raw water is adsorbed by the adsorbent. Thereafter, the slurry is sent to the cyclone 4 using the liquid feed pump 2. The solid separated by the cyclone 4 is collected in the recovery pot 5. Next, the adsorbent is continuously returned to the reaction tank 1 from the recovery pot 5. Further, since there are particles that could not be collected in the treated water separated by the cyclone 4, the treated water containing these particles is sent to the magnetic separation device 6 and the adsorbent is collected by magnetic force. The treated water is discharged from the magnetic separation device 6 to the treated water tank using the treated water discharge pump 8, and the collected adsorbent is regularly backwashed, returns to the reaction tank 1 through the drain pipe 7. The adsorbent circulates between the reaction tank 1, the cyclone 4 and the magnetic separation device 6, and when the raw water passes through the circulation path, the specific substance is adsorbed on the adsorbent and discharged as treated water. After repeating this up to the adsorbable amount of the adsorbent, the adsorbent in the recovery pot 5 is transferred to the adsorbent recovery container 11 using the recovery pipe 12 instead of the reaction tank 1. The collected adsorbent is regenerated by means such as washing and returned to the reaction tank 1 again.

以下、前記水処理装置の個別の構成について詳細に述べる。
(反応槽)
反応槽1の容器形状、容量、材質等は特に制限されないが、少なくとも滞留時間5分を稼げるような容量を有することが好ましい。また、反応槽1には邪魔板を設けるなど、液体がショートカットできないようにしておくのが良い。反応槽1は、必要に応じて混合機などの攪拌手段やレベルセンサー等を具備することが好ましい。また、反応槽1中には予め吸着剤を入れておくことが好ましい。吸着剤の濃度は固液分離装置で液と分離できるのであれば特に問わないが、できるだけ濃い濃度にすると接触確率が高まり装置としての吸着性能が向上する。目安としては、0.1〜20wt%程度である。ここで、吸着剤の濃度が0.1wt%未満では十分な吸着性能が得られない。また、20wt%を越えた場合は十分な吸着性能が得られるが、吸着性能があまり変動しないため、20wt%程度で十分である。反応槽で得られたスラリーは、送液ポンプ2を使用して固液分離装置に送られる。
Hereinafter, the individual configuration of the water treatment apparatus will be described in detail.
(Reaction tank)
The container shape, capacity, material, and the like of the reaction tank 1 are not particularly limited, but it is preferable that the reaction tank 1 has a capacity capable of at least obtaining a residence time of 5 minutes. In addition, it is preferable to prevent the liquid from being short-cut by providing a baffle plate in the reaction tank 1. The reaction tank 1 is preferably equipped with a stirring means such as a mixer, a level sensor, and the like as necessary. Moreover, it is preferable to put an adsorbent in the reaction tank 1 in advance. The concentration of the adsorbent is not particularly limited as long as it can be separated from the liquid by a solid-liquid separation device. However, when the concentration is as high as possible, the contact probability increases and the adsorption performance as the device is improved. As a standard, it is about 0.1 to 20 wt%. Here, if the concentration of the adsorbent is less than 0.1 wt%, sufficient adsorption performance cannot be obtained. Further, if it exceeds 20 wt%, a sufficient adsorption performance can be obtained, but the adsorption performance does not vary so much, so about 20 wt% is sufficient. The slurry obtained in the reaction tank is sent to the solid-liquid separator using the liquid feed pump 2.

(固液分離装置)
吸着剤のスラリーから、吸着剤と処理液を分ける固液分離装置は特に問わないが、例えば重力や比重を用いた分離(沈降槽、サイクロン)、フィルターを用いた分離(減圧ろ過、加圧ろ過、上向流ろ過)、これ以外の分離(磁気分離等)が挙げられる。この中でも、連続処理が可能で処理量が多いサイクロンを用いるのが良い。サイクロンを用いて固液分離するには、吸着剤の密度が2.0g/cm以上であることが好ましい。
(Solid-liquid separator)
The solid-liquid separation device that separates the adsorbent and the processing liquid from the adsorbent slurry is not particularly limited. For example, separation using gravity or specific gravity (sedimentation tank, cyclone), separation using a filter (vacuum filtration, pressure filtration) , Upward flow filtration), and other separations (magnetic separation, etc.). Among these, it is preferable to use a cyclone capable of continuous processing and having a large processing amount. In order to perform solid-liquid separation using a cyclone, the density of the adsorbent is preferably 2.0 g / cm 3 or more.

また、別の好ましい固液分離装置は、吸着剤に磁性体を含有させておき、磁気分離装置を用いることである。磁性体としては、例えば鉄、および鉄を含む合金、磁鉄鉱、チタン鉄鉱、磁硫鉄鉱、マグネシアフェライト,コバルトフェライト,ニッケルフェライト,バリウムフェライトなどを用いることができる。この中でもフェライト系化合物は、水中での安定性に優れているので、好適に用いることができる。特に、磁鉄鉱であるマグネタイト(Fe)は安価であるだけでなく、水中でも磁性体として安定し、元素としても安全であるため、水処理に使用しやすいので好ましい。このような磁性体を含有させた吸着剤を、磁石を用いて分離する。 Another preferred solid-liquid separation device is to use a magnetic separation device by containing a magnetic substance in the adsorbent. As the magnetic material, for example, iron and alloys containing iron, magnetite, titanite, pyrrhotite, magnesia ferrite, cobalt ferrite, nickel ferrite, barium ferrite, and the like can be used. Among these, ferrite compounds are excellent in stability in water and can be suitably used. In particular, magnetite (Fe 3 O 4 ), which is magnetite, is preferable because it is not only inexpensive, but also stable as a magnetic substance in water and safe as an element, so that it can be easily used for water treatment. The adsorbent containing such a magnetic material is separated using a magnet.

更に、別の好ましい固液分離装置は、ろ過器であり、特に上向流ろ過が好ましい。上向流ろ過とは、処理水が下から上向きに流れ、上側にろ布等のフィルターが存在する。この方法では、吸着剤の粒子径、比重、磁性体の有無を選ばないだけでなく、ろ布の洗浄時に重力で吸着剤が落下するので、洗浄がしやすい。   Furthermore, another preferred solid-liquid separator is a filter, and upward flow filtration is particularly preferred. In the upward flow filtration, treated water flows upward from the bottom, and a filter such as a filter cloth is present on the upper side. In this method, not only the adsorbent particle diameter, specific gravity, and presence / absence of a magnetic substance are selected, but also the adsorbent falls due to gravity when the filter cloth is washed, so that the washing is easy.

これらの固液分離装置で得られた処理水は、処理水排出ポンプ8で処理水槽に輸送され、処理を完了する。また、回収された吸着剤は反応槽1に戻される。例えば図1の例では、サイクロン4の下にある回収ポット5の下部を少し空けておき、分離された吸着剤を連続的に反応槽1に落とすことができる。また、磁気分離装置6に吸着剤が溜まってきたら定期的に逆洗を行い、排水管7を通じて反応槽1に戻すことができる。この操作を繰り返すことにより、反応槽1とサイクロン4,磁気分離装置6との間で吸着剤を循環させることができる。   The treated water obtained by these solid-liquid separators is transported to the treated water tank by the treated water discharge pump 8 to complete the treatment. The collected adsorbent is returned to the reaction tank 1. For example, in the example of FIG. 1, the lower part of the recovery pot 5 below the cyclone 4 is left a little, and the separated adsorbent can be continuously dropped into the reaction tank 1. Further, when the adsorbent accumulates in the magnetic separation device 6, it can be periodically backwashed and returned to the reaction tank 1 through the drain pipe 7. By repeating this operation, the adsorbent can be circulated between the reaction tank 1, the cyclone 4 and the magnetic separation device 6.

(吸着剤回収容器)
上記の処理を繰り返すことにより、循環している吸着剤に徐々に特定物質が吸着していき、ある処理量で吸着しなくなる。このようになったら、吸着剤回収容器11に回収して、洗浄等により吸着剤を再生して再利用する。図1の例では、サイクロン4の下の回収ポット5に付いている配管3bから分岐した回収管12より吸着剤回収容器11に吸着剤を回収できるようにしている。吸着剤の洗浄方法は既知の方法で構わないが、例えば油などの有機物を吸着した吸着剤では溶媒による洗浄を、イオン交換樹脂のようにイオンを吸着しているものは酸洗浄やアルカリ洗浄を行う。
(Adsorbent collection container)
By repeating the above process, the specific substance is gradually adsorbed to the circulating adsorbent and is not adsorbed at a certain processing amount. When this happens, the adsorbent is recovered in the adsorbent recovery container 11, and the adsorbent is regenerated and reused by washing or the like. In the example of FIG. 1, the adsorbent can be recovered in the adsorbent recovery container 11 from the recovery pipe 12 branched from the pipe 3 b attached to the recovery pot 5 below the cyclone 4. The adsorbent cleaning method may be a known method. For example, an adsorbent that adsorbs organic substances such as oil is washed with a solvent, and an ion adsorbent such as an ion exchange resin is washed with an acid or an alkali. Do.

(吸着剤)
吸着剤は、水処理に使用される固体のものであれば特に限定されない。固液分離装置としてサイクロンや磁気分離装置を使用する場合は、密度の調整や磁性体の含有などを行う必要がある。例えば、特許文献1に記載のマグネタイト含有油分吸着剤にも好適に使用することができる。吸着剤は、例えば溶液中に磁性体粒子とバインダー成分とを混合し、噴霧乾燥することによって作ることができる。また、イオン交換樹脂などのカラムに詰めて使用するイオン交換樹脂等も使用可能である。
(Adsorbent)
The adsorbent is not particularly limited as long as it is a solid used for water treatment. When a cyclone or a magnetic separator is used as the solid-liquid separator, it is necessary to adjust the density or contain a magnetic substance. For example, the magnetite-containing oil adsorbent described in Patent Document 1 can also be suitably used. The adsorbent can be made, for example, by mixing magnetic particles and a binder component in a solution and spray drying. In addition, an ion exchange resin or the like that is packed in a column such as an ion exchange resin can be used.

以下、具体的な実施例を用いて詳細に説明する。
(実施例1)
(装置の説明)
実施例1では図1の水処理装置を用いる。実施例1に水処理装置は、攪拌機とレベルセンサー(どちらも図中では省略)を有する300Lの反応槽1と、固液分離装置としての処理速度30L/minのサイクロン4と、ネオジウム磁石を備えた磁気分離装置6を有している。吸着剤は、サイクロン下の回収ポット5から連続的に反応槽1に戻すと共に、磁気分離装置6から定期的に逆洗して反応槽1に戻す構造になっている。
Hereinafter, a detailed description will be given using specific examples.
Example 1
(Explanation of the device)
In Example 1, the water treatment apparatus of FIG. 1 is used. The water treatment apparatus in Example 1 includes a 300 L reaction tank 1 having a stirrer and a level sensor (both are omitted in the figure), a cyclone 4 having a treatment speed of 30 L / min as a solid-liquid separator, and a neodymium magnet. And a magnetic separator 6. The adsorbent is continuously returned from the collection pot 5 under the cyclone to the reaction tank 1 and periodically backwashed from the magnetic separation device 6 to return to the reaction tank 1.

(吸着剤の作製)
ポリメチルメタクリレート138重量部を2400mlのアセトン中に溶解させて溶液とし、その溶液中に平均粒子径2000nmのマグネタイト粒子1500重量部を分散させて溶液とした。この溶液をミニスプレードライヤー(柴田科学株式会社製の商品名:B−290型)を用いて噴霧し、球状に凝集した平均2次粒子径が60μmの磁性体を含有した油分吸着剤を作製した。
(Production of adsorbent)
A solution was prepared by dissolving 138 parts by weight of polymethyl methacrylate in 2400 ml of acetone, and dispersing 1500 parts by weight of magnetite particles having an average particle diameter of 2000 nm in the solution. This solution was sprayed using a mini-spray dryer (trade name: B-290 type, manufactured by Shibata Kagaku Co., Ltd.) to prepare an oil adsorbent containing a magnetic material having an average secondary particle diameter of 60 μm aggregated in a spherical shape. .

(模擬排水の作製)
水1000Lに対し、4kgのギアオイル(エクソンモービル社製の商品名:モービルバクトラオイルNo.2製)を混合した模擬排水を準備した。
(Production of simulated drainage)
Simulated waste water was prepared by mixing 4 kg of gear oil (trade name: manufactured by ExxonMobil: manufactured by Mobile Bactra Oil No. 2) with respect to 1000 L of water.

(吸着試験)
反応槽1の中に予め10kgの吸着剤を投入し、原水供給ポンプ9から模擬排水を反応槽1内に供給した。反応槽1に250Lの模擬排水が投入されたところで送液ポンプ2を動かし、サイクロン4に30L/minで供給した。サイクロン4に送られた吸着剤の9割は回収ポット5に移り、残りの吸着剤は処理液と共に磁気分離装置6に送られた。この磁気分離装置6で残りの吸着剤を磁気で回収し、処理水排出ポンプ8で処理水槽へ放流したところ、この処理水中には吸着剤と油が混入していなかった。また、回収ポット5に回収された吸着剤は、回収ポット5の下から連続的に引き抜かれ、反応槽1に戻した。更に、5分に一度、磁気分離装置6を逆洗して、回収した吸着剤を反応槽1に戻した。模擬排水が全てなくなるまでこれを繰り返し、処理水槽へは吸着剤も油も混入していないことを確認した。
(Adsorption test)
10 kg of adsorbent was put in the reaction tank 1 in advance, and simulated waste water was supplied into the reaction tank 1 from the raw water supply pump 9. When 250 L of simulated waste water was charged into the reaction tank 1, the liquid feed pump 2 was moved and supplied to the cyclone 4 at 30 L / min. Ninety percent of the adsorbent sent to the cyclone 4 moved to the recovery pot 5 and the remaining adsorbent was sent to the magnetic separation device 6 together with the treatment liquid. When the remaining adsorbent was recovered magnetically by the magnetic separation device 6 and discharged to the treated water tank by the treated water discharge pump 8, the adsorbent and oil were not mixed in the treated water. Further, the adsorbent recovered in the recovery pot 5 was continuously extracted from the bottom of the recovery pot 5 and returned to the reaction tank 1. Further, the magnetic separator 6 was back-washed once every 5 minutes, and the collected adsorbent was returned to the reaction tank 1. This was repeated until all the simulated waste water was exhausted, and it was confirmed that neither the adsorbent nor the oil was mixed into the treated water tank.

(再生試験)
処理水排出ポンプ8を動かさず、磁気分離装置6から反応槽1に戻る閉ループの状態にして循環運転をした。回収ポット5に溜まった吸着剤を少しずつ吸着剤回収容器11に移動させつつ、全ての吸着剤を回収した。この回収した吸着剤に対し、30Lのヘキサンで3回洗浄したところ、吸着剤に付着していたギアオイル3.8kgを回収し、吸着剤の再生を完了した。
(Regeneration test)
Circulation operation was performed in a closed loop state in which the treated water discharge pump 8 was not moved and the magnetic separation device 6 returned to the reaction tank 1. All the adsorbents were recovered while the adsorbent collected in the recovery pot 5 was gradually moved to the adsorbent recovery container 11. When this collected adsorbent was washed with 30 L of hexane three times, 3.8 kg of gear oil adhering to the adsorbent was collected, and the regeneration of the adsorbent was completed.

実施例1に係る水処理装置によれば、反応槽1と固液分離装置としてのサイクロン4及び磁気分離装置6との間で高濃度の吸着剤を循環させ、そこに処理水を通過させることにより、吸着剤と特定物質の接触確率を高め、処理流量も得られる。   According to the water treatment apparatus according to Example 1, a high concentration adsorbent is circulated between the reaction tank 1 and the cyclone 4 and the magnetic separation apparatus 6 as the solid-liquid separation apparatus, and the treated water is passed therethrough. As a result, the contact probability between the adsorbent and the specific substance is increased, and the treatment flow rate is also obtained.

(実施例2)
実施例2では、図1の水処理装置を用いる。実施例2では、模擬排水の組成を、松村石油(株)製の水溶性切削剤ネオクール(ソリューションタイプ)2%水溶液1000Lにギアオイル4kgを混合したものとし、処理水排出ポンプ8の送り先を原水槽に繋いで循環運転したこと以外は実施例1と同様に吸着試験を行った。60分の運転の後、原水槽に浮かんでいたギアオイルはほとんど回収された。実施例1と同様に吸着剤を回収してヘキサン洗浄を行ったところ、吸着剤に付着していたギアオイル3.6kgを回収し、吸着剤の再生を完了した。また、処理した切削剤には油はほとんど見られず、切削剤として再利用可能であった。
(Example 2)
In Example 2, the water treatment apparatus of FIG. 1 is used. In Example 2, the composition of the simulated waste water is made by mixing 4 kg of gear oil with 1000 L of a water-soluble cutting agent Neocool (solution type) 2% aqueous solution manufactured by Matsumura Oil Co., Ltd., and the destination of the treated water discharge pump 8 is the raw water tank The adsorption test was conducted in the same manner as in Example 1 except that the circulation operation was performed. After 60 minutes of operation, most of the gear oil floating in the raw water tank was recovered. When the adsorbent was recovered and washed with hexane in the same manner as in Example 1, 3.6 kg of gear oil adhering to the adsorbent was recovered, and the regeneration of the adsorbent was completed. Further, almost no oil was found in the treated cutting agent, and it could be reused as a cutting agent.

(実施例3)
(装置の説明)
実施例3では図2の水処理装置を用いる。但し、図1と同部材は同符号を付して説明を省略する。実施例3の水処理装置は、攪拌機とレベルセンサー(どちらも図中では省略)を有する300Lの反応槽1と、固液分離装置としての処理速度30L/minのサイクロン4と、固液分離装置としての700mm角の上向流ろ過器21を有している。図2では、処理水排出管9と処理水槽とにより排出機構を構成している。吸着剤はサイクロン下の回収ポット5から連続的に反応槽1に戻すと共に、上向流ろ過器21から定期的に逆洗して反応槽1に戻す構造になっている。
(吸着剤の作製)
実施例1と同様に吸着剤を作製した。
(模擬排水の作製)
水1000Lに対し、4kgのギアオイルを混合した模擬排水を準備した。
(Example 3)
(Explanation of the device)
In Example 3, the water treatment apparatus of FIG. 2 is used. However, the same members as those in FIG. The water treatment apparatus of Example 3 includes a 300 L reaction tank 1 having a stirrer and a level sensor (both omitted in the figure), a cyclone 4 having a treatment speed of 30 L / min as a solid-liquid separation apparatus, and a solid-liquid separation apparatus As a 700 mm square upflow filter 21. In FIG. 2, the treated water discharge pipe 9 and the treated water tank constitute a discharge mechanism. The adsorbent is continuously returned to the reaction tank 1 from the recovery pot 5 under the cyclone, and periodically backwashed from the upward flow filter 21 to return to the reaction tank 1.
(Production of adsorbent)
An adsorbent was prepared in the same manner as in Example 1.
(Production of simulated drainage)
A simulated drainage in which 4 kg of gear oil was mixed with 1000 L of water was prepared.

(吸着試験)
反応槽1の中に予め10kgの吸着剤を投入し、原水供給ポンプ10から模擬排水を反応槽1内に供給した。反応槽1に250Lの模擬排水が投入されたところで送液ポンプ2を動かし、サイクロン4に30L/minで供給した。サイクロン4に送られた吸着剤の9割は回収ポット5に移り、残りの吸着剤は処理液と共に上向流ろ過装置21に送られた。この上向流ろ過装置21で残りの吸着剤を回収し、処理水槽へ放流したところ、この処理水中には吸着剤と油が混入していなかった。また、回収ポット5に回収された吸着剤は、回収ポット5の下から連続的に引き抜かれ、反応槽1に戻した。また、5分に一度、上向流ろ過器21を逆洗して、回収した吸着剤を反応槽1に戻した。模擬排水が全てなくなるまでこれを繰り返したところ、処理水槽へは吸着剤も油も混入していないことを確認した。
(Adsorption test)
10 kg of adsorbent was introduced into the reaction tank 1 in advance, and simulated waste water was supplied from the raw water supply pump 10 into the reaction tank 1. When 250 L of simulated waste water was charged into the reaction tank 1, the liquid feed pump 2 was moved and supplied to the cyclone 4 at 30 L / min. 90% of the adsorbent sent to the cyclone 4 moved to the recovery pot 5, and the remaining adsorbent was sent to the upward flow filter 21 together with the processing liquid. When the remaining adsorbent was collected by this upflow filtration device 21 and discharged into the treated water tank, adsorbent and oil were not mixed in the treated water. Further, the adsorbent recovered in the recovery pot 5 was continuously extracted from the bottom of the recovery pot 5 and returned to the reaction tank 1. Moreover, the upflow filter 21 was backwashed once every 5 minutes, and the collected adsorbent was returned to the reaction tank 1. This was repeated until all the simulated waste water was exhausted, and it was confirmed that neither the adsorbent nor the oil was mixed into the treated water tank.

(再生試験)
実施例1と同様にヘキサンで洗浄したところ、ギアオイル3.9kgを回収し、吸着剤の再生を完了した。
(Regeneration test)
When washed with hexane in the same manner as in Example 1, 3.9 kg of gear oil was recovered, and regeneration of the adsorbent was completed.

(実施例4)
(装置の説明)
実施例4では図3の水処理装置を用いる。但し、図1,図2と同部材は同符号を付して説明を省略する。実施例4の水処理装置は、攪拌機とレベルセンサー(どちらも図中では省略)を有する300Lの反応槽1と、固液分離装置としての700mm角の3台の上向流ろ過器21a,21b,21cを有している。吸着剤は、上向流ろ過器21a,21b,21cから定期的に逆洗して反応槽1に戻す構造になっている。なお、図3中の符号22は、排水管7から分岐して吸着剤回収容器11に接続する回収管を示す。
Example 4
(Explanation of the device)
In Example 4, the water treatment apparatus of FIG. 3 is used. However, the same members as those in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. The water treatment apparatus of Example 4 includes a 300 L reaction tank 1 having a stirrer and a level sensor (both are omitted in the figure), and three 700 mm square upflow filters 21a and 21b as solid-liquid separators. , 21c. The adsorbent has a structure in which the adsorbent is periodically back-washed from the upward flow filters 21a, 21b, and 21c and returned to the reaction tank 1. In addition, the code | symbol 22 in FIG. 3 shows the collection pipe | tube branched from the drain pipe 7 and connected to the adsorption agent collection container 11. FIG.

(吸着剤の作製)
吸着剤は、ホウ素吸着樹脂(三菱化学製の商品名:CRB05)を使用した。
(Production of adsorbent)
As the adsorbent, boron adsorbent resin (trade name: CRB05 manufactured by Mitsubishi Chemical) was used.

(模擬排水の作製)
四ホウ酸ナトリウムを1000Lの水に溶解させ、ホウ素濃度500mg/Lの模擬排水を準備した。
(Production of simulated drainage)
Sodium tetraborate was dissolved in 1000 L of water to prepare simulated waste water with a boron concentration of 500 mg / L.

(吸着試験)
反応槽1の中に予め10kgの吸着剤を投入し、原水供給ポンプ10から模擬排水を反応槽1内に供給した。反応槽1に250Lの模擬排水が投入されたところで送液ポンプ2を動かし、上向流ろ過器21a,21b,21cに送られた。これらの上向流ろ過器21a,21b,21cで吸着剤を回収し処理水槽へ放流したところ、この処理水中には吸着剤は混入していなかった。また、上向流ろ過器21a,21b,21cは5分おきに逆洗を行い、吸着剤を反応槽1に戻した。約35分で全ての処理が終わった後、処理水槽のホウ素濃度を分析したところ、420mg/Lでホウ素の吸着を確認し、合計で80gのホウ素を回収した。
(再生試験)
実施例1と同様に回収して、1規定の硫酸と1規定の水酸化ナトリウム水溶液で洗浄して吸着剤の再生を完了した。
(Adsorption test)
10 kg of adsorbent was introduced into the reaction tank 1 in advance, and simulated waste water was supplied from the raw water supply pump 10 into the reaction tank 1. When 250 L of simulated waste water was put into the reaction tank 1, the liquid feed pump 2 was moved and sent to the upward flow filters 21a, 21b, and 21c. When the adsorbent was collected by these upward flow filters 21a, 21b, and 21c and discharged into the treated water tank, the adsorbent was not mixed in the treated water. The upward flow filters 21a, 21b, and 21c were backwashed every 5 minutes, and the adsorbent was returned to the reaction tank 1. After all the treatments were completed in about 35 minutes, the boron concentration in the treated water tank was analyzed. As a result, adsorption of boron was confirmed at 420 mg / L, and a total of 80 g of boron was recovered.
(Regeneration test)
It was recovered in the same manner as in Example 1 and washed with 1N sulfuric acid and 1N aqueous sodium hydroxide solution to complete regeneration of the adsorbent.

(比較例1)
実施例4と同じ量の吸着剤を20Lのカラムに充填し、模擬排水を通水したところ35分で50Lしか処理できなかった。この時通水した水中に含まれるホウ素は全量回収したが、合計で25gであった。
(Comparative Example 1)
The same amount of adsorbent as in Example 4 was packed in a 20 L column, and simulated waste water was passed through. As a result, only 50 L could be treated in 35 minutes. The total amount of boron contained in the water passed through at this time was recovered, but the total amount was 25 g.

以上のことからわかるように、本発明の水処理装置は高濃度の吸着剤を有する水槽を通水することにより、効率的に水処理を行うことができる。   As can be seen from the above, the water treatment apparatus of the present invention can efficiently perform water treatment by passing water through a water tank having a high concentration of adsorbent.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…反応槽、2…送液ポンプ、3a,3b,3c…配管、4…サイクロン(固液分離装置)、5…回収ポット、6…磁気分離装置(固液分離装置)、7…排水管(戻し機構)、8…処理水排出ポンプ、9…処理水排出管、10…原水供給ポンプ、12,22…回収管、11…吸着剤回収容器、21,21a,21b,21c…上向流ろ過器。   DESCRIPTION OF SYMBOLS 1 ... Reaction tank, 2 ... Liquid feed pump, 3a, 3b, 3c ... Pipe, 4 ... Cyclone (solid-liquid separator), 5 ... Recovery pot, 6 ... Magnetic separator (solid-liquid separator), 7 ... Drain pipe (Return mechanism), 8 ... treated water discharge pump, 9 ... treated water discharge pipe, 10 ... raw water supply pump, 12, 22 ... recovery pipe, 11 ... adsorbent recovery container, 21, 21a, 21b, 21c ... upward flow Filter.

Claims (9)

吸着剤と処理水を接触させる反応槽と、吸着剤と処理水を分離させる固液分離装置と、前記反応槽に被処理水を供給する供給装置と、前記固液分離装置から処理水を排出する排出機構と、前記固液分離装置から前記吸着剤を反応槽に戻す戻し機構を具備し、この戻し機構により吸着剤を前記反応槽と前記固液分離装置の間で循環させることを特徴とする水処理装置。   A reaction tank for contacting the adsorbent and the treated water, a solid-liquid separation device for separating the adsorbent and the treated water, a supply device for supplying the treated water to the reaction tank, and discharging the treated water from the solid-liquid separator And a return mechanism for returning the adsorbent from the solid-liquid separator to the reaction tank, and the return mechanism circulates the adsorbent between the reaction tank and the solid-liquid separator. Water treatment equipment. 前記吸着剤の密度が2g/cm以上であることを特徴とする請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the adsorbent has a density of 2 g / cm 3 or more. 前記吸着剤が磁性体を含有することを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the adsorbent contains a magnetic substance. 前記固液分離装置がサイクロンであることを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the solid-liquid separator is a cyclone. 前記固液分離装置が磁気分離装置であることを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the solid-liquid separation apparatus is a magnetic separation apparatus. 前記固液分離装置がろ過器であることを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the solid-liquid separator is a filter. 前記吸着剤が油分吸着剤であることを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the adsorbent is an oil adsorbent. 前記吸着剤がイオン吸着粒子であることを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the adsorbent is ion adsorption particles. 反応槽に被処理水を供給する第1工程と、吸着剤と処理水を接触させる第2工程と、固液分離装置で吸着剤と処理水を分離させる第3工程と、前記固液分離装置から前記処理水を排出する第4工程と、前記固液分離装置から前記吸着剤を前記反応槽に戻す第5工程とを具備し、吸着剤を前記反応槽と前記固液分離装置の間で循環させることを特徴とする水処理方法。   A first step of supplying water to be treated to the reaction tank, a second step of bringing the adsorbent and the treated water into contact, a third step of separating the adsorbent and the treated water by a solid-liquid separator, and the solid-liquid separator. And a fourth step of discharging the treated water from the solid-liquid separator and a fifth step of returning the adsorbent to the reaction tank from the solid-liquid separator, and the adsorbent between the reaction tank and the solid-liquid separator. A water treatment method characterized by circulating.
JP2011052812A 2011-03-10 2011-03-10 Water treatment apparatus and water treatment method Expired - Fee Related JP5426591B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011052812A JP5426591B2 (en) 2011-03-10 2011-03-10 Water treatment apparatus and water treatment method
PCT/JP2012/054787 WO2012121047A1 (en) 2011-03-10 2012-02-27 Water treatment system and water treatment method
CN201280009060.9A CN103380085B (en) 2011-03-10 2012-02-27 Water treatment system and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052812A JP5426591B2 (en) 2011-03-10 2011-03-10 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2012187507A true JP2012187507A (en) 2012-10-04
JP5426591B2 JP5426591B2 (en) 2014-02-26

Family

ID=46798015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052812A Expired - Fee Related JP5426591B2 (en) 2011-03-10 2011-03-10 Water treatment apparatus and water treatment method

Country Status (3)

Country Link
JP (1) JP5426591B2 (en)
CN (1) CN103380085B (en)
WO (1) WO2012121047A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250214A (en) * 2011-06-07 2012-12-20 Masanori Aritomi Seawater purification system
JP2014083519A (en) * 2012-10-26 2014-05-12 Toshiba Corp Water treatment apparatus and method of water treatment
WO2015178458A1 (en) * 2014-05-23 2015-11-26 株式会社クラレ Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
JP2016215112A (en) * 2015-05-19 2016-12-22 株式会社大林組 Contaminated soil cleaning equipment and cleaning method for contaminated soil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106395979B (en) * 2016-12-09 2019-06-11 大连凯泓科技有限公司 Cyclonic separation water treatment facilities and method for treating water
CN110773115B (en) * 2019-11-20 2022-07-12 苏州溪能环保科技有限公司 High-efficiency water treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246664A (en) * 1975-10-11 1977-04-13 Hitachi Metals Ltd Process for treating an oil-containing waste watr using a strong magne tic powder
JPH10504995A (en) * 1994-09-09 1998-05-19 サウス オーストラリアン ウォーター コーポレイション Water treatment method
JP2007185581A (en) * 2006-01-12 2007-07-26 Nomura Micro Sci Co Ltd Purification method and purification apparatus for oxidizing agent
JP2010058087A (en) * 2008-09-05 2010-03-18 Toshiba Corp Magnetic particle for water purification, and water treating method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117433B2 (en) * 2009-03-13 2013-01-16 株式会社東芝 Waste water adsorption equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246664A (en) * 1975-10-11 1977-04-13 Hitachi Metals Ltd Process for treating an oil-containing waste watr using a strong magne tic powder
JPH10504995A (en) * 1994-09-09 1998-05-19 サウス オーストラリアン ウォーター コーポレイション Water treatment method
JP2007185581A (en) * 2006-01-12 2007-07-26 Nomura Micro Sci Co Ltd Purification method and purification apparatus for oxidizing agent
JP2010058087A (en) * 2008-09-05 2010-03-18 Toshiba Corp Magnetic particle for water purification, and water treating method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250214A (en) * 2011-06-07 2012-12-20 Masanori Aritomi Seawater purification system
JP2014083519A (en) * 2012-10-26 2014-05-12 Toshiba Corp Water treatment apparatus and method of water treatment
WO2015178458A1 (en) * 2014-05-23 2015-11-26 株式会社クラレ Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
JP2016215112A (en) * 2015-05-19 2016-12-22 株式会社大林組 Contaminated soil cleaning equipment and cleaning method for contaminated soil

Also Published As

Publication number Publication date
WO2012121047A1 (en) 2012-09-13
JP5426591B2 (en) 2014-02-26
CN103380085A (en) 2013-10-30
CN103380085B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5426591B2 (en) Water treatment apparatus and water treatment method
Mudhoo et al. Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review
US7291272B2 (en) Inorganic contaminant removal from water
JP5736094B1 (en) Contaminated soil purification equipment
JP4653826B2 (en) Solid-liquid separator
JP2016013522A (en) Water treatment system and water treatment method
JP2014018751A (en) Apparatus and method for cleaning magnetic powder
JP2011131191A (en) Membrane filtration system
JP2014071025A (en) Solid-liquid separation method and solid-liquid separation device
JP2014057920A (en) Water treatment method
WO2013136385A1 (en) Fluorine recovery device, fluorine recovery system, and fluorine recovery method
JP6723503B2 (en) Soil purification system
CN106390933A (en) Magnetic fluorinated adsorbent for selective adsorption of PFOS, preparation method and application thereof
JP2020082055A (en) Soil purification system
JP2020082057A (en) Soil remediation system
JP2020097020A (en) Soil remediation system
JP5818670B2 (en) Oil-containing wastewater treatment equipment
US11345614B1 (en) Composite particle and method for removing contaminants from liquids
JP6555497B1 (en) Soil purification system
JP5808945B2 (en) Equipment for removing radioactive pollutants
CN201704138U (en) Airtight sewage treatment device for tank car mechanical cleaning
KR100483694B1 (en) Adsorption Reaction Unit Using Power Active Corbon and Method Thereof
JP2015211941A (en) Phosphorous recovery system and phosphorous recovery method
JP2014057917A (en) Water treatment apparatus and water treatment method
JP2020082051A (en) Soil purification system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

LAPS Cancellation because of no payment of annual fees