JP2006183072A - Silver particulate, method for producing the same and conductive paste containing silver particulate - Google Patents

Silver particulate, method for producing the same and conductive paste containing silver particulate Download PDF

Info

Publication number
JP2006183072A
JP2006183072A JP2004375710A JP2004375710A JP2006183072A JP 2006183072 A JP2006183072 A JP 2006183072A JP 2004375710 A JP2004375710 A JP 2004375710A JP 2004375710 A JP2004375710 A JP 2004375710A JP 2006183072 A JP2006183072 A JP 2006183072A
Authority
JP
Japan
Prior art keywords
silver
fine particles
silver fine
conductive paste
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375710A
Other languages
Japanese (ja)
Other versions
JP4487143B2 (en
Inventor
Masahiro Kitamura
昌広 北村
Kiminori Yokoyama
公憲 横山
Hiroki Maruyama
浩樹 丸山
Hideki Takamatsu
秀機 高松
Akito Yoshii
明人 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2004375710A priority Critical patent/JP4487143B2/en
Publication of JP2006183072A publication Critical patent/JP2006183072A/en
Application granted granted Critical
Publication of JP4487143B2 publication Critical patent/JP4487143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide silver particulates for the raw material of conductive paste exhibiting sufficient conductivity at a firing temperature of ≤200°C, and to provide conductive paste containing the silver particulates. <P>SOLUTION: The silver particulates, wherein (a) the average particle diameter of primary particles is 40 to 100 nm, (b) the crystallite diameter is 20 to 70 nm, and (c) the ratio of the average particle diameter to the crystallite diameter is 1 to 5 is provided. Further, the conductive paste containing the silver particulates is provided. In the method for producing silver particulates, the silver salt of carboxylic acid and aliphatic primary amine are mixed in the presence or nonpresence of an organic solvent, next, a reducing agent is added thereto, and allowed to react at a reaction temperature of 20 to 80°C, so as to precipitate silver particulates. The silver particulates are obtained by the method, and the conductive paste contains the silver particulates obtained by the method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銀微粒子及びその製造方法に関する。本発明はまた、該銀微粒子を含有する導電ペーストに関する。   The present invention relates to silver fine particles and a method for producing the same. The present invention also relates to a conductive paste containing the silver fine particles.

近年、銀微粒子は、電子部品の電極や回路パターンを形成するための導電ペーストの原料として多用されている。例えば、回路パターンは、通常、基板に、銀微粒子を含有する導電ペーストを使用して、スクリーン印刷で配線幅50μm程度のパターンを印刷した後、500℃以上の高温で焼成して形成される。   In recent years, silver fine particles have been widely used as a raw material for conductive paste for forming electrodes and circuit patterns of electronic components. For example, the circuit pattern is usually formed by printing a pattern having a wiring width of about 50 μm by screen printing on a substrate using a conductive paste containing silver fine particles, and then baking at a high temperature of 500 ° C. or higher.

最近では、携帯電話をはじめとする分野で、基板として、ポリイミド製フレキシブル回路基板の他、より安価なPET(ポリエチレンテレフタレート)フィルムやPEN(ポリエチレンナフタレート)フィルム等を使用する動きがある。これらの基板との組み合わせでは、導電ペーストは、200℃以下の低温で焼成可能であることが要求される。   Recently, in fields such as mobile phones, there is a movement to use a cheaper PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, or the like as a substrate in addition to a polyimide flexible circuit board. In combination with these substrates, the conductive paste is required to be baked at a low temperature of 200 ° C. or lower.

一方、サブミクロン以下の銀微粒子を製造する方法として、ガス中蒸発法、及び化学的還元法などの方法が知られている。しかし、これらの方法による銀微粒子を低温焼成用の導電ペーストの原料とする場合にはそれぞれ問題点を有していた。   On the other hand, methods such as a gas evaporation method and a chemical reduction method are known as methods for producing silver fine particles of submicron or less. However, each of these methods has its own problems when silver fine particles are used as a raw material for conductive paste for low-temperature firing.

ガス中蒸発法によれば、ナノレベルの単分散微粒子が得られるが、そのままでは凝集し易く不安定であるため、アミン等の分散剤を加え、安定化した分散液とすることが提案されている。しかし、この分散液を回路パターン等の形成に使用する場合、分散液中の分散剤の除去という新たな問題が生じ、結果として200℃超での熱処理が必要となり、低温焼成用の導電ペーストの原料には不向きである(特許文献1参照)。   According to the gas evaporation method, nano-level monodispersed fine particles can be obtained. However, it is prone to agglomerate and is unstable as it is, and it has been proposed to add a dispersant such as amine to obtain a stabilized dispersion. Yes. However, when this dispersion is used for forming a circuit pattern or the like, a new problem of removal of the dispersant in the dispersion arises. As a result, heat treatment above 200 ° C. is required, and the conductive paste for low-temperature firing is required. Not suitable for raw materials (see Patent Document 1).

化学的還元法によれば、還元剤を添加して、金属化合物の水溶液中で金属を還元析出させることにより、ほぼ単分散に近い独立球状の金属微粒子が得られるが、実施例で調製されている銀微粒子は粒径が約1μmと大きく、低温焼成用の導電ペーストの原料には不向きである(特許文献2参照)。   According to the chemical reduction method, by adding a reducing agent and reducing and precipitating a metal in an aqueous solution of a metal compound, independent spherical metal fine particles close to monodispersion can be obtained. The silver fine particles have a large particle size of about 1 μm and are not suitable as a raw material for conductive paste for low-temperature firing (see Patent Document 2).

また、結晶子径とタップ密度を規定した銀微粒子が提案されているが、これらは500℃以上の高温焼成用の導電ペーストの原料に専ら適しており、低温焼成用の導電ペーストの原料には不向きである(特許文献3参照)。   In addition, silver fine particles having a defined crystallite size and tap density have been proposed, but these are suitable only as a raw material for conductive paste for high-temperature firing at 500 ° C. or higher, and as a raw material for conductive paste for low-temperature firing. It is unsuitable (refer patent document 3).

さらに、湿式還元法により製造され、平均粒子径と凝集度を規定した銀微粒子が提案されているが、印刷特性の点からも難点があり、低温焼成用の導電ペーストの原料には不向きである(特許文献4)。   Further, silver fine particles produced by a wet reduction method and having an average particle size and a specified degree of aggregation have been proposed, but there are disadvantages in terms of printing characteristics, and they are not suitable as a raw material for conductive paste for low-temperature firing. (Patent Document 4).

このように、実用的な条件下、200℃以下の低温焼成で、導電回路が要求するような十分な導電性を示す導電ペースト用の原料となる銀微粒子は知られてなかった。
特開2002−121606号公報 特開平10−317022号公報 特開2003−49202号公報 特開2004−100013号公報
Thus, no silver fine particle has been known as a raw material for a conductive paste exhibiting sufficient conductivity as required by a conductive circuit under low temperature firing at 200 ° C. or lower under practical conditions.
JP 2002-121606 A Japanese Patent Laid-Open No. 10-317022 JP 2003-49202 A JP 2004-100013 A

本発明の目的は、上記のような状況に対応して、200℃以下の焼成温度で、十分な導電性を示す導電ペーストの原料用の銀微粒子及び該銀微粒子を含有する導電ペーストを提供することであり、また、該銀微粒子の製造方法を提供することである。   The object of the present invention is to provide a silver fine particle for a raw material of a conductive paste exhibiting sufficient conductivity at a firing temperature of 200 ° C. or less and a conductive paste containing the silver fine particle, corresponding to the above situation. In addition, the present invention provides a method for producing the silver fine particles.

本発明は、(a)1次粒子の平均粒子径が40〜350nmであり、(b)結晶子径が20〜70nmであり、かつ(c)結晶子径に対する平均粒子径の比が1〜5である銀微粒子に関し、さらには該銀微粒子を含有する導電ペーストに関する。   In the present invention, (a) the average particle diameter of primary particles is 40 to 350 nm, (b) the crystallite diameter is 20 to 70 nm, and (c) the ratio of the average particle diameter to the crystallite diameter is 1 to Further, the present invention relates to a silver fine particle 5 and further to a conductive paste containing the silver fine particle.

また、本発明は、有機溶媒の存在又は非存在下に、カルボン酸の銀塩と脂肪族第一級アミンを混合し、次いで還元剤を添加して、反応温度20〜80℃で反応させて、銀微粒子を析出させることを含む銀微粒子の製造方法に関し、さらには該方法により得られた銀微粒子、及び該方法により得られた銀微粒子を含有する導電ペーストに関する。   In the present invention, a silver salt of a carboxylic acid and an aliphatic primary amine are mixed in the presence or absence of an organic solvent, a reducing agent is then added, and the reaction is performed at a reaction temperature of 20 to 80 ° C. Further, the present invention relates to a method for producing silver fine particles including depositing silver fine particles, and further relates to silver fine particles obtained by the method and a conductive paste containing the silver fine particles obtained by the method.

加えて、本発明は、(1)有機溶媒の存在又は非存在下に、カルボン酸の銀塩と脂肪族第一級アミンを混合する工程、(2)還元剤を添加して、反応温度20〜80℃で反応させる工程、及び(3)反応生成物を層分離させて、銀微粒子を含有する層を回収する工程を含む、導電ペーストの製造方法に関し、さらには該方法により得られた導電ペーストに関する。   In addition, the present invention includes (1) a step of mixing a silver salt of a carboxylic acid and an aliphatic primary amine in the presence or absence of an organic solvent, (2) a reducing agent is added, and a reaction temperature of 20 A process for reacting at ~ 80 ° C, and (3) a step of separating the reaction product and recovering a layer containing silver fine particles, and further comprising a process for producing a conductive paste, and further the conductive obtained by the method. Regarding paste.

本発明の銀微粒子は、導電ペーストの原料として有用であり、本発明の銀微粒子を含有する導電ペーストは、200℃以下の焼成温度で、十分な導電性(例えば、比抵抗値1〜10μΩcmレベル)を示す銀膜を形成することができる。また、本発明の銀微粒子は、平均粒子径が小さく、本発明の銀微粒子を含有する導電ペーストは、より微細化する回路パターン形成の要求にも応え得るものである。   The silver fine particles of the present invention are useful as a raw material for the conductive paste, and the conductive paste containing the silver fine particles of the present invention has sufficient conductivity (for example, a specific resistance value of 1 to 10 μΩcm level at a firing temperature of 200 ° C. or less. ) Can be formed. Further, the silver fine particles of the present invention have a small average particle diameter, and the conductive paste containing the silver fine particles of the present invention can meet the demand for circuit pattern formation to be further refined.

また、本発明の銀微粒子の製造方法は、大型の装置を使用することなく、効率よく、銀微粒子を製造することができ、ナノ銀粒子の最大かつ最終の課題ともいえる量産性への寄与が大きいものである。   Further, the method for producing silver fine particles of the present invention can efficiently produce silver fine particles without using a large apparatus, and contributes to mass productivity that can be said to be the largest and final problem of nano silver particles. It ’s a big one.

本発明の銀微粒子は、(a)1次粒子の平均粒子径が40〜350nmであり、(b)結晶子径が20〜70nmであり、かつ(c)結晶子径に対する平均粒子径の比が1〜5であることを特徴とする、銀微粒子である。   In the silver fine particles of the present invention, (a) the average particle diameter of primary particles is 40 to 350 nm, (b) the crystallite diameter is 20 to 70 nm, and (c) the ratio of the average particle diameter to the crystallite diameter. Is a silver fine particle characterized by being 1-5.

本明細書において、平均粒子径は、レーザー回折散乱式粒度分布測定による、個数基準に基づく平均粒子径をいう。また、本明細書において、結晶子径は、CuのKα線を線源とした粉末X線回折法による測定から、面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より計算した結果をいう。   In the present specification, the average particle diameter refers to an average particle diameter based on the number standard by laser diffraction scattering type particle size distribution measurement. Further, in this specification, the crystallite diameter is obtained by measuring the half width of the plane index (1,1,1) plane peak from the measurement by the powder X-ray diffraction method using Cu Kα ray as the source, and the Scherrer equation. The result calculated from

本発明の銀微粒子は、1次粒子の平均粒子径が40〜350nmであり、好ましくは40〜100nmであり、より好ましくは50〜80nmである。なお、本発明の銀微粒子は通常、略球状である。その平均粒子径がこの範囲であると、銀微粒子の凝集が抑制され、導電ペースト化した場合に保存安定性が得られやすく、また微細回路パターン印刷用の導電ペーストの原料としても好適である。   In the silver fine particles of the present invention, the average particle diameter of primary particles is 40 to 350 nm, preferably 40 to 100 nm, and more preferably 50 to 80 nm. In addition, the silver fine particles of the present invention are generally spherical. When the average particle diameter is within this range, aggregation of silver fine particles is suppressed, and when it is made into a conductive paste, storage stability is easily obtained, and it is also suitable as a raw material for a conductive paste for printing a fine circuit pattern.

本発明の銀微粒子は、結晶子径が20〜70nmであり、好ましくは20〜50nmである。結晶子径がこの範囲であると、焼成時の体積収縮が抑制されるとともに、焼成後に形成される銀膜の緻密性や表面平滑性が確保され、精密な電子回路用途の導電ペーストの原料としても好適である。   The silver fine particles of the present invention have a crystallite diameter of 20 to 70 nm, preferably 20 to 50 nm. When the crystallite diameter is within this range, volume shrinkage during firing is suppressed, and the denseness and surface smoothness of the silver film formed after firing are ensured, and as a raw material for conductive pastes for precise electronic circuit applications Is also suitable.

本発明の銀微粒子は、1次銀微粒子の結晶子径に対する平均粒子径の比(平均粒子径/結晶子径)が1〜5であり、好ましくは1〜4であり、より好ましくは1〜3の範囲である。上記の比がこの範囲であると、200℃以下の焼成温度で、十分な導電性を示す導電ペーストの原料用に好適である。   In the silver fine particles of the present invention, the ratio of the average particle size to the crystallite size of the primary silver fine particles (average particle size / crystallite size) is 1 to 5, preferably 1 to 4, more preferably 1 to 4. 3 range. When the above ratio is within this range, it is suitable for a raw material of a conductive paste exhibiting sufficient conductivity at a firing temperature of 200 ° C. or less.

本発明の銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20〜80℃で銀微粒子を析出させることにより製造することができる。   The silver fine particles of the present invention can be produced by mixing a silver salt of a carboxylic acid and an aliphatic primary amine, then adding a reducing agent and precipitating the silver fine particles at a reaction temperature of 20 to 80 ° C. it can.

はじめに、カルボン酸の銀塩と脂肪族第一級アミンとを混合して、カルボン酸の銀塩を溶解させた溶液を得る。溶液中では、カルボン酸の銀塩に脂肪族第一級アミンが配位し、一種のアミン錯体を形成していると考えられる。   First, a silver salt of carboxylic acid and an aliphatic primary amine are mixed to obtain a solution in which the silver salt of carboxylic acid is dissolved. In solution, it is considered that an aliphatic primary amine is coordinated to a silver salt of carboxylic acid to form a kind of amine complex.

カルボン酸の銀塩は、脂肪族、芳香族いずれのカルボン酸の銀塩であってもよい。また、モノカルボン酸の銀塩であっても、ジカルボン酸等のポリカルボン酸の銀塩であってもよい。脂肪族カルボン酸の銀塩は、鎖状脂肪族カルボン酸の銀塩であっても、環状脂肪族カルボン酸の銀塩であってもよい。好ましくは鎖状脂肪族モノカルボン酸の銀塩であり、より好ましくは、酢酸銀、プロピオン酸銀又は酪酸銀であり、特に酢酸銀である。これらは、単独で、又は2種以上を併用することができる。   The silver salt of a carboxylic acid may be a silver salt of any aliphatic or aromatic carboxylic acid. Further, it may be a silver salt of monocarboxylic acid or a silver salt of polycarboxylic acid such as dicarboxylic acid. The silver salt of an aliphatic carboxylic acid may be a silver salt of a chain aliphatic carboxylic acid or a silver salt of a cyclic aliphatic carboxylic acid. Preferred is a silver salt of a chain aliphatic monocarboxylic acid, more preferred is silver acetate, silver propionate or silver butyrate, and particularly silver acetate. These can be used alone or in combination of two or more.

脂肪族第一級アミンは、鎖状脂肪族第一級アミンであっても、環状脂肪族第一級アミンであってもよい。また、モノアミン化合物であっても、ジアミン化合物等のポリアミン化合物であってもよい。脂肪族第一級アミンには、脂肪族炭化水素基が、ヒドロキシル基、メトキシ基、エトキシ基、プロピル基等のアルコキシ基、で置換されたものも含む。より好ましくは、3−メトキシプロピルアミン、3−アミノプロパノール及び1,2−ジアミノシクロヘキサンである。これらは、単独で、又は2種以上を併用することができる。   The aliphatic primary amine may be a chain aliphatic primary amine or a cyclic aliphatic primary amine. Moreover, even if it is a monoamine compound, polyamine compounds, such as a diamine compound, may be sufficient. Aliphatic primary amines include those in which an aliphatic hydrocarbon group is substituted with an alkoxy group such as a hydroxyl group, a methoxy group, an ethoxy group, or a propyl group. More preferred are 3-methoxypropylamine, 3-aminopropanol and 1,2-diaminocyclohexane. These can be used alone or in combination of two or more.

脂肪族第一級アミンの使用量は、生成する銀微粒子の後処理等プロセス上の要請や装置から決められるが、制御された粒子径の銀微粒子を得る点からは、カルボン酸の銀塩1当量に対して、1当量以上であることが好ましい。過剰な脂肪族第一級アミンの環境等への影響を考慮すると、1.0〜3.0当量であることが好ましく、より好ましくは1.0〜1.5当量、特に好ましくは1.0〜1.1当量である。特に、後続の工程で、還元剤によって銀微粒子を析出させた液をそのまま、導電ペーストとして使用する場合、過剰な脂肪族第一級アミンは加熱により気化する可能性があるため、上記の好ましい使用量の範囲を採用することがとりわけ望ましい。   The amount of the aliphatic primary amine used is determined by process requirements and equipment such as post-treatment of the silver fine particles to be produced. From the viewpoint of obtaining silver fine particles having a controlled particle size, the silver salt 1 of carboxylic acid is used. It is preferably 1 equivalent or more with respect to equivalents. Considering the influence of excess aliphatic primary amine on the environment, it is preferably 1.0 to 3.0 equivalents, more preferably 1.0 to 1.5 equivalents, particularly preferably 1.0. -1.1 equivalents. In particular, in the subsequent step, when the liquid in which silver fine particles are precipitated by a reducing agent is used as it is as a conductive paste, the above preferred use is possible because excess aliphatic primary amine may be vaporized by heating. It is particularly desirable to employ a range of quantities.

カルボン酸の銀塩と脂肪族第一級アミンとの混合は、有機溶媒の非存在下又は存在下に行うことができる。有機溶媒の使用により、混合を容易にすることができる。有機溶媒としては、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等が挙げられる。これらは、単独で、又は2種以上を併用することができる。有機溶媒の使用量は、混合の利便性、後続の工程での銀微粒子の生産性の点から、任意の量とすることができる。   Mixing of the silver salt of the carboxylic acid and the aliphatic primary amine can be performed in the absence or presence of an organic solvent. Mixing can be facilitated by the use of organic solvents. Examples of the organic solvent include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene. These can be used alone or in combination of two or more. The amount of the organic solvent used can be set to an arbitrary amount from the viewpoint of convenience of mixing and productivity of silver fine particles in the subsequent steps.

カルボン酸塩の銀塩と脂肪族第一級アミンとの混合は、例えば、第一級脂肪族アミン、又は第一級脂肪族アミンと有機溶媒の混合物を攪拌しながら、カルボン酸の銀塩を添加して行う。添加終了後も、適宜、攪拌を続けることができる。その間、温度を、20〜80℃に維持することが好ましく、より好ましくは、20〜60℃である。   The mixing of the silver salt of the carboxylate and the aliphatic primary amine is performed, for example, by stirring the silver salt of the carboxylic acid while stirring the primary aliphatic amine or the mixture of the primary aliphatic amine and the organic solvent. Add and do. Stirring can be continued as appropriate even after the end of the addition. In the meantime, it is preferable to maintain temperature at 20-80 degreeC, More preferably, it is 20-60 degreeC.

その後、還元剤を添加して、銀微粒子を析出させる。還元剤としては、反応の制御の点から、ギ酸、ホルムアルデヒド、アスコルビン酸又はヒドラジンが好ましく、より好ましくは、ギ酸である。これらは単独で、又は2種以上を併用することができる。   Thereafter, a reducing agent is added to precipitate silver fine particles. As the reducing agent, formic acid, formaldehyde, ascorbic acid or hydrazine is preferable from the viewpoint of controlling the reaction, and formic acid is more preferable. These may be used alone or in combination of two or more.

還元剤の使用量は、通常、カルボン酸の銀塩に対して酸化還元当量以上であり、酸化還元当量が、0.5〜5倍であることが好ましく、より好ましくは1〜3倍である。カルボン酸の銀塩がモノカルボン酸の銀塩であり、還元剤としてギ酸を使用する場合、ギ酸のモル換算での使用量は、カルボン酸の銀塩1モルに対して、0.5〜1.5モルであることが好ましく、より好ましくは0.5〜1.0モル、さらに好ましくは0.5〜0.75モルである。   The amount of the reducing agent used is usually at least a redox equivalent with respect to the silver salt of the carboxylic acid, and the redox equivalent is preferably 0.5 to 5 times, more preferably 1 to 3 times. . When the silver salt of carboxylic acid is a silver salt of monocarboxylic acid and formic acid is used as the reducing agent, the amount of formic acid used in terms of mole is 0.5 to 1 with respect to 1 mole of silver salt of carboxylic acid. 0.5 mol is preferable, more preferably 0.5 to 1.0 mol, and still more preferably 0.5 to 0.75 mol.

還元剤の添加及びその後の反応においては、温度を20℃〜80℃に維持する。温度は、20〜70℃であることが好ましく、より好ましくは、20〜60℃である。温度がこの範囲にあると、銀微粒子の粒成長が十分であり、生産性も高く、また二次凝集も抑制される。還元剤の添加及びその後の反応に要する時間は、反応装置の規模に依存するが、通常、10分〜10時間である。なお、還元剤の添加及びその後の反応に際して、必要に応じて、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等の有機溶媒を追加で添加することができる。   In the addition of the reducing agent and the subsequent reaction, the temperature is maintained between 20 ° C and 80 ° C. It is preferable that temperature is 20-70 degreeC, More preferably, it is 20-60 degreeC. When the temperature is within this range, the grain growth of silver fine particles is sufficient, the productivity is high, and secondary aggregation is also suppressed. The time required for the addition of the reducing agent and the subsequent reaction depends on the scale of the reaction apparatus, but is usually 10 minutes to 10 hours. In addition, in the addition of the reducing agent and the subsequent reaction, an organic solvent such as an alcohol such as ethanol, propanol or butanol, an ether such as propylene glycol dibutyl ether, or an aromatic hydrocarbon such as toluene is added as necessary. Can be added.

還元剤の添加及びその後の反応においては、カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液、還元剤、及び任意の有機溶媒の合計の容積(L)に対する、カルボン酸の銀塩の量(mol)が、1.0〜6.0mol/Lの範囲となるようにすることが好ましく、より好ましくは、2.0〜5.0mol/L、さらに好ましくは2.0〜4.0mol/Lである。濃度がこの範囲にあると、反応液の攪拌を十分行い、反応熱を除去することができるため、析出する銀微粒子の平均粒子径が適切となり、ひいては後続する工程での沈降デカント、溶媒置換等の操作に支障を来すこともない。   In the addition of the reducing agent and the subsequent reaction, the silver of the carboxylic acid with respect to the total volume (L) of the mixed solution of the silver salt of the carboxylic acid and the aliphatic primary amine, the reducing agent, and any organic solvent. The amount (mol) of the salt is preferably in the range of 1.0 to 6.0 mol / L, more preferably 2.0 to 5.0 mol / L, still more preferably 2.0 to 4 0.0 mol / L. If the concentration is within this range, the reaction solution can be sufficiently stirred and the heat of reaction can be removed, so that the average particle size of the precipitated silver fine particles becomes appropriate. As a result, precipitation decantation, solvent replacement, etc. in subsequent steps It will not interfere with the operation.

反応容器にカルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と任意の有機溶媒を仕込み、還元剤を連続的に供給するセミバッチ方式で反応を行った場合、カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液、還元剤及び任意の有機溶媒の合計の容積1Lにつき、還元剤の添加開始から反応終了までの所要時間1時間当たりの銀微粒子の析出量は、0.3〜1.0mol/h/Lの範囲とすることができ、生産性は非常に大きい。連続式反応方式(連続式完全混合糟や流通式)で反応を実施した場合はさらに大きな生産性が得られ、工業的実施に対して大きな利得を与える。   When a reaction vessel is charged with a solution in which a silver salt of a carboxylic acid and an aliphatic primary amine are mixed and an arbitrary organic solvent, and the reaction is carried out in a semi-batch system in which a reducing agent is continuously supplied, the silver salt of the carboxylic acid The amount of silver fine particles deposited per hour per hour from the start of addition of the reducing agent to the end of the reaction per 1 L of the total volume of the solution, the reducing agent, and an arbitrary organic solvent mixed with the aliphatic primary amine, It can be in the range of 0.3 to 1.0 mol / h / L, and the productivity is very large. When the reaction is carried out by a continuous reaction system (continuous complete mixing tank or flow system), a greater productivity can be obtained, which gives a large gain to industrial implementation.

このようにして得られる銀微粒子は粒度分布が狭く、幾何標準偏差を2.0以下とすることができる。本明細書において、幾何標準偏差は、レーザー回折散乱式散乱式粒度分布測定による、個数基準の50%粒子径(D50値)に対する、84.3%粒子径(D84.3値)の比(D84.3値/D50値)をいう。   The silver fine particles obtained in this way have a narrow particle size distribution and a geometric standard deviation of 2.0 or less. In the present specification, the geometric standard deviation is the ratio (D84) of the 84.3% particle diameter (D84.3 value) to the 50% particle diameter (D50 value) based on the number measured by the laser diffraction scattering type particle size distribution measurement. .3 value / D50 value).

反応により析出した銀微粒子は沈降させて、デカンテーション等により上澄みを除去するか、又はメタノール、エタノール、テレピネオール等のアルコール等の溶媒を添加して分取することができる。銀微粒子を含む層はそのまま、導電ペーストとして使用することができる。導電ペーストは、導電ペースト中の銀含有率を40〜90重量%とすることが好ましく、より好ましくは45〜80重量%である。   Silver fine particles precipitated by the reaction can be settled and the supernatant removed by decantation or the like, or a solvent such as alcohol such as methanol, ethanol or terpineol can be added and fractionated. The layer containing silver fine particles can be used as a conductive paste as it is. The conductive paste preferably has a silver content in the conductive paste of 40 to 90% by weight, more preferably 45 to 80% by weight.

導電ペーストを、基材等に、スクリーン印刷等の従来公知の方法で印刷又は塗布した後、焼成することにより銀膜を形成することができる。焼成温度は、好ましくは、60〜200℃であり、より好ましくは60〜150℃である。このようにして得られる銀膜は、十分な導電性(例えば、比抵抗値1〜10μΩcmレベル)を示す。また、配合された銀微粒子の平均粒子径が小さく、より微細化する回路パターン形成への要求にも応え得るものである。   A silver film can be formed by printing or applying a conductive paste on a substrate or the like by a conventionally known method such as screen printing and then baking. The firing temperature is preferably 60 to 200 ° C, more preferably 60 to 150 ° C. The silver film thus obtained exhibits sufficient conductivity (for example, a specific resistance value of 1 to 10 μΩcm level). Moreover, the average particle diameter of the compounded silver fine particles is small, and it can meet the demand for circuit pattern formation to be further refined.

以下、実施例及び比較例によって、本発明を更に詳細に説明する。本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.

実施例1
10Lのガラス製反応容器に3−メトキシプロピルアミン3.0kg(30.9mol)を入れた。撹拌しながら、反応温度を45℃以下に保持しつつ、酢酸銀5.0kg(30.0mol)を添加した。添加直後は、透明な溶液となり溶解していくが、添加が進むにつれ溶液が次第に濁り、全量を添加すると灰茶濁色の粘調溶液となった。そこへ95重量%のギ酸1.0kg(21.0mol)をゆっくり滴下した。滴下直後から激しい発熱が認められたが、その間、反応温度を30〜45℃に保持した。当初、灰濁色の粘調溶液が、茶色から黒色へ変化した。全量を滴下した後反応を終了させた。反応混合物を40℃で静置すると二層に分かれた。上層は黄色の透明な液であり、下層には黒色の銀微粒子が沈降した。上層の液には、銀成分が含まれていなかった。上層の液をデカンテーションで除去し、メタノールを使用して層分離させて銀含有率65重量%の導電ペーストを得た。ギ酸の滴下開始から反応終了までに要した時間は6時間であった。また、反応容積当たり銀微粒子の生産性は、0.57mol/h/Lであった。なお、銀含有率は、導電ペースト約3gをルツボに採取し精秤した後、電気炉を使用し、800℃で0.5時間焼成して有機成物を除去して重量を測定し、算定した値である。以下も同様とする。
Example 1
In a 10 L glass reaction vessel, 3.0 kg (30.9 mol) of 3-methoxypropylamine was placed. While stirring, the reaction temperature was maintained at 45 ° C. or lower, and 5.0 kg (30.0 mol) of silver acetate was added. Immediately after the addition, the solution became a transparent solution and dissolved, but as the addition proceeded, the solution gradually became turbid, and when the entire amount was added, it became an ash brown cloudy viscous solution. To this, 1.0 kg (21.0 mol) of 95% by weight formic acid was slowly added dropwise. Vigorous exotherm was observed immediately after the addition, while the reaction temperature was maintained at 30 to 45 ° C. Initially, the turbid viscous solution changed from brown to black. The reaction was terminated after the entire amount was added dropwise. The reaction mixture was allowed to stand at 40 ° C. and separated into two layers. The upper layer is a yellow transparent liquid, and black silver fine particles settled in the lower layer. The upper layer liquid did not contain a silver component. The upper layer liquid was removed by decantation, and the layers were separated using methanol to obtain a conductive paste having a silver content of 65% by weight. The time required from the start of formic acid dropping to the end of the reaction was 6 hours. The productivity of silver fine particles per reaction volume was 0.57 mol / h / L. The silver content is calculated by collecting approximately 3g of conductive paste in a crucible, weighing it accurately, using an electric furnace, firing at 800 ° C for 0.5 hours to remove organic components and measuring the weight. It is the value. The same applies to the following.

実施例2
10Lのガラス製反応容器に3−メトキシプロピルアミン4.0kg(45.0mol)を入れた。撹拌しながら、反応温度を45℃以下に保持しつつ、酢酸銀5.0kg(30.0mol)を添加した。添加直後は、透明な溶液となり溶解していくが、添加が進むにつれ溶液が次第に濁り、全量を添加すると灰茶濁色の粘調溶液となった。そこへ95重量%のギ酸1.0kg(21.0mol)をゆっくり滴下した。滴下直後から激しい発熱が認められたが、その間、反応温度を30〜45℃に保持した。当初、灰濁色の粘調溶液が茶色から黒色へ変化した。全量を滴下した後反応を終了させた。反応混合物を40℃で静置すると二層に分かれた。上層は黄色の透明な液であり、下層には黒色の銀粒子が沈降した。上層の液には、銀成分が含まれていなかった。上層の液をデカンテーションし、メタノールを使用して層分離させて銀含有率65重量%の導電ペーストを得た。ギ酸の滴下開始から反応終了反応に要した時間は6時間であった。反応容積あたりの銀微粒子の生産性は0.50mol/h/Lであった。
Example 2
In a 10 L glass reaction vessel, 4.0 kg (45.0 mol) of 3-methoxypropylamine was placed. While stirring, the reaction temperature was maintained at 45 ° C. or lower, and 5.0 kg (30.0 mol) of silver acetate was added. Immediately after the addition, the solution became a transparent solution and dissolved, but as the addition proceeded, the solution gradually became turbid, and when the entire amount was added, it became an ash brown cloudy viscous solution. To this, 1.0 kg (21.0 mol) of 95% by weight formic acid was slowly added dropwise. Vigorous exotherm was observed immediately after the addition, while the reaction temperature was maintained at 30 to 45 ° C. Initially, the turbid viscous solution changed from brown to black. The reaction was terminated after the entire amount was added dropwise. The reaction mixture was allowed to stand at 40 ° C. and separated into two layers. The upper layer was a yellow transparent liquid, and black silver particles were precipitated in the lower layer. The upper layer liquid did not contain a silver component. The upper layer liquid was decanted and the layers were separated using methanol to obtain a conductive paste having a silver content of 65% by weight. The time required for the reaction completion reaction from the start of formic acid dropping was 6 hours. The productivity of silver fine particles per reaction volume was 0.50 mol / h / L.

実施例3
10Lのガラス製反応容器にトルエン1.5kgを入れ、ジアミノシクロヘキサン0.9kg(8.0mol)と2−エチルヘキサン酸0.8kg(5.5mol)を添加した後、攪拌しながら、反応温度を45℃以下に保持しつつ、酢酸銀2.5kg(15.0mol)を添加した。反応系がほぼ均一になったことを確認した後、急激に攪拌しながら、ギ酸0.5kg(10.5mol)を少量ずつ、3時間かけて添加した。その間、反応温度を40〜45℃に保持した。その後、温度を40〜45℃に保持しつつ、2時間攪拌を続けて反応を終了させた。得られたペースト1kgに、メタノール0.3kgを加えて撹拌後、静置して上澄みを除去した。上澄みを除去したペーストに、テレピネオール40gを加え、エバポレータで残存するメタノールを留去して、銀含有率64%の導電ペーストを得た。反応容積あたりの銀微粒子の生産性は0.79mol/h/Lであった。
Example 3
Into a 10 L glass reaction vessel, 1.5 kg of toluene was added, 0.9 kg (8.0 mol) of diaminocyclohexane and 0.8 kg (5.5 mol) of 2-ethylhexanoic acid were added, and the reaction temperature was adjusted while stirring. While maintaining the temperature at 45 ° C. or lower, 2.5 kg (15.0 mol) of silver acetate was added. After confirming that the reaction system was almost uniform, 0.5 kg (10.5 mol) of formic acid was added in small portions over 3 hours with rapid stirring. Meanwhile, the reaction temperature was kept at 40-45 ° C. Thereafter, stirring was continued for 2 hours while maintaining the temperature at 40 to 45 ° C. to complete the reaction. To 1 kg of the obtained paste, 0.3 kg of methanol was added and stirred, and then allowed to stand to remove the supernatant. 40 g of terpineol was added to the paste from which the supernatant had been removed, and the remaining methanol was distilled off with an evaporator to obtain a conductive paste having a silver content of 64%. The productivity of silver fine particles per reaction volume was 0.79 mol / h / L.

比較例1
10Lのガラス製反応容器に3−メトキシプロピルアミン3.0kg(30.9mol)を入れた。撹拌しながら、液温を50℃にして酢酸銀5.0kg(30.0mol)を添加した。添加直後は、透明な溶液となり溶解していくが、添加が進むにつれ溶液が次第に濁り、全量を添加すると灰色の粒子の析出のある溶液となった。そこへ95重量%のギ酸1.0kg(21.0mol)を3時間かけて滴下した。滴下直後から激しい発熱が認められ、反応温度は90℃に上昇した。激しく反応し、溶液の一部が反応容器から吹きこぼれた。その反応混合物は、大きな銀の凝集体を形成していて不均一であった。
Comparative Example 1
In a 10 L glass reaction vessel, 3.0 kg (30.9 mol) of 3-methoxypropylamine was placed. While stirring, the liquid temperature was adjusted to 50 ° C., and 5.0 kg (30.0 mol) of silver acetate was added. Immediately after the addition, the solution became a transparent solution and dissolved, but as the addition proceeded, the solution gradually became turbid, and when the entire amount was added, a solution with gray particles precipitated. Thereto was added dropwise 1.0 kg (21.0 mol) of 95% by weight of formic acid over 3 hours. Severe exotherm was observed immediately after the addition, and the reaction temperature rose to 90 ° C. It reacted vigorously and part of the solution spilled out of the reaction vessel. The reaction mixture was heterogeneous, forming large silver aggregates.

実施例1、2及び3について、日本電子製JSM−5600を用いて、倍率40,000倍でSEM写真を撮影した。結果を図1に示す。   For Examples 1, 2, and 3, SEM photographs were taken at a magnification of 40,000 times using JSM-5600 manufactured by JEOL. The results are shown in FIG.

実施例1、2及び3について、粒子特性、体積抵抗率及び保存安定性を測定・評価した。結果を表1に示す。   For Examples 1, 2, and 3, particle characteristics, volume resistivity, and storage stability were measured and evaluated. The results are shown in Table 1.

測定・評価は、次のようにして行った。   Measurement and evaluation were performed as follows.

平均粒子径及び幾何標準偏差:各実施例の導電ペースト約0.5g)を、分散水(AEROSOL0.5%含有水)50ccに添加し、超音波分散機で5分間分散する。分散試料を、ベックマン・コールター社製の3(LS230)により測定した。個数基準に基づき、平均粒子径、10%粒子径(D10値)、25%粒子径(D25値)、50%粒子径(D50値)、75%粒子径(D75値)、90%粒子径(D90値)、84.3%粒子径(D84.3値)を測定し、さらに幾何標準偏差(50%粒子径(D50値)に対する84.3%粒子径(D84.3値)の比)を求めた。   Average particle diameter and geometric standard deviation: About 0.5 g of the conductive paste of each example) is added to 50 cc of dispersed water (water containing 0.5% of AEROSOL), and dispersed with an ultrasonic disperser for 5 minutes. The dispersion sample was measured by 3 (LS230) manufactured by Beckman Coulter. Based on the number standard, the average particle size, 10% particle size (D10 value), 25% particle size (D25 value), 50% particle size (D50 value), 75% particle size (D75 value), 90% particle size ( D90 value), 84.3% particle diameter (D84.3 value), and geometric standard deviation (ratio of 84.3% particle diameter (D84.3 value) to 50% particle diameter (D50 value)) Asked.

結晶子径:マックサイエンス社製X線回折測定装置(M18XHF22)による測定によって、CuのKα線を線源とした面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より結晶子径を計算した。   Crystallite diameter: The half-value width of the plane index (1,1,1) plane peak using Cu Kα ray as the radiation source was determined by measurement with an X-ray diffraction measurement device (M18XHF22) manufactured by Mac Science, and the Scherrer equation was used. The crystallite size was calculated.

体積抵抗率:各実施例の導電ペーストを用い、幅1.0mm・長さ66mmのパターン回路を、約5μmの厚みでガラス基板にスクリーン印刷して、実施例1及び2は、150℃で10分、実施例3は、200℃で20分熱処理した後、抵抗値と厚さを測定して求めた。   Volume resistivity: Using the conductive paste of each example, a pattern circuit having a width of 1.0 mm and a length of 66 mm was screen-printed on a glass substrate with a thickness of about 5 μm. Example 3 was obtained by measuring the resistance value and thickness after heat treatment at 200 ° C. for 20 minutes.

保存安定性:各実施例の導電ペーストをガラス容器に入れて密封し、40℃の恒温槽中に3ケ月間保存し流動性の変化を目視で観察した。
○:変化なし、△:やや悪くなった(実用上問題なし)、×:悪い(使用不可能)
Storage stability: The conductive paste of each example was sealed in a glass container, stored in a constant temperature bath at 40 ° C. for 3 months, and the change in fluidity was visually observed.
○: No change, △: Slightly worse (no problem in practical use), ×: Bad (unusable)

実施例4〜8
実施例1で得られた導電ペーストを、表2の条件で焼成して、上述の方法により体積抵抗率を測定した。結果を表2に示す。また、実施例7の焼成面を日本電子製 JSM−5600を用いて、倍率20,000倍でSEM写真を撮影した。結果を図2に示す。
Examples 4-8
The conductive paste obtained in Example 1 was fired under the conditions shown in Table 2, and the volume resistivity was measured by the method described above. The results are shown in Table 2. Further, an SEM photograph was taken of the fired surface of Example 7 at a magnification of 20,000 using JSM-5600 manufactured by JEOL. The results are shown in FIG.

実施例9〜14
脂肪族第1級アミン、カルボン酸の銀塩、還元剤、還元剤添加後の反応温度及び反応時間を表3に示す組み合わせとした他は、実施例1と同様にして、実施例9〜14の導電ペーストを調製し、粒子特性、体積抵抗及び保存安定性を測定した。測定の方法は上述のとおりであるが、体積抵抗率測定のための焼成は、150℃10分の条件で行った。
Examples 9-14
Examples 9 to 14 were carried out in the same manner as in Example 1 except that the aliphatic primary amine, silver salt of carboxylic acid, reducing agent, reaction temperature and reaction time after addition of the reducing agent were combined as shown in Table 3. A conductive paste was prepared, and particle characteristics, volume resistance and storage stability were measured. The measurement method is as described above, but the firing for volume resistivity measurement was performed at 150 ° C. for 10 minutes.

比較例2
特開2004−100013号公報の第1実施形態を実施して、銀微粒子を得た。この銀微粒子を乾燥させずにメタノール洗浄した後、実施例3と同様にして、テレピネオール60gを用いて溶媒置換をした。得られたペーストをスクリーン印刷しようとしたところ、印刷ができない状態だった。このペーストをニードル(15G)からガラス基板に吐出後、200℃で20分焼成した。均一な銀膜にならないため、体積固有抵抗の測定ができなかった。
Comparative Example 2
The first embodiment of Japanese Patent Application Laid-Open No. 2004-100013 was performed to obtain silver fine particles. After washing the silver fine particles with methanol without drying, the solvent was replaced with 60 g of terpineol in the same manner as in Example 3. When I tried to screen print the resulting paste, I couldn't print. This paste was discharged from a needle (15G) onto a glass substrate and then baked at 200 ° C. for 20 minutes. Since the silver film was not uniform, the volume resistivity could not be measured.

本発明の銀微粒子を原料とした導電ペーストによれば、200℃以下の焼成温度で、十分な導電性を示す銀幕を形成することができる。これは、現在、携帯電話をはじめとする分野で、基板として、ポリイミド製フレキシブル回路基板から、さらにより安価なPET(ポリエチレンテレフタレート)フィルムやPEN(ポリエチレンナフタレート)フィルム等に変更したいという市場要求に応えるものである。本発明の銀微粒子の製造方法は、量産性能に優れ、従来の導電ペースト分野を一変しうるものであり、産業上の極めて有用なものである。   According to the conductive paste using the silver fine particles of the present invention as a raw material, a silver screen exhibiting sufficient conductivity can be formed at a firing temperature of 200 ° C. or lower. This is due to market demands in the field of cellular phones and the like that it is desired to change the substrate from a polyimide flexible circuit board to a cheaper PET (polyethylene terephthalate) film or PEN (polyethylene naphthalate) film. It is a response. The method for producing silver fine particles of the present invention is excellent in mass production performance, can completely change the conventional conductive paste field, and is extremely useful in industry.

実施例1〜3について、倍率40,000倍で撮影したSEM写真。The SEM photograph image | photographed by 40,000 times magnification about Examples 1-3. 実施例7について、倍率20,000倍で撮影したSEM写真。5 is an SEM photograph taken at a magnification of 20,000 times for Example 7. FIG.

Claims (12)

(a)1次粒子の平均粒子径が40〜350nmであり、
(b)結晶子径が20〜70nmであり、かつ
(c)結晶子径に対する平均粒子径の比が1〜5である
銀微粒子。
(A) The average particle diameter of the primary particles is 40 to 350 nm,
(B) Silver fine particles having a crystallite diameter of 20 to 70 nm and (c) a ratio of an average particle diameter to a crystallite diameter of 1 to 5.
(a)1次粒子の平均粒子径が50〜80nmであり、
(b)結晶子径が20〜50nmであり、かつ
(c)結晶子径に対する平均粒子径の比が1〜4である
請求項1記載の銀微粒子。
(A) The average particle diameter of the primary particles is 50 to 80 nm,
Silver fine particles according to claim 1, wherein (b) the crystallite diameter is 20 to 50 nm, and (c) the ratio of the average particle diameter to the crystallite diameter is 1 to 4.
請求項1又は2記載の銀微粒子を含有する導電ペースト。   A conductive paste containing the silver fine particles according to claim 1. 有機溶媒の存在又は非存在下に、カルボン酸の銀塩と脂肪族第一級アミンを混合し、次いで還元剤を添加して、反応温度20〜80℃で反応させて、銀微粒子を析出させることを含む、銀微粒子の製造方法。   In the presence or absence of an organic solvent, a silver salt of a carboxylic acid and an aliphatic primary amine are mixed, then a reducing agent is added and reacted at a reaction temperature of 20 to 80 ° C. to precipitate silver fine particles. A method for producing silver fine particles. カルボン酸の銀塩が、酢酸銀、プロピオン酸銀及び酪酸銀からなる群より選択される、請求項4記載の銀微粒子の製造方法。   The method for producing silver fine particles according to claim 4, wherein the silver salt of carboxylic acid is selected from the group consisting of silver acetate, silver propionate and silver butyrate. 脂肪族第一級アミンが、3−メトキシプロピルアミン、3−アミノプロパノール及び1,2−ジアミノシクロヘキサンからなる群より選択される、請求項4又は5記載の銀微粒子の製造方法。   The method for producing silver fine particles according to claim 4 or 5, wherein the aliphatic primary amine is selected from the group consisting of 3-methoxypropylamine, 3-aminopropanol and 1,2-diaminocyclohexane. 還元剤が、ギ酸、ホルムアルデヒド、アスコルビン酸及びヒドラジンからなる群より選択される、請求項4〜6のいずれか1項記載の銀微粒子の製造方法。   The method for producing silver fine particles according to any one of claims 4 to 6, wherein the reducing agent is selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine. 反応温度が、20〜70℃である、請求項4〜7のいずれか1項記載の銀微粒子の製造方法。   The method for producing silver fine particles according to any one of claims 4 to 7, wherein the reaction temperature is 20 to 70 ° C. 請求項4〜8のいずれか1項記載の銀微粒子の製造方法により得られた銀微粒子。   Silver fine particles obtained by the method for producing silver fine particles according to any one of claims 4 to 8. 請求項9記載の銀微粒子を含有する導電ペースト。 A conductive paste containing the silver fine particles according to claim 9. (1)有機溶媒の存在又は非存在下に、カルボン酸の銀塩と脂肪族第一級アミンを混合する工程、
(2)還元剤を添加して、反応温度20〜80℃で反応させる工程、及び
(3)反応生成物を層分離させて、銀微粒子を含有する層を回収する工程
を含む、導電ペーストの製造方法。
(1) A step of mixing a silver salt of a carboxylic acid and an aliphatic primary amine in the presence or absence of an organic solvent,
(2) a step of adding a reducing agent to react at a reaction temperature of 20 to 80 ° C., and (3) separating the reaction product into layers and recovering a layer containing silver fine particles. Production method.
請求項11記載の導電ペーストの製造方法により得られた導電ペースト。   The electrically conductive paste obtained by the manufacturing method of the electrically conductive paste of Claim 11.
JP2004375710A 2004-12-27 2004-12-27 Silver fine particles and method for producing the same, conductive paste and method for producing the same Active JP4487143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375710A JP4487143B2 (en) 2004-12-27 2004-12-27 Silver fine particles and method for producing the same, conductive paste and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375710A JP4487143B2 (en) 2004-12-27 2004-12-27 Silver fine particles and method for producing the same, conductive paste and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006183072A true JP2006183072A (en) 2006-07-13
JP4487143B2 JP4487143B2 (en) 2010-06-23

Family

ID=36736404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375710A Active JP4487143B2 (en) 2004-12-27 2004-12-27 Silver fine particles and method for producing the same, conductive paste and method for producing the same

Country Status (1)

Country Link
JP (1) JP4487143B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013274A1 (en) * 2006-07-28 2008-01-31 Mitsubishi Materials Corporation Silver fine particles and processes and equipment for the production thereof
JP2008050697A (en) * 2006-07-28 2008-03-06 Mitsubishi Materials Corp Silver fine particle and method and apparatus for producing the same
WO2008038976A1 (en) * 2006-09-29 2008-04-03 Lg Chem, Ltd. Organic silver complex compound used in paste for conductive pattern forming
WO2008093913A1 (en) * 2007-01-30 2008-08-07 Exax Inc. A silver paste for forming conductive layers
WO2008093915A1 (en) 2007-01-30 2008-08-07 Exax Inc. A metal paste for forming a conductive layer
JP2009084396A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Metal film-forming paint and metal film
JP2009099518A (en) * 2007-09-27 2009-05-07 Mitsuboshi Belting Ltd Metal nanoparticle paste, and pattern forming method
JP2009144241A (en) * 2007-12-05 2009-07-02 Xerox Corp Metal nanoparticle stabilized with carboxylic acid-organoamine complex
EP2099212A1 (en) 2008-03-06 2009-09-09 SMK Corporation Shield method for electronic component enclosure and shield material
WO2010001496A1 (en) * 2008-06-30 2010-01-07 Dowa エレクトロニクス 株式会社 Metal microparticle containing composition and process for production of the same
JP2010001581A (en) * 2008-06-19 2010-01-07 Namics Corp Fiber sheet bonded with silver particles and method for producing the same
WO2011040521A1 (en) * 2009-10-02 2011-04-07 戸田工業株式会社 Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP2011233468A (en) * 2010-04-30 2011-11-17 Murata Mfg Co Ltd Photosensitive conductive paste, method for manufacturing laminate type electronic component using the same, and laminate type electronic component
JP2012069273A (en) * 2010-09-21 2012-04-05 Hitachi Chem Co Ltd Material for forming conductive film and method for forming conductive film using the same
JP2012150920A (en) * 2011-01-17 2012-08-09 Namics Corp Conductive composition and conductive film
JP2012246560A (en) * 2011-05-31 2012-12-13 Daicel Corp Method of manufacturing silver-containing nanoparticle, silver-containing nanoparticle, and silver coating composition
KR101241643B1 (en) * 2006-09-29 2013-03-08 주식회사 엘지화학 Electrical conductive paste and substrate using the same
WO2014013794A1 (en) * 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
KR20140010935A (en) * 2010-12-06 2014-01-27 피.브이. 나노 셀 리미티드 Stable dispersions of monocrystalline nanometric silver particles
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
WO2014084275A1 (en) * 2012-11-30 2014-06-05 ナミックス株式会社 Conductive paste and method for producing same
CN104080561A (en) * 2012-02-02 2014-10-01 户田工业株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
CN104160490A (en) * 2012-03-05 2014-11-19 纳美仕股份有限公司 Sintered silver microparticle compact
JP2015506061A (en) * 2011-12-02 2015-02-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Conductive metal composition
JP2015086304A (en) * 2013-10-31 2015-05-07 トッパン・フォームズ株式会社 Silver ink composition, conductor and electronic apparatus
JP2015131991A (en) * 2014-01-10 2015-07-23 株式会社ダイセル Method for manufacturing silver nano particle and silver nano particle
WO2015146314A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Laminate, method for producing same, reflection plate, mirror film, antibacterial coat, conductive film and heat conductive body
JP5872545B2 (en) * 2011-03-31 2016-03-01 ナミックス株式会社 Thermally conductive composition and method for producing thermal conductor
WO2016052292A1 (en) * 2014-09-29 2016-04-07 トッパン・フォームズ株式会社 Silver metal, method for producing silver metal, and laminate
WO2016084312A1 (en) * 2014-11-25 2016-06-02 バンドー化学株式会社 Conductive ink
US9496068B2 (en) 2009-04-17 2016-11-15 Yamagata University Coated silver nanoparticles and manufacturing method therefor
JP6053246B1 (en) * 2015-07-30 2016-12-27 バンドー化学株式会社 Electrode manufacturing method
WO2017017911A1 (en) * 2015-07-30 2017-02-02 バンドー化学株式会社 Method for producing electrode
JP2017036505A (en) * 2016-08-26 2017-02-16 ピー.ブイ.ナノ セル リミテッド Stable dispersion system for monocrystal nano silver grain
JP2017075334A (en) * 2012-03-05 2017-04-20 ナミックス株式会社 Thermal conductive paste and its use
CN106795375A (en) * 2014-10-24 2017-05-31 纳美仕股份有限公司 Conductive composition and the electronic unit using the conductive composition
JP2017101330A (en) * 2017-01-25 2017-06-08 株式会社ダイセル Method for producing silver nanoparticles, and silver nanoparticles
US10141283B2 (en) 2014-12-26 2018-11-27 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
US20190206825A1 (en) * 2016-09-21 2019-07-04 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
CN110234452A (en) * 2017-01-31 2019-09-13 M技术株式会社 The manufacturing method of highly crystalline silver particles
US10446518B2 (en) 2014-12-26 2019-10-15 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
WO2020066968A1 (en) * 2018-09-28 2020-04-02 ナミックス株式会社 Conductive paste
WO2022030089A1 (en) 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component
WO2022138235A1 (en) 2020-12-22 2022-06-30 花王株式会社 Fine-metal-particle-containing ink
CN114743716A (en) * 2022-04-15 2022-07-12 北京大学深圳研究生院 Silver powder capable of being sintered at low temperature and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195491A1 (en) * 2016-05-10 2017-11-16 バンドー化学株式会社 Electroconductive ink

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013274A1 (en) * 2006-07-28 2008-01-31 Mitsubishi Materials Corporation Silver fine particles and processes and equipment for the production thereof
JP2008050697A (en) * 2006-07-28 2008-03-06 Mitsubishi Materials Corp Silver fine particle and method and apparatus for producing the same
KR101136766B1 (en) 2006-07-28 2012-04-20 미쓰비시 마테리알 가부시키가이샤 Silver fine particles and processes and equipment for the production thereof
WO2008038976A1 (en) * 2006-09-29 2008-04-03 Lg Chem, Ltd. Organic silver complex compound used in paste for conductive pattern forming
KR101241643B1 (en) * 2006-09-29 2013-03-08 주식회사 엘지화학 Electrical conductive paste and substrate using the same
WO2008093913A1 (en) * 2007-01-30 2008-08-07 Exax Inc. A silver paste for forming conductive layers
WO2008093915A1 (en) 2007-01-30 2008-08-07 Exax Inc. A metal paste for forming a conductive layer
US8070986B2 (en) 2007-01-30 2011-12-06 Exax Inc. Silver paste for forming conductive layers
JP2010505230A (en) * 2007-01-30 2010-02-18 イグザクス インコーポレイテッド Metal paste for conductive film formation
US8088307B2 (en) 2007-01-30 2012-01-03 Exax Inc. Metal paste for forming a conductive layer
JP2009099518A (en) * 2007-09-27 2009-05-07 Mitsuboshi Belting Ltd Metal nanoparticle paste, and pattern forming method
JP2009084396A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Metal film-forming paint and metal film
JP2009144241A (en) * 2007-12-05 2009-07-02 Xerox Corp Metal nanoparticle stabilized with carboxylic acid-organoamine complex
EP2099212A1 (en) 2008-03-06 2009-09-09 SMK Corporation Shield method for electronic component enclosure and shield material
JP2010001581A (en) * 2008-06-19 2010-01-07 Namics Corp Fiber sheet bonded with silver particles and method for producing the same
WO2010001496A1 (en) * 2008-06-30 2010-01-07 Dowa エレクトロニクス 株式会社 Metal microparticle containing composition and process for production of the same
JP5377483B2 (en) * 2008-06-30 2013-12-25 Dowaエレクトロニクス株式会社 Composition containing fine metal particles and method for producing the same
KR101525099B1 (en) * 2008-06-30 2015-06-02 도와 일렉트로닉스 가부시키가이샤 Metal microparticle containing composition and process for production of the same
US9496068B2 (en) 2009-04-17 2016-11-15 Yamagata University Coated silver nanoparticles and manufacturing method therefor
WO2011040521A1 (en) * 2009-10-02 2011-04-07 戸田工業株式会社 Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
CN102470436A (en) * 2009-10-02 2012-05-23 户田工业株式会社 Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP2011080094A (en) * 2009-10-02 2011-04-21 Toda Kogyo Corp Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
TWI490063B (en) * 2009-10-02 2015-07-01 Toda Kogyo Corp Silver fine particles and a method for producing the same, and an electric paste containing the silver fine particles, a conductive film, and an electronic device
JP2011233468A (en) * 2010-04-30 2011-11-17 Murata Mfg Co Ltd Photosensitive conductive paste, method for manufacturing laminate type electronic component using the same, and laminate type electronic component
JP2012069273A (en) * 2010-09-21 2012-04-05 Hitachi Chem Co Ltd Material for forming conductive film and method for forming conductive film using the same
JP2014505784A (en) * 2010-12-06 2014-03-06 ピー.ブイ.ナノ セル リミテッド Stable dispersion of single-crystal nanosilver particles
KR20140010935A (en) * 2010-12-06 2014-01-27 피.브이. 나노 셀 리미티드 Stable dispersions of monocrystalline nanometric silver particles
KR101932781B1 (en) * 2010-12-06 2018-12-27 피.브이. 나노 셀 리미티드 Stable dispersions of monocrystalline nanometric silver particles
JP2012150920A (en) * 2011-01-17 2012-08-09 Namics Corp Conductive composition and conductive film
JP5872545B2 (en) * 2011-03-31 2016-03-01 ナミックス株式会社 Thermally conductive composition and method for producing thermal conductor
JP2012246560A (en) * 2011-05-31 2012-12-13 Daicel Corp Method of manufacturing silver-containing nanoparticle, silver-containing nanoparticle, and silver coating composition
JP2015506061A (en) * 2011-12-02 2015-02-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Conductive metal composition
CN104080561A (en) * 2012-02-02 2014-10-01 户田工业株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
TWI627638B (en) * 2012-03-05 2018-06-21 納美仕有限公司 Silver fine particles sintered body, semiconductor device, method for producing silver fine particles sintered body and method for producing semiconductor device
US10369667B2 (en) 2012-03-05 2019-08-06 Namics Corporation Sintered body made from silver fine particles
CN104160490A (en) * 2012-03-05 2014-11-19 纳美仕股份有限公司 Sintered silver microparticle compact
JP2017075334A (en) * 2012-03-05 2017-04-20 ナミックス株式会社 Thermal conductive paste and its use
KR20150033722A (en) * 2012-07-19 2015-04-01 니치유 가부시키가이샤 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
CN104470659A (en) * 2012-07-19 2015-03-25 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
WO2014013794A1 (en) * 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
KR101708132B1 (en) 2012-07-19 2017-02-17 니치유 가부시키가이샤 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
JPWO2014013794A1 (en) * 2012-07-19 2016-06-30 日油株式会社 Silver nanoparticle, production method thereof, silver nanoparticle dispersion and silver element forming substrate
US9496069B2 (en) 2012-07-19 2016-11-15 Nof Corporation Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
JPWO2014084275A1 (en) * 2012-11-30 2017-01-05 ナミックス株式会社 Conductive paste and manufacturing method thereof
WO2014084275A1 (en) * 2012-11-30 2014-06-05 ナミックス株式会社 Conductive paste and method for producing same
JP2015086304A (en) * 2013-10-31 2015-05-07 トッパン・フォームズ株式会社 Silver ink composition, conductor and electronic apparatus
JP2015131991A (en) * 2014-01-10 2015-07-23 株式会社ダイセル Method for manufacturing silver nano particle and silver nano particle
WO2015146314A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Laminate, method for producing same, reflection plate, mirror film, antibacterial coat, conductive film and heat conductive body
WO2016052292A1 (en) * 2014-09-29 2016-04-07 トッパン・フォームズ株式会社 Silver metal, method for producing silver metal, and laminate
JPWO2016052292A1 (en) * 2014-09-29 2017-07-13 トッパン・フォームズ株式会社 Metal silver, metal silver production method and laminate
KR102345811B1 (en) 2014-10-24 2022-01-03 나믹스 가부시끼가이샤 Conductive composition and electronic component using same
TWI705998B (en) * 2014-10-24 2020-10-01 日商納美仕有限公司 Conductive composition and electronic component using the same
US10541222B2 (en) * 2014-10-24 2020-01-21 Namics Corporation Conductive composition and electronic parts using the same
CN106795375A (en) * 2014-10-24 2017-05-31 纳美仕股份有限公司 Conductive composition and the electronic unit using the conductive composition
CN106795375B (en) * 2014-10-24 2020-08-21 纳美仕股份有限公司 Conductive composition and electronic component using the same
KR20170075748A (en) * 2014-10-24 2017-07-03 나믹스 가부시끼가이샤 Conductive composition and electronic component using same
JPWO2016063931A1 (en) * 2014-10-24 2017-08-03 ナミックス株式会社 Conductive composition and electronic component using the same
US20170243849A1 (en) * 2014-10-24 2017-08-24 Namics Corporation Conductive composition and electronic parts using the same
KR102056972B1 (en) * 2014-11-25 2019-12-17 반도 카가쿠 가부시키가이샤 Conductive ink
JPWO2016084312A1 (en) * 2014-11-25 2017-04-27 バンドー化学株式会社 Conductive ink
WO2016084312A1 (en) * 2014-11-25 2016-06-02 バンドー化学株式会社 Conductive ink
JP6101403B2 (en) * 2014-11-25 2017-03-22 バンドー化学株式会社 Conductive ink
US10141283B2 (en) 2014-12-26 2018-11-27 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
US10446518B2 (en) 2014-12-26 2019-10-15 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
JP6053246B1 (en) * 2015-07-30 2016-12-27 バンドー化学株式会社 Electrode manufacturing method
WO2017017911A1 (en) * 2015-07-30 2017-02-02 バンドー化学株式会社 Method for producing electrode
JP2017036505A (en) * 2016-08-26 2017-02-16 ピー.ブイ.ナノ セル リミテッド Stable dispersion system for monocrystal nano silver grain
US20190206825A1 (en) * 2016-09-21 2019-07-04 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
JP2017101330A (en) * 2017-01-25 2017-06-08 株式会社ダイセル Method for producing silver nanoparticles, and silver nanoparticles
EP3578283A4 (en) * 2017-01-31 2020-08-19 M. Technique Co., Ltd. Method for manufacturing highly crystalline silver particles
KR20190111938A (en) * 2017-01-31 2019-10-02 엠. 테크닉 가부시키가이샤 Method for producing high crystalline silver fine particles
CN110234452A (en) * 2017-01-31 2019-09-13 M技术株式会社 The manufacturing method of highly crystalline silver particles
KR102424543B1 (en) * 2017-01-31 2022-07-25 엠. 테크닉 가부시키가이샤 Method for producing highly crystalline silver fine particles
WO2020066968A1 (en) * 2018-09-28 2020-04-02 ナミックス株式会社 Conductive paste
JP7323944B2 (en) 2018-09-28 2023-08-09 ナミックス株式会社 conductive paste
US11817398B2 (en) 2018-09-28 2023-11-14 Namics Corporation Conductive paste
WO2022030089A1 (en) 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component
WO2022138235A1 (en) 2020-12-22 2022-06-30 花王株式会社 Fine-metal-particle-containing ink
CN114743716A (en) * 2022-04-15 2022-07-12 北京大学深圳研究生院 Silver powder capable of being sintered at low temperature and preparation method and application thereof

Also Published As

Publication number Publication date
JP4487143B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4487143B2 (en) Silver fine particles and method for producing the same, conductive paste and method for producing the same
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
JP5632852B2 (en) Low temperature sinterable silver nanoparticle composition and electronic article formed using the composition
KR101474040B1 (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
JP6140189B2 (en) Conductive paste and manufacturing method thereof
KR100895192B1 (en) Organic silver complex compound used in paste for conductive pattern forming
JP5239191B2 (en) Silver fine particles and method for producing the same
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
JP5747941B2 (en) Method for synthesizing metal nanoparticles
EP1450376A1 (en) Ag COMPOUND PASTE
JP2010116626A (en) Method for synthesizing metal nanoparticle
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
JP2013159805A (en) Method for producing silver microparticle, silver microparticle produced by the method for producing silver microparticle, and conductive paste containing the silver microparticle
JP5732520B1 (en) Silver particle production method and silver particles produced by the method
JP3687745B2 (en) Highly dispersible metal powder, method for producing the same, and conductive paste containing the metal powder
KR102260398B1 (en) Method for producing metal nanoparticles
JP2010116625A (en) Method for synthesizing metal nanoparticle
JP5693253B2 (en) Conductive composition and conductive film
JP2014029845A (en) Method for producing conductive paste
TW201932551A (en) Metal ink, method for producing metal ink, and method for producing substrate with metal pattern
JP5151230B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP6404523B1 (en) Method for producing silver nanoparticles
JP2014029017A (en) Method for producing metal fine particle composition
TWI648409B (en) Method for producing nickel particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250