JP2007107057A - Method for producing dispersion of metallic microparticle, electroconductive ink using dispersion produced with the method, and electroconductive pattern - Google Patents

Method for producing dispersion of metallic microparticle, electroconductive ink using dispersion produced with the method, and electroconductive pattern Download PDF

Info

Publication number
JP2007107057A
JP2007107057A JP2005299501A JP2005299501A JP2007107057A JP 2007107057 A JP2007107057 A JP 2007107057A JP 2005299501 A JP2005299501 A JP 2005299501A JP 2005299501 A JP2005299501 A JP 2005299501A JP 2007107057 A JP2007107057 A JP 2007107057A
Authority
JP
Japan
Prior art keywords
metal
particle dispersion
fine particle
dispersion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005299501A
Other languages
Japanese (ja)
Other versions
JP4839767B2 (en
Inventor
Kaori Nakamura
香織 中村
Kinya Shiraishi
欣也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005299501A priority Critical patent/JP4839767B2/en
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to EP06821864.3A priority patent/EP1952918B1/en
Priority to US12/083,584 priority patent/US7981327B2/en
Priority to PCT/JP2006/320493 priority patent/WO2007043664A1/en
Priority to CN2006800379469A priority patent/CN101287566B/en
Priority to KR1020087011526A priority patent/KR101328908B1/en
Publication of JP2007107057A publication Critical patent/JP2007107057A/en
Priority to US13/075,918 priority patent/US8440110B2/en
Application granted granted Critical
Publication of JP4839767B2 publication Critical patent/JP4839767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a dispersion of metallic microparticles, which contains the microparticles with a uniform particle diameter, has superior dispersion stability, can be used for forming an electroconductive pattern and has adequate physical properties; an electroconductive ink superior in patterning properties; and an electroconductive pattern with the use of the electroconductive ink. <P>SOLUTION: The method for producing the dispersion of the metallic microparticles includes reducing a metallic compound to its elements with the use of carbodihydrazide or a polybasic acid polyhydrazide, preferably, a diacid base dihydrazide, in a liquid medium. The electroconductive ink contains the dispersion of the metallic microparticles obtained by using the production method. The electroconductive pattern is formed by using the electroconductive ink. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導電性インキの原料として有用な金属微粒子分散体の製造方法、およびこの金属微粒子分散体を含む導電性インキに関する。   The present invention relates to a method for producing a fine metal particle dispersion useful as a raw material for conductive ink, and a conductive ink containing the fine metal particle dispersion.

従来から、プリント配線板等の基材上に電極や導電回路パターンを形成するため、導電性ペーストが広く用いられてきた。これは、導電性粉末や金属粒子を樹脂成分や有機溶媒等に分散したものである。
しかし近年、プリント配線板上の回路パターンのみならず、ICタグ、あるいは電磁波シールド用の回路パターンにも微細パターンの要求が高まってきている。このような、回路パターンの微小化の要求に伴い、従来使用してきたミクロンオーダーの金属粒子では対応が困難になってきており、より精密な導電性パターンを作製するために、ナノオーダーの金属微粒子に注目が集まっている。
Conventionally, conductive paste has been widely used to form electrodes and conductive circuit patterns on a substrate such as a printed wiring board. This is obtained by dispersing conductive powder and metal particles in a resin component, an organic solvent, or the like.
However, in recent years, there has been an increasing demand for fine patterns not only for circuit patterns on printed wiring boards, but also for IC tags or circuit patterns for electromagnetic shielding. In response to the demands for miniaturization of circuit patterns, it has become difficult to cope with conventional micron-order metal particles. In order to produce more precise conductive patterns, nano-order metal particles Attention has been gathered.

金属微粒子分散体については、古くから様々な報告がされているが、多くはヒドロゾルであり、含有される金属微粒子の濃度も低いものであった。導電性ペースト等の用途に用いるためにはオルガノゾルが有利であり、また、導電性材料としての性能を発揮するためには金属微粒子の濃度は高いほうが望ましいため、高収率、高濃度化が可能なオルガノゾルの製造方法が求められていた。
金属微粒子の製造方法には、ガス中蒸発法等の気相法と液相中で超音波、紫外線や還元剤を用いて金属化合物を還元する液相法とがある。気相法は一般に純粋ガス中で合成を行うためコンタミネーションの少ない金属微粒子を合成することができるが、大型で特殊な装置を必要とする場合が多く、コストや合成作業の簡便性を考慮すると、液相法が有利である。液相法の中では、還元剤を用いて金属微粒子を還元する方法が多く、還元剤としては水素、ジボラン、水素化ホウ素アルカリ金属塩、水素化ホウ素4級アンモニウム塩、ヒドラジン、クエン酸、アルコール類、アスコルビン酸、アミン化合物等が良く用いられる。
Various reports on metal fine particle dispersions have been made for a long time, but many were hydrosols, and the concentration of metal fine particles contained was low. Organosols are advantageous for use in applications such as conductive paste, and high concentration of metal fine particles is desirable for exhibiting performance as a conductive material, so high yield and high concentration are possible. There has been a demand for a method for producing an organosol.
As a method for producing metal fine particles, there are a gas phase method such as a gas evaporation method and a liquid phase method in which a metal compound is reduced in a liquid phase using ultrasonic waves, ultraviolet rays or a reducing agent. The gas phase method generally synthesizes fine metal particles with low contamination because it is synthesized in pure gas, but it often requires a large and special device, considering the cost and simplicity of synthesis work. The liquid phase method is advantageous. In the liquid phase method, there are many methods of reducing metal fine particles using a reducing agent. As the reducing agent, hydrogen, diborane, alkali metal borohydride, quaternary ammonium borohydride, hydrazine, citric acid, alcohol , Ascorbic acid, amine compounds and the like are often used.

しかし、ジボラン、水素化ホウ素アルカリ金属塩、水素化ホウ素4級アンモニウム塩、ヒドラジン等の還元剤は還元力が非常に強力で、金属化合物との反応が激しく進行するため、反応速度の制御が難しく、生成した金属微粒子が凝集沈殿してしまい、微小な金属微粒子分散体を収率良く得ることは困難であった。また、これら還元力の強い還元剤は強塩基や毒性を有するものも多く、作業上危険であった。クエン酸、アスコルビン酸、アルコール類は、還元時に還流などの高温条件下で反応を行う必要があり、生成した金属微粒子が高い熱エネルギーを持つため不安定で凝集が起こりやすく、高濃度化が困難であった。比較的温和に反応が進行するアルコールアミンを用いて還元し、生成した金属微粒子を水相から有機相に抽出するという報告もされているが、この方法を用いても粒子径分布が広く、収率のよい金属微粒子分散体が得られなかった。また、アミン化合物は金属種によってはアミン錯体を形成するのみで還元反応が進行しない場合があるため、使用できる金属種に制限があり、汎用性に欠けるという問題があった。いずれの還元剤も、均一で高濃度な金属微粒子分散体を得ることが困難であり、安全で還元性に優れ、粒子径分布の狭い金属微粒子を生成できる還元剤の開発が求められていた。
特開平11−80647号公報 特開昭61−276907号公報
However, reducing agents such as diborane, alkali metal borohydride, quaternary ammonium borohydride, and hydrazine have very strong reducing power, and the reaction with the metal compound proceeds violently, making it difficult to control the reaction rate. As a result, the generated metal fine particles are aggregated and precipitated, and it is difficult to obtain a fine metal fine particle dispersion with high yield. In addition, many of these reducing agents with strong reducing power have strong bases and toxicity, which is dangerous in work. Citric acid, ascorbic acid, and alcohols must be reacted under high-temperature conditions such as refluxing during reduction, and the resulting metal fine particles have high thermal energy, so they are unstable and prone to aggregation, making it difficult to achieve high concentrations Met. Although it has been reported that metal amines are reduced using alcoholamine, which reacts relatively mildly, and the resulting fine metal particles are extracted from the aqueous phase to the organic phase, the particle size distribution is wide even if this method is used. An efficient metal fine particle dispersion could not be obtained. Moreover, since an amine compound may only form an amine complex depending on the metal species and the reduction reaction may not proceed, there is a problem that the metal species that can be used is limited and lacks versatility. In any of the reducing agents, it is difficult to obtain a uniform and high-concentration metal fine particle dispersion, and there has been a demand for the development of a reducing agent that is safe, excellent in reducibility, and capable of producing metal fine particles with a narrow particle size distribution.
Japanese Patent Laid-Open No. 11-80647 JP-A 61-276907

本発明は、均一な粒子径を有し、分散安定性に優れ、導電性パターン形成に利用可能で、かつ良好な物性が得られる金属微粒子分散体の製造方法の提供を目的とする。
また、本発明は、パターン性に優れた導電性インキと該導電性インキを用いた導電パターンの提供を目的とする。
An object of the present invention is to provide a method for producing a metal fine particle dispersion which has a uniform particle diameter, is excellent in dispersion stability, can be used for forming a conductive pattern, and has good physical properties.
Moreover, an object of this invention is to provide the conductive pattern excellent in pattern property, and the conductive pattern using this conductive ink.

本発明の金属微粒子分散体の製造方法は、液体媒体中、下記式(1)で示されるカルボジヒドラジドまたは下記式(2)で示される多塩基酸ポリヒドラジドを用いて、金属化合物を還元することを特徴とする。

Figure 2007107057
(式中、Rは多塩基酸残基を表す。)
In the method for producing a metal fine particle dispersion of the present invention, a metal compound is reduced using a carbodihydrazide represented by the following formula (1) or a polybasic acid polyhydrazide represented by the following formula (2) in a liquid medium. It is characterized by.
Figure 2007107057
(In the formula, R represents a polybasic acid residue.)

本発明の金属微粒子分散体の製造方法において、多塩基酸ポリヒドラジドは二塩基酸ジヒドラジドであることが好ましい。また、本発明の金属微粒子分散体の製造方法において、カルボジヒドラジドまたは多塩基酸ポリヒドラジドの水溶液と非水性溶媒との混合物に、金属化合物を添加することが好ましく、金属化合物はアンモニア性錯体として添加されることが好ましい。さらに好ましくは、金属化合物を水溶液として添加すると良い。また、金属化合物は、VIII族およびIB族から選ばれる金属の化合物であることが好ましい。
本発明の導電性インキは、本発明の製造方法で得られた金属微粒子分散体を含むことを特徴とする。
本発明の導電性パターンは、本発明の導電性インキを用いて形成されたことを特徴とする。
In the method for producing a metal fine particle dispersion of the present invention, the polybasic acid polyhydrazide is preferably dibasic acid dihydrazide. In the method for producing a metal fine particle dispersion of the present invention, it is preferable to add a metal compound to a mixture of an aqueous solution of carbodihydrazide or polybasic acid polyhydrazide and a non-aqueous solvent, and the metal compound is added as an ammoniacal complex. It is preferred that More preferably, the metal compound is added as an aqueous solution. The metal compound is preferably a metal compound selected from Group VIII and Group IB.
The conductive ink of the present invention includes a metal fine particle dispersion obtained by the production method of the present invention.
The conductive pattern of the present invention is formed using the conductive ink of the present invention.

本発明の金属微粒子分散体の製造方法では、金属化合物は、上記式(1)で示されるカルボジヒドラジドまたは上記式(2)示される多塩基酸ポリヒドラジドを用いて、液体媒体中で還元される。上記カルボジヒドラジドまたは多塩基酸ポリヒドラジドは、pHが中性〜弱塩基性であるため作業上安全であり、還元剤として使用した場合、ヒドラジンや水素化ホウ素ナトリウムのように激しく反応することがないが、還元反応は高温で加熱する必要なく迅速に進行するため、反応後の金属微粒子の凝集が抑えられ、微小で粒子径の揃った金属微粒子の分散体を得ることができる。   In the method for producing a metal fine particle dispersion of the present invention, the metal compound is reduced in a liquid medium using a carbodihydrazide represented by the above formula (1) or a polybasic acid polyhydrazide represented by the above formula (2). . The above-mentioned carbodihydrazide or polybasic acid polyhydrazide is safe in work because its pH is neutral to weakly basic, and when used as a reducing agent, it does not react as violently as hydrazine or sodium borohydride. However, since the reduction reaction proceeds rapidly without the need for heating at a high temperature, aggregation of the metal fine particles after the reaction is suppressed, and a dispersion of metal fine particles having a uniform particle diameter can be obtained.

また、本発明の導電性インキは、粒子径が微小かつ粒度分布が狭い金属微粒子を使用しているため、流動性や安定性に優れており、低温で低い体積抵抗値を有する導電性回路パターンを形成することができる。そのため、フレキソ印刷、ロータリースクリーン印刷、オフセットグラビア印刷、グラビア印刷、レタープレスといった通常の印刷方式で導電性パターンの大量生産が可能となった。これらの印刷法により形成される厚さ数μm程度の導電性パターンは、例えば非接触型メディアのアンテナ回路や、電磁波シールド用回路パターンに要求される性能を十分満たすと同時に、その性能は安定し信頼性に優れている。
本発明の導電インキを使用することによって、導電性パターンの実用性が高まり、低コスト化が可能になった。
In addition, since the conductive ink of the present invention uses fine metal particles having a small particle size and a narrow particle size distribution, the conductive circuit pattern is excellent in fluidity and stability and has a low volume resistance value at a low temperature. Can be formed. As a result, it has become possible to mass-produce conductive patterns by ordinary printing methods such as flexographic printing, rotary screen printing, offset gravure printing, gravure printing, and letter press. Conductive patterns with a thickness of several μm formed by these printing methods sufficiently satisfy the performance required for, for example, antenna circuits for non-contact media and circuit patterns for electromagnetic wave shielding, and at the same time the performance is stable. Excellent reliability.
By using the conductive ink of the present invention, the practicality of the conductive pattern is increased, and the cost can be reduced.

以下、本発明の実施の形態について更に詳しく説明するが、本発明の技術的思想を逸脱しない限り、本発明はこれらの実施の形態に限定されるものではない。
まず、本発明の金属微粒子分散体の製造方法について説明する。
本発明の金属微粒子分散体の製造方法では、液体媒体中、下記式(1)で示されるカルボジヒドラジドまたは下記式(2)で示される多塩基酸ポリヒドラジドを用いて、金属化合物を還元することにより金属微粒子分散体が製造される。

Figure 2007107057
(式中、Rは多塩基酸残基を表す。)
カルボジヒドラジドおよび多塩基酸ポリヒドラジドは、通常は樹脂の硬化剤や改質剤として用いられている化合物であり、従来は還元剤として使用されていないが、金属化合物の還元剤として良好に働く。 Hereinafter, embodiments of the present invention will be described in more detail, but the present invention is not limited to these embodiments unless departing from the technical idea of the present invention.
First, the method for producing the metal fine particle dispersion of the present invention will be described.
In the method for producing a metal fine particle dispersion of the present invention, a metal compound is reduced using a carbodihydrazide represented by the following formula (1) or a polybasic acid polyhydrazide represented by the following formula (2) in a liquid medium. Thus, a metal fine particle dispersion is produced.
Figure 2007107057
(In the formula, R represents a polybasic acid residue.)
Carbodihydrazide and polybasic acid polyhydrazide are compounds that are usually used as resin curing agents and modifiers, and conventionally used as reducing agents, but work well as reducing agents for metal compounds.

本発明における式(2)で示される多塩基酸ポリヒドラジドとしては、特に制限はないが、例えば、二塩基酸ジヒドラジド、三塩基酸トリヒドラジド、四塩基酸テトラヒドラジド等があげられる。上記多塩基酸ポリヒドラジドの中で、二塩基酸ジヒドラジドは、溶媒への溶解性が良好であるため、還元反応を均一に進行させることができ、貯蔵安定性もよいため好ましい。
二塩基酸ジヒドラジドとしては、例えば、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、タルタロジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、ヘキサデカン酸ジヒドラジド、2,6−ナフトエ酸ジヒドラジド、1,4−ナフトエ酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、イタコン酸ジヒドラジド等があげられる。
The polybasic acid polyhydrazide represented by the formula (2) in the present invention is not particularly limited, and examples thereof include dibasic acid dihydrazide, tribasic acid trihydrazide, and tetrabasic acid tetrahydrazide. Among the polybasic acid polyhydrazides, dibasic acid dihydrazide is preferable because it has a good solubility in a solvent and thus can cause the reduction reaction to proceed uniformly and has good storage stability.
Examples of the dibasic acid dihydrazide include malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, tartarodihydrazide diacid, Examples include dihydrazide, azelaic acid dihydrazide, hexadecanoic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 1,4-naphthoic acid dihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, itaconic acid dihydrazide and the like.

三塩基酸トリヒドラジドとしては、例えば、クエン酸トリヒドラジド、トリメリット酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド等があげられる。四塩基酸テトラヒドラジドとしては、エチレンジアミン四酢酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等があげられる。
上記以外の多塩基酸ポリヒドラジドとしては、ポリアクリル酸ポリヒドラジド等が挙げられる。
これらの多塩基酸ポリヒドラジドは、1種類を単独で、または2種類以上を組み合わせて用いることができ、カルボジヒドラジドと組み合わせて用いることもできる。
Examples of the tribasic acid trihydrazide include citric acid trihydrazide, trimellitic acid trihydrazide, nitriloacetic acid trihydrazide, cyclohexanetricarboxylic acid trihydrazide, and the like. Examples of the tetrabasic acid tetrahydrazide include ethylenediaminetetraacetic acid tetrahydrazide and pyromellitic acid tetrahydrazide.
Examples of polybasic acid polyhydrazides other than the above include polyacrylic acid polyhydrazide.
These polybasic acid polyhydrazides can be used singly or in combination of two or more, and can also be used in combination with carbodihydrazide.

カルボジヒドラジドまたは多塩基酸ポリヒドラジドは、固体で添加しても、溶媒に溶解して添加しても良いが、反応がより均一に効率よく進行するためには溶媒に溶解して添加することが好ましい。
さらに、反応後の精製を考慮すると、水溶液として添加することが好ましい。水溶液として添加する場合においては、水への溶解性を考慮するとアジピン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジドを用いることが好ましい。
カルボジヒドラジドまたは多塩基酸ポリヒドラジドは、水素の1つまたは2つ以上が水酸基等の官能基で置換されていてもよい。
Carbodihydrazide or polybasic acid polyhydrazide may be added as a solid or dissolved in a solvent. However, in order for the reaction to proceed more uniformly and efficiently, it may be added dissolved in a solvent. preferable.
Furthermore, in consideration of purification after the reaction, it is preferably added as an aqueous solution. In the case of adding as an aqueous solution, it is preferable to use adipic acid dihydrazide, succinic acid dihydrazide, or glutaric acid dihydrazide in consideration of solubility in water.
In the carbodihydrazide or polybasic acid polyhydrazide, one or more of hydrogen may be substituted with a functional group such as a hydroxyl group.

本発明におけるカルボジヒドラジドまたは多塩基酸ポリヒドラジドの添加量については、金属化合物の種類や濃度によっても異なるが、通常は少なくとも金属化合物溶液から金属が還元析出するのに必要な化学量論比の量を使用すればよい。本発明の製造方法に使用されるカルボジヒドラジドまたは多塩基酸ポリヒドラジドはポリヒドラジド類であり、還元能のある官能基を2個以上有していることから、金属が還元析出するのに必要な化学量論比はヒドラジド基で換算して添加するのが好ましい。還元後に水相を除去する場合には、余剰の還元剤も同時に除去できるため、化学量論比以上の還元剤を使用しても良く、その上限は特に定められるものではないが、洗浄工程やコストを考えると、ヒドラジド換算の化学量論比で金属化合物を還元するのに必要な添加量の6倍以下であることが好ましい。   The amount of carbodihydrazide or polybasic acid polyhydrazide added in the present invention varies depending on the type and concentration of the metal compound, but usually at least the amount of the stoichiometric ratio necessary for the metal to be reduced and precipitated from the metal compound solution. Can be used. The carbodihydrazide or polybasic acid polyhydrazide used in the production method of the present invention is a polyhydrazide and has two or more functional groups having a reducing ability. Therefore, it is necessary for the metal to be deposited by reduction. The stoichiometric ratio is preferably added in terms of hydrazide groups. When removing the aqueous phase after the reduction, excess reducing agent can be removed at the same time, so a reducing agent with a stoichiometric ratio or more may be used, and the upper limit is not particularly defined. Considering the cost, it is preferably 6 times or less of the addition amount necessary for reducing the metal compound at a stoichiometric ratio in terms of hydrazide.

還元反応を行う際には、液体媒体と金属化合物とを混合した後にカルボジヒドラジドまたは多塩基酸ポリヒドラジドを添加して還元する方法と、液体媒体とカルボジヒドラジドまたは多塩基酸ポリヒドラジドとを混合した後に金属化合物を添加して還元する方法とのどちらの方法を用いても構わない。
しかし、カルボジヒドラジドまたは多塩基酸ポリヒドラジドの水溶液と非水性溶媒との混合物に金属化合物を添加すると、還元反応は、還元剤を含む液滴と金属化合物とが接触した際のみに起こり、還元された金属が速やかに非水性溶媒中へと抽出されるため、局所的な反応が起こりにくく、そのため、粒子径の揃った微小な金属微粒子を得ることができるため好ましい。また、カルボジヒドラジドまたは多塩基酸ポリヒドラジドの水溶液と非水性溶媒との混合物に金属化合物を添加して還元反応を行うほうが、原料である金属化合物を滴下するため、急激な反応や凝集が起こりにくい。
When performing the reduction reaction, the liquid medium and the metal compound are mixed and then reduced by adding carbodihydrazide or polybasic acid polyhydrazide, and the liquid medium and carbodihydrazide or polybasic acid polyhydrazide are mixed. Either of the following methods may be used: a method in which a metal compound is added and then reduced.
However, when a metal compound is added to a mixture of an aqueous solution of carbodihydrazide or polybasic acid polyhydrazide and a non-aqueous solvent, the reduction reaction occurs only when the droplet containing the reducing agent contacts the metal compound and is reduced. Since the metal is rapidly extracted into the non-aqueous solvent, local reaction is unlikely to occur, and therefore, fine metal fine particles having a uniform particle diameter can be obtained. In addition, when a reduction reaction is performed by adding a metal compound to a mixture of an aqueous solution of a carbodihydrazide or polybasic acid polyhydrazide and a non-aqueous solvent, the metal compound as a raw material is dropped, so that rapid reaction and aggregation are less likely to occur. .

また、金属化合物は、アンモニア性錯体として添加することが好ましい。この理由としては、金属化合物をアンモニア性錯体とすることで還元反応速度を緩和し、急激な粒子成長が起こることによる粗大粒子の生成を防ぐとともに、金属化合物を還元した際に発生する酸を中和し、反応中の系内のpHを一定に保つのに好適であることが挙げられる。さらに好ましくは、金属化合物は、還元反応をより均一に進行させることができるため、水溶液として添加することが好ましい。この場合には、金属化合物を還元した後に水相を除去することで、余剰の還元剤や不純物を簡単に除去することができる。   Moreover, it is preferable to add a metal compound as an ammoniacal complex. This is because the metal compound is an ammonia complex to reduce the reduction reaction rate, prevent the formation of coarse particles due to rapid particle growth, and reduce the acid generated when the metal compound is reduced. It can be mentioned that it is suitable for keeping the pH in the system constant during the reaction. More preferably, the metal compound is preferably added as an aqueous solution because the reduction reaction can proceed more uniformly. In this case, excess reducing agent and impurities can be easily removed by removing the aqueous phase after reducing the metal compound.

アンモニア性錯体の調整方法に特に制限はないが、金属化合物の溶液を攪拌しながらアンモニア水を滴下することで簡単に調整することができる。
アンモニア性錯体を調整する際のアンモニアの添加量については、金属化合物の種類や濃度によっても異なるが、錯体が安定に溶解し、かつ、金属化合物が還元された際に発生する酸を中和するのに必要な化学量論比以上であれば特に制限はない。例えば、銀アンモニア性錯体は、過剰のアンモニアが存在していないと茶色析出物を生成してしまうため、注意を要する。反応後の精製やコストを考慮すると、金属化合物の金属に対して10モル倍以下であることが好ましく、さらに好ましくは6モル倍以下である。
Although there is no restriction | limiting in particular in the adjustment method of an ammoniacal complex, it can adjust easily by dripping ammonia water, stirring the solution of a metal compound.
The amount of ammonia added when preparing the ammonia complex varies depending on the type and concentration of the metal compound, but the complex dissolves stably and neutralizes the acid generated when the metal compound is reduced. There is no particular limitation as long as it is higher than the stoichiometric ratio necessary for the above. For example, silver ammoniacal complex requires caution because it produces brown precipitates if excess ammonia is not present. In consideration of purification after the reaction and cost, the amount is preferably 10 mol times or less, more preferably 6 mol times or less, relative to the metal of the metal compound.

金属化合物を構成する金属としては、特に限定されないが、例えば、金、銀、銅、ニッケル、パラジウム、白金、鉄、コバルト、水銀等のVIII族およびIB族から選ばれる
少なくとも一種の金属であることが好ましく、導電性インキとしての物性を考慮すると、金、銀、銅が好ましい。
上記金属化合物としては、特に限定されないが、例えば、塩化金酸、塩化白金酸、塩化銀等の塩化物、硝酸銀籐の硝酸塩、酢酸銀、酢酸銅(II)等の酢酸塩、過塩素酸銀等の過塩素酸塩、硫酸銅(II)等の硫酸塩、炭酸塩、ケイ酸塩、リン酸塩等の無機金属塩、ミリ
スチン酸銀、ステアリン酸銀等の有機脂肪酸金属等が挙げられ、所望の金属に応じて適宜選択することができる。
また、これらの金属化合物は、1種類を単独で使用しても、2種類以上を組み合わせて使用しても良い。
Although it does not specifically limit as a metal which comprises a metal compound, For example, it is at least 1 type of metal chosen from VIII group and IB groups, such as gold | metal | money, silver, copper, nickel, palladium, platinum, iron, cobalt, mercury In view of the physical properties of the conductive ink, gold, silver and copper are preferable.
Examples of the metal compound include, but are not limited to, chlorides such as chloroauric acid, chloroplatinic acid and silver chloride, silver nitrate rattan nitrates, acetates such as silver acetate and copper (II) acetate, silver perchlorate Perchlorates such as, sulfates such as copper (II) sulfate, inorganic metal salts such as carbonates, silicates and phosphates, organic fatty acid metals such as silver myristate and silver stearate, etc. It can select suitably according to a desired metal.
Moreover, these metal compounds may be used individually by 1 type, or may be used in combination of 2 or more types.

上記非水性溶媒とは、水と相分離する非水性溶媒であれば特に制限されず、例えば、クロロホルム、シクロヘキサン、ベンゼン、ノルマルヘキサン、トルエン、シクロヘキサノン、1−メトキシイソプロパノールアセテート、ジエチルエーテル、メチルイソブチルケトン、四塩化炭素、塩化メチレン、酢酸エチル、酢酸ブチル、石油エーテル、シリコンオイル等があげられる。
また、非水性溶媒としては、反応性有機溶剤を用いることもできる。反応性有機溶媒としては特に限定されないが、例えば、(メタ)アクリル酸、(メタ)アクリレート化合物、ビニルエーテル化合物、ポリアリル化合物等のエチレン性不飽和単量体等が挙げられる。
非水性溶媒は1種類または2種類以上を組み合わせて使用しても良い。
The non-aqueous solvent is not particularly limited as long as it is a non-aqueous solvent that is phase-separated from water. For example, chloroform, cyclohexane, benzene, normal hexane, toluene, cyclohexanone, 1-methoxyisopropanol acetate, diethyl ether, methyl isobutyl ketone , Carbon tetrachloride, methylene chloride, ethyl acetate, butyl acetate, petroleum ether, silicon oil and the like.
Moreover, a reactive organic solvent can also be used as a non-aqueous solvent. Although it does not specifically limit as a reactive organic solvent, For example, ethylenically unsaturated monomers, such as (meth) acrylic acid, a (meth) acrylate compound, a vinyl ether compound, a polyallyl compound, etc. are mentioned.
A non-aqueous solvent may be used alone or in combination of two or more.

本発明の金属微粒子分散体の製造方法においては、顔料分散剤の存在下で還元反応を行うことが好ましいが、このとき顔料分散剤は、非水性溶媒相および非水性溶媒相と水相との界面に存在しており、水相からの金属微粒子の抽出を助け、また、抽出された金属微粒子を安定化させる働きをしていると考えられる。
上記顔料分散剤とは、顔料親和性基を1個または複数個有し、一般に顔料分散剤として知られている化合物である。顔料親和性基としては顔料の種類によっても異なり、一般的には、例えば、アミノ基、4級アンモニウム、水酸基、シアノ基、カルボキシル基、チオール基、スルホン酸基等の極性基が挙げられるが、これに限定されるものではない。顔料親和性基は、化合物の主鎖に含まれていても、側鎖もしくは側鎖と主鎖の双方に含まれていてもよい。
In the method for producing a metal fine particle dispersion of the present invention, it is preferable to carry out a reduction reaction in the presence of a pigment dispersant. At this time, the pigment dispersant contains a non-aqueous solvent phase and a non-aqueous solvent phase and an aqueous phase. It is considered that it exists at the interface, assists the extraction of metal fine particles from the aqueous phase, and stabilizes the extracted metal fine particles.
The pigment dispersant is a compound having one or more pigment affinity groups and generally known as a pigment dispersant. The pigment affinity group varies depending on the type of pigment, and generally includes, for example, polar groups such as amino group, quaternary ammonium group, hydroxyl group, cyano group, carboxyl group, thiol group, and sulfonic acid group. It is not limited to this. The pigment affinity group may be contained in the main chain of the compound, or may be contained in the side chain or both the side chain and the main chain.

顔料分散剤としては、一般に顔料分散剤として市販されているものを使用することができ、例えば、日本ルーブリゾール株式会社製のソルスパース3000、ソルスパース9000、ソルスパース17000、ソルスパース24000、ソルスパース28000、ソルスパース32000、ソルスパース35100、ソルスパース36000、ソルスパース41000、エフカアディティブズ社製のEFKA4009、EFKA4046、EFKA4047、EFKA4080、EFKA4010、EFKA4015、EFKA4050、EFKA4055、EFKA4060、EFKA4330、EFKA4300、EFKA7462、味の素ファインテクノ株式会社製のアジスパーPB821、アジスパーPB711、アジスパーPB822、アジスパーPN411、アジスパーPA111、コグニスジャパン株式会社製のTEXAPHORUV20、TEXAPHORUV21、TEXAPHORP61、ビッグケミー・ジャパン株式会社製のDisperbyk−101、Disperbyk−103、Disperbyk−106、Disperbyk−110、Disperbyk−111、Disperbyk−161、Disperbyk−162、Disperbyk−163、Disperbyk−164、Disperbyk−166、Disperbyk−167、Disperbyk−168、Disperbyk−170、Disperbyk−171、Disperbyk−174、Disperbyk−180、Disperbyk−182等が挙げられるがこれらに限定されるものではない。顔料分散剤は、一種類でも複数種を組み合わせて用いても良い。   As the pigment dispersant, commercially available pigment dispersants can be used. For example, Solsperse 3000, Solsperse 9000, Solsperse 17000, Solsperse 24000, Solsperse 28000, Solsperse 32000, manufactured by Nippon Lubrizol Corporation Sol Sparse 35100, Sol Sparse 36000, Sol Sparse 41000, EFKA4009, EFKA4046, EFKA4047, EFKA4080, EFKA4010, EFKA4015, EFKA4050, EFKA4060, EFKA4060 Addisper PB711, Addisper PB8 2, Azisper PN411, Azisper PA111, TEXAPHORUV20, TEXAPHORUV21, TEXAPHORP61 manufactured by Cognis Japan Co., Ltd. , Disperbyk-162, Disperbyk-163, Disperbyk-164, Disperbyk-166, Disperbyk-167, Disperbyk-168, Disperbyk-170, Disperbyk-171, Disperbyk-174, Disperk-174, Disperk But it is lower but the invention is not limited thereto. The pigment dispersant may be used alone or in combination.

上記顔料分散剤の分子量は特に限定されないが、立体障害により効果的に分散安定性を持たせるためには分子量が大きいほうが有利であり、好ましくは重量平均分子量500〜100000程度の顔料分散剤、さらに好ましくは重量平均分子量1000〜100000程度の顔料分散剤を用いることができる。重量平均分子量が500未満であると、立体障害の効果が弱く、十分な分散安定性が得られない上に、分子量が小さいために塗膜生成後、塗膜表面に染み出したりして塗膜物性を悪化させるおそれがあるため好ましくない。また、重量平均分子量が100000を超えると、分散体の粘度が上がり操作性が悪くなる。また、導電性材料用途に使用する場合には、導電性を阻害するため好ましくない。   The molecular weight of the pigment dispersant is not particularly limited, but in order to effectively provide dispersion stability due to steric hindrance, a higher molecular weight is advantageous, preferably a pigment dispersant having a weight average molecular weight of about 500 to 100,000, Preferably, a pigment dispersant having a weight average molecular weight of about 1,000 to 100,000 can be used. If the weight average molecular weight is less than 500, the effect of steric hindrance is weak and sufficient dispersion stability cannot be obtained. Further, since the molecular weight is small, the coating film is generated and oozes out to the coating film surface. This is not preferable because the physical properties may be deteriorated. Moreover, when a weight average molecular weight exceeds 100,000, the viscosity of a dispersion will rise and operativity will worsen. Moreover, when using it for an electroconductive material use, since electroconductivity is inhibited, it is not preferable.

上記顔料分散剤の添加量は、特に限定されないが、好ましくは分散体中の金属微粒子100重量部に対し、10〜2000重量部となる割合である。顔料分散剤の添加量が10重量部未満の場合、分散剤としての十分な効果が得られない。2000重量部を超える場合、分散安定化に寄与しない余剰の顔料分散剤が存在することになり、コスト的に不利であるだけでなく、分散体中の金属濃度の低下や導電性の阻害等の悪影響を与える恐れがあるため好ましくない。   The addition amount of the pigment dispersant is not particularly limited, but is preferably a ratio of 10 to 2000 parts by weight with respect to 100 parts by weight of the metal fine particles in the dispersion. When the amount of the pigment dispersant added is less than 10 parts by weight, a sufficient effect as a dispersant cannot be obtained. If it exceeds 2000 parts by weight, there will be an excess of pigment dispersant that does not contribute to dispersion stabilization, which is not only disadvantageous in terms of cost, but also such as a decrease in metal concentration in the dispersion and inhibition of conductivity. This is not preferable because it may cause an adverse effect.

また、本発明の製造方法において、抽出剤の存在下で還元反応を行ってもよい。抽出剤としては硫黄化合物またはアミン化合物が好適に使用でき、非水性溶媒に溶解するものが好ましい。抽出剤は還元された金属微粒子が水相から非水性溶媒相へと抽出するのを助ける働きがあり、金属微粒子の収率を向上させることが可能である。また、金属微粒子が非水性溶媒相に抽出された後、金属微粒子表面近傍に存在するため添加する化合物に応じて様々な機能を付与することができる。   In the production method of the present invention, the reduction reaction may be performed in the presence of an extractant. As the extractant, a sulfur compound or an amine compound can be suitably used, and those that dissolve in a non-aqueous solvent are preferable. The extractant has a function of helping the reduced metal fine particles to be extracted from the aqueous phase to the non-aqueous solvent phase, and can improve the yield of the metal fine particles. Further, since the fine metal particles are extracted in the non-aqueous solvent phase and are present in the vicinity of the surface of the fine metal particles, various functions can be imparted depending on the compound to be added.

本発明の金属微粒子分散体の製造方法における還元反応は、室温でも十分に終了するが、加熱して反応を行っても差し支えない。但し、あまり高温になると金属微粒子のブラウン運動が激しくなり、凝集が起こりやすくなる恐れや、顔料分散剤を添加した場合には、顔料分散剤が熱で変性してしまう恐れがあるため、90℃以下で還元反応を行うことが好ましい。70℃以下で行うことが更に好ましい。
本発明の金属微粒子分散体の製造方法において、反応を通じて大気中で行っても差し支えないが、生成した金属微粒子の酸化や硫化を防ぐ、または酸素が存在することによる副反応物の生成を防ぐため、例えば、窒素やアルゴン等の不活性ガス雰囲気下で行ってもよい。
The reduction reaction in the method for producing a metal fine particle dispersion of the present invention is sufficiently completed even at room temperature, but the reaction may be performed by heating. However, if the temperature is too high, the Brownian motion of the metal fine particles becomes intense and the agglomeration is likely to occur. If a pigment dispersant is added, the pigment dispersant may be denatured by heat. It is preferable to perform the reduction reaction below. More preferably, it is carried out at 70 ° C. or lower.
In the method for producing a metal fine particle dispersion of the present invention, the reaction may be carried out in the atmosphere through the reaction, but in order to prevent the generated metal fine particles from being oxidized or sulfided or to prevent the formation of by-products due to the presence of oxygen. For example, you may carry out in inert gas atmosphere, such as nitrogen and argon.

本発明の金属微粒子分散体の製造方法では、必要に応じて水相を除去した後に加熱や減圧蒸留等の方法を用いて非水性溶媒の一部を除去し、任意の濃度まで濃縮することができる。また、非水性溶媒を完全に除去した後、目的に応じて合成時と異なる溶媒を加えて再分散させ、任意の濃度の金属微粒子分散体に調整することも可能である。このときの溶媒は非水性溶媒でも水性溶媒でも良いが、顔料分散剤を用いる場合には顔料分散剤が溶解する溶媒が好ましい。
本発明の方法で製造される金属微粒子分散体の粒子径は、必要に応じて調節可能であるが、0.1〜200nmであることが好ましく、さらに好ましくは1〜100nmである。粒子径は、粒子合成時の反応条件、還元剤、顔料分散剤、原料濃度により調整が可能である。
In the method for producing a metal fine particle dispersion of the present invention, if necessary, after removing the aqueous phase, a part of the non-aqueous solvent may be removed using a method such as heating or distillation under reduced pressure, and concentrated to an arbitrary concentration. it can. In addition, after completely removing the non-aqueous solvent, a solvent different from that used in the synthesis may be added and redispersed depending on the purpose to prepare a metal fine particle dispersion having an arbitrary concentration. The solvent at this time may be a non-aqueous solvent or an aqueous solvent, but when a pigment dispersant is used, a solvent in which the pigment dispersant is dissolved is preferable.
The particle diameter of the metal fine particle dispersion produced by the method of the present invention can be adjusted as necessary, but is preferably 0.1 to 200 nm, and more preferably 1 to 100 nm. The particle diameter can be adjusted by the reaction conditions at the time of particle synthesis, the reducing agent, the pigment dispersant, and the raw material concentration.

次に、本発明の導電性インキについて説明する。
本発明の導電性インキは、本発明の製造方法で得られた金属微粒子分散体を含むものであるが、必要に応じて金属粉を併用してもよい。金属粉は、箔状、フレーク状、球状、針状、鱗片状、板状、樹枝状、その他いずれの形状のものでもよく、これらの混合物を使用することもできる。
インキの導電性、流動性の点からは、フレーク状、球状の金属粉が好ましい。フレーク状の金属粉としては、レーザ回折法により測定した平均粒子径が1〜10μmのものが好ましい。球状の金属粉としては平均粒子径が1〜10μmのものが好ましいが、2次凝集体のものも使用できる。さらに、フレーク状の場合は、タップ密度が2.0〜6.0g/cm3、比表面積が0.2〜2.0m2/gの粉末が好ましく、球状の場合は、タップ密度が1.5〜6.0g/cm3、比表面積が0.1〜2.5m2/gの粉末が望ましい。
Next, the conductive ink of the present invention will be described.
The conductive ink of the present invention contains the metal fine particle dispersion obtained by the production method of the present invention, but a metal powder may be used in combination as necessary. The metal powder may be in the form of foil, flake, sphere, needle, scale, plate, dendrite, or any other shape, and a mixture thereof can also be used.
From the viewpoint of ink conductivity and fluidity, flaky and spherical metal powder is preferred. The flaky metal powder preferably has an average particle diameter of 1 to 10 μm measured by a laser diffraction method. The spherical metal powder preferably has an average particle diameter of 1 to 10 μm, but a secondary aggregate can also be used. Furthermore, in the case of flakes, a powder having a tap density of 2.0 to 6.0 g / cm 3 and a specific surface area of 0.2 to 2.0 m 2 / g is preferable. A powder having 5 to 6.0 g / cm 3 and a specific surface area of 0.1 to 2.5 m 2 / g is desirable.

金属微粒子分散体とフレーク状、および/または球状の金属粉を含む導電性インキでは、金属微粒子がフレーク状および/または球状の金属粉に対してころの役目を果たし、導電性インキの流動性が向上する。同時に、導電性物質の細密充填化を促すため、低温においても低抵抗値を得ることができる。
本発明の導電性インキには、他の導電性物質、例えば、金属で被覆した無機物粉末、酸化銀、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化錫、アンチモンドープ酸化錫、インジウム−錫複合酸化物等の金属酸化物、またはカーボンブラック、グラファイト等を含有させることができる。これらの導電性物質は、2種類以上を組み合わせて用いてもよい。
In the conductive ink containing the metal fine particle dispersion and the flaky and / or spherical metal powder, the metal fine particle serves as a roller for the flaky and / or spherical metal powder, and the fluidity of the conductive ink is reduced. improves. At the same time, it is possible to obtain a low resistance value even at a low temperature in order to promote fine packing of the conductive material.
The conductive ink of the present invention includes other conductive materials such as metal-coated inorganic powder, silver oxide, indium oxide, antimony oxide, zinc oxide, tin oxide, antimony-doped tin oxide, and indium-tin composite oxide. Or a metal oxide such as carbon black or graphite. These conductive materials may be used in combination of two or more.

導電性インキ中には、樹脂、その前駆体、またはそれらの混合物からなる担体を含ませることができる。担体は、金属微粒子や金属粉を各種基材に固着させたり、物性を付与したり、印刷インキとしての性能を維持する働きをする。
樹脂としては、例えば、ポリウレタン樹脂、ポリエステル樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、アクリル樹脂、スチレン−アクリル樹脂、スチレン樹脂、ニトロセルロース、ベンジルセルロース、スチレン−無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、塩化ビニル酢酸ビニル共重合体樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、ロジン、ロジンエステル、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、塩素化ポリウレタン樹脂等から選ばれる1種または2種以上を、印刷方法の種類及び使用基材の種類や用途に応じて使用することができる。
樹脂の前駆体としては、(メタ)アクリル酸、(メタ)アクリレート化合物、ビニルエーテル化合物、ポリアリル化合物等のエチレン性不飽和二重結合を有する化合物が挙げられる。これらの化合物は、1種または2種以上を使用することができる。
In the conductive ink, a carrier made of a resin, a precursor thereof, or a mixture thereof can be included. The carrier functions to fix metal fine particles or metal powder to various base materials, impart physical properties, or maintain performance as a printing ink.
Examples of the resin include polyurethane resin, polyester resin, alkyd resin, butyral resin, acetal resin, polyamide resin, acrylic resin, styrene-acrylic resin, styrene resin, nitrocellulose, benzylcellulose, styrene-maleic anhydride resin, polybutadiene resin. , Polyvinyl chloride resin, polyvinyl acetate resin, vinyl vinyl acetate copolymer resin, fluorine resin, silicone resin, epoxy resin, phenol resin, maleic acid resin, urea resin, melamine resin, benzoguanamine resin, ketone resin, rosin, One or more selected from rosin ester, chlorinated polyolefin resin, modified chlorinated polyolefin resin, chlorinated polyurethane resin, etc. can be used depending on the type of printing method and the type and application of the substrate used. That.
Examples of the resin precursor include compounds having an ethylenically unsaturated double bond such as (meth) acrylic acid, (meth) acrylate compounds, vinyl ether compounds, and polyallyl compounds. These compounds can use 1 type (s) or 2 or more types.

本発明の導電性インキは、担体として液状の樹脂前駆体を含む場合には、紫外線、電子線等の活性エネルギー線に対して硬化性を有する無溶剤型インキとして調製することができる。また、担体として樹脂を含み、液状の樹脂前駆体を含まない場合には、樹脂を溶解すると共に、金属微粒子や金属粉を分散安定化して、導電性インキに印刷適性を付与するために、液状媒体を含ませて一般的な熱乾燥型インキとして調製することができる。
液状媒体としては、担体として用いる樹脂、導電性パターンを形成する基材、印刷方法等の種類に応じて、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、芳香族系溶剤、アルコール系溶剤、水等を使用することができ、2種類以上を混合して使用することもできる。
When the conductive ink of the present invention contains a liquid resin precursor as a carrier, it can be prepared as a solventless ink having curability with respect to active energy rays such as ultraviolet rays and electron beams. In addition, when a resin is included as a carrier and a liquid resin precursor is not included, a liquid is used to dissolve the resin and stabilize the dispersion of metal fine particles and metal powder to impart printability to the conductive ink. It can be prepared as a general heat-drying ink containing a medium.
As the liquid medium, an ester solvent, a ketone solvent, a glycol ether solvent, an aliphatic solvent, an aromatic solvent depending on the type of resin used as a carrier, a substrate on which a conductive pattern is formed, a printing method, etc. Alcohol solvents, water, and the like can be used, and two or more kinds can be mixed and used.

エステル系溶剤としては、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸(イソ)アミル、酢酸シクロヘキシル、乳酸エチル、酢酸3−メトキシブチル等が挙げられ、ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、メチルアミルケトン、イソホロン、シクロヘキサノン等が挙げられる。また、グリコールエーテル系溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノn−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノn−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノn−プロピルエーテル、及びこれらモノエーテル類の酢酸エステル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル等のジアルキルエーテル類が挙げられる。   Examples of ester solvents include methyl acetate, ethyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, (iso) amyl acetate, cyclohexyl acetate, ethyl lactate, and 3-methoxybutyl acetate. , Acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, methyl amyl ketone, isophorone, cyclohexanone and the like. The glycol ether solvents include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol mono n-butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol. Mono n-propyl ether, propylene glycol mono n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol mono n-propyl ether, and acetates of these monoethers, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, etc. Zia Kill ethers and the like.

脂肪族系溶剤としては、n−ヘプタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等が挙げられ、芳香族系溶剤としては、トルエン、キシレンが挙げられる。アルコール系溶剤としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、シクロヘキサノール、3−メトキシブタノール、ジアセトンアルコール等が挙げられる。また、その他の液状媒体として、ジメチルカーボネート、エチルメチルカーボネート、ジ−n−ブチルカーボネートが挙げられる。   Examples of the aliphatic solvent include n-heptane, n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. Examples of the aromatic solvent include toluene and xylene. Examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, cyclohexanol, 3-methoxybutanol, diacetone alcohol and the like. Other liquid media include dimethyl carbonate, ethyl methyl carbonate, and di-n-butyl carbonate.

また、樹脂の前駆体を含む本発明の導電性インキに、電子線を照射して硬化する場合は、樹脂の前駆体(エチレン性不飽和二重結合を有する化合物)の分子鎖切断によってラジカル重合が起こるが、紫外線を照射する場合は、導電性インキに光重合開始剤を添加するのが一般的である。
光重合開始剤としては、ベンゾフェノン系、チオキサントン系、アセトフェノン系、ベンゾイン系、アシルフォスフィンオキサイド系、ビスイミダゾール系、アクリジン系、カルバゾール−フェノン系、トリアジン系、オキシム系等の光重合開始剤を使用することができる。
In addition, when the conductive ink of the present invention containing a resin precursor is cured by irradiating an electron beam, radical polymerization is performed by molecular chain scission of the resin precursor (compound having an ethylenically unsaturated double bond). However, when ultraviolet rays are irradiated, it is common to add a photopolymerization initiator to the conductive ink.
Photopolymerization initiators such as benzophenone, thioxanthone, acetophenone, benzoin, acylphosphine oxide, bisimidazole, acridine, carbazole-phenone, triazine, and oxime are used as photopolymerization initiators. can do.

樹脂の前駆体を含む本発明の導電性インキには、更に、光重合開始剤と共に、光重合促進剤、増感剤を含ませることができる。光重合促進剤および増感剤としては、例えば、トリエタノールアミン、トリイソプロパノールアミン、4,4−ジメチルアミノベンゾフェノン、2−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸(n−ブトキシ)エチル等の脂肪族や芳香族のアミン類が挙げられる。
また、樹脂の前駆体を含む本発明の導電性インキには、導電性インキの安定性を高める目的で、(熱)重合禁止剤を含ませることができる。(熱)重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、p−ベンゾキノン、2,6−t−ブチル−p−クレゾール、2,3−ジメチル−6−t−ブチルフェノール、アンスラキノン、フェノチアジン、N−ニトロソフェニルヒドロキシルアミンアルミニウム塩等が挙げられる。
The conductive ink of the present invention containing a resin precursor can further contain a photopolymerization accelerator and a sensitizer together with a photopolymerization initiator. Examples of the photopolymerization accelerator and sensitizer include triethanolamine, triisopropanolamine, 4,4-dimethylaminobenzophenone, ethyl 2-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate (n-butoxy) and the like. And aliphatic and aromatic amines.
The conductive ink of the present invention containing a resin precursor may contain a (thermal) polymerization inhibitor for the purpose of improving the stability of the conductive ink. Examples of (thermal) polymerization inhibitors include hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, 2,6-t-butyl-p-cresol, 2,3-dimethyl-6-t-butylphenol, anthraquinone, phenothiazine, N-nitrosophenylhydroxylamine aluminum salt etc. are mentioned.

本発明の導電性インキには、必要に応じて可塑剤、滑剤、分散剤、レベリング剤、消泡剤、帯電防止剤、酸化防止剤、キレート剤等の通常用いられる各種添加剤を含ませることができる。更に、本発明の目的に反しない範囲で、通常用いられる有機・無機充填剤を含ませてもよい。
本発明の導電性インキは、金属微粒子分散体と、金属粉とを秤取った後、用途、基材に応じて選択した樹脂および/または樹脂の前駆体を加え、更に必要に応じて可塑剤、滑剤、分散剤、レベリング剤、消泡剤、帯電防止剤、酸化防止剤、キレート剤等の添加剤を混合して、従来公知の方法で、例えば、ミキサー、ディソルバー、フーバーマーラー、3本ロールミル、サンドミル等を用いて分散することにより製造することができる。本発明の導電性インキは、金属微粒子および金属粉を含むことで、流動性、分散安定性が容易に確保されるため、簡単に分散することができる。
The conductive ink of the present invention may contain various commonly used additives such as plasticizers, lubricants, dispersants, leveling agents, antifoaming agents, antistatic agents, antioxidants, and chelating agents as necessary. Can do. Furthermore, organic / inorganic fillers that are usually used may be included within the range not contrary to the object of the present invention.
The conductive ink of the present invention is obtained by weighing the metal fine particle dispersion and the metal powder, and then adding a resin and / or resin precursor selected according to the use and the base material, and further, if necessary, a plasticizer Add additives such as lubricants, dispersants, leveling agents, antifoaming agents, antistatic agents, antioxidants, chelating agents, etc., and use conventional methods such as mixers, dissolvers, hoover mullers, 3 It can be produced by dispersing using a roll mill, a sand mill or the like. Since the conductive ink of the present invention contains metal fine particles and metal powder, fluidity and dispersion stability are easily ensured, so that it can be easily dispersed.

最後に、本発明の導電性インキを用いて形成された導電性パターンについて説明する。
上記導電性パターンの形態については、特に限定されないが、通常の印刷法で形成可能なパターンを挙げることができる。例えば、細線状、膜状、格子状、回路状などの形態が挙げられる。これらの用途として、微細導電回路、電磁波シールド、電極、アンテナ等が挙げられる。
Finally, the conductive pattern formed using the conductive ink of the present invention will be described.
Although the form of the said electroconductive pattern is not specifically limited, The pattern which can be formed with a normal printing method can be mentioned. For example, forms such as a thin line shape, a film shape, a lattice shape, and a circuit shape are exemplified. These applications include fine conductive circuits, electromagnetic wave shields, electrodes, and antennas.

本発明の導電性パターンは、使用用途に応じて紙、プラスチック等の基材の片面または両面上に、フレキソ印刷、グラビア印刷、グラビアオフセット印刷、オフセット印刷、ロータリースクリーン印刷、レタープレス等、従来公知の方法を用いて本発明の導電性インキを印刷することで形成することができる。
紙基材としては、コート紙、非コート紙の他、合成紙、ポリエチレンコート紙、含浸紙、耐水加工紙、絶縁加工紙、伸縮加工紙等の各種加工紙が好ましい。コート紙の場合は、平滑度の高いものほど、導電回路パターンの性能が安定するため好ましい。
プラスチック基材としては、ポリエステル、ポリエチレン、ポリプロピレン、セロハン、塩化ビニル、塩化ビニリデン、ポリスチレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ナイロン、ポリイミド、ポリカーボネート等の通常のプラスチック基材を使用することができる。
The conductive pattern of the present invention is conventionally known, such as flexographic printing, gravure printing, gravure offset printing, offset printing, rotary screen printing, letter press, etc. on one or both sides of a substrate such as paper or plastic depending on the intended use. It can form by printing the conductive ink of this invention using this method.
As the paper substrate, various processed papers such as synthetic paper, polyethylene coated paper, impregnated paper, water-resistant processed paper, insulating processed paper, and stretch processed paper are preferable in addition to coated paper and uncoated paper. In the case of coated paper, a higher smoothness is preferable because the performance of the conductive circuit pattern is stabilized.
As the plastic substrate, it is possible to use ordinary plastic substrates such as polyester, polyethylene, polypropylene, cellophane, vinyl chloride, vinylidene chloride, polystyrene, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, nylon, polyimide, polycarbonate and the like. it can.

本発明の導電性インキを用いることにより、通常の印刷方法によって導電回路が形成できるため、既存の設備を生かした設計が可能である。すなわち、絵柄等の非接触メディアの意匠性を高めるための通常の印刷を施した後に、そのまま導電回路を印刷、形成することが可能なため、従来、エッチング法や転写法で行っていた回路パターン形成法と比較して、生産性、初期投資コスト、ランニングコストの点ではるかに優れている。   By using the conductive ink of the present invention, a conductive circuit can be formed by a normal printing method, so that design utilizing existing equipment is possible. In other words, since it is possible to print and form a conductive circuit as it is after performing normal printing to enhance the design of non-contact media such as pictures, circuit patterns that have been conventionally performed by etching or transfer methods Compared to the forming method, it is far superior in productivity, initial investment cost, and running cost.

導電性パターンを印刷、形成する前の工程において、導電性パターンと基材との密着性を高める目的で、基材にアンカーコート剤や各種ワニスを塗工してもよい。また、導電性パターン形成後に、該パターンの保護を目的としてオーバープリントワニス、各種コーティング剤等を塗工してもよい。これらの各種ワニス、コーティング剤としては、環境面から活性エネルギー線硬化型が好ましい。
また、導電性パターン上に接着剤を塗布し、そのまま絵柄等を印刷した紙基材やプラスチックフィルムを接着、またはプラスチックの溶融押し出し等によりラミネートして、電磁波シールドフィルムや非接触型メディアを得ることもできる。勿論、あらかじめ粘着剤、接着剤が塗布された基材を使用することもできる。
In the step before printing and forming the conductive pattern, an anchor coating agent or various varnishes may be applied to the base material for the purpose of improving the adhesion between the conductive pattern and the base material. Further, after forming the conductive pattern, an overprint varnish, various coating agents, or the like may be applied for the purpose of protecting the pattern. As these various varnishes and coating agents, an active energy ray curable type is preferable from the environmental viewpoint.
In addition, an electromagnetic wave shielding film or non-contact type media can be obtained by applying an adhesive on a conductive pattern and laminating a paper substrate or plastic film on which a pattern or the like is printed as it is, or by laminating by plastic melt extrusion. You can also. Of course, it is also possible to use a substrate on which a pressure-sensitive adhesive or adhesive has been applied in advance.

また、上記印刷方式を用いて導電性パターンを印刷し、通常の熱乾燥後または活性エネルギー線を用いて硬化させた後、導電性パターンの抵抗値をさらに低減させる、あるいは抵抗値の安定性を高める目的で、熱風乾燥オーブンを通して導電性パターンを加熱しても良い。加熱温度は特に限定されないが、使用する基材や印刷速度によって使用可能な温度で加熱することが好ましい。
加熱は、熱ロールまたは熱プレスロールを通して行っても良い。熱ロールまたは熱プレスロールを通して加熱することによって、導電性パターンの抵抗値が安定し、ひいては非接触型メディアとして用いた場合には、電波の送受信の安定化につながるため好ましい。
Also, after printing the conductive pattern using the above printing method and curing it using normal energy drying or active energy rays, the resistance value of the conductive pattern is further reduced, or the resistance value is stable. For the purpose of increasing, the conductive pattern may be heated through a hot air drying oven. The heating temperature is not particularly limited, but it is preferable to heat at a usable temperature depending on the substrate used and the printing speed.
Heating may be performed through a hot roll or a hot press roll. Heating through a hot roll or a hot press roll is preferable because the resistance value of the conductive pattern is stabilized, and as a result, when used as a non-contact type medium, the transmission / reception of radio waves is stabilized.

以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれらに限定されるものではない。実施例中、「部」および「%」とは、「重量部」および「重量%」をそれぞれ表す。また、銀濃度および金濃度は、熱分析測定装置(株式会社日立製作所「TG−DTA」で測定したデータである。
[実施例1]
セパラブル4口フラスコに冷却管、温度計、窒素ガス導入管、攪拌装置を取り付け、窒素ガスを導入しながらトルエン91.1部、および顔料分散剤としてソルスパース32000(日本ルーブリゾール株式会社製、重量平均分子量約50000)3.2部を仕込み、溶解させた後、20%コハク酸ジヒドラジド水溶液73.1部(金属1molに対してヒドラジド基2molの比率)を50℃で攪拌しながら滴下し、均一な液滴を生成させた。ビーカーに1M硝酸銀水溶液100部秤取り、攪拌しながら25%アンモニア水27.3部(金属1molに対してアンモニア4molの比率)滴下した後上記トルエン溶液中に滴下し、30℃で反応を進行させた。静置、分離した後、水相を取り出し、数回蒸留水で洗浄・分離を繰り返すことにより過剰の還元剤と不純物の洗浄を行い、銀微粒子分散体を得た。得られた銀微粒子分散体は、流動性があり、417nmに強い吸収を持ち、銀微粒子の平均粒子径は7±2nmと均一であり、銀濃度は78%であった。この銀微粒子分散体の収率は89%であり、40℃で一ヶ月保存した後でも、吸収、粒子径ともに安定であった。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these. In the examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively. Further, the silver concentration and the gold concentration are data measured by a thermal analysis measurement device (Hitachi Ltd. “TG-DTA”).
[Example 1]
A separable four-necked flask was equipped with a cooling tube, a thermometer, a nitrogen gas inlet tube, and a stirrer. While introducing nitrogen gas, 91.1 parts of toluene and Solsperse 32000 as a pigment dispersant (made by Nippon Lubrizol Corporation, weight average) After charging 3.2 parts of molecular weight of about 50000), 73.1 parts of 20% aqueous succinic acid dihydrazide solution (ratio of 2 mol of hydrazide group to 1 mol of metal) was added dropwise with stirring at 50 ° C. Droplets were generated. In a beaker, 100 parts of 1M aqueous silver nitrate solution was weighed, and 27.3 parts of 25% aqueous ammonia (a ratio of 4 mol of ammonia to 1 mol of metal) was added dropwise with stirring and then dropped into the toluene solution, and the reaction was allowed to proceed at 30 ° C. It was. After allowing to stand and separate, the aqueous phase was taken out, and the excess reducing agent and impurities were washed by repeating washing and separation with distilled water several times to obtain a silver fine particle dispersion. The obtained silver fine particle dispersion was fluid, had strong absorption at 417 nm, the average particle diameter of silver fine particles was uniform at 7 ± 2 nm, and the silver concentration was 78%. The silver fine particle dispersion had a yield of 89% and was stable in both absorption and particle size even after being stored at 40 ° C. for one month.

[実施例2]
顔料分散剤の添加量を0.5部に変更した以外は、実施例1と同様にして銀微粒子分散体を得た。得られた銀微粒子分散体は、流動性があり、429nmにブロードした吸収を持ち、銀微粒子の平均粒子径は15±10nmと分布が広く、銀濃度は50%であった。この銀微粒子分散体の収率は40%であり、40℃で一ヶ月保存すると粒子径が50nmとなった。
[実施例3]
25%アンモニア水の添加量を40.9部(金属1molに対してアンモニア6molの比率)に変更した以外は、実施例1と同様にして銀微粒子分散体を得た。得られた銀微粒子は、流動性があり、416nmに強い吸収を持ち、銀微粒子の平均粒子径は5±2nmと均一であり、銀濃度は76%であった。この銀微粒子分散体の収率は85%であり、40℃で一ヶ月保存した後でも、吸収、粒子径ともに安定であった。
[Example 2]
A silver fine particle dispersion was obtained in the same manner as in Example 1 except that the addition amount of the pigment dispersant was changed to 0.5 part. The obtained silver fine particle dispersion was fluid, had absorption broadened to 429 nm, the average particle diameter of the silver fine particles was widely distributed as 15 ± 10 nm, and the silver concentration was 50%. The silver fine particle dispersion had a yield of 40%. When stored at 40 ° C. for one month, the particle diameter became 50 nm.
[Example 3]
A silver fine particle dispersion was obtained in the same manner as in Example 1 except that the addition amount of 25% ammonia water was changed to 40.9 parts (ratio of 6 mol of ammonia to 1 mol of metal). The obtained silver fine particles had fluidity, had strong absorption at 416 nm, the average particle size of the silver fine particles was uniform as 5 ± 2 nm, and the silver concentration was 76%. The silver fine particle dispersion had a yield of 85% and was stable in both absorption and particle size even after being stored at 40 ° C. for one month.

[実施例4]
20%コハク酸ジヒドラジド水溶液の添加量を36.6部(金属1molに対してヒドラジド基1molの比率)とした以外は、実施例1と同様にして銀微粒子分散体を得た。得られた銀微粒子は、流動性があり、420nmに強い吸収を持ち、銀微粒子の平均粒子径は8±3nmと均一であり、銀濃度は80%であった。この銀微粒子分散体の収率は90%であり、40℃で一ヶ月保存した後でも、吸収、粒子径ともに安定であった。
[実施例5]
還元剤を10%アジピン酸ジヒドラジド174.2部(金属1molに対してヒドラジド基2molの比率)とした以外は、実施例1と同様にして銀微粒子分散体を得た。得られた銀微粒子は、流動性があり、424nmにややブロードした吸収を持ち、銀微粒子の平均粒子径は10±5nmであり、銀濃度は75%であった。この銀微粒子分散体の収率は80%であり、40℃一ヶ月保存した後でも、吸収、粒子径ともに安定であった。
[Example 4]
A silver fine particle dispersion was obtained in the same manner as in Example 1 except that the addition amount of the 20% aqueous succinic acid dihydrazide solution was 36.6 parts (ratio of 1 mol of hydrazide group to 1 mol of metal). The obtained silver fine particles had fluidity, had strong absorption at 420 nm, the average particle size of the silver fine particles was uniform as 8 ± 3 nm, and the silver concentration was 80%. The silver fine particle dispersion had a yield of 90% and was stable in both absorption and particle size even after being stored at 40 ° C. for one month.
[Example 5]
A silver fine particle dispersion was obtained in the same manner as in Example 1, except that the reducing agent was 174.2 parts of 10% adipic acid dihydrazide (ratio of 2 mol of hydrazide group to 1 mol of metal). The obtained silver fine particles had fluidity, had absorption slightly broadened at 424 nm, the average particle size of the silver fine particles was 10 ± 5 nm, and the silver concentration was 75%. The silver fine particle dispersion had a yield of 80% and was stable in both absorption and particle size even after being stored at 40 ° C. for one month.

[実施例6]
セパラブル4口フラスコに冷却管、温度計、窒素ガス導入管、攪拌装置を取り付け、窒素ガスを導入しながらトルエン91.1部、および顔料分散剤としてソルスパース32000(日本ルーブリゾール株式会社製、重量平均分子量約50000)5.9部を仕込み、溶解させた後、20%コハク酸ジヒドラジド水溶液73.1部(金属1molに対してヒドラジド基2molの比率)を50℃で攪拌しながら滴下し、均一な液滴を生成させた。ビーカーに1M塩化金酸水溶液100部秤取り、攪拌しながら25%アンモニア水27.3部(金属1molに対してアンモニア4molの比率)滴下した後上記トルエン溶液中に滴下し、30℃で反応を進行させた。静置、分離した後、水相を取り出し、数回蒸留水で洗浄・分離を繰り返すことにより過剰の還元剤と不純物の洗浄を行い、銀微粒子分散体を得た。得られた銀微粒子分散体は、流動性があり、531nmに強い吸収を持ち、銀微粒子の平均粒子径は5±2nmと均一であり、金濃度は70%であった。この金微粒子分散体の収率は83%であり、40℃で一ヶ月保存した後でも、吸収、粒子径ともに安定であった。
[Example 6]
A separable four-necked flask was equipped with a cooling tube, a thermometer, a nitrogen gas inlet tube, and a stirrer. While introducing nitrogen gas, 91.1 parts of toluene and Solsperse 32000 as a pigment dispersant (made by Nippon Lubrizol Corporation, weight average) 5.9 parts (molecular weight about 50000) were charged and dissolved, and then 73.1 parts of a 20% succinic acid dihydrazide aqueous solution (ratio of 2 mol of hydrazide group to 1 mol of metal) was added dropwise with stirring at 50 ° C. Droplets were generated. 100 parts of 1M chloroauric acid aqueous solution was weighed into a beaker, and 27.3 parts of 25% aqueous ammonia (a ratio of 4 mol of ammonia to 1 mol of metal) was added dropwise with stirring, and then dropped into the above toluene solution and reacted at 30 ° C. Proceeded. After allowing to stand and separate, the aqueous phase was taken out, and the excess reducing agent and impurities were washed by repeating washing and separation with distilled water several times to obtain a silver fine particle dispersion. The obtained silver fine particle dispersion was fluid, had strong absorption at 531 nm, the average particle size of silver fine particles was uniform as 5 ± 2 nm, and the gold concentration was 70%. The gold fine particle dispersion had a yield of 83% and was stable in both absorption and particle size even after being stored at 40 ° C. for one month.

[実施例7]
セパラブル4口フラスコに冷却管、温度計、窒素ガス導入管、攪拌装置を取り付け、窒素ガスを導入しながらトルエン91.1部、および顔料分散剤としてソルスパース32000(日本ルーブリゾール株式会社製、重量平均分子量約50000)3.2部を仕込み、溶解させた後、20%コハク酸ジヒドラジド水溶液73.1部(金属1molに対してヒドラジド基2molの比率)を50℃で攪拌しながら滴下し、均一な液滴を生成させた。1M硝酸銀水溶液100部を上記トルエン溶液中に滴下し、30℃で反応を進行させた。静置、分離した後、水相を取り出し、数回蒸留水で洗浄・分離を繰り返すことにより過剰の還元剤と不純物の洗浄を行い、銀微粒子分散体を得た。得られた銀微粒子分散体は、流動性があり、430nmに若干ブロードした吸収を持ち、銀微粒子の平均粒子径は20±5nmであったが、凝集沈殿が生成したため、銀濃度は45%であった。この銀微粒子分散体の収率は40%であり、40℃で一ヶ月保存すると、若干沈殿物が観察された。
[Example 7]
A separable four-necked flask was equipped with a cooling tube, a thermometer, a nitrogen gas inlet tube, and a stirrer. While introducing nitrogen gas, 91.1 parts of toluene and Solsperse 32000 as a pigment dispersant (made by Nippon Lubrizol Corporation, weight average) After charging 3.2 parts of molecular weight of about 50000), 73.1 parts of 20% aqueous succinic acid dihydrazide solution (ratio of 2 mol of hydrazide group to 1 mol of metal) was added dropwise with stirring at 50 ° C. Droplets were generated. 100 parts of 1M silver nitrate aqueous solution was dropped into the toluene solution, and the reaction was allowed to proceed at 30 ° C. After allowing to stand and separate, the aqueous phase was taken out, and the excess reducing agent and impurities were washed by repeating washing and separation with distilled water several times to obtain a silver fine particle dispersion. The obtained silver fine particle dispersion has fluidity, has absorption slightly broadened to 430 nm, and the average particle diameter of the silver fine particles was 20 ± 5 nm. However, since aggregation precipitation was generated, the silver concentration was 45%. there were. The silver fine particle dispersion had a yield of 40%, and a slight precipitate was observed when stored at 40 ° C. for one month.

[比較例1]
セパラブル4口フラスコに冷却管、温度計、窒素ガス導入管、攪拌装置を取り付け、窒素ガスを導入しながらトルエン91.1部、および顔料分散剤としてソルスパース32000(日本ルーブリゾール株式会社製、重量平均分子量約50000)3.2部を仕込み、溶解させた後、水素化ホウ素ナトリウム3.8部を50℃で攪拌しながら滴下し、均一な液滴を生成させた。ビーカーに1M塩化金酸水溶液100部秤取り、攪拌しながら25%アンモニア水27.3部滴下した後上記トルエン溶液中に滴下し、30℃で反応を進行させた。静置、分離した後、水相を取り出し、数回蒸留水で洗浄・分離を繰り返すことにより過剰の還元剤と不純物の洗浄を行い、銀微粒子分散体トルエン溶液を得た。得られた銀微粒子分散体は、流動性があり、432nmにブロードした吸収を持ち、銀微粒子の平均粒子径は25±10nmと粒子径分布が広く、凝集沈殿が生成したため、銀濃度は39%であった。この銀微粒子分散体の収率は30%であり、40℃で一ヶ月保存すると、凝集し、沈殿した。
[Comparative Example 1]
A separable four-necked flask was equipped with a cooling tube, a thermometer, a nitrogen gas inlet tube, and a stirrer. While introducing nitrogen gas, 91.1 parts of toluene and Solsperse 32000 as a pigment dispersant (made by Nippon Lubrizol Corporation, weight average) After charging and dissolving 3.2 parts of a molecular weight of about 50000), 3.8 parts of sodium borohydride was added dropwise with stirring at 50 ° C. to produce uniform droplets. 100 parts of 1M chloroauric acid aqueous solution was weighed into a beaker, and 27.3 parts of 25% ammonia water was added dropwise with stirring, then added dropwise to the toluene solution, and the reaction was allowed to proceed at 30 ° C. After allowing to stand and separate, the aqueous phase was taken out, and the excess reducing agent and impurities were washed by repeating washing and separation several times with distilled water to obtain a silver fine particle dispersion toluene solution. The obtained silver fine particle dispersion has fluidity, has absorption broadened at 432 nm, the average particle size of the silver fine particles is 25 ± 10 nm, has a wide particle size distribution, and aggregated precipitates are formed, so the silver concentration is 39%. Met. The silver fine particle dispersion had a yield of 30%, and aggregated and precipitated when stored at 40 ° C. for one month.

[実施例8]
実施例1で得られた銀微粒子分散体5.4部、フレーク状金属粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)80.8部、ポリエステル樹脂(ユニチカ株式会社製「エリーテルUE−3223」)13.8部、液状媒体(イソホロン)33.3部を混合し、プラネタリーミキサーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、ロータリースクリーン印刷機(ストークプリントジャパン株式会社製、版:405メッシュ)でポリエステルフィルム(東洋紡績株式会社製「エステル、E5100」、厚さ50μm)に、幅3mmの導電性回路パターンを印刷、乾燥して導電性回路パターンを形成した。なお、印刷機の乾燥温度は実測値で80℃に設定した。
[Example 8]
5.4 parts of the silver fine particle dispersion obtained in Example 1, flaky metal powder (“AgC-A” manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle diameter 3.7 μm, tap density 3.1 g / cm 3 , 80.8 parts of a specific surface area of 0.8 m 2 / g), 13.8 parts of a polyester resin (“Elitel UE-3223” manufactured by Unitika Ltd.), 33.3 parts of a liquid medium (isophorone), and a planetary mixer The mixture was stirred for 30 minutes to obtain a conductive ink. Next, using this conductive ink, a rotary screen printing machine (Stoke Print Japan Co., Ltd., plate: 405 mesh) is used to form a polyester film (“Ester, E5100” manufactured by Toyobo Co., Ltd., thickness 50 μm). A 3 mm conductive circuit pattern was printed and dried to form a conductive circuit pattern. The drying temperature of the printing press was set to 80 ° C. as an actual measurement value.

[実施例9]
実施例2で得られた銀微粒子分散体7.5部、球状金属粉(METALOR社製、「C−0083P」、平均粒子径1.3μm、タップ密度2.5g/cm3、比表面積1.7m2/g)71.3部、塩化ビニル/酢酸ビニル/アクリル酸ヒドロキシプロピル共重合体樹脂21.3部、液状媒体(イソホロン)42.9部を混合し、プラネタリーミキサーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、実施例8と同様にして導電性回路パターンをロータリースクリーン印刷、乾燥して導電性回路パターンを形成した。
[Example 9]
7.5 parts of the silver fine particle dispersion obtained in Example 2, spherical metal powder (manufactured by METALOR, “C-0083P”, average particle size 1.3 μm, tap density 2.5 g / cm 3 , specific surface area 1. 7m 2 / g) 71.3 parts, vinyl chloride / vinyl acetate / hydroxypropyl acrylate copolymer resin 21.3 parts, liquid medium (isophorone) 42.9 parts are mixed and 30 minutes using a planetary mixer A conductive ink was obtained by stirring. Next, using this conductive ink, the conductive circuit pattern was formed by rotary screen printing and drying in the same manner as in Example 8 to form a conductive circuit pattern.

[実施例10]
実施例3で得られた銀微粒子分散体3.6部、フレーク状銀粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)87.3部、ポリウレタン樹脂(荒川化学工業株式会社製「ポリウレタン75」)9.1部、液状媒体(イソプロピルアルコール/酢酸エチル=8/2、重量比)53.8部を混合し、ディソルバーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、CI型フレキソ印刷機(W&H社製「SOLOFLEX」、アニロックス:120線/インチ)でポリエステルフィルム(東洋紡績株式会社製「エステル、E5100」、厚さ50μm)に、幅3mmの導電回路パターンをフレキソ印刷し、乾燥して導電性回路パターンを得た。なお、印刷機の乾燥温度は実測値で50℃に設定した。
[Example 10]
3.6 parts of the silver fine particle dispersion obtained in Example 3, flaky silver powder ("AgC-A" manufactured by Fukuda Metal Foil Powder Co., Ltd.), average particle diameter 3.7 µm, tap density 3.1 g / cm 3 , Specific surface area 0.8 m 2 / g) 87.3 parts, polyurethane resin (“Polyurethane 75” manufactured by Arakawa Chemical Industries, Ltd.) 9.1 parts, liquid medium (isopropyl alcohol / ethyl acetate = 8/2, weight ratio) 53 8 parts were mixed and stirred for 30 minutes using a dissolver to obtain a conductive ink. Next, a polyester film (“Ester, E5100” manufactured by Toyobo Co., Ltd., thickness 50 μm) using a CI-type flexographic printing machine (“SOLOFLEX” manufactured by W & H, anilox: 120 lines / inch) using this conductive ink. A conductive circuit pattern having a width of 3 mm was flexographically printed and dried to obtain a conductive circuit pattern. The drying temperature of the printing press was set to 50 ° C. by actual measurement.

[実施例11]
実施例4で得られた銀微粒子分散体10.6部、フレーク状銀粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)53.6部、球状金属粉(METALOR社製、「C−0083P」、平均粒子径1.3μm、タップ密度2.5g/cm3、比表面積1.7m2/g)22.9部、ポリウレタン樹脂(荒川化学工業株式会社製「ポリウレタン75」)9.1部、液状媒体(イソプロピルアルコール/酢酸エチル=8/2、重量比)53.8部を混合し、ディソルバーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、実施例10と同様にしてフレキソ印刷し、乾燥して導電性回路パターンを得た。
[Example 11]
10.6 parts of the silver fine particle dispersion obtained in Example 4, flaky silver powder (“AgC-A” manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle size 3.7 μm, tap density 3.1 g / cm 3 , 53.6 parts of specific surface area 0.8 m 2 / g), spherical metal powder (manufactured by METALOR, “C-0083P”, average particle size 1.3 μm, tap density 2.5 g / cm 3 , specific surface area 1.7 m 2 / G) 22.9 parts, 9.1 parts of a polyurethane resin (“Polyurethane 75” manufactured by Arakawa Chemical Industries, Ltd.) and 53.8 parts of a liquid medium (isopropyl alcohol / ethyl acetate = 8/2, weight ratio) are mixed. The mixture was stirred for 30 minutes using a dissolver to obtain a conductive ink. Next, using this conductive ink, flexographic printing was performed in the same manner as in Example 10 and dried to obtain a conductive circuit pattern.

[実施例12]
実施例5で得られた銀微粒子分散体3.2部、フレーク状金属粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)77.6部、ポリエステルアクリレート(ダイセル・ユーシービー株式会社製「Ebecryl80」)19.2部、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア907」)2部を混合し、ディソルバーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、CI型フレキソ印刷機(W&H社製「SOLOFLEX」、アニロックス:120線/インチ)でポリエステルフィルム(東洋紡績株式会社製「エステル、E5100」、厚さ50μm)に、幅3mmの導電性回路パターンを印刷、紫外線を照射して導電性回路パターンを形成した。
[Example 12]
3.2 parts of the silver fine particle dispersion obtained in Example 5, flaky metal powder (“AgC-A” manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle diameter 3.7 μm, tap density 3.1 g / cm 3 , Specific surface area 0.8 m 2 / g) 77.6 parts, polyester acrylate (“Ebecryl 80” manufactured by Daicel UCB Co., Ltd.) 19.2 parts, photopolymerization initiator (“Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd.) 2) were mixed and stirred for 30 minutes using a dissolver to obtain a conductive ink. Next, a polyester film (“Ester, E5100” manufactured by Toyobo Co., Ltd., thickness 50 μm) using a CI-type flexographic printing machine (“SOLOFLEX” manufactured by W & H, anilox: 120 lines / inch) using this conductive ink. A conductive circuit pattern having a width of 3 mm was printed and irradiated with ultraviolet rays to form a conductive circuit pattern.

[実施例13]
実施例6で得られた金微粒子分散体6.1部、フレーク状金属粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)80.8部、ポリエステル樹脂(ユニチカ株式会社製「エリーテルUE−3223」)13.2部、液状媒体(イソホロン)42.9部を混合し、プラネタリーミキサーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、実施例8と同様にして導電性回路パターンをロータリースクリーン印刷、乾燥して導電性回路パターンを形成した。
[Example 13]
6.1 parts of the gold fine particle dispersion obtained in Example 6, flaky metal powder (“AgC-A” manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle diameter 3.7 μm, tap density 3.1 g / cm 3 , 80.8 parts of a specific surface area of 0.8 m 2 / g), 13.2 parts of a polyester resin (“Elitel UE-3223” manufactured by Unitika Co., Ltd.), 42.9 parts of a liquid medium (isophorone), and a planetary mixer The mixture was stirred for 30 minutes to obtain a conductive ink. Next, using this conductive ink, the conductive circuit pattern was formed by rotary screen printing and drying in the same manner as in Example 8 to form a conductive circuit pattern.

[実施例14]
実施例7で得られた金微粒子分散体10.9部、フレーク状金属粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)80.8部、ポリエステル樹脂(ユニチカ株式会社製「エリーテルUE−3223」)8.4部、液状媒体(イソホロン)33.3部を混合し、プラネタリーミキサーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、実施例8と同様にして導電性回路パターンをロータリースクリーン印刷、乾燥して導電性回路パターンを形成した。
[Example 14]
10.9 parts of the gold fine particle dispersion obtained in Example 7, flaky metal powder (“AgC-A” manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle diameter 3.7 μm, tap density 3.1 g / cm 3 , 80.8 parts of a specific surface area of 0.8 m 2 / g), 8.4 parts of a polyester resin (“Elitel UE-3223” manufactured by Unitika Ltd.) and 33.3 parts of a liquid medium (isophorone) are mixed, and a planetary mixer is mixed. The mixture was stirred for 30 minutes to obtain a conductive ink. Next, using this conductive ink, the conductive circuit pattern was formed by rotary screen printing and drying in the same manner as in Example 8 to form a conductive circuit pattern.

[比較例2]
比較例1で得られた銀微粒子分散体6.0部、フレーク状銀粉(福田金属箔粉工業株式会社製「AgC−A」、平均粒子径3.7μm、タップ密度3.1g/cm3、比表面積0.8m2/g)87.3部、ポリウレタン樹脂(荒川化学工業株式会社製「ポリウレタン75」)6.7部、液状媒体(イソプロピルアルコール/酢酸エチル=8/2、重量比)53.8部を混合し、ディソルバーを用いて30分間撹拌して導電性インキを得た。次に、この導電性インキを用いて、実施例10と同様にしてフレキソ印刷し、乾燥して導電性回路パターンを得た。
[Comparative Example 2]
6.0 parts of the silver fine particle dispersion obtained in Comparative Example 1, flaky silver powder (“AgC-A” manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle diameter 3.7 μm, tap density 3.1 g / cm 3 , Specific surface area 0.8 m 2 / g) 87.3 parts, polyurethane resin (“Polyurethane 75” manufactured by Arakawa Chemical Industries, Ltd.) 6.7 parts, liquid medium (isopropyl alcohol / ethyl acetate = 8/2, weight ratio) 53 8 parts were mixed and stirred for 30 minutes using a dissolver to obtain a conductive ink. Next, using this conductive ink, flexographic printing was performed in the same manner as in Example 10 and dried to obtain a conductive circuit pattern.

実施例および比較例で得られた導電性インキの流動性、および導電性回路パターンの体積抵抗値、基材密着性およびICタグ通信試験について、以下の方法で評価した。結果を表1に示す。
[インキ流動性]
導電性インキを所定量容器に秤り取り、B型粘度計を使用して、6回転及び60回転の粘度を25℃環境下で測定した。次に、チキソトロピックインデックス値(TI値)、即ち(6回転時の粘度)÷(60回転時の粘度)の値をそれぞれ算出して、三段階で評価した。
○:流動性良好、TI値<2.0
△:使用可能な範囲、2.0≦TI値≦8.0
×:流動性悪い、TI値>8.0
The following methods evaluated the fluidity of the conductive ink obtained in Examples and Comparative Examples, and the volume resistance value of the conductive circuit pattern, substrate adhesion, and IC tag communication test. The results are shown in Table 1.
[Ink fluidity]
A predetermined amount of the conductive ink was weighed into a container, and the viscosity at 6 and 60 rotations was measured in a 25 ° C. environment using a B-type viscometer. Next, a thixotropic index value (TI value), that is, a value of (viscosity at 6 rotations) / (viscosity at 60 rotations) was calculated and evaluated in three stages.
○: Good fluidity, TI value <2.0
Δ: Usable range, 2.0 ≦ TI value ≦ 8.0
×: Poor fluidity, TI value> 8.0

[体積抵抗値]
導電回路を30mm間隔で4箇所はさみ、その抵抗値を四探針抵抗測定器(三和電気計器株式会社製「DR−1000CU型」)で測定した。導電回路の膜厚を膜厚計(株式会社仙台ニコン製「MH−15M型」)で測定し、得られた抵抗値と膜厚から体積抵抗値を算出した。
[Volume resistance value]
The conductive circuit was sandwiched at four locations at intervals of 30 mm, and the resistance value was measured with a four-probe resistance measuring instrument (“DR-1000CU type” manufactured by Sanwa Electric Instruments Co., Ltd.). The film thickness of the conductive circuit was measured with a film thickness meter (“MH-15M type” manufactured by Sendai Nikon Corporation), and the volume resistance value was calculated from the obtained resistance value and film thickness.

[基材密着性]
ポリエステルフィルム(東洋紡績株式会社製「E5100」、厚さ50μm)上に印刷によって形成された導電回路に、セロハン粘着テープ(ニチバン株式会社製、幅12mm)を貼り付け、セロハン粘着テープを急激に引き剥がした時、剥離した塗膜の程度を評価した。
○:ほとんど剥離しない(剥離面積10%未満)
△:部分的に剥離した(剥離面積10%以上50%未満)
×:ほとんど剥離した(剥離面積50%以上)
[Base material adhesion]
A cellophane adhesive tape (manufactured by Nichiban Co., Ltd., width 12 mm) is applied to a conductive circuit formed by printing on a polyester film (“E5100” manufactured by Toyobo Co., Ltd., thickness 50 μm), and the cellophane adhesive tape is pulled rapidly. When peeled, the degree of the peeled coating was evaluated.
○: hardly peeled (peeled area less than 10%)
Δ: Partially peeled (peeled area 10% or more and less than 50%)
X: Almost peeled (peeling area 50% or more)

[ICタグ通信試験]
導電回路に、Alien Technology社製ICストラップを用いてICチップを実装してICタグを作製し、同社製2.45GHzパッシブ開発キットを使用して、得られたICタグとの通信可能距離(cm)を測定した。
[IC tag communication test]
An IC tag is manufactured by mounting an IC chip using an IC strap made by Alien Technology on a conductive circuit, and a communicable distance (cm) with the obtained IC tag using a 2.45 GHz passive development kit made by the company. ) Was measured.

Figure 2007107057
Figure 2007107057

表1より、実施例8〜14で得られた本発明の導電性インキを使用することで、ロータリースクリーン印刷およびフレキソ印刷方式において、比較的穏和な乾燥条件においても10-5Ω・cmオーダーの体積抵抗値が得られた。また、得られた導電性パターンは、基材に対する密着性に優れており、ICタグとして評価した結果、十分な通信距離が得られた。これは、本発明で得られた金属微粒子を使用したことによるインキ流動性の向上効果や、導電性パターン形成時の、銀粉末の配列が効率良く行われたためと考えることができる。その結果、低温での抵抗値発現につながった。
一方、比較例2で得られた導電性インキは、銀濃度が低く、また粒子径分布の広い
金属微粒子を使用しているため、十分なインキ流動性を得ることができず、その結果、体積抵抗値、基材密着性、およびICタグ通信試験において十分な性能が得られなかった。
From Table 1, by using the conductive inks of the present invention obtained in Examples 8 to 14, in the rotary screen printing and flexographic printing methods, the order of 10 −5 Ω · cm even under relatively mild drying conditions. A volume resistance value was obtained. Moreover, the obtained electroconductive pattern was excellent in the adhesiveness with respect to a base material, As a result of evaluating as an IC tag, sufficient communication distance was obtained. This can be attributed to the effect of improving the ink fluidity due to the use of the metal fine particles obtained in the present invention and the efficient arrangement of the silver powder during the formation of the conductive pattern. As a result, the resistance value was developed at low temperatures.
On the other hand, since the conductive ink obtained in Comparative Example 2 uses metal fine particles having a low silver concentration and a wide particle size distribution, sufficient ink fluidity cannot be obtained. Sufficient performance was not obtained in the resistance value, substrate adhesion, and IC tag communication test.

Claims (10)

液体媒体中、下記式(1)で示されるカルボジヒドラジドまたは下記式(2)で示される多塩基酸ポリヒドラジドを用いて、金属化合物を還元することを特徴とする金属微粒子分散体の製造方法。
Figure 2007107057
(式中、Rは多塩基酸残基を表す。)
A method for producing a fine metal particle dispersion, wherein a metal compound is reduced using a carbodihydrazide represented by the following formula (1) or a polybasic acid polyhydrazide represented by the following formula (2) in a liquid medium.
Figure 2007107057
(In the formula, R represents a polybasic acid residue.)
多塩基酸ポリヒドラジドが二塩基酸ジヒドラジドである請求項1記載の金属微粒子分散体の製造方法。   The method for producing a metal fine particle dispersion according to claim 1, wherein the polybasic acid polyhydrazide is dibasic acid dihydrazide. カルボジヒドラジドまたは多塩基酸ポリヒドラジドの水溶液と非水性溶媒との混合物に、金属化合物を添加する請求項1または2記載の金属微粒子分散体の製造方法。   The method for producing a metal fine particle dispersion according to claim 1 or 2, wherein the metal compound is added to a mixture of an aqueous solution of carbodihydrazide or polybasic acid polyhydrazide and a non-aqueous solvent. 金属化合物をアンモニア性錯体として添加する請求項1ないし3いずれか記載の金属微粒子分散体の製造方法。  The method for producing a metal fine particle dispersion according to any one of claims 1 to 3, wherein the metal compound is added as an ammoniacal complex. 金属化合物を水溶液として添加する請求項1ないし4いずれか記載の金属微粒子分散体の製造方法。  The method for producing a metal fine particle dispersion according to any one of claims 1 to 4, wherein the metal compound is added as an aqueous solution. 金属化合物が、VIII族およびIB族から選ばれる金属の化合物である請求項1ないし5
いずれか記載の金属微粒子分散体の製造方法。
6. The metal compound is a compound of a metal selected from Group VIII and Group IB.
The manufacturing method of the metal fine particle dispersion in any one.
還元後に水相を除去する請求項3ないし6いずれか記載の金属微粒子分散体の製造方法。   The method for producing a metal fine particle dispersion according to any one of claims 3 to 6, wherein the aqueous phase is removed after the reduction. 請求項1ないし7いずれか記載の製造方法で得られた金属微粒子分散体。   A metal fine particle dispersion obtained by the production method according to claim 1. 請求項8記載の金属微粒子分散体を含む導電性インキ。   A conductive ink comprising the metal fine particle dispersion according to claim 8. 請求項9記載の導電性インキを用いて形成された導電性パターン。   A conductive pattern formed using the conductive ink according to claim 9.
JP2005299501A 2005-10-14 2005-10-14 A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern. Expired - Fee Related JP4839767B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005299501A JP4839767B2 (en) 2005-10-14 2005-10-14 A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.
US12/083,584 US7981327B2 (en) 2005-10-14 2006-10-13 Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
PCT/JP2006/320493 WO2007043664A1 (en) 2005-10-14 2006-10-13 Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
CN2006800379469A CN101287566B (en) 2005-10-14 2006-10-13 Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
EP06821864.3A EP1952918B1 (en) 2005-10-14 2006-10-13 Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
KR1020087011526A KR101328908B1 (en) 2005-10-14 2006-10-13 Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
US13/075,918 US8440110B2 (en) 2005-10-14 2011-03-30 Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299501A JP4839767B2 (en) 2005-10-14 2005-10-14 A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.

Publications (2)

Publication Number Publication Date
JP2007107057A true JP2007107057A (en) 2007-04-26
JP4839767B2 JP4839767B2 (en) 2011-12-21

Family

ID=38033151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299501A Expired - Fee Related JP4839767B2 (en) 2005-10-14 2005-10-14 A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.

Country Status (2)

Country Link
JP (1) JP4839767B2 (en)
CN (1) CN101287566B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074054A (en) * 2007-09-21 2009-04-09 Samsung Electro Mech Co Ltd Non-aqueous electroconductive nano ink composition
JP2009116452A (en) * 2007-11-02 2009-05-28 Toyo Ink Mfg Co Ltd Method for manufacturing conductive substrate for touch panel and touch panel equipped with this substrate
JP2011143689A (en) * 2010-01-18 2011-07-28 Toyo Ink Sc Holdings Co Ltd Manufacturing method for electroconductive film
KR101229687B1 (en) 2007-09-19 2013-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 Preparation of silver spheres by the reduction of silver polyamine complexes
CN103753939A (en) * 2014-01-17 2014-04-30 苏州斯贝孚光伏科技有限公司 Method for preparing thin film by coating nano metal ink
WO2014208250A1 (en) * 2013-06-25 2014-12-31 化研テック株式会社 Flake-like silver powder, conductive paste, and method for producing flake-like silver powder
WO2015064567A1 (en) * 2013-10-31 2015-05-07 昭和電工株式会社 Electrically conductive composition for thin film printing, and method for forming thin film conductive pattern
JP2016135918A (en) * 2015-01-23 2016-07-28 ゼロックス コーポレイションXerox Corporation Preparation method of metal nano-dendrimer structure
WO2016121220A1 (en) * 2015-01-27 2016-08-04 帝国インキ製造株式会社 Ink composition for high-speed screen printing, printed article obtained by high-speed printing of said ink composition, and method for producing said printed article

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123355A (en) * 2008-11-19 2010-06-03 Toyo Ink Mfg Co Ltd Conductive ink and conductive coating
KR101700615B1 (en) * 2010-03-30 2017-01-31 주식회사 동진쎄미켐 Method for preparing matal nano-particles, matal nano-particles prepared therefrom and metal ink composition comprising same
CN102179510B (en) * 2011-04-13 2013-05-08 成都印钞有限公司 Oxidation resisting platy silver powder and preparation method thereof
US9441117B2 (en) * 2012-03-20 2016-09-13 Basf Se Mixtures, methods and compositions pertaining to conductive materials
CN102784927B (en) * 2012-08-28 2014-10-29 苏州东旭弘业新材料科技有限公司 Method for preparing high-performance sheet silver powder
KR102117579B1 (en) * 2013-07-23 2020-06-01 아사히 가세이 가부시키가이샤 Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
JP6019214B2 (en) * 2013-10-25 2016-11-02 三井金属鉱業株式会社 Conductive particles and method for producing the same
CN104096851B (en) * 2014-08-14 2016-04-06 天津市职业大学 The combine production method of a kind of super fine silver powder and CALCIUM PYRUVIC
EP3037161B1 (en) * 2014-12-22 2021-05-26 Agfa-Gevaert Nv A metallic nanoparticle dispersion
CN105562588A (en) * 2016-01-19 2016-05-11 安徽涌畅铸件有限公司 Full mold binding agent and preparation method thereof
CN105537520A (en) * 2016-01-19 2016-05-04 安徽涌畅铸件有限公司 Production technology for casting lost foam
JP7077716B2 (en) * 2018-03-29 2022-05-31 セイコーエプソン株式会社 Inkjet compositions and recordings
JP6985219B2 (en) 2018-07-17 2021-12-22 Dowaエレクトロニクス株式会社 Manufacturing method of spherical silver powder
CN113921165B (en) * 2021-12-14 2022-03-29 西安宏星电子浆料科技股份有限公司 Organic gold slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319538A (en) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd Production for colloid of noble metal or copper
JP2004346429A (en) * 1997-07-17 2004-12-09 Nippon Paint Co Ltd Colloidal noble metal or copper solution, its production method, coating composition, and resin molding
JP2005146408A (en) * 2003-10-22 2005-06-09 Mitsui Mining & Smelting Co Ltd Superfine silver particulate-stuck silver powder, and method for producing the superfine silver particulate-stuck silver powder
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052071A (en) * 1989-11-28 1991-06-12 中南工业大学 From ammonium tungstate solution, produce the method for fine and ultrafine tungsten powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346429A (en) * 1997-07-17 2004-12-09 Nippon Paint Co Ltd Colloidal noble metal or copper solution, its production method, coating composition, and resin molding
JPH11319538A (en) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd Production for colloid of noble metal or copper
JP2005146408A (en) * 2003-10-22 2005-06-09 Mitsui Mining & Smelting Co Ltd Superfine silver particulate-stuck silver powder, and method for producing the superfine silver particulate-stuck silver powder
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229687B1 (en) 2007-09-19 2013-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 Preparation of silver spheres by the reduction of silver polyamine complexes
JP2009074054A (en) * 2007-09-21 2009-04-09 Samsung Electro Mech Co Ltd Non-aqueous electroconductive nano ink composition
JP2009116452A (en) * 2007-11-02 2009-05-28 Toyo Ink Mfg Co Ltd Method for manufacturing conductive substrate for touch panel and touch panel equipped with this substrate
JP2011143689A (en) * 2010-01-18 2011-07-28 Toyo Ink Sc Holdings Co Ltd Manufacturing method for electroconductive film
CN105050755B (en) * 2013-06-25 2017-03-15 化研科技株式会社 The manufacture method of laminar argentum powder, conductive paste and laminar argentum powder
US10071420B2 (en) 2013-06-25 2018-09-11 Kaken Tech Co., Ltd. Flake-like silver powder, conductive paste, and method for producing flake-like silver powder
WO2014208250A1 (en) * 2013-06-25 2014-12-31 化研テック株式会社 Flake-like silver powder, conductive paste, and method for producing flake-like silver powder
JP5763869B2 (en) * 2013-06-25 2015-08-12 化研テック株式会社 Flaky silver powder, conductive paste, and method for producing flaky silver powder
CN105050755A (en) * 2013-06-25 2015-11-11 化研科技株式会社 Flake-like silver powder, conductive paste, and method for producing flake-like silver powder
US9845404B2 (en) 2013-10-31 2017-12-19 Showa Denko K.K. Conductive composition for thin film printing and method for forming thin film conductive pattern
JPWO2015064567A1 (en) * 2013-10-31 2017-03-09 昭和電工株式会社 Conductive composition for thin film printing and method for forming thin film conductive pattern
WO2015064567A1 (en) * 2013-10-31 2015-05-07 昭和電工株式会社 Electrically conductive composition for thin film printing, and method for forming thin film conductive pattern
CN103753939A (en) * 2014-01-17 2014-04-30 苏州斯贝孚光伏科技有限公司 Method for preparing thin film by coating nano metal ink
JP2016135918A (en) * 2015-01-23 2016-07-28 ゼロックス コーポレイションXerox Corporation Preparation method of metal nano-dendrimer structure
JP5968574B1 (en) * 2015-01-27 2016-08-10 帝国インキ製造株式会社 Ink composition for high-speed screen printing, printed matter obtained by high-speed printing of the ink composition, and method for producing the printed matter
JP6008436B1 (en) * 2015-01-27 2016-10-19 帝国インキ製造株式会社 High-quality and high-definition screen printing ink composition for glass substrate, printed matter obtained by screen printing the ink composition, and method for producing the printed matter
JP6008435B1 (en) * 2015-01-27 2016-10-19 帝国インキ製造株式会社 Durable and flexible high-quality, high-definition ink composition for screen printing, printed matter obtained by screen printing the ink composition, and method for producing the printed matter
WO2016121220A1 (en) * 2015-01-27 2016-08-04 帝国インキ製造株式会社 Ink composition for high-speed screen printing, printed article obtained by high-speed printing of said ink composition, and method for producing said printed article
WO2016121726A1 (en) * 2015-01-27 2016-08-04 帝国インキ製造株式会社 Durable and flexible ink composition for high-quality/high-definition screen printing, printed product obtained by screen printing said ink composition, and manufacturing method for said printed product
US9879145B2 (en) 2015-01-27 2018-01-30 Teikoku Printing Inks Mfg. Co. Ltd. High-quality/high-definition screen printing ink composition for glass substrate, printed product obtained by screen printing said ink composition, and manufacturing method for said printed product
RU2664054C1 (en) * 2015-01-27 2018-08-14 Тейкоку Принтинг Инкс Мфг. Ко., Лтд Colorful composition for high-speed screen printing, printed material manufactured through high-speed screen printed by painted composite, and method of manufacture of specified printed material
WO2016121724A1 (en) * 2015-01-27 2016-08-04 帝国インキ製造株式会社 High-quality/high-definition screen printing ink composition for glass substrate, printed product obtained by screen printing said ink composition, and manufacturing method for said printed product
US10479902B2 (en) 2015-01-27 2019-11-19 Teikoku Printing Inks Mfg. Co., Ltd. Durable and flexible ink composition for high-quality/high-definition screen printing, printed product obtained by screen printing said ink composition, and manufacturing method for said printed product
US10501647B2 (en) 2015-01-27 2019-12-10 Teikoku Printing Inks Mfg. Co., Ltd. Ink composition for high-speed screen printing, printed article obtained by high-speed printing of said ink composition, and method for producing said printed article

Also Published As

Publication number Publication date
CN101287566B (en) 2012-05-23
CN101287566A (en) 2008-10-15
JP4839767B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4839767B2 (en) A method for producing a metal fine particle dispersion, a conductive ink using the metal fine particle dispersion produced by the method, and a conductive pattern.
JP4993869B2 (en) Method for producing metal fine particle dispersion
JP5071105B2 (en) Conductive ink, conductive circuit, and non-contact type media
JP4935175B2 (en) Metal fine particle dispersion and method for producing the same
JP5394749B2 (en) Synthesis of metal nanoparticle dispersions
KR20090008361A (en) Method for producing conductive coating film
TWI408184B (en) Conductive ink, conductive circuits and non-contact media
JP6020833B2 (en) Electroless plating base material containing hyperbranched polymer and fine metal particles
US9982155B2 (en) Photocurable electroconductive ink composition
JP2010504612A (en) Silver paste for conductive film formation
WO2007043664A1 (en) Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
EP2123723A1 (en) Photochemical synthesis of metallic nanoparticles for ink applications
CN102827513B (en) Photopolymerisable catalytic printing ink and application thereof
JP6036185B2 (en) High purity metal nanoparticle dispersion and method for producing the same
JP2008189758A (en) Electroconductive ink, electroconductive circuit and non-contacting type media
JP4639661B2 (en) Method for producing metal fine particle dispersion, conductive ink using metal fine particle dispersion produced by the method, and non-contact type medium
JP4595353B2 (en) Conductive ink and non-contact type medium using the same
JP2007169462A (en) Electroconductive ink, electroconductive circuit and non-contact type medium
JP2008280592A (en) Method for producing electrically conductive metal nanoparticle, electrically conductive metal nanoparticle, ink composition using the same, and method for forming wiring
Lee et al. Large-scale synthesis of polymer-stabilized silver nanoparticles
JP2008094997A (en) Conductive ink, conductive circuit and noncontact type medium
JP5066885B2 (en) Conductive ink, conductive circuit and non-contact type media
JP6443024B2 (en) Method for producing metal nanoparticle non-aqueous dispersion
WO2014061750A1 (en) Dispersant, metal particle dispersion for conductive substrate, and production method for conductive substrate
JP4892989B2 (en) Conductive ink, conductive circuit and non-contact type media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees