WO2017195491A1 - Electroconductive ink - Google Patents

Electroconductive ink Download PDF

Info

Publication number
WO2017195491A1
WO2017195491A1 PCT/JP2017/013314 JP2017013314W WO2017195491A1 WO 2017195491 A1 WO2017195491 A1 WO 2017195491A1 JP 2017013314 W JP2017013314 W JP 2017013314W WO 2017195491 A1 WO2017195491 A1 WO 2017195491A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
conductive ink
resin
terpene
dispersion
Prior art date
Application number
PCT/JP2017/013314
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 新谷
外村 卓也
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to CN201780027780.0A priority Critical patent/CN109071984A/en
Priority to JP2017518272A priority patent/JP6262404B1/en
Publication of WO2017195491A1 publication Critical patent/WO2017195491A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive ink used for forming a wiring or an electrode pattern of a semiconductor integrated circuit or the like and capable of forming a wiring or an electrode pattern on an organic thin film transistor substrate.
  • a method using a printing method such as a relief printing method, an intaglio printing method, a screen printing method or an inkjet printing method has been proposed as a simpler and cheaper method for forming a conductive film pattern.
  • a printing technique capable of forming a higher-definition pattern a method using a reverse printing method, a microcontact printing method, or the like has been proposed, and a conductive ink suitable for these printing methods, an insulating property, and the like.
  • Various inks such as ink and resistance ink have been actively researched and developed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-044509
  • the conductive particles have an average particle diameter of 1 nm.
  • It contains nano silver particles that are less than 100 nm and flaky copper particles having an average flake diameter of 0.1 ⁇ m or more and 3 ⁇ m or less, and the conductive particles contain the flaky copper particles in a mass ratio from the nano silver particles
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-184407
  • an ink that realizes a reduction in the coffee ring effect, an improvement in adhesion to a substrate, and an increase in the decap time or waiting time of the print head.
  • Compositions have been proposed. More specifically, “including metal nanoparticles containing silver, an optional resin, and two or more types of ink media, and at least one of the ink media has a vapor pressure of less than 4 mmHg at 25 ° C.
  • An ink composition that is an aliphatic hydrocarbon.
  • an object of the present invention has been made in view of the above-described problems of the prior art, and is a conductive material capable of firing a conductive film pattern having sufficient conductivity and good adhesion to a substrate at a low temperature. It is another object of the present invention to provide an ink, and further to provide a conductive ink that is easy to handle and excellent in dispersibility.
  • the present inventor has obtained a conductive ink capable of firing a conductive film having sufficient conductivity and good adhesion to a substrate at low temperature, In order to obtain a conductive ink that is easy to handle and excellent in dispersibility, it has been found that the use of a terpene resin satisfying specific conditions is extremely effective in achieving the above object, and the present invention provides Reached.
  • the present invention Silver nanoparticles, A dispersion medium; There is provided a conductive ink comprising a terpene resin having a softening point of 90 ° C. or higher, which is attached to the surface of the silver nanoparticles or contained in the dispersion medium.
  • the terpene resin is an ⁇ -pinene polymer, ⁇ -pinene polymer, ⁇ , ⁇ pinene copolymer, limonene polymer, rosin, rosin ester, modified rosin, terpene phenol. It is preferably at least one selected from the group consisting of a polymer, a hydrogenated terpene polymer, an aromatic modified terpene polymer, and a rosin modified phenolic resin.
  • the dispersion medium contains the terpene resin and a polymer dispersant.
  • the terpene resin contained in the conductive ink is 10% by weight or less based on the silver solid content.
  • the conductive pattern having sufficient conductivity and good adhesion to the substrate can be fired at a low temperature, and it is easy to handle and has excellent dispersibility. Conductive ink can be realized.
  • the conductive ink of the present embodiment is a softening agent that adheres to or is contained in the surface of silver nanoparticles (silver fine particles), a dispersion medium, and the silver nanoparticles. And a terpene resin having a point of 90 ° C. or higher.
  • a terpene resin having a point of 90 ° C. or higher.
  • it includes a solid content mainly composed of silver nanoparticle dispersion (silver colloid liquid) particles composed of silver nanoparticles and an organic component, and a dispersion medium for dispersing these solid contents.
  • the “dispersion medium” in the conductive ink may dissolve a part of the solid content.
  • the dispersibility of the silver colloid particles in the silver colloid liquid can be improved. Therefore, the content of the silver component in the silver colloid liquid can be reduced. Even if it is increased, the colloidal silver particles are less likely to aggregate, and good dispersion stability can be maintained.
  • the term “dispersibility” as used herein indicates whether or not the dispersion state of silver nanoparticles in the silver colloid liquid is excellent immediately after the silver colloid liquid is prepared (whether it is uniform). "Dispersion stability” indicates whether or not the dispersion state of silver nanoparticles in the silver colloid liquid is maintained after a predetermined time has elapsed after the silver colloid liquid has been prepared. It can also be said to be “low sedimentation aggregation” or “dilution”.
  • the “organic component” in the silver colloid particles is an organic substance that substantially constitutes the silver colloid particles together with the metal component (provided that the “surface of the silver nanoparticles” Or a terpene-based resin having a softening point of 90 ° C. or higher contained in the dispersion medium ”.
  • the organic component includes trace organic substances contained in the silver as impurities from the beginning, organic substances adhering to the silver component of trace organic substances mixed in the manufacturing process described later, residual reducing agent that could not be removed in the cleaning process, residual dispersion It does not include organic substances that adhere to trace amounts of silver components such as agents.
  • the “trace amount” is specifically intended to be less than 1% by mass in the silver colloid particles.
  • the silver colloid particles in this embodiment contain an organic component, the dispersion stability in the silver colloid liquid is high. For this reason, even if the content of the silver component in the silver colloid liquid is increased, the silver colloid particles are less likely to aggregate, and as a result, good dispersibility is maintained.
  • the “solid content” of the silver colloid liquid in the present embodiment means that after removing the dispersion medium from the silver colloid liquid using silica gel or the like, for example, it is dried at a room temperature of 30 ° C. or lower (for example, 25 ° C.) for 24 hours. In general, it contains silver nanoparticles, residual organic components and residual reducing agent, and the above-mentioned terpene resin.
  • Various methods can be adopted as a method of removing the dispersion medium from the silver colloid liquid using silica gel. For example, a silver colloid liquid is applied on a glass substrate and the silica gel is put into a sealed container. What is necessary is just to remove a dispersion medium by leaving a glass substrate with a coating film for 24 hours or more.
  • the preferred solid content concentration is 1 to 60% by mass.
  • the silver content in the conductive ink can be ensured, and the conductive efficiency does not decrease.
  • concentration of solid content is 60 mass% or less, the viscosity of a silver colloid liquid does not increase, handling is easy, it is industrially advantageous, and a flat thin film can be formed.
  • a more preferable solid content is 5 to 40% by mass.
  • the conductive ink of this embodiment includes a terpene resin having a softening point of 90 ° C. or higher, which is attached to the surface of the silver nanoparticles or contained in the dispersion medium.
  • the present inventors have realized a conductive ink that is excellent in low-temperature sinterability, adhesion, and dispersibility by using such a terpene resin.
  • terpene resins have a molecular weight of at least about 800 or more.
  • the steric repulsion prevents the particles from aggregating. It was confirmed that the effect was exhibited and that this steric repulsion effect protected silver nanoparticles and contributed to the adhesion to the substrate.
  • the terpene resin preferably has a softening point of 90 ° C. or higher.
  • the reason why the “terpene resin having a softening point of 90 ° C. or higher” is preferable is not necessarily clear, but the present inventors consider as follows. It is well known that the glass transition point of a terpene resin is about 60 ° C. lower than the softening point of the terpene resin. Then, for example, the glass transition point of a terpene resin having a softening point of 80 ° C. or lower is about 20 ° C.
  • the softening point of the terpene resin is set to a certain level so that its glass transition point is at room temperature (25 ° C.) or higher, and the molecular mobility. It is thought that the firm nature should be kept by restraining.
  • the upper limit of the softening point of the terpene resin may be about the softening point of the terpene resin having the maximum softening point among commercially available terpene resins, and more reliably, for example, 160 ⁇ 5 ° C.
  • the effects of the invention can be obtained.
  • the terpene resin is an ⁇ -pinene polymer, ⁇ -pinene polymer, ⁇ , ⁇ -pinene copolymer, limonene polymer, rosin, rosin ester, modified rosin, terpene phenol polymer, hydrogenated terpene polymer. It is preferably at least one selected from the group consisting of an aromatic modified terpene polymer and a rosin modified phenolic resin. The reason is that it is highly compatible with various elastomers and organic solvents and exhibits excellent adhesive properties. When polyterpenes such as carotene and natural rubber are used, the conductivity is remarkably impaired and the adhesive properties are difficult to obtain.
  • the terpene resin contained in the conductive ink needs to be added within a range that does not impair the conductivity. It is preferable that: The lower limit may be about 1.0% by mass. More preferably, it may be 1.0 to 3.0% by mass.
  • the conductive ink of the present embodiment preferably has a surface tension of 22 mN / m or less.
  • the surface tension of 22 mN / m or less can be realized by adjusting the component ratio of the conductive ink.
  • the lower limit of the surface tension may be about 13 mN / m.
  • the surface tension referred to in the present invention is obtained by measurement based on the principle of the plate method (Wilhelmy method). For example, the surface tension is measured by a fully automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. can do.
  • the average particle diameter of the silver nanoparticles contained in the silver nanoparticle dispersion in the present embodiment is not particularly limited as long as the effects of the present invention are not impaired, but the average particle diameter that causes a melting point drop is generated.
  • it may be 1 to 400 nm. Further, it is preferably 1 to 70 nm. If the average particle diameter of the silver nanoparticles is 1 nm or more, the silver nanoparticles have a good low-temperature sinterability, and the production of the silver nanoparticles is practical without increasing the cost.
  • the dispersibility of a silver nanoparticle does not change easily with time, and it is preferable.
  • the average particle diameter (median diameter) of the silver colloid particles (including silver nanoparticles) is substantially the same as this range ( Can be approximated).
  • the particle size of the silver nanoparticles in the silver nanoparticle dispersion varies depending on the solid content concentration, and is not necessarily constant and may not be constant.
  • the silver nanoparticle dispersion may contain a silver nanoparticle component having an average particle size of more than 400 nm.
  • a silver nanoparticle component having an average particle diameter of more than 400 nm may be included as long as the effect is not significantly impaired.
  • the average particle diameter of the silver nanoparticles in the silver nanoparticle dispersion of the present embodiment is based on a dynamic light scattering method (Doppler scattered light analysis).
  • a dynamic light scattering type manufactured by Horiba, Ltd. It can be represented by a volume-based median diameter (D50) measured by a particle size distribution measuring device LB-550.
  • D50 volume-based median diameter
  • a metal colloid solution are dropped into 10 mL of ethanol, and are shaken and dispersed by hand to prepare a measurement sample.
  • 3 mL of the measurement sample is put into a cell of a dynamic light scattering particle size distribution measuring device LB-550 manufactured by Horiba, Ltd., and measurement is performed under the following conditions.
  • Measurement condition data read count 100 times Cell holder temperature: 25 ° C
  • Display condition distribution form Standard number of repetitions: 50 times
  • Particle size standard Volume-based refractive index of refractive index: 0.200-3.900i (in the case of silver)
  • Refractive index of dispersion medium 1.36 (when ethanol is the main component)
  • System condition setting strength criteria Dynamic Scattering intensity range upper limit: 10000.00 Scattering intensity range lower limit: 1.00
  • an amine preferably a short-chain amine having 5 or less carbon atoms
  • an amine is attached to at least a part of the surface of the silver nanoparticle.
  • trace organic substances contained as impurities from the beginning, trace organic substances mixed in the manufacturing process described later, residual reducing agent that could not be removed in the cleaning process, residual dispersant, etc. A trace amount of organic matter may be attached.
  • amine various amines can be used, which may be linear or branched, and may have a side chain.
  • the short chain amine having 5 or less carbon atoms is not particularly limited, and examples of the short chain amine include ethylamine, propylamine, butylamine, N- (3-methoxypropyl) propane-1,3-diamine, Examples include 1,2-ethanediamine, ⁇ ⁇ ⁇ 2-methoxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 1,4-butanediamine, 1,5-pentanediamine, pentanolamine, aminoisobutanol and the like.
  • the short chain amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the said amine may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the silver particle dispersion of the present embodiment may contain a carboxylic acid in addition to the short-chain amine having 5 or less carbon atoms as long as the effects of the present invention are not impaired.
  • the carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the carboxylic acid is localized (attached) to at least a part of the surface of the silver nanoparticle in the silver particle dispersion of the present embodiment (that is, when at least a part of the surface of the silver nanoparticle is coated).
  • the solvent and the silver nanoparticles can be made sufficiently compatible, and aggregation of the silver nanoparticles can be prevented (dispersibility is improved).
  • carboxylic acid compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid.
  • a part of carboxyl groups of the carboxylic acid may form a salt with a metal ion.
  • 2 or more types of metal ions may be contained.
  • the carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
  • the said carboxylic acid may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • amines and carboxylic acids form amides. Since the amide group also adsorbs moderately on the surface of the silver nanoparticle, the amide group may be attached to the surface of the silver nanoparticle.
  • (1-3) Dispersion medium The silver nanoparticle dispersion of the present embodiment is obtained by dispersing silver nanoparticles in various dispersion media.
  • Various dispersion media can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
  • the terpene resin may be dissolved in this dispersion medium.
  • hydrocarbon examples include aliphatic hydrocarbons, cyclic hydrocarbons, and alicyclic hydrocarbons, which may be used alone or in combination of two or more.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
  • cyclic hydrocarbon examples include toluene and xylene.
  • examples of the alicyclic hydrocarbon include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandylene, mentadiene, teleben, Examples thereof include dihydrocymene, moslen, isoterpinene, isoterpinene (also referred to as isoterpinene), clitomen, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, and cyclohexane.
  • Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
  • Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1- Examples thereof include saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • Examples of the cyclic alcohol include cresol and eugenol.
  • alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, berbenol and the like.
  • cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof)
  • terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, berbenol and the
  • the silver particle dispersion of the present embodiment further includes a dispersant added after the synthesis of silver nanoparticles in order to disperse the silver nanoparticles.
  • a dispersant added after the synthesis of silver nanoparticles in order to disperse the silver nanoparticles.
  • the dispersion stability of silver nanoparticles in a solvent can be improved.
  • the acid value of the dispersant is more preferably from 5 to 200, and it is further preferable that the dispersant has a functional group derived from phosphoric acid.
  • the acid value of the dispersing agent is 5 or more, it will be adsorbed by the acid-base interaction to silver which coordinates with the amine and the particle surface is basic, and if it is 200 or less, it will be excessively adsorbed. It is because it does not have a site and adsorbs in a suitable form.
  • the dispersing agent since the dispersing agent has a functional group derived from phosphoric acid, phosphorus P interacts with and attracts silver through oxygen O, so it is most effective for adsorption with silver and silver compounds, and the minimum necessary adsorption. This is because suitable dispersibility can be obtained in an amount.
  • Examples of the polymer dispersant having an acid value of 5 to 200 include SOLPERSE-16000, 21000, 41000, 41090, 43000, 44000, 46000, and 54000 in the SOLSPERSE series of Lubrizol.
  • DISPERBYK-102, 110, 111, 170, 190.194N, 2015.2090, 2096 and the like are listed, and in Evonik's TEGO® Dispers series, 610, 610S, 630, 651, 655, 750W, 755W and the like are listed.
  • Disparon series manufactured by Enomoto Kasei Co., Ltd. DA-375, DA-1200 and the like are listed.
  • In the Floren series manufactured by Kyoei Chemical Industry Co., Ltd., WK-13E, G-700, -900 can be exemplified GW-1500, GW-1640, WK-13E.
  • the content in the case where the silver nanoparticle dispersion of this embodiment contains a dispersant may be adjusted according to desired properties such as viscosity.
  • the content of the dispersant is preferably 0.5 to 20% by mass, and when used as a silver paste, the content of the dispersant is preferably 0.1 to 10% by mass.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass.
  • the content of the polymer dispersant is 0.1% or more, the dispersion stability of the obtained silver nanoparticle dispersion is improved.
  • the content is too large, the low-temperature sinterability is lowered.
  • the more preferable content of the polymer dispersant is 0.3 to 10% by mass, and still more preferable content is 0.5 to 8% by mass.
  • the silver nanoparticle dispersion of the present embodiment preferably has a weight loss of 15% by mass or less at 100 to 500 ° C. when thermogravimetric analysis is performed at a heating rate of 10 ° C./min with respect to the solid content. .
  • thermogravimetric analysis is performed at a heating rate of 10 ° C./min with respect to the solid content.
  • decrease by heating to 500 degreeC can correspond to the quantity of the organic substance in solid content substantially.
  • the weight loss is preferably 20% by mass or less.
  • the content is preferably 0.1% by mass or more.
  • a more preferred weight loss is 0.5 to 15% by mass.
  • the silver nanoparticle dispersion of this embodiment may further contain a dispersant (protective dispersant) having an acid value as a protective agent added before the synthesis of silver nanoparticles.
  • a dispersant protecting dispersant
  • the “protective dispersant” referred to here may be the same or different type of the above-mentioned dispersant (dispersant having an acid value) added after the synthesis of the silver nanoparticles.
  • the silver nanoparticle dispersion of the present embodiment has an appropriate viscosity, adhesion, and drying depending on the purpose of use within a range not impairing the effects of the present invention.
  • Such optional components are not particularly limited.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and the like. You may use, and may use 2 or more types together.
  • the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Hydroxypropylcellulose, cellulose derivatives of hydroxypropylmethylcellulose, polysaccharides such as xanthan gum or guar gum, etc., and these may be used alone or in combination of two or more.
  • clay minerals such as clay, bentonite or hectorite
  • emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose.
  • Hydroxypropylcellulose cellulose derivatives of hydroxypropylmethylcellulose
  • polysaccharides such as
  • a surfactant different from the above organic components may be added.
  • the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying.
  • the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used.
  • an anionic surfactant for example, alkylbenzene sulfonic acid Salt, quaternary ammonium salt and the like.
  • fluorine-based surfactants and silicone-based surfactants are preferred because an effect can be obtained with a small amount of addition. If the content of the surfactant is too small, the effect cannot be obtained. If the content is too large, the remaining amount of impurities in the coating becomes an impurity, so that the conductivity may be hindered.
  • a preferable content of the surfactant is 0.01 to 5 parts by mass with respect to 100 parts by mass of the dispersion medium of the silver nanoparticle dispersion.
  • amine is attached to at least a part of the surface of the silver nanoparticle, and the terpene resin is attached to the surface of the silver nanoparticle or dispersed in the dispersion medium (or Dissolved).
  • amine is attached to at least a part of the surface of the silver nanoparticles, and the terpene resin is included in some form, so that the silver nanoparticles have excellent dispersibility in various dispersion media and low-temperature sintering. Can be imparted.
  • the viscosity of the silver nanoparticle dispersion of this embodiment is preferably in the viscosity range of 1 to 100 cps, and more preferably in the viscosity range of 1 to 20 cps. By setting it as the said viscosity range, a silver nanoparticle dispersion can be apply
  • a general-purpose coating method can be used as the coating method, and examples include an applicator method, a bar coater method, a capillary coater method, and a spin coating method.
  • the adjustment of the viscosity of the silver nanoparticle dispersion of the present embodiment can be performed by adjusting the solid content concentration, adjusting the blending ratio of each component, adding a thickener, and the like.
  • the viscosity can be measured with a vibration viscometer (for example, VM-100A-L manufactured by CBC Corporation). The measurement is performed by immersing the liquid in the vibrator, and the measurement temperature may be normal temperature (20 to 25 ° C.).
  • the conductive ink of this embodiment (2) Manufacturing method of conductive ink
  • a silver nanoparticle dispersion metal colloid liquid
  • the conductive ink of this embodiment can be obtained by mixing this metal colloid liquid and the above-mentioned various components.
  • the terpene resin which is an essential component, may be added as a protective dispersant not only after the addition to the dispersion medium but also before the synthesis of the silver nanoparticles.
  • the silver nanoparticle dispersion of the present embodiment includes a step of generating silver nanoparticles and a step of adding and mixing a dispersant having an acid value for dispersing the silver nanoparticles to the silver nanoparticles. And. Furthermore, a first pre-process for preparing a mixed solution of a silver compound that can be decomposed by reduction to form metallic silver and an amine, and reducing the silver compound in the mixed solution to reduce at least one of the surfaces. And a second pre-process for producing silver nanoparticles having amine attached to the part.
  • the first pre-process it is preferable to add 2 mol or more of amine to 1 mol of metal silver.
  • an appropriate amount of amine can be attached to the surface of the silver nanoparticles produced by the reduction, and the silver nanoparticles are excellent for various dispersion media. Dispersibility and low-temperature sinterability can be imparted.
  • the particle size of the silver nanoparticles obtained is a nanometer that causes a melting point drop.
  • the size is preferable, and 1 to 200 nm is more preferable.
  • particles of micrometer size may be included as necessary.
  • the method for taking out silver nanoparticles from the silver nanoparticle dispersion obtained in the second pre-process is not particularly limited, and examples thereof include a method for washing the silver nanoparticle dispersion.
  • silver compounds metal salts or hydrates thereof
  • silver salts such as silver oxide, silver acetate, silver oxalate, silver formate, silver nitrite, silver chlorate, and silver sulfide. These are not particularly limited as long as they can be reduced, and may be dissolved in an appropriate solvent or may be used as dispersed in a solvent. These may be used alone or in combination.
  • the method for reducing these silver compounds in the raw material liquid is not particularly limited.
  • a method using a reducing agent a method of irradiating light such as ultraviolet rays, an electron beam, ultrasonic waves or thermal energy, a method of heating, etc. Is mentioned.
  • a method using a reducing agent is preferable from the viewpoint of easy operation.
  • Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide.
  • amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine
  • hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas
  • carbon monoxide for example, carbon monoxide.
  • Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid
  • Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
  • light and / or heat may be added to promote the reduction reaction.
  • the metal salt is dissolved in an organic solvent (for example, toluene) to form a metal.
  • organic solvent for example, toluene
  • examples include a method in which a salt solution is prepared, an amine as a protective dispersant or a protective dispersant having an acid value is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
  • the dispersion liquid containing silver nanoparticles coated with an amine or a protective dispersant having an acid value obtained as described above in addition to silver nanoparticles, a counterion of a metal salt, a residue of a reducing agent, There is a dispersant, and the concentration of the electrolyte and the organic matter in the whole liquid tend to be high.
  • the liquid in such a state is likely to precipitate due to the coagulation of the metal particles due to high electrical conductivity.
  • the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing the silver nanoparticles to remove excess residues, silver nanoparticles coated with an organic substance can be reliably obtained.
  • a dispersion containing silver nanoparticles coated with an organic component is allowed to stand for a certain period of time, and the resulting supernatant is removed, and then a solvent that precipitates silver nanoparticles (for example, water, Methanol, a methanol / water mixed solvent, etc.) and re-stirring, and a method of repeating the process of removing the supernatant obtained by standing still for a certain period of time, a method of performing centrifugation instead of the above-mentioned standing, Examples thereof include a method of desalting with an ultrafiltration device or an ion exchange device. By removing excess residues and removing the organic solvent by such washing, metal particles coated with the “short-chain amine or the dispersant having an acid value” of the present embodiment can be obtained.
  • a solvent that precipitates silver nanoparticles for example, water, Methanol, a methanol / water mixed solvent, etc.
  • the silver nanoparticle dispersion is a silver nanoparticle coated with the amine obtained above or a protective dispersant (including the case of the terpene resin) and the above. It is obtained by mixing the dispersion medium described in this embodiment.
  • the mixing method of the metal particles coated with the amine or the protective dispersant and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer.
  • An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
  • a first step of preparing a mixed solution of a silver compound capable of decomposing by reduction to form metallic silver and an amine, and reducing the silver compound in the mixed solution to reduce amine on at least a part of the surface Silver nanoparticles may be produced by a second step of producing attached silver nanoparticles.
  • a silver compound such as silver oxalate containing silver and a complex compound produced from an amine are heated to agglomerate atomic silver produced by decomposing a metal compound such as oxalate ion contained in the complex compound By doing so, silver particles protected by an amine protective film can be produced.
  • the silver amine complex decomposition method for producing silver nanoparticles coated with amine by thermally decomposing a silver compound complex compound in the presence of amine the silver amine complex which is a single type of molecule is decomposed. Since atomic silver is generated by the decomposition reaction, it is possible to generate atomic silver uniformly in the reaction system, and the reaction is composed compared to the case of generating silver atoms by reaction between multiple components. Inhomogeneity of the reaction due to fluctuations in the composition of the components to be controlled is suppressed, which is particularly advantageous when producing a large amount of silver powder on an industrial scale.
  • an amine molecule is coordinated to the silver atom to be generated, and the movement of the silver atom during aggregation is controlled by the action of the amine molecule coordinated to the silver atom. Inferred.
  • the metal amine complex decomposition method it is possible to produce metal particles that are very fine and have a narrow particle size distribution.
  • amine molecules form a relatively weak coordination bond on the surface of the silver nanoparticles to be produced, and these form a dense protective film on the surface of the silver nanoparticles. It is possible to produce coated silver nanoparticles having a clean surface with excellent surface roughness.
  • the amine molecules forming the film can be easily detached by heating or the like, silver nanoparticles that can be sintered at a very low temperature can be produced.
  • the amine is mixed with the dispersant having an acid value constituting the coating of the coated silver nanoparticles. This facilitates the generation of a complex compound such as a complex compound, and the complex compound can be produced by mixing in a short time.
  • coated silver nanoparticles having characteristics corresponding to various applications can be produced.
  • Conductive layer (conductive film) pattern and manufacturing method thereof When the conductive ink of this embodiment is used, a conductive ink application step of applying the conductive ink to a substrate, and the conductive material applied to the substrate. Formed on at least a part of the substrate and the surface of the substrate by a conductive film pattern forming step of baking a conductive ink at a temperature of less than 140 ° C. (preferably 120 ° C. or less) to form a conductive film pattern. A conductive film pattern-containing substrate can be manufactured.
  • the present inventor applied the conductive ink of the present embodiment described above as the conductive ink in the conductive ink application step, and applied it to the substrate in the conductive film pattern formation step. It has been found that a conductive film pattern having excellent conductivity can be reliably obtained even when the conductive ink is baked at a temperature of less than 140 ° C.
  • the conductive ink of the present embodiment is used for transfer printing, in the reverse printing method among the transfer printing methods, first, the conductive ink application surface is formed on the blanket by applying the transfer printing conductive ink. .
  • the blanket a silicone blanket made of silicone is preferable. By forming the conductive ink application surface on the surface of the blanket and leaving it for a predetermined time, the low boiling point solvent volatilizes and is absorbed into the blanket, thereby increasing the viscosity of the conductive ink.
  • the portion of the conductive ink that contacts the relief plate is removed from the blanket.
  • the conductive ink has an appropriate cohesiveness, the conductive ink is surely peeled off from the blanket and adhered to the relief plate without structural destruction, and undesirable residue on the blanket is prevented. It is suppressed.
  • the conductive ink remaining on the blanket forms a conductive ink pattern corresponding to the relief pattern on the blanket.
  • the substrate that can be used in the present embodiment is not particularly limited as long as it has at least one main surface on which a conductive ink can be applied and fired by heating to mount a conductive film pattern. Although it is not, it is preferable that it is a base material excellent in heat resistance.
  • the conductive ink for transfer printing of this embodiment has a conductive film pattern that has sufficient conductivity even when heated and baked at a lower temperature than conventional conductive inks. Since it can be obtained, it is possible to use a substrate having a lower heat-resistant temperature than the conventional one in a temperature range higher than this low firing temperature.
  • Examples of the material constituting such a base material include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and the like.
  • Polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass or metal can be used.
  • the substrate may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. In order to improve adhesiveness or adhesion, or for other purposes, a substrate on which a surface layer is formed or a substrate that has been subjected to a surface treatment such as a hydrophilic treatment may be used.
  • the coating film after coating as described above is baked by heating to a temperature of less than 140 ° C. (preferably 120 ° C. or less) to obtain the conductive film pattern (substrate with a conductive film pattern) of this embodiment. Can do.
  • the method for firing is not particularly limited.
  • the temperature of the conductive ink applied or drawn on the substrate using a conventionally known gear oven or the like is less than 140 ° C. (preferably 120 ° C. or less).
  • the conductive film pattern can be formed by firing so as to be.
  • the lower limit of the firing temperature is not necessarily limited, and is a temperature at which a conductive film pattern can be formed on a substrate, and a temperature at which the organic components and the like can be removed by evaporation or decomposition within a range that does not impair the effects of the present invention. (A part may remain within a range that does not impair the effects of the present invention, but it is desirable that all be removed desirably).
  • a conductive film pattern exhibiting high conductivity can be formed even by a low-temperature heat treatment at about 120 ° C. Therefore, the conductive film pattern is also formed on a relatively heat-sensitive substrate. Can be formed. Moreover, baking time is not specifically limited, A conductive film pattern can be formed on a base material according to baking temperature.
  • surface treatment of the base material may be performed in order to further improve the adhesion between the base material and the conductive film pattern.
  • the surface treatment method include a method of performing a dry treatment such as a corona treatment, a plasma treatment, a UV treatment, and an electron beam treatment, and a method of previously providing a primer layer and a conductive ink receiving layer on a substrate.
  • the conductive film pattern (substrate with conductive film pattern) of this embodiment can be obtained.
  • the conductive film pattern of the present embodiment thus obtained is, for example, about 0.1 to 5 ⁇ m, more preferably 0.1 to 1 ⁇ m.
  • a conductive film pattern having sufficient conductivity can be obtained even when the thickness is about 0.1 to 5 ⁇ m.
  • the volume resistance value of the electrically conductive film pattern of this embodiment is 15 microhm * cm or less.
  • the thickness t of the conductive film pattern of the present embodiment can be obtained using, for example, the following formula (the thickness t of the conductive film pattern is measured with a laser microscope (for example, a laser microscope VK-9510 manufactured by Keyence). It is also possible to do this.)
  • Formula: t m / (d ⁇ M ⁇ w)
  • m conductive film pattern weight (the weight of the conductive film pattern formed on the slide glass is measured with an electronic balance)
  • d Conductive film pattern density (g / cm 3 ) (10.5 g / cm 3 in the case of silver)
  • M conductive film pattern length (cm) (the length of the conductive film pattern formed on the slide glass is measured on a scale equivalent to JIS class 1)
  • w Conductive film pattern width (cm) (The width of the conductive film pattern formed on the slide glass is measured on a scale equivalent to JIS class 1)
  • Example and a comparative example are given and the manufacturing method of the electrically conductive ink of this invention and the electrically conductive film pattern (base material with an electrically conductive film pattern) using the said electrically conductive ink is further demonstrated, this invention is these implementation. It is not limited to examples.
  • Example 1 1.7 g of butylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4) and hexylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 6) 3.5 g and polymer dispersant SOLSPERSE21000 (manufactured by Nippon Lubrizol Co., Ltd.) was mixed with 0.2 g, and stirred well with a magnetic stirrer to prepare an amine mixture. Next, 3.0 g of silver oxalate was added while stirring.
  • Adhesion test A silver nanoparticle dispersion 1 was formed on a 2.5 cm square glass slide by spin coating (2000 rpm / 20 sec) and heated in a gear oven at 120 ° C. for 30 minutes. The conductive film was formed by sintering by firing. As an adhesion test, the tape was attached to the thin film on the glass substrate by the pull-off method, and evaluation was performed based on the rupture state as a result of peeling. Five slide-coated samples were prepared using five slide glasses, and each of the five sheets was strongly rubbed against the film and peeled off in the vertical direction for evaluation.
  • Example 2 >> Instead of using YS resin PX1150, 0.04 g of terpene phenol resin YS Polystar T160 (manufactured by Yashara Chemical Co., Ltd., softening point 160 ⁇ 5 ° C.) (2.0% by weight based on silver solid content) was used. In the same manner as in Example 1, a silver nanoparticle dispersion liquid 2 was prepared and evaluated. The results are shown in Table 1.
  • Example 3 Instead of using YS resin PX1150, 0.04 g of modified terpene resin YS resin TO115 (manufactured by Yasuhara Chemical Co., Ltd., softening point 115 ⁇ 5 ° C.) (2.0% by weight based on silver solid content) was used. In the same manner as in Example 1, a silver nanoparticle dispersion 3 was prepared and evaluated. The results are shown in Table 1.
  • Example 4 Implemented except that 0.04 g (2.0% by weight based on silver solid content) of terpene resin YS resin PX1000 (manufactured by Yashara Chemical Co., Ltd., softening point 100 ⁇ 5 ° C.) was used instead of YS resin PX1150.
  • YS resin PX1000 manufactured by Yashara Chemical Co., Ltd., softening point 100 ⁇ 5 ° C.
  • Example 5 Instead of YS resin PX1150, 0.04 g (2.0% by weight based on silver solid content) of terpene light-colored rosin ester KE-311 (Arakawa Chemical Industries, softening point 95 ⁇ 5 ° C.) was used. Except for this, a silver nanoparticle dispersion 5 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 1.
  • Example 6 Instead of KE-311, 0.04 g of terpene-based rosin resin KE-604 (Arakawa Chemical Industries, softening point 129 ⁇ 5 ° C.) was used (2.0 wt% based on silver solid content). A silver nanoparticle dispersion liquid 6 was prepared in the same manner as in Example 5 except that the evaluation test was performed. The results are shown in Table 1.
  • Example 7 1.7 g of butylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4) and hexylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 6) 3.5 g and polymer dispersant SOLSPERSE21000 (manufactured by Nippon Lubrizol Co., Ltd.) and 0.08 g of terpene resin YS resin PX1150 (manufactured by Yasuhara Chemical Co., Ltd., softening point 115 ⁇ 5 ° C.) (4.0 based on silver solid content) (% By weight) was added and mixed, and stirred well with a magnetic stirrer to produce an amine mixture.
  • SOLSPERSE21000 manufactured by Nippon Lubrizol Co., Ltd.
  • terpene resin YS resin PX1150 manufactured by Yasuhara Chemical Co., Ltd., softening point 115 ⁇ 5 ° C.
  • Example 8 A silver nanoparticle dispersion liquid 8 was prepared and evaluated in the same manner as in Example 7 except that SOLPERSE21000 was not used at the time of blending. The results are shown in Table 1.
  • Example 9 A silver nanoparticle dispersion 9 was prepared in the same manner as in Example 7 except that 0.20 g of terpene resin YS resin PX1150 (10.0% by weight with respect to the silver solid content) was used at the time of blending. went. The results are shown in Table 1.
  • Example 10 A silver nanoparticle dispersion liquid 10 was prepared and evaluated in the same manner as in Example 7 except that 0.02 g of YS resin PX1150 (1.0% by weight based on the silver solid content) was used. The results are shown in Table 1.
  • Comparative Example 4 >> Acrylate 8UA-140 (made by Taisei Fine Chemical Co., Ltd.), which is a urethane-modified acrylic polymer solution, is added to 1.5 g of dihydroterpinyl acetate, 0.04 g in terms of solid content (2.0 weight based on silver solid content) %) Except that the silver nanoparticle dispersion liquid 13 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.
  • Comparative Example 5 The resin added to 1.5 g of dihydroterpinyl acetate is 0.04 g of terpene resin YS resin PX800 (manufactured by Yashara Chemical Co., Ltd., softening point 80 ⁇ 5 ° C.) in terms of solid content (2.0 weight based on silver solid content) %) Except that the silver nanoparticle dispersion liquid 14 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.
  • Comparative Example 6 The resin added to 1.5 g of dihydroterpinyl acetate is 0.04 g of terpene resin YS resin PX300N (manufactured by Yasuhara Chemical Co., Ltd., softening point 30 ⁇ 5 ° C.) in terms of solid content (2.0 weight based on silver solid content) %) Except that the silver nanoparticle dispersion liquid 15 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.
  • terpene resins pinene polymer, terpene phenol resin, rosin, rosin ester, etc. can be widely applied.
  • Example 8 it can be used in combination with a polymer dispersant.
  • nanoparticles can be synthesized by adding a terpene resin at the time of synthesis, and it was not possible to synthesize nanoparticles in Comparative Example 1 because both the polymer dispersant and the terpene resin were absent.
  • electrical_connection is possible from Example 9 if the terpene resin compounding quantity with respect to silver solid content is 10 mass% or less.
  • a terpene resin when a terpene resin is not used from Comparative Example 2, it does not adhere to the glass substrate. Furthermore, even if a resin other than a terpene resin such as a polyester resin or an acrylic resin is added from Comparative Examples 3 and 4, adhesion is achieved. And conductivity are not compatible. It can also be seen from Comparative Examples 5 and 6 that if the softening point of the terpene resin is lower than 90 ° C., the adhesion is not expressed.

Abstract

Provided is an electroconductive ink from which an electroconductive film pattern having sufficient electroconductivity and satisfactory adhesion to the substrate can be formed through low-temperature burning and which is easy to handle and has excellent dispersion stability. The electroconductive ink of the present invention is characterized by comprising silver nanoparticles, a dispersion medium, and a terpene-based resin which has a softening point of 90°C or higher and which is adherent to the surface of the silver nanoparticles or contained in the dispersion medium.

Description

導電性インクConductive ink
 本発明は、半導体集積回路等の配線や電極パターンを形成するために用いる導電性インクであって、有機薄膜トランジスタ基板に対する配線や電極パターンの形成が可能な導電性インクに関する。 The present invention relates to a conductive ink used for forming a wiring or an electrode pattern of a semiconductor integrated circuit or the like and capable of forming a wiring or an electrode pattern on an organic thin film transistor substrate.
 銀ナノ粒子を含むインク配合物が良好な印刷結果を示すことから、昨今、プリンテッドエレクトロニクス用途に銀ナノ粒子技術を用いることについて研究開発が盛んに行われている。 In recent years, research and development has been actively conducted on the use of silver nanoparticle technology for printed electronics applications because ink compositions containing silver nanoparticles exhibit good printing results.
 そして、近年、かかるプリンテッドエレクトロニクスにおいては、より簡便かつ安価な導電膜パターンの形成方法として、凸版印刷法、凹版印刷法、スクリーン印刷法又はインクジェット印刷法等の印刷法を用いた方法が提案されており、更には、より高精細なパターンが形成できる印刷手法として、反転印刷法やマイクロコンタクト印刷法等を用いた方法が提案されており、これらの印刷法に適した導電性インク、絶縁性インク及び抵抗インク等の各種インクが盛んに研究開発されている。 In recent years, in such printed electronics, a method using a printing method such as a relief printing method, an intaglio printing method, a screen printing method or an inkjet printing method has been proposed as a simpler and cheaper method for forming a conductive film pattern. Furthermore, as a printing technique capable of forming a higher-definition pattern, a method using a reverse printing method, a microcontact printing method, or the like has been proposed, and a conductive ink suitable for these printing methods, an insulating property, and the like. Various inks such as ink and resistance ink have been actively researched and developed.
 例えば、特許文献1(特開2011-044509号公報)においては、電極又は電気配線、特に、太陽電池の集電極において、電極幅の更なる細線化及び低抵抗化が可能であり、また細線化された狭い密着面積においても十分な密着性を有するとともに、耐熱性及び耐水性に優れた信頼性の高い電極を形成する技術が提案されている。より具体的には、「導電性粒子と、熱硬化性樹脂組成物、硬化剤及び溶剤を含む有機系ビヒクルとを含有する導電性インク組成物において、 前記導電性粒子が、平均粒径が1nm以上100nm未満であるナノ銀粒子と、平均フレーク径が0.1μm以上3μm以下であるフレーク状銅粒子とを含有し、 前記導電性粒子が前記フレーク状銅粒子を前記ナノ銀粒子より質量割合でより多く含有する ことを特徴とする導電性インク組成物。」が開示されている。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-044509), it is possible to further reduce the electrode width and reduce the resistance in the electrode or electric wiring, particularly in the collector electrode of the solar cell. There has been proposed a technique for forming a highly reliable electrode having sufficient adhesion even in a narrow adhesion area and having excellent heat resistance and water resistance. More specifically, “in the conductive ink composition containing conductive particles and an organic vehicle containing a thermosetting resin composition, a curing agent and a solvent, the conductive particles have an average particle diameter of 1 nm. It contains nano silver particles that are less than 100 nm and flaky copper particles having an average flake diameter of 0.1 μm or more and 3 μm or less, and the conductive particles contain the flaky copper particles in a mass ratio from the nano silver particles An electrically conductive ink composition characterized by containing a larger amount "is disclosed.
 また、特許文献2(特開2012-184407号公報)においては、インクジェット印刷等において、コーヒーリング効果の減少、基材への接着性向上、印刷ヘッドのデキャップ時間または待機時間の延長を実現したインク組成物が提案されている。より具体的には、「銀を含む金属ナノ粒子と、 任意成分の樹脂と、2種類以上のインク媒剤とを含み、前記インク媒剤の少なくとも1つが、25℃での蒸気圧が4mmHg未満である脂肪族炭化水素である、インク組成物。」が開示されている。 Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2012-184407), in ink jet printing or the like, an ink that realizes a reduction in the coffee ring effect, an improvement in adhesion to a substrate, and an increase in the decap time or waiting time of the print head. Compositions have been proposed. More specifically, “including metal nanoparticles containing silver, an optional resin, and two or more types of ink media, and at least one of the ink media has a vapor pressure of less than 4 mmHg at 25 ° C. An ink composition that is an aliphatic hydrocarbon.
特開2011-044509号公報JP 2011-044509 A 特開2012-184407号公報JP 2012-184407 A
 しかしながら、従来の技術においては、導電性材料の基材への密着性を改善するには基材を塗工液等で表面処理する等、工程が増え大きな手間となっていた。
また、上記特許文献2の技術では、溶媒中にテルペン樹脂を後添加して140℃での焼成を行っており、上記特許文献の技術では、樹脂等を混合してペースト化した材料は200℃×30分間の高温での焼成が必要となっており、密着性のために低温焼結性を犠牲とし、密着性と低温焼結性の両立という観点からは未だ改善の余地があった。
However, in the prior art, in order to improve the adhesion of the conductive material to the base material, the number of steps has been increased, such as surface treatment of the base material with a coating solution or the like.
In the technique of Patent Document 2, a terpene resin is added in a solvent and baked at 140 ° C., and in the technique of Patent Document, a material obtained by mixing a resin or the like into a paste is 200 ° C. Since firing at a high temperature for 30 minutes is required, there is still room for improvement from the viewpoint of coexistence of adhesion and low-temperature sinterability at the expense of low-temperature sinterability for adhesion.
 そこで、本発明の目的は、上記従来技術の有する課題に鑑みてなされたものであり、十分な導電性及び基板との良好な密着性を有する導電膜パターンを低温で焼成することができる導電性インクを提供すること、更には、取扱いが容易で分散性にも優れる導電性インクを提供することにある。 Accordingly, an object of the present invention has been made in view of the above-described problems of the prior art, and is a conductive material capable of firing a conductive film pattern having sufficient conductivity and good adhesion to a substrate at a low temperature. It is another object of the present invention to provide an ink, and further to provide a conductive ink that is easy to handle and excellent in dispersibility.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、十分な導電性及び基板との良好な密着性を有する導電膜パターンを低温で焼成することができる導電性インク、更には、取扱いが容易で分散性にも優れる導電性インクを得るためには、特定の条件を充足するテルペン系樹脂を用いることが、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。 As a result of intensive studies to achieve the above object, the present inventor has obtained a conductive ink capable of firing a conductive film having sufficient conductivity and good adhesion to a substrate at low temperature, In order to obtain a conductive ink that is easy to handle and excellent in dispersibility, it has been found that the use of a terpene resin satisfying specific conditions is extremely effective in achieving the above object, and the present invention provides Reached.
 即ち、本発明は、
 銀ナノ粒子と、
 分散媒と、
前記銀ナノ粒子の表面に付着するか、又は、前記分散媒中に含まれる、軟化点90℃以上のテルペン系樹脂と、を含むこと
を特徴とする導電性インク、を提供する。
That is, the present invention
Silver nanoparticles,
A dispersion medium;
There is provided a conductive ink comprising a terpene resin having a softening point of 90 ° C. or higher, which is attached to the surface of the silver nanoparticles or contained in the dispersion medium.
 かかる本発明の導電性インクにおいては、前記テルペン系樹脂が、α-ピネン重合体、β-ピネン重合体、α、βピネン共重合体、リモネン重合体、ロジン、ロジンエステル、変性ロジン、テルペンフェノール重合体、水素添加テルペン重合体、芳香族変性テルペン重合体及びロジン変性フェノール樹脂からなる群より選択される少なくとも1種であること、が好ましい。 In the conductive ink of the present invention, the terpene resin is an α-pinene polymer, β-pinene polymer, α, β pinene copolymer, limonene polymer, rosin, rosin ester, modified rosin, terpene phenol. It is preferably at least one selected from the group consisting of a polymer, a hydrogenated terpene polymer, an aromatic modified terpene polymer, and a rosin modified phenolic resin.
 また、本発明の導電性インクにおいては、前記分散媒中に、前記テルペン樹脂と高分子分散剤とを含むこと、が好ましい。 In the conductive ink of the present invention, it is preferable that the dispersion medium contains the terpene resin and a polymer dispersant.
 更に、本発明の導電性インクにおいては、前記導電性インクに含まれる前記テルペン系樹脂は、銀固形分に対して10重量%以下であること、が好ましい。 Furthermore, in the conductive ink of the present invention, it is preferable that the terpene resin contained in the conductive ink is 10% by weight or less based on the silver solid content.
 本発明の導電性インクによれば、十分な導電性及び基板との良好な密着性を有する導電膜パターンを低温で焼成することができる導電性、更には、取扱いが容易で分散性にも優れる導電性インクを実現することができる。 According to the conductive ink of the present invention, the conductive pattern having sufficient conductivity and good adhesion to the substrate can be fired at a low temperature, and it is easy to handle and has excellent dispersibility. Conductive ink can be realized.
 以下、(1)本発明の導電性インクの好適な一実施形態、(2)本発明の導電性インクの製造方法の好適な一実施形態、(3)本発明の導電性インクを用いた導電膜パターン及びその製造方法について詳細に説明する。なお、以下の説明では重複する説明は省略することがある。 Hereinafter, (1) one preferred embodiment of the conductive ink of the present invention, (2) one preferred embodiment of the method for producing the conductive ink of the present invention, and (3) conductivity using the conductive ink of the present invention. The film pattern and the manufacturing method thereof will be described in detail. In the following description, overlapping description may be omitted.
(1)導電性インク
 本実施形態の導電性インクは、銀ナノ粒子(銀微粒子)と、分散媒と、前記銀ナノ粒子の表面に付着するか、又は、前記分散媒中に含まれる、軟化点90℃以上のテルペン系樹脂と、含むことを特徴とする。また、換言すると、銀ナノ粒子と有機成分とからなる銀ナノ粒子分散体(銀コロイド液)粒子を主成分とする固形分と、これら固形分を分散する分散媒とを含むものであり、ここに上記のテルペン系樹脂が含まれる。ただし、上記導電性インクにおいて「分散媒」は上記固形分の一部を溶解していても構わない。
(1) Conductive ink The conductive ink of the present embodiment is a softening agent that adheres to or is contained in the surface of silver nanoparticles (silver fine particles), a dispersion medium, and the silver nanoparticles. And a terpene resin having a point of 90 ° C. or higher. In other words, it includes a solid content mainly composed of silver nanoparticle dispersion (silver colloid liquid) particles composed of silver nanoparticles and an organic component, and a dispersion medium for dispersing these solid contents. Includes the above-mentioned terpene resin. However, the “dispersion medium” in the conductive ink may dissolve a part of the solid content.
 このような銀コロイド液によれば、有機成分を含んでいるため、銀コロイド液中での銀コロイド粒子の分散性を向上させることができ、したがって、銀コロイド液中の銀成分の含有量を増やしても銀コロイド粒子が凝集しにくく、良好な分散安定性を保つことができる。なお、ここでいう「分散性」とは、銀属コロイド液を調製した直後において、当該銀コロイド液中での銀ナノ粒子の分散状態が優れているか否か(均一か否か)を示すものであり、「分散安定性」とは、銀コロイド液を調整して所定の時間を経過した後において、当該銀コロイド液中での銀ナノ粒子の分散状態が維持されているか否かを示すものであり、「低沈降凝集性」乃至は「希釈性」ともいえる。 According to such a silver colloid liquid, since it contains an organic component, the dispersibility of the silver colloid particles in the silver colloid liquid can be improved. Therefore, the content of the silver component in the silver colloid liquid can be reduced. Even if it is increased, the colloidal silver particles are less likely to aggregate, and good dispersion stability can be maintained. The term “dispersibility” as used herein indicates whether or not the dispersion state of silver nanoparticles in the silver colloid liquid is excellent immediately after the silver colloid liquid is prepared (whether it is uniform). "Dispersion stability" indicates whether or not the dispersion state of silver nanoparticles in the silver colloid liquid is maintained after a predetermined time has elapsed after the silver colloid liquid has been prepared. It can also be said to be “low sedimentation aggregation” or “dilution”.
 ここで、上記の銀コロイド液において、銀コロイド粒子中の「有機成分」は、上記金属成分とともに実質的に銀コロイド粒子を構成する有機物のことである(但し、上記の「銀ナノ粒子の表面に付着するか、又は、前記分散媒中に含まれる、軟化点90℃以上のテルペン系樹脂」を除く。)。当該有機成分には、銀中に最初から不純物として含まれる微量有機物、後述する製造過程で混入した微量の有機物が銀成分に付着した有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、銀成分に微量付着した有機物等は含まれない。なお、上記「微量」とは、具体的には、銀コロイド粒子中1質量%未満が意図される。 Here, in the silver colloid liquid, the “organic component” in the silver colloid particles is an organic substance that substantially constitutes the silver colloid particles together with the metal component (provided that the “surface of the silver nanoparticles” Or a terpene-based resin having a softening point of 90 ° C. or higher contained in the dispersion medium ”. The organic component includes trace organic substances contained in the silver as impurities from the beginning, organic substances adhering to the silver component of trace organic substances mixed in the manufacturing process described later, residual reducing agent that could not be removed in the cleaning process, residual dispersion It does not include organic substances that adhere to trace amounts of silver components such as agents. The “trace amount” is specifically intended to be less than 1% by mass in the silver colloid particles.
 本実施形態における銀コロイド粒子は、有機成分を含んでいるため、銀コロイド液中での分散安定性が高い。そのため、銀コロイド液中の銀成分の含有量を増大させても銀コロイド粒子が凝集しにくく、その結果、良好な分散性が保たれる。 Since the silver colloid particles in this embodiment contain an organic component, the dispersion stability in the silver colloid liquid is high. For this reason, even if the content of the silver component in the silver colloid liquid is increased, the silver colloid particles are less likely to aggregate, and as a result, good dispersibility is maintained.
 また、本実施形態における銀コロイド液の「固形分」とは、シリカゲル等を用いて銀コロイド液から分散媒を取り除いた後、例えば、30℃以下の常温(例えば25℃)で24時間乾燥させたときに残存する固形分のことをいい、通常は、銀ナノ粒子、残存有機成分及び残留還元剤、並びに上記のテルペン系樹脂等を含むものである。なお、シリカゲルを用いて銀コロイド液から分散媒を取り除く方法としては、種々の方法を採用することが可能であるが、例えばガラス基板上に銀コロイド液を塗布し、シリカゲルを入れた密閉容器に塗膜付ガラス基板を24時間以上放置することにより分散媒を取り除けばよい。 In addition, the “solid content” of the silver colloid liquid in the present embodiment means that after removing the dispersion medium from the silver colloid liquid using silica gel or the like, for example, it is dried at a room temperature of 30 ° C. or lower (for example, 25 ° C.) for 24 hours. In general, it contains silver nanoparticles, residual organic components and residual reducing agent, and the above-mentioned terpene resin. Various methods can be adopted as a method of removing the dispersion medium from the silver colloid liquid using silica gel. For example, a silver colloid liquid is applied on a glass substrate and the silica gel is put into a sealed container. What is necessary is just to remove a dispersion medium by leaving a glass substrate with a coating film for 24 hours or more.
 本実施形態の銀コロイド液において、好ましい固形分の濃度は1~60質量%である。固形分の濃度が1質量%以上であれば、導電性インクにおける銀の含有量を確保することができ、導電効率が低くならない。また、固形分の濃度が60質量%以下であれば、銀コロイド液の粘度が増加せず取り扱いが容易で、工業的に有利であり、平坦な薄膜を形成することができる。より好ましい固形分の濃度は5~40質量%である。 In the silver colloid liquid of the present embodiment, the preferred solid content concentration is 1 to 60% by mass. When the solid content is 1% by mass or more, the silver content in the conductive ink can be ensured, and the conductive efficiency does not decrease. Moreover, if the density | concentration of solid content is 60 mass% or less, the viscosity of a silver colloid liquid does not increase, handling is easy, it is industrially advantageous, and a flat thin film can be formed. A more preferable solid content is 5 to 40% by mass.
 ここで、本実施形態の導電性インクは、前記銀ナノ粒子の表面に付着するか、又は、前記分散媒中に含まれる、軟化点90℃以上のテルペン系樹脂と、を含むことが好ましい。本発明者らは、かかるテルペン系樹脂を用いることにより、低温焼結性及び密着性及び分散性に優れる導電性インクを実現したものである。 Here, it is preferable that the conductive ink of this embodiment includes a terpene resin having a softening point of 90 ° C. or higher, which is attached to the surface of the silver nanoparticles or contained in the dispersion medium. The present inventors have realized a conductive ink that is excellent in low-temperature sinterability, adhesion, and dispersibility by using such a terpene resin.
 詳細は後述するが、本発明においては、テルペン系樹脂を分散媒中への後添加だけでなく、銀ナノ粒子合成前に保護分散剤として使用することで、得られる導電性インクの分散性及び密着性を同時に改良できることを、本発明者らは見出した。また、重合度や種類にも因り異なるが、テルペン系樹脂は少なくとも分子量が約800以上であれば、テルペン系樹脂が溶解するような分散媒中において分子鎖が伸び粒子同士の凝集を防ぐ立体反発効果を発現すること、そして、この立体反発効果が銀ナノ粒子を保護する役割を果たし、基材に対する密着性に寄与することを確認した。 Although details will be described later, in the present invention, not only the post-addition of the terpene resin into the dispersion medium but also the dispersibility of the obtained conductive ink by using it as a protective dispersant before the synthesis of the silver nanoparticles and The inventors have found that the adhesion can be improved at the same time. Also, although depending on the degree of polymerization and the type, terpene resins have a molecular weight of at least about 800 or more. In the dispersion medium in which the terpene resin dissolves, the steric repulsion prevents the particles from aggregating. It was confirmed that the effect was exhibited and that this steric repulsion effect protected silver nanoparticles and contributed to the adhesion to the substrate.
 また、テルペン系樹脂は軟化点90℃以上であることが好ましい。「軟化点90℃以上のテルペン系樹脂」が好ましい理由は、必ずしも明らかではないが、本発明者らは次のように考えている。テルペン系樹脂のガラス転移点は当該テルペン系樹脂の軟化点より約60℃程度低い温度であることはよく知られている。そうすると、例えば軟化点80℃以下のテルペン系樹脂のガラス転移点は約20℃になる。したがって、軟化点が低過ぎると、ガラス転移点も室温(例えば25℃)よりも低くなってしまい、分子の運動性が急激に上がり非常に柔らかい性質となってしまうため、基材と導電層(導電性インクを塗布して形成された層)間での密着力が維持できなくなってしまうと考えられる。即ち、基材と導電層間での密着力を維持するためには、テルペン系樹脂の軟化点をある程度の高さとすることによって、そのガラス転移点を室温(25℃)以上とし、分子の運動性を抑制して堅い性質を保持すべきと考えられるのである。 The terpene resin preferably has a softening point of 90 ° C. or higher. The reason why the “terpene resin having a softening point of 90 ° C. or higher” is preferable is not necessarily clear, but the present inventors consider as follows. It is well known that the glass transition point of a terpene resin is about 60 ° C. lower than the softening point of the terpene resin. Then, for example, the glass transition point of a terpene resin having a softening point of 80 ° C. or lower is about 20 ° C. Therefore, if the softening point is too low, the glass transition point becomes lower than room temperature (for example, 25 ° C.), and the mobility of the molecule increases rapidly, resulting in a very soft property. It is considered that the adhesion between the layers formed by applying conductive ink cannot be maintained. That is, in order to maintain the adhesion between the base material and the conductive layer, the softening point of the terpene resin is set to a certain level so that its glass transition point is at room temperature (25 ° C.) or higher, and the molecular mobility. It is thought that the firm nature should be kept by restraining.
 なお、テルペン系樹脂の軟化点の上限は、おおよそ市販のテルペン系樹脂のうち最大の軟化点を有するテルペン系樹脂の軟化点程度であればよく、例えば160±5℃であればより確実に本願発明の作用効果を得ることができる。 The upper limit of the softening point of the terpene resin may be about the softening point of the terpene resin having the maximum softening point among commercially available terpene resins, and more reliably, for example, 160 ± 5 ° C. The effects of the invention can be obtained.
 また、前記テルペン系樹脂が、α-ピネン重合体、β-ピネン重合体、α、βピネン共重合体、リモネン重合体、ロジン、ロジンエステル、変性ロジン、テルペンフェノール重合体、水素添加テルペン重合体、芳香族変性テルペン重合体及びロジン変性フェノール樹脂からなる群より選択される少なくとも1種であること、が好ましい。その理由は、各種エラストマーや有機溶媒と非常に良く相溶し、優れた粘着特性を発揮する。カロチンや天然ゴムのようなポリテルペンになると導電性を著しく阻害し、粘着特性も得難い               という点にある。 Further, the terpene resin is an α-pinene polymer, β-pinene polymer, α, β-pinene copolymer, limonene polymer, rosin, rosin ester, modified rosin, terpene phenol polymer, hydrogenated terpene polymer. It is preferably at least one selected from the group consisting of an aromatic modified terpene polymer and a rosin modified phenolic resin. The reason is that it is highly compatible with various elastomers and organic solvents and exhibits excellent adhesive properties. When polyterpenes such as carotene and natural rubber are used, the conductivity is remarkably impaired and the adhesive properties are difficult to obtain.
 なお、本実施形態の導電性インクにおいては、前記導電性インクに含まれる前記テルペン系樹脂は、導電性を損なわない範囲で添加する必要があるという理由から、銀固形分に対して10重量%以下であること、が好ましい。下限は、1.0質量%程度であればよい。より好ましくは、1.0~3.0質量%であればよい。 In the conductive ink of the present embodiment, the terpene resin contained in the conductive ink needs to be added within a range that does not impair the conductivity. It is preferable that: The lower limit may be about 1.0% by mass. More preferably, it may be 1.0 to 3.0% by mass.
 本実施形態の導電性インクは、表面張力が22mN/m以下であるのが好ましい。表面張力を22mN/m以下と十分に下げることで、導電性インクの濡れ性を十分に担保することができる。表面張力を22mN/m以下にすることは、導電性インクの成分比を調整することによって実現できる。表面張力の下限は13mN/m程度であればよい。なお、本発明においていう表面張力とは、プレート法(Wilhelmy法)という原理で測定して得られるものであり、例えば、協和界面科学(株)製の全自動表面張力計CBVP-Z等により測定することができる。 The conductive ink of the present embodiment preferably has a surface tension of 22 mN / m or less. By sufficiently lowering the surface tension to 22 mN / m or less, the wettability of the conductive ink can be sufficiently ensured. The surface tension of 22 mN / m or less can be realized by adjusting the component ratio of the conductive ink. The lower limit of the surface tension may be about 13 mN / m. The surface tension referred to in the present invention is obtained by measurement based on the principle of the plate method (Wilhelmy method). For example, the surface tension is measured by a fully automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. can do.
(1-1)銀ナノ粒子(銀ナノ粒子)
 本実施形態における銀ナノ粒子分散体に含まれる銀ナノ粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、融点降下が生じるような平均粒径を有するのが好ましく、例えば、1~400nmであればよい。更には、1~70nmであるのが好ましい。銀ナノ粒子の平均粒径が1nm以上であれば、銀ナノ粒子が良好な低温焼結性を具備すると共に銀ナノ粒子製造がコスト高とならず実用的である。また、400nm以下であれば、銀ナノ粒子の分散性が経時的に変化しにくく、好ましい。なお、本実施形態の銀ナノ粒子分散体を用いて得られる導電性インクにおいても、銀コロイド粒子(銀ナノ粒子を含む。)の平均粒径(メディアン径)はこの範囲と略同じである(近似できる)。
(1-1) Silver nanoparticles (silver nanoparticles)
The average particle diameter of the silver nanoparticles contained in the silver nanoparticle dispersion in the present embodiment is not particularly limited as long as the effects of the present invention are not impaired, but the average particle diameter that causes a melting point drop is generated. For example, it may be 1 to 400 nm. Further, it is preferably 1 to 70 nm. If the average particle diameter of the silver nanoparticles is 1 nm or more, the silver nanoparticles have a good low-temperature sinterability, and the production of the silver nanoparticles is practical without increasing the cost. Moreover, if it is 400 nm or less, the dispersibility of a silver nanoparticle does not change easily with time, and it is preferable. In the conductive ink obtained using the silver nanoparticle dispersion of this embodiment, the average particle diameter (median diameter) of the silver colloid particles (including silver nanoparticles) is substantially the same as this range ( Can be approximated).
 なお、銀ナノ粒子分散体における銀ナノ粒子の粒径は固形分濃度によって変動し、一定とは限らず、一定でなくてもよい。また、銀ナノ粒子分散体が、任意成分として、後述する分散剤等を含む場合、平均粒径が400nm超の銀ナノ粒子成分を含む場合があるが、凝集を生じたりせず、本発明の効果を著しく損なわない成分であればかかる400nm超の平均粒径を有する銀ナノ粒子成分を含んでもよい。 In addition, the particle size of the silver nanoparticles in the silver nanoparticle dispersion varies depending on the solid content concentration, and is not necessarily constant and may not be constant. In addition, when the silver nanoparticle dispersion contains a dispersant described later as an optional component, the silver nanoparticle dispersion may contain a silver nanoparticle component having an average particle size of more than 400 nm. A silver nanoparticle component having an average particle diameter of more than 400 nm may be included as long as the effect is not significantly impaired.
 ここで、本実施形態の銀ナノ粒子分散体における銀ナノ粒子の平均粒径は、動的光散乱法(ドップラー散乱光解析)によるもので、例えば、(株)堀場製作所製動的光散乱式粒径分布測定装置LB-550で測定した体積基準のメディアン径(D50)で表すことができる。具体的には、エタノール10mL中に金属コロイド液を数滴滴下し、手で振動し分散させて測定用試料を調製する。ついで、測定用試料3mLを、(株)堀場製作所製動的光散乱式粒径分布測定装置LB-550、のセル内に投入し、下記の条件にて測定する。 Here, the average particle diameter of the silver nanoparticles in the silver nanoparticle dispersion of the present embodiment is based on a dynamic light scattering method (Doppler scattered light analysis). For example, a dynamic light scattering type manufactured by Horiba, Ltd. It can be represented by a volume-based median diameter (D50) measured by a particle size distribution measuring device LB-550. Specifically, several drops of a metal colloid solution are dropped into 10 mL of ethanol, and are shaken and dispersed by hand to prepare a measurement sample. Next, 3 mL of the measurement sample is put into a cell of a dynamic light scattering particle size distribution measuring device LB-550 manufactured by Horiba, Ltd., and measurement is performed under the following conditions.
・測定条件
データ読み込み回数:100回
セルホルダー内温度:25℃
・表示条件
分布形態:標準
反復回数:50回
粒子径基準:体積基準
分散質の屈折率:0.200-3.900i(銀の場合)
分散媒の屈折率:1.36(エタノールが主成分の場合)
・システム条件設定
強度基準:Dynamic
散乱強度レンジ上限:10000.00
散乱強度レンジ下限:1.00
・ Measurement condition data read count: 100 times Cell holder temperature: 25 ° C
Display condition distribution form: Standard number of repetitions: 50 times Particle size standard: Volume-based refractive index of refractive index: 0.200-3.900i (in the case of silver)
Refractive index of dispersion medium: 1.36 (when ethanol is the main component)
・ System condition setting strength criteria: Dynamic
Scattering intensity range upper limit: 10000.00
Scattering intensity range lower limit: 1.00
(1-2)アミン
 本実施形態の銀ナノ粒子分散体において、銀ナノ粒子の表面の少なくとも一部にはアミン(好ましくは炭素数が5以下である短鎖アミン)が付着している。なお、銀ナノ粒子の表面には、原料に最初から不純物として含まれる微量有機物、後述する製造過程で混入する微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、微量の有機物が付着していてもよい。
(1-2) Amine In the silver nanoparticle dispersion of this embodiment, an amine (preferably a short-chain amine having 5 or less carbon atoms) is attached to at least a part of the surface of the silver nanoparticle. In addition, on the surface of the silver nanoparticles, there are trace organic substances contained as impurities from the beginning, trace organic substances mixed in the manufacturing process described later, residual reducing agent that could not be removed in the cleaning process, residual dispersant, etc. A trace amount of organic matter may be attached.
 上記アミンとしては、種々のアミンを用いることができ、直鎖状であっても分岐鎖状であってもよく、また、側鎖を有していてもよい。炭素数が5以下である短鎖アミンであれば特に限定されず、当該短鎖アミンとしては、例えば、エチルアミン、プロピルアミン、ブチルアミン、N-(3-メトキシプロピル)プロパン-1,3-ジアミン、1,2-エタンジアミン、 2-メトキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、ペンタノールアミン、アミノイソブタノール等が挙げられる。 As the amine, various amines can be used, which may be linear or branched, and may have a side chain. The short chain amine having 5 or less carbon atoms is not particularly limited, and examples of the short chain amine include ethylamine, propylamine, butylamine, N- (3-methoxypropyl) propane-1,3-diamine, Examples include 1,2-ethanediamine, ア ミ ン 2-methoxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 1,4-butanediamine, 1,5-pentanediamine, pentanolamine, aminoisobutanol and the like.
 上記短鎖アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。 The short chain amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
 本実施形態の銀粒子分散体は、本発明の効果を損なわない範囲であれは、上記の炭素数が5以下である短鎖アミンに加えて、カルボン酸を含んでいてもよい。カルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、本実施形態の銀粒子分散体中で、銀ナノ粒子の表面の少なくとも一部に局在化(付着)すると(即ち、銀ナノ粒子の表面の少なくとも一部を被覆すると)、溶媒と銀ナノ粒子とを十分に親和させることができ、銀ナノ粒子同士の凝集を防ぐことができる(分散性を向上させる。)。 The silver particle dispersion of the present embodiment may contain a carboxylic acid in addition to the short-chain amine having 5 or less carbon atoms as long as the effects of the present invention are not impaired. The carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties. In addition, when the carboxylic acid is localized (attached) to at least a part of the surface of the silver nanoparticle in the silver particle dispersion of the present embodiment (that is, when at least a part of the surface of the silver nanoparticle is coated). , The solvent and the silver nanoparticles can be made sufficiently compatible, and aggregation of the silver nanoparticles can be prevented (dispersibility is improved).
 カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。 As the carboxylic acid, compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid. A part of carboxyl groups of the carboxylic acid may form a salt with a metal ion. In addition, about the said metal ion, 2 or more types of metal ions may be contained.
 上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。また、アミンとカルボン酸はアミドを形成する。当該アミド基も銀ナノ粒子表面に適度に吸着するため、銀ナノ粒子表面にはアミド基が付着していてもよい。 The carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. In this case, the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups. Moreover, the said carboxylic acid may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower. Also, amines and carboxylic acids form amides. Since the amide group also adsorbs moderately on the surface of the silver nanoparticle, the amide group may be attached to the surface of the silver nanoparticle.
(1-3)分散媒
 本実施形態の銀ナノ粒子分散体は、種々の分散媒に銀ナノ粒子が分散したものである。かかる分散媒としては、本発明の効果を損なわない範囲で、種々のものを使用可能であり、炭化水素及びアルコール等が挙げられる。なお、この分散媒に上記のテルペン系樹脂は溶解していてもよい。
(1-3) Dispersion medium The silver nanoparticle dispersion of the present embodiment is obtained by dispersing silver nanoparticles in various dispersion media. Various dispersion media can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols. The terpene resin may be dissolved in this dispersion medium.
 炭化水素としては、脂肪族炭化水素、環状炭化水素及び脂環式炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。更に、脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ターピネン(テルピネンともいう。)、ネソール、シネン、オレンジフレーバー、テルピノレン、ターピノレン(テルピノレンともいう。)、フェランドレン、メンタジエン、テレベン、ジヒドロサイメン、モスレン、イソテルピネン、イソターピネン(イソテルピネンともいう。)、クリトメン、カウツシン、カジェプテン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。 Examples of the hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons, and alicyclic hydrocarbons, which may be used alone or in combination of two or more. Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned. Examples of the cyclic hydrocarbon include toluene and xylene. Further, examples of the alicyclic hydrocarbon include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandylene, mentadiene, teleben, Examples thereof include dihydrocymene, moslen, isoterpinene, isoterpinene (also referred to as isoterpinene), clitomen, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, and cyclohexane.
 また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。 Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced | guided | derived to the acetoxy group etc. in the range which does not impair the effect of this invention.
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、ベルベノール等が挙げられる。 Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1- Examples thereof include saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol. Examples of the cyclic alcohol include cresol and eugenol. Further, as the alicyclic alcohol, for example, cycloalkanol such as cyclohexanol, terpineol (including α, β, γ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, berbenol and the like.
(1-4)分散剤
 本実施形態の銀粒子分散体には、更に、銀ナノ粒子を分散させるために銀ナノ粒子合成後に添加される分散剤を含む。かかる分散剤を用いることで、溶媒中の銀ナノ粒子の分散安定性を向上させることができる。ここで、当該分散剤の酸価は5~200であることがより好ましく、また、当該分散剤がリン酸由来の官能基を有することが更に好ましい。
(1-4) Dispersant The silver particle dispersion of the present embodiment further includes a dispersant added after the synthesis of silver nanoparticles in order to disperse the silver nanoparticles. By using such a dispersant, the dispersion stability of silver nanoparticles in a solvent can be improved. Here, the acid value of the dispersant is more preferably from 5 to 200, and it is further preferable that the dispersant has a functional group derived from phosphoric acid.
 分散剤の酸価が5以上であるとアミンと配位し粒子表面が塩基性となっている銀への酸塩基相互作用での吸着が起こり始めるからであり、200以下であると過度に吸着サイトを有さないため好適な形態で吸着するからである。また、分散剤がリン酸由来の官能基を有することでリンPが酸素Oを介して銀と相互作用し引き合うので銀や銀化合物との吸着には最も効果的であり、必要最小限の吸着量で好適な分散性を得ることができるからである。 If the acid value of the dispersing agent is 5 or more, it will be adsorbed by the acid-base interaction to silver which coordinates with the amine and the particle surface is basic, and if it is 200 or less, it will be excessively adsorbed. It is because it does not have a site and adsorbs in a suitable form. In addition, since the dispersing agent has a functional group derived from phosphoric acid, phosphorus P interacts with and attracts silver through oxygen O, so it is most effective for adsorption with silver and silver compounds, and the minimum necessary adsorption. This is because suitable dispersibility can be obtained in an amount.
 なお、酸価が5~200の高分子分散剤としては、例えば、ルーブリゾール社のSOLSPERSEシリーズではSOLSPERSE-16000、21000、41000、41090、43000、44000、46000、54000等が挙げられ、ビックケミー社DISPERBYKシリーズではDISPERBYK-102、110、111、170、190.194N、2015.2090、2096等が挙げられ、エボニック社のTEGO Dispersシリーズでは610、610S、630、651、655、750W、755W等が挙げられ、楠本化成(株)製のディスパロンシリーズではDA-375、DA-1200等が挙げられ、共栄化学工業(株)製のフローレンシリーズではWK-13E、G-700、G-900、GW-1500、GW-1640、WK-13Eを例示することができる。 Examples of the polymer dispersant having an acid value of 5 to 200 include SOLPERSE-16000, 21000, 41000, 41090, 43000, 44000, 46000, and 54000 in the SOLSPERSE series of Lubrizol. In the series, DISPERBYK-102, 110, 111, 170, 190.194N, 2015.2090, 2096 and the like are listed, and in Evonik's TEGO® Dispers series, 610, 610S, 630, 651, 655, 750W, 755W and the like are listed. In the Disparon series manufactured by Enomoto Kasei Co., Ltd., DA-375, DA-1200 and the like are listed. In the Floren series manufactured by Kyoei Chemical Industry Co., Ltd., WK-13E, G-700, -900 can be exemplified GW-1500, GW-1640, WK-13E.
 本実施形態の銀ナノ粒子分散体に分散剤を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良いが、例えば、銀ナノ粒子分散体を銀インクとして用いる場合は、分散剤の含有量を0.5~20質量%とすることが好ましく、銀ペーストとして用いる場合は、分散剤の含有量を0.1~10質量%とすることが好ましい。 The content in the case where the silver nanoparticle dispersion of this embodiment contains a dispersant may be adjusted according to desired properties such as viscosity. For example, when the silver nanoparticle dispersion is used as a silver ink, The content of the dispersant is preferably 0.5 to 20% by mass, and when used as a silver paste, the content of the dispersant is preferably 0.1 to 10% by mass.
 高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる銀ナノ粒子分散体の分散安定性が良くなるが、含有量が多過ぎる場合は低温焼結性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.3~10質量%であり、更に好ましい含有量は0.5~8質量%である。 The content of the polymer dispersant is preferably 0.1 to 15% by mass. When the content of the polymer dispersant is 0.1% or more, the dispersion stability of the obtained silver nanoparticle dispersion is improved. However, when the content is too large, the low-temperature sinterability is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.3 to 10% by mass, and still more preferable content is 0.5 to 8% by mass.
 本実施形態の銀ナノ粒子分散体は、固形分に対して10℃/分の昇温速度で熱重量分析を行ったときの100~500℃における重量損失が15質量%以下であることが好ましい。上記固形物を500℃まで加熱すると、有機物などが酸化分解され、大部分はガス化されて消失する。このため、500℃までの加熱による減量は、ほぼ固形分中の有機物の量に相当し得る。 The silver nanoparticle dispersion of the present embodiment preferably has a weight loss of 15% by mass or less at 100 to 500 ° C. when thermogravimetric analysis is performed at a heating rate of 10 ° C./min with respect to the solid content. . When the solid is heated to 500 ° C., organic matter and the like are oxidatively decomposed, and most of them are gasified and disappear. For this reason, the reduction | decrease by heating to 500 degreeC can correspond to the quantity of the organic substance in solid content substantially.
 上記重量損失が多いほど銀ナノ粒子分散体の分散安定性は優れるが、多過ぎると有機物が不純物として導電性インクに残留して、導電性を低下させる。特に100℃程度の低温での加熱によって導電性の高い導電膜パターンを得るためには、上記重量損失が20質量%以下であることが好ましい。一方、上記重量損失が少な過ぎるとコロイド状態での分散安定性が損なわれるため、0.1質量%以上であることが好ましい。より好ましい重量損失は0.5~15質量%である。 The greater the weight loss, the better the dispersion stability of the silver nanoparticle dispersion, but if it is too much, organic matter remains as impurities in the conductive ink, reducing the conductivity. In particular, in order to obtain a conductive film pattern having high conductivity by heating at a low temperature of about 100 ° C., the weight loss is preferably 20% by mass or less. On the other hand, since the dispersion stability in a colloidal state is impaired when the weight loss is too small, the content is preferably 0.1% by mass or more. A more preferred weight loss is 0.5 to 15% by mass.
(1-5)保護剤(保護分散剤)
 本実施形態の銀ナノ粒子分散体は、更に、銀ナノ粒子合成前に添加される保護剤としての酸価を有する分散剤(保護分散剤)を含んでいてもよい。ここでいう「保護分散剤」は、上記の銀ナノ粒子合成後に添加される上記の分散剤(酸価を有する分散剤)と同じ種類のものでも異なる種類のものであってもよい。
(1-5) Protective agent (protective dispersant)
The silver nanoparticle dispersion of this embodiment may further contain a dispersant (protective dispersant) having an acid value as a protective agent added before the synthesis of silver nanoparticles. The “protective dispersant” referred to here may be the same or different type of the above-mentioned dispersant (dispersant having an acid value) added after the synthesis of the silver nanoparticles.
(1-5)その他の成分
 本実施形態の銀ナノ粒子分散体には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、例えばバインダとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
(1-5) Other components In addition to the above components, the silver nanoparticle dispersion of the present embodiment has an appropriate viscosity, adhesion, and drying depending on the purpose of use within a range not impairing the effects of the present invention. For example, an oligomer component that plays the role of a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, You may add arbitrary components, such as a viscous agent or a surface tension regulator. Such optional components are not particularly limited.
 樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂又はメラミン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and the like. You may use, and may use 2 or more types together.
 増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースのセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the thickener include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Hydroxypropylcellulose, cellulose derivatives of hydroxypropylmethylcellulose, polysaccharides such as xanthan gum or guar gum, etc., and these may be used alone or in combination of two or more.
 上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の無機コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の銀ナノ粒子分散体に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる銀ナノ粒子分散体が得られる。 A surfactant different from the above organic components may be added. In a multi-component solvent-based inorganic colloidal dispersion, the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying. By adding a surfactant to the silver nanoparticle dispersion of this embodiment, a silver nanoparticle dispersion that can suppress these disadvantages and form a uniform conductive film is obtained.
 本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れかを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。なかでも、少量の添加量で効果が得られるので、フッ素系界面活性剤、シリコーン系界面活性剤が好ましい。界面活性剤の含有量は少な過ぎると効果が得られず、多過ぎると被膜中で残量不純物となるため、導電性が阻害されるおそれがある。好ましい界面活性剤の含有量は、銀ナノ粒子分散体の分散媒100質量部に対して0.01~5質量部である。 The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used. For example, alkylbenzene sulfonic acid Salt, quaternary ammonium salt and the like. Of these, fluorine-based surfactants and silicone-based surfactants are preferred because an effect can be obtained with a small amount of addition. If the content of the surfactant is too small, the effect cannot be obtained. If the content is too large, the remaining amount of impurities in the coating becomes an impurity, so that the conductivity may be hindered. A preferable content of the surfactant is 0.01 to 5 parts by mass with respect to 100 parts by mass of the dispersion medium of the silver nanoparticle dispersion.
 本実施形態における銀ナノ粒子分散体においては、銀ナノ粒子の表面の少なくとも一部にアミンが付着し、更に、テルペン系樹脂が銀ナノ粒子の表面に付着しているか又は分散媒に分散(又は溶解)している。このように銀ナノ粒子の表面の少なくとも一部にアミンが付着し、かつテルペン系樹脂が何らかの形態で含まれていることで、銀ナノ粒子に種々の分散媒に対する優れた分散性と低温焼結性とを付与することができる。 In the silver nanoparticle dispersion in the present embodiment, amine is attached to at least a part of the surface of the silver nanoparticle, and the terpene resin is attached to the surface of the silver nanoparticle or dispersed in the dispersion medium (or Dissolved). In this way, amine is attached to at least a part of the surface of the silver nanoparticles, and the terpene resin is included in some form, so that the silver nanoparticles have excellent dispersibility in various dispersion media and low-temperature sintering. Can be imparted.
 本実施形態の銀ナノ粒子分散体の粘度は、1~100cpsの粘度範囲であることが望ましく、1~20cpsの粘度範囲がより好ましい。当該粘度範囲とすることにより、シリコーン樹脂上に銀ナノ粒子分散体を均一かつ薄膜状に塗布することができる。塗布する方法には汎用の塗布方法を利用することができ、アプリケータ法、バーコーター法、キャピラリーコータ法、及びスピンコーティング法等を例示することができる。 The viscosity of the silver nanoparticle dispersion of this embodiment is preferably in the viscosity range of 1 to 100 cps, and more preferably in the viscosity range of 1 to 20 cps. By setting it as the said viscosity range, a silver nanoparticle dispersion can be apply | coated uniformly and thinly on a silicone resin. A general-purpose coating method can be used as the coating method, and examples include an applicator method, a bar coater method, a capillary coater method, and a spin coating method.
 本実施形態の銀ナノ粒子分散体の粘度の調整は、固形分濃度の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。また、粘度は、振動式粘度計(例えばCBC(株)製のVM-100A-L)により測定できる。測定は振動子に液を浸漬させて行い、測定温度は常温(20~25℃)とすればよい。 The adjustment of the viscosity of the silver nanoparticle dispersion of the present embodiment can be performed by adjusting the solid content concentration, adjusting the blending ratio of each component, adding a thickener, and the like. The viscosity can be measured with a vibration viscometer (for example, VM-100A-L manufactured by CBC Corporation). The measurement is performed by immersing the liquid in the vibrator, and the measurement temperature may be normal temperature (20 to 25 ° C.).
(2)導電性インクの製造方法
 本実施形態の導電性インクを製造するためには、まず、銀ナノ粒子分散体(金属コロイド液)を調製する。ついで、この金属コロイド液と、上記各種成分とを混合することにより、本実施形態の導電性インクを得ることができる。但し、必須成分であるテルペン系樹脂は、分散媒中への後添加だけでなく、銀ナノ粒子合成前に保護分散剤として添加してもよい。
(2) Manufacturing method of conductive ink In order to manufacture the conductive ink of this embodiment, first, a silver nanoparticle dispersion (metal colloid liquid) is prepared. Subsequently, the conductive ink of this embodiment can be obtained by mixing this metal colloid liquid and the above-mentioned various components. However, the terpene resin, which is an essential component, may be added as a protective dispersant not only after the addition to the dispersion medium but also before the synthesis of the silver nanoparticles.
 なかでも、本実施形態の銀ナノ粒子分散体は、銀ナノ粒子を生成する工程と、前記銀ナノ粒子に、前記銀ナノ粒子を分散させるための酸価を有する分散剤を添加・混合する工程と、を有するものである。更には、還元により分解して金属銀を生成しうる銀化合物と、アミンと、の混合液を調整する第1前工程と、当該混合液中の前記銀化合物を還元することで表面の少なくとも一部にアミンが付着した銀ナノ粒子を生成する第2前工程と、を含むのが好ましい。 Among them, the silver nanoparticle dispersion of the present embodiment includes a step of generating silver nanoparticles and a step of adding and mixing a dispersant having an acid value for dispersing the silver nanoparticles to the silver nanoparticles. And. Furthermore, a first pre-process for preparing a mixed solution of a silver compound that can be decomposed by reduction to form metallic silver and an amine, and reducing the silver compound in the mixed solution to reduce at least one of the surfaces. And a second pre-process for producing silver nanoparticles having amine attached to the part.
 上記第1前工程においては、アミンを金属銀1molに対して2mol以上添加すること、が好ましい。アミンの添加量を金属銀1molに対して2mol以上とすることで、還元によって生成される銀ナノ粒子の表面にアミンを適量付着させることができ、当該銀ナノ粒子に種々の分散媒に対する優れた分散性と低温焼結性とを付与することができる。 In the first pre-process, it is preferable to add 2 mol or more of amine to 1 mol of metal silver. By making the addition amount of amine 2 mol or more with respect to 1 mol of metallic silver, an appropriate amount of amine can be attached to the surface of the silver nanoparticles produced by the reduction, and the silver nanoparticles are excellent for various dispersion media. Dispersibility and low-temperature sinterability can be imparted.
 なお、上記第1前工程における混合液の組成及び上記第2前工程における還元条件(例えば、加熱温度及び加熱時間等)によって、得られる銀ナノ粒子の粒径を融点降下が生じるようなナノメートルサイズとすることが好ましく、1~200nmとすることがより好ましい。ここで、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。上記第2前工程で得られる銀ナノ粒子分散体から銀ナノ粒子を取り出す方法は特に限定されないが、例えば、その銀ナノ粒子分散体の洗浄を行う方法等が挙げられる。 Note that, depending on the composition of the liquid mixture in the first pre-process and the reduction conditions in the second pre-process (for example, heating temperature, heating time, etc.), the particle size of the silver nanoparticles obtained is a nanometer that causes a melting point drop. The size is preferable, and 1 to 200 nm is more preferable. Here, particles of micrometer size may be included as necessary. The method for taking out silver nanoparticles from the silver nanoparticle dispersion obtained in the second pre-process is not particularly limited, and examples thereof include a method for washing the silver nanoparticle dispersion.
 有機物(アミン)で被覆された銀ナノ粒子を得るための出発材料としては、種々の公知の銀化合物(金属塩又はその水和物)を用いることができ、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、シュウ酸銀、ギ酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩が挙げられる。これらは還元可能なものであれば特に限定されず、適当な溶媒中に溶解させても、溶媒中に分散させたまま使用してもよい。また、これらは単独で用いても複数併用してもよい。 As a starting material for obtaining silver nanoparticles coated with an organic substance (amine), various known silver compounds (metal salts or hydrates thereof) can be used, for example, silver nitrate, silver sulfate, silver chloride And silver salts such as silver oxide, silver acetate, silver oxalate, silver formate, silver nitrite, silver chlorate, and silver sulfide. These are not particularly limited as long as they can be reduced, and may be dissolved in an appropriate solvent or may be used as dispersed in a solvent. These may be used alone or in combination.
 また、上記原料液においてこれらの銀化合物を還元する方法は特に限定されず、例えば、還元剤を用いる方法、紫外線等の光、電子線、超音波又は熱エネルギーを照射する方法、加熱する方法等が挙げられる。なかでも、操作の容易の観点から、還元剤を用いる方法が好ましい。 In addition, the method for reducing these silver compounds in the raw material liquid is not particularly limited. For example, a method using a reducing agent, a method of irradiating light such as ultraviolet rays, an electron beam, ultrasonic waves or thermal energy, a method of heating, etc. Is mentioned. Among these, a method using a reducing agent is preferable from the viewpoint of easy operation.
 上記還元剤としては、例えば、ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、フェニドン、ヒドラジン等のアミン化合物;例えば、水素化ホウ素ナトリウム、ヨウ素化水素、水素ガス等の水素化合物;例えば、一酸化炭素、亜硫酸等の酸化物;例えば、硫酸第一鉄、酸化鉄、フマル酸鉄、乳酸鉄、シュウ酸鉄、硫化鉄、酢酸スズ、塩化スズ、二リン酸スズ、シュウ酸スズ、酸化スズ、硫酸スズ等の低原子価金属塩;例えば、エチレングリコール、グリセリン、ホルムアルデヒド、ハイドロキノン、ピロガロール、タンニン、タンニン酸、サリチル酸、D-グルコース等の糖等が挙げられるが、分散媒に溶解し上記金属塩を還元し得るものであれば特に限定されない。上記還元剤を使用する場合は、光及び/又は熱を加えて還元反応を促進させてもよい。 Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide. Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc. There is no particular limitation as long as it can be reduced. When the reducing agent is used, light and / or heat may be added to promote the reduction reaction.
 上記金属塩、有機成分、溶媒及び還元剤を用いて、有機物で被覆された銀ナノ粒子を調製する具体的な方法としては、例えば、上記金属塩を有機溶媒(例えばトルエン等)に溶かして金属塩溶液を調製し、当該金属塩溶液に保護分散剤としてのアミンや酸価をもつ保護分散剤を添加し、ついで、ここに還元剤が溶解した溶液を徐々に滴下する方法等が挙げられる。 As a specific method for preparing silver nanoparticles coated with an organic substance using the metal salt, organic component, solvent, and reducing agent, for example, the metal salt is dissolved in an organic solvent (for example, toluene) to form a metal. Examples include a method in which a salt solution is prepared, an amine as a protective dispersant or a protective dispersant having an acid value is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
 上記のようにして得られたアミンや酸価をもつ保護分散剤で被覆された銀ナノ粒子を含む分散液には、銀ナノ粒子の他に、金属塩の対イオン、還元剤の残留物や分散剤が存在しており、液全体の電解質濃度や有機物濃度が高い傾向にある。このような状態の液は、電導度が高い等の理由で金属粒子の凝析が起こり、沈殿し易い。あるいは、沈殿しなくても、金属塩の対イオン、還元剤の残留物、又は分散に必要な量以上の過剰な分散剤が残留していると、導電性を悪化させるおそれがある。そこで、上記銀ナノ粒子を含む溶液を洗浄して余分な残留物を取り除くことにより、有機物で被覆された銀ナノ粒子を確実に得ることができる。 In the dispersion liquid containing silver nanoparticles coated with an amine or a protective dispersant having an acid value obtained as described above, in addition to silver nanoparticles, a counterion of a metal salt, a residue of a reducing agent, There is a dispersant, and the concentration of the electrolyte and the organic matter in the whole liquid tend to be high. The liquid in such a state is likely to precipitate due to the coagulation of the metal particles due to high electrical conductivity. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing the silver nanoparticles to remove excess residues, silver nanoparticles coated with an organic substance can be reliably obtained.
 上記洗浄方法としては、例えば、有機成分で被覆された銀ナノ粒子を含む分散液を一定時間静置し、生じた上澄み液を取り除いた上で、銀ナノ粒子を沈殿させる溶媒(例えば、水、メタノール、メタノール/水混合溶媒等)を加えて再度撹枠し、更に一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過装置やイオン交換装置等により脱塩する方法等が挙げられる。このような洗浄によって余分な残留物を取り除くと共に有機溶媒を除去することにより、本実施形態の「短鎖アミンや酸価をもつ分散剤」で被覆された金属粒子を得ることができる。 As the cleaning method, for example, a dispersion containing silver nanoparticles coated with an organic component is allowed to stand for a certain period of time, and the resulting supernatant is removed, and then a solvent that precipitates silver nanoparticles (for example, water, Methanol, a methanol / water mixed solvent, etc.) and re-stirring, and a method of repeating the process of removing the supernatant obtained by standing still for a certain period of time, a method of performing centrifugation instead of the above-mentioned standing, Examples thereof include a method of desalting with an ultrafiltration device or an ion exchange device. By removing excess residues and removing the organic solvent by such washing, metal particles coated with the “short-chain amine or the dispersant having an acid value” of the present embodiment can be obtained.
 本実施形態のうち、銀ナノ粒子分散体(銀コロイド分散液)は、上記において得たアミンや保護分散剤(上記のテルペン系樹脂の場合を含む。)で被覆された銀ナノ粒子と、上記本実施形態で説明した分散媒と、を混合することにより得られる。かかるアミンや保護分散剤で被覆された金属粒子と分散媒との混合方法は特に限定されるものではなく、攪拌機やスターラー等を用いて従来公知の方法によって行うことができる。スパチュラのようなもので撹拌したりして、適当な出力の超音波ホモジナイザーを当ててもよい。 Among the present embodiments, the silver nanoparticle dispersion (silver colloid dispersion) is a silver nanoparticle coated with the amine obtained above or a protective dispersant (including the case of the terpene resin) and the above. It is obtained by mixing the dispersion medium described in this embodiment. The mixing method of the metal particles coated with the amine or the protective dispersant and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer. An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like.
 還元により分解して金属銀を生成しうる銀化合物と、アミンと、の混合液を調整する第1工程と、当該混合液中の前記銀化合物を還元することで表面の少なくとも一部にアミンが付着した銀ナノ粒子を生成する第2工程により、銀ナノ粒子を製造してもよい。例えば、銀を含むシュウ酸銀等の銀化合物とアミンから生成される錯化合物を加熱して、当該錯化合物に含まれるシュウ酸イオン等の金属化合物を分解して生成する原子状の銀を凝集させることにより、アミンの保護膜に保護された銀粒子を製造することができる。 A first step of preparing a mixed solution of a silver compound capable of decomposing by reduction to form metallic silver and an amine, and reducing the silver compound in the mixed solution to reduce amine on at least a part of the surface Silver nanoparticles may be produced by a second step of producing attached silver nanoparticles. For example, a silver compound such as silver oxalate containing silver and a complex compound produced from an amine are heated to agglomerate atomic silver produced by decomposing a metal compound such as oxalate ion contained in the complex compound By doing so, silver particles protected by an amine protective film can be produced.
 このように、銀化合物の錯化合物をアミンの存在下で熱分解することで、アミンにより被覆された銀ナノ粒子を製造する金属アミン錯体分解法においては、単一種の分子である銀アミン錯体の分解反応により原子状銀が生成するため、反応系内に均一に原子状銀を生成することが可能であり、複数の成分間の反応により銀原子を生成する場合に比較して、反応を構成する成分の組成揺らぎに起因する反応の不均一が抑制され、特に工業的規模で多量の銀粉末を製造する際に有利である。 Thus, in the metal amine complex decomposition method for producing silver nanoparticles coated with amine by thermally decomposing a silver compound complex compound in the presence of amine, the silver amine complex which is a single type of molecule is decomposed. Since atomic silver is generated by the decomposition reaction, it is possible to generate atomic silver uniformly in the reaction system, and the reaction is composed compared to the case of generating silver atoms by reaction between multiple components. Inhomogeneity of the reaction due to fluctuations in the composition of the components to be controlled is suppressed, which is particularly advantageous when producing a large amount of silver powder on an industrial scale.
 また、金属アミン錯体分解法においては、生成する銀原子にアミン分子が配位結合しており、当該銀原子に配位したアミン分子の働きにより凝集を生じる際の銀原子の運動がコントロールされるものと推察される。この結果として、金属アミン錯体分解法によれば非常に微細で、粒度分布が狭い金属粒子を製造することが可能となる。 In the metal amine complex decomposition method, an amine molecule is coordinated to the silver atom to be generated, and the movement of the silver atom during aggregation is controlled by the action of the amine molecule coordinated to the silver atom. Inferred. As a result, according to the metal amine complex decomposition method, it is possible to produce metal particles that are very fine and have a narrow particle size distribution.
 更に、製造される銀ナノ粒子の表面にも多数のアミン分子が比較的弱い力の配位結合を生じており、これらが銀ナノ粒子の表面に緻密な保護被膜を形成するため、保存安定性に優れる表面の清浄な被覆銀ナノ粒子を製造することが可能となる。また、当該被膜を形成するアミン分子は加熱等により容易に脱離可能であるため、非常に低温で焼結可能な銀ナノ粒子を製造することが可能となる。 In addition, a large number of amine molecules form a relatively weak coordination bond on the surface of the silver nanoparticles to be produced, and these form a dense protective film on the surface of the silver nanoparticles. It is possible to produce coated silver nanoparticles having a clean surface with excellent surface roughness. In addition, since the amine molecules forming the film can be easily detached by heating or the like, silver nanoparticles that can be sintered at a very low temperature can be produced.
 また、固体状の銀化合物とアミンを混合して錯化合物等の複合化合物が生成する際に、被覆銀ナノ粒子の被膜を構成する酸価をもつ分散剤に対して、アミンを混合して用いることにより、錯化合物等の複合化合物の生成が容易になり、短時間の混合で複合化合物を製造可能となる。また、当該アミンを混合して用いることにより、各種の用途に応じた特性を有する被覆銀ナノ粒子の製造が可能である。 In addition, when a solid silver compound and an amine are mixed to form a complex compound such as a complex compound, the amine is mixed with the dispersant having an acid value constituting the coating of the coated silver nanoparticles. This facilitates the generation of a complex compound such as a complex compound, and the complex compound can be produced by mixing in a short time. In addition, by mixing and using the amine, coated silver nanoparticles having characteristics corresponding to various applications can be produced.
(3)導電層(導電膜)パターン及びその製造方法
 本実施形態の導電性インクを用いれば、上記導電性インクを基材に塗布する導電性インク塗布工程と、前記基材に塗布した前記導電性インクを140℃未満(好ましくは120℃以下)の温度で焼成して導電膜パターンを形成する導電膜パターン形成工程と、により、基材と、前記基材の表面の少なくとも一部に形成される導電膜パターンと、を含む導電膜パターン付基板を製造することができる。
(3) Conductive layer (conductive film) pattern and manufacturing method thereof When the conductive ink of this embodiment is used, a conductive ink application step of applying the conductive ink to a substrate, and the conductive material applied to the substrate. Formed on at least a part of the substrate and the surface of the substrate by a conductive film pattern forming step of baking a conductive ink at a temperature of less than 140 ° C. (preferably 120 ° C. or less) to form a conductive film pattern. A conductive film pattern-containing substrate can be manufactured.
 本発明者は、鋭意検討を重ねた結果、前記導電性インク塗布工程での導電性インクとして、上述した本実施形態の導電性インクを用いれば、導電膜パターン形成工程において、前記基材に塗布した前記導電性インクを140℃未満の温度で焼成しても、優れた導電性を有する導電膜パターンが確実に得られることを見出した。 As a result of intensive studies, the present inventor applied the conductive ink of the present embodiment described above as the conductive ink in the conductive ink application step, and applied it to the substrate in the conductive film pattern formation step. It has been found that a conductive film pattern having excellent conductivity can be reliably obtained even when the conductive ink is baked at a temperature of less than 140 ° C.
 本実施形態の導電性インクを転写印刷用とする場合、転写印刷法のうちの反転印刷法においては、まず、ブランケット上に転写印刷用導電性インクを塗布して導電性インク塗布面を形成する。ブランケットとしては、シリコーンからなるシリコーンブランケットが好ましい。ブランケットの表面に導電性インク塗布面を形成した後、所定時間放置することにより、低沸点溶剤が揮発およびブランケット中に吸収されることにより導電性インクの粘度が上昇する。 When the conductive ink of the present embodiment is used for transfer printing, in the reverse printing method among the transfer printing methods, first, the conductive ink application surface is formed on the blanket by applying the transfer printing conductive ink. . As the blanket, a silicone blanket made of silicone is preferable. By forming the conductive ink application surface on the surface of the blanket and leaving it for a predetermined time, the low boiling point solvent volatilizes and is absorbed into the blanket, thereby increasing the viscosity of the conductive ink.
 上記導電性インク塗布面に所定のパターンに応じた版が形成された凸版を押圧すると、当該凸版に接触する部分の導電性インクがブランケット上から除去される。このとき、導電性インクが適度な凝集性を有することにより、導電性インクが構造破壊すること無しにブランケットからの剥離と、凸版への付着とが確実に行われ、ブランケットへの望ましくない残留が抑制される。この結果、ブランケット上に残った導電性インクにより、凸版のパターンに応じた導電性インクのパターンがブランケット上に形成される。 When a relief plate having a plate corresponding to a predetermined pattern is pressed on the conductive ink application surface, the portion of the conductive ink that contacts the relief plate is removed from the blanket. At this time, since the conductive ink has an appropriate cohesiveness, the conductive ink is surely peeled off from the blanket and adhered to the relief plate without structural destruction, and undesirable residue on the blanket is prevented. It is suppressed. As a result, the conductive ink remaining on the blanket forms a conductive ink pattern corresponding to the relief pattern on the blanket.
 ブランケット上に残ったウェット状態もしくは半乾燥状態の導電性インクを、被印刷体に転写する。この際、導電性インクが適度な凝集性を有することにより、ブランケットからの剥離と、被印刷体への付着とが確実に行われ、ブランケットへの望ましくない残留が抑制される。この結果、被印刷体には、凸版に形成されたパターンに対して反転したパターンにより導電膜パターンが形成される。 Transfer the wet or semi-dried conductive ink remaining on the blanket to the substrate. At this time, since the conductive ink has appropriate cohesiveness, peeling from the blanket and adhesion to the printing medium are surely performed, and undesirable residue on the blanket is suppressed. As a result, a conductive film pattern is formed on the substrate to be printed by a pattern inverted with respect to the pattern formed on the relief plate.
 本実施形態において用いることのできる基材としては、導電性インクを塗布して加熱により焼成して導電膜パターンを搭載することのできる、少なくとも1つの主面を有するものであれば、特に制限はないが、耐熱性に優れた基材であるのが好ましい。また、先に述べたように、本実施形態の転写印刷用導電性インクは、従来の導電性インクに比較して低い温度で加熱して焼成しても十分な導電性を有する導電膜パターンを得ることができるため、この低い焼成温度よりも高い温度範囲で、従来よりも耐熱温度の低い基材を用いることが可能である。 The substrate that can be used in the present embodiment is not particularly limited as long as it has at least one main surface on which a conductive ink can be applied and fired by heating to mount a conductive film pattern. Although it is not, it is preferable that it is a base material excellent in heat resistance. In addition, as described above, the conductive ink for transfer printing of this embodiment has a conductive film pattern that has sufficient conductivity even when heated and baked at a lower temperature than conventional conductive inks. Since it can be obtained, it is possible to use a substrate having a lower heat-resistant temperature than the conventional one in a temperature range higher than this low firing temperature.
 このような基材を構成する材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミックス、ガラス又は金属等を挙げることができる。また、基材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、表面層が形成された基材や親水化処理等の表面処理を施した基材を用いてもよい。 Examples of the material constituting such a base material include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and the like. Polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass or metal can be used. Further, the substrate may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. In order to improve adhesiveness or adhesion, or for other purposes, a substrate on which a surface layer is formed or a substrate that has been subjected to a surface treatment such as a hydrophilic treatment may be used.
 上記のように塗布した後の塗膜を、140℃未満(好ましくは120℃以下)の温度に加熱することにより焼成し、本実施形態の導電膜パターン(導電膜パターン付基材)を得ることができる。焼成を行う方法は特に限定されるものではなく、例えば従来公知のギアオーブン等を用いて、基材上に塗布または描画した上記導電性インクの温度が140℃未満(好ましくは120℃以下)となるように焼成することによって導電膜パターンを形成することができる。上記焼成の温度の下限は必ずしも限定されず、基材上に導電膜パターンを形成できる温度であって、かつ、本発明の効果を損なわない範囲で上記有機成分等を蒸発又は分解により除去できる温度であることが好ましい(本発明の効果を損なわない範囲で一部が残存していてもよいが、望ましくは全て除去されるのが好ましい。)。 The coating film after coating as described above is baked by heating to a temperature of less than 140 ° C. (preferably 120 ° C. or less) to obtain the conductive film pattern (substrate with a conductive film pattern) of this embodiment. Can do. The method for firing is not particularly limited. For example, the temperature of the conductive ink applied or drawn on the substrate using a conventionally known gear oven or the like is less than 140 ° C. (preferably 120 ° C. or less). The conductive film pattern can be formed by firing so as to be. The lower limit of the firing temperature is not necessarily limited, and is a temperature at which a conductive film pattern can be formed on a substrate, and a temperature at which the organic components and the like can be removed by evaporation or decomposition within a range that does not impair the effects of the present invention. (A part may remain within a range that does not impair the effects of the present invention, but it is desirable that all be removed desirably).
 本実施形態の導電性インクによれば、120℃程度の低温加熱処理でも高い導電性を発現する導電膜パターンを形成することができるため、比較的熱に弱い基材上にも導電膜パターンを形成することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、基材上に導電膜パターンを形成できる。 According to the conductive ink of the present embodiment, a conductive film pattern exhibiting high conductivity can be formed even by a low-temperature heat treatment at about 120 ° C. Therefore, the conductive film pattern is also formed on a relatively heat-sensitive substrate. Can be formed. Moreover, baking time is not specifically limited, A conductive film pattern can be formed on a base material according to baking temperature.
 本実施形態においては、基本的には不要であるが、上記基材と導電膜パターンとの密着性を更に高めるため、上記基材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性インク受容層を設ける方法等が挙げられる。 In the present embodiment, although basically unnecessary, surface treatment of the base material may be performed in order to further improve the adhesion between the base material and the conductive film pattern. Examples of the surface treatment method include a method of performing a dry treatment such as a corona treatment, a plasma treatment, a UV treatment, and an electron beam treatment, and a method of previously providing a primer layer and a conductive ink receiving layer on a substrate.
 このようにして本実施形態の導電膜パターン(導電膜パターン付基材)を得ることができる。このようにして得られる本実施形態の導電膜パターンは、例えば、0.1~5μm程度、より好ましくは0.1~1μmである。本実施形態の導電性インクを用いれば、厚さが0.1~5μm程度であっても、十分な導電性を有する導電膜パターンが得られる。なお、本実施形態の導電膜パターンの体積抵抗値は、15μΩ・cm以下である。 Thus, the conductive film pattern (substrate with conductive film pattern) of this embodiment can be obtained. The conductive film pattern of the present embodiment thus obtained is, for example, about 0.1 to 5 μm, more preferably 0.1 to 1 μm. When the conductive ink of this embodiment is used, a conductive film pattern having sufficient conductivity can be obtained even when the thickness is about 0.1 to 5 μm. In addition, the volume resistance value of the electrically conductive film pattern of this embodiment is 15 microhm * cm or less.
 なお、本実施形態の導電膜パターンの厚みtは、例えば、下記式を用いて求めることはできる(導電膜パターンの厚さtは、レーザー顕微鏡(例えば、キーエンス製レーザー顕微鏡VK-9510)で測定することも可能である。)。
   式:t=m/(d×M×w)
m:導電膜パターン重量(スライドガラス上に形成した導電膜パターンの重さを電子天秤で測定)
d:導電膜パターン密度(g/cm)(銀の場合は10.5g/cm
M:導電膜パターン長(cm)(スライドガラス上に形成した導電膜パターンの長さをJIS1級相当のスケールで測定)
w:導電膜パターン幅(cm)(スライドガラス上に形成した導電膜パターンの幅をJIS1級相当のスケールで測定)
In addition, the thickness t of the conductive film pattern of the present embodiment can be obtained using, for example, the following formula (the thickness t of the conductive film pattern is measured with a laser microscope (for example, a laser microscope VK-9510 manufactured by Keyence). It is also possible to do this.)
Formula: t = m / (d × M × w)
m: conductive film pattern weight (the weight of the conductive film pattern formed on the slide glass is measured with an electronic balance)
d: Conductive film pattern density (g / cm 3 ) (10.5 g / cm 3 in the case of silver)
M: conductive film pattern length (cm) (the length of the conductive film pattern formed on the slide glass is measured on a scale equivalent to JIS class 1)
w: Conductive film pattern width (cm) (The width of the conductive film pattern formed on the slide glass is measured on a scale equivalent to JIS class 1)
 以下、実施例及び比較例を挙げて本発明の導電性インク及び当該導電性インクを用いた導電膜パターン(導電膜パターン付基材)の製造方法について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, although the Example and a comparative example are given and the manufacturing method of the electrically conductive ink of this invention and the electrically conductive film pattern (base material with an electrically conductive film pattern) using the said electrically conductive ink is further demonstrated, this invention is these implementation. It is not limited to examples.
≪実施例1≫
 ブチルアミン(和光純薬工業(株)製試薬一級、炭素数:4)1.7gと、ヘキシルアミン(和光純薬工業(株)製試薬一級、炭素数:6)3.5gと高分子分散剤であるSOLSPERSE21000(日本ルーブリゾール(株)製)を0.2gと、を混合し、マグネティックスターラーにてよく撹拌してアミン混合液を調製した。次いで、撹拌を行いながら、シュウ酸銀3.0gを添加した。シュウ酸銀の添加後、室温で攪拌を続けることでシュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で撹拌を終了した(第1工程)。
 得られた混合液をオイルバスに移し、120℃で加熱撹拌を行った。撹拌の開始直後に二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで撹拌を行うことで、銀微粒子がアミン混合物中に懸濁した懸濁液を得た(第2工程)。
 次に、当該懸濁液の分散媒を置換するため、メタノールとアセトンの混合溶媒10mLを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、分離した銀微粒子に対してアセトン10mLを加え、撹拌、遠心分離を行うことで銀微粒子を沈殿させて分離し、ジヒドロターピニルアセテート1.5gにテルペン樹脂YSレジンPX1150(ヤスハラケミカル(株)製・軟化点115±5℃)を0.04g(銀固形分に対して2.0重量%)加え混合溶解させたものに分散させ銀ナノ粒子分散体1を得た。
Example 1
1.7 g of butylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4) and hexylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 6) 3.5 g and polymer dispersant SOLSPERSE21000 (manufactured by Nippon Lubrizol Co., Ltd.) was mixed with 0.2 g, and stirred well with a magnetic stirrer to prepare an amine mixture. Next, 3.0 g of silver oxalate was added while stirring. After the addition of silver oxalate, stirring was continued at room temperature to change the silver oxalate to a viscous white substance, and stirring was terminated when the change was found to be apparently finished (first step) ).
The obtained mixed solution was transferred to an oil bath and heated and stirred at 120 ° C. The reaction with the generation of carbon dioxide started immediately after the start of stirring, and then stirring was performed until the generation of carbon dioxide was completed, thereby obtaining a suspension in which silver fine particles were suspended in the amine mixture (No. 1). 2 steps).
Next, in order to replace the dispersion medium of the suspension, 10 mL of a mixed solvent of methanol and acetone is added and stirred, and then silver fine particles are precipitated and separated by centrifugation, and 10 mL of acetone is added to the separated silver fine particles. In addition, silver fine particles are precipitated and separated by stirring and centrifuging, and terpene resin YS resin PX1150 (manufactured by Yasuhara Chemical Co., Ltd., softening point 115 ± 5 ° C.) is added to 1.5 g of dihydroterpinyl acetate. 04 g (2.0% by weight with respect to the solid content of silver) was added and mixed and dissolved to obtain a silver nanoparticle dispersion 1.
[評価試験]
 得られた銀ナノ粒子分散体1について、分散性、希釈性(直後、経時安定性)、体積抵抗値、密着性試験(プルオフ法)の評価を行った。なお、導電性被膜の焼成条件はいずれも120℃×30分間とした。
[Evaluation test]
The obtained silver nanoparticle dispersion 1 was evaluated for dispersibility, dilutability (immediately, stability over time), volume resistance, and adhesion test (pull-off method). The firing conditions for the conductive coating were all 120 ° C. × 30 minutes.
(1)分散性
 銀ナノ粒子分散体1を容器中に静置し、室温1日後、沈殿の有無及び上澄みの状態を目視で観察することにより、分散性を評価した。容器下に沈降物がほとんど認められない場合を「○」、沈降物が少量認められた場合を「△」、容器上下で明らかに濃度差があり、沈降物がはっきり認められる場合を「×」と評価した。結果を表1に示した。
(1) Dispersibility The silver nanoparticle dispersion 1 was allowed to stand in a container, and after 1 day at room temperature, the presence or absence of precipitation and the state of the supernatant were visually observed to evaluate dispersibility. “○” when almost no sediment is observed under the container, “△” when a small amount of sediment is observed, and “×” when there is a clear difference in concentration between the top and bottom of the container and sediment is clearly observed. It was evaluated. The results are shown in Table 1.
(2)希釈性
 銀ナノ粒子分散体1を分散媒に100倍希釈したときの分散性を目視で評価した。分散した場合を「○」、一部凝集や銀鏡が見られた場合を「△」、凝集・沈殿が生じた場合を「×」と評価した。
(2) Dilutability Dispersibility when the silver nanoparticle dispersion 1 was diluted 100 times in a dispersion medium was visually evaluated. The case where the particles were dispersed was evaluated as “◯”, the case where partial aggregation or a silver mirror was observed was evaluated as “Δ”, and the case where aggregation / precipitation occurred was evaluated as “×”.
(3)体積抵抗値
 銀ナノ粒子分散体1をスライドガラスに刷毛塗りして塗膜を形成し、ギヤオーブン中で120℃×30分間の条件で加熱・焼成することにより焼結させ、導電性被膜を形成した。この被膜の体積抵抗値を、横川メータ&インスツルメンツ(株)製の直流精密測定器「携帯用ダブルブリッジ2769」を用いて測定した。具体的には、以下の式に基づき、測定端子間距離と導電性被膜の厚みから体積抵抗値を換算した。体積抵抗値が20μΩ・cm以下の場合を「○」、30μΩ・cm以下の場合を「△」、それ以上の値の場合は「×」と評価した。結果を表1に示した。
   式:(体積抵抗値ρv)=
(抵抗値R)×(被膜幅w)×(被膜厚さt)/(端子間距離L)
(3) Volume resistance value The silver nanoparticle dispersion 1 is brush-coated on a slide glass to form a coating film, which is then sintered by heating and firing in a gear oven at 120 ° C. for 30 minutes. A film was formed. The volume resistance value of this film was measured using a DC precision measuring instrument “portable double bridge 2769” manufactured by Yokogawa Meter & Instruments Co., Ltd. Specifically, based on the following formula, the volume resistance value was converted from the distance between the measurement terminals and the thickness of the conductive coating. The case where the volume resistance value was 20 μΩ · cm or less was evaluated as “◯”, the case where it was 30 μΩ · cm or less was evaluated as “Δ”, and the case where the volume resistance value was higher was evaluated as “X”. The results are shown in Table 1.
Formula: (Volume resistance value ρv) =
(Resistance value R) × (film width w) × (film thickness t) / (terminal distance L)
(4)密着性試験
 銀ナノ粒子分散体1を2.5cm角のスライドガラス上にスピンコート(2000rpm/20sec)によって塗膜を形成し、ギヤオーブン中で120℃×30分間の条件で加熱・焼成することにより焼結させ、導電性被膜を形成した。付着性試験としてプルオフ法によってガラス基板上の薄膜にセロテープを貼り付け、引き剥がした結果の破断状況で評価した。スライドガラス5枚を使い5枚の被膜付きサンプルを作製し5枚それぞれセロテープを皮膜に強くこすりつけ垂直方向に強く引き剥がして評価した。剥離枚数が0~1枚の場合を「○」、2~3枚の場合を「△」、4~5枚の場合を「×」とし全剥離でなく部分的な剥離であっても剥離したものとし1枚として数えた。結果を表1に示した。
(4) Adhesion test A silver nanoparticle dispersion 1 was formed on a 2.5 cm square glass slide by spin coating (2000 rpm / 20 sec) and heated in a gear oven at 120 ° C. for 30 minutes. The conductive film was formed by sintering by firing. As an adhesion test, the tape was attached to the thin film on the glass substrate by the pull-off method, and evaluation was performed based on the rupture state as a result of peeling. Five slide-coated samples were prepared using five slide glasses, and each of the five sheets was strongly rubbed against the film and peeled off in the vertical direction for evaluation. The case where the number of peeled sheets was 0 to 1 was “O”, the case of 2 to 3 was “△”, and the case of 4 to 5 was “X”, and even if it was partial peeling instead of full peeling I counted it as one. The results are shown in Table 1.
(5)銀ナノ粒子分散液中の樹脂量測定(樹脂分測定)
 銀ナノ粒子分散体1に含まれる有機成分の含有量を、熱重量分析法で測定した。具体的には、銀ナノ粒子分散体の固形分を10℃/分間の昇温速度で加熱し、200~500℃の重量減少量として樹脂成分の含有量を高分子分散剤の重量損失分を差し引いて特定した。結果を表1に示した。
(5) Measurement of resin content in silver nanoparticle dispersion (resin content measurement)
The content of the organic component contained in the silver nanoparticle dispersion 1 was measured by thermogravimetric analysis. Specifically, the solid content of the silver nanoparticle dispersion is heated at a rate of temperature increase of 10 ° C./min, and the weight loss of 200 to 500 ° C. is used to determine the resin component content and the weight loss of the polymer dispersant Deducted and specified. The results are shown in Table 1.
≪実施例2≫
 YSレジンPX1150の代わりに、テルペンフェノール樹脂YSポリスターT160(ヤスハラケミカル(株)製・軟化点160±5℃)を0.04g(銀固形分に対して2.0重量%)を用いたこと以外は、実施例1と同様にして銀ナノ粒子分散液2を調製して評価試験を行った。結果を表1に示した。
<< Example 2 >>
Instead of using YS resin PX1150, 0.04 g of terpene phenol resin YS Polystar T160 (manufactured by Yashara Chemical Co., Ltd., softening point 160 ± 5 ° C.) (2.0% by weight based on silver solid content) was used. In the same manner as in Example 1, a silver nanoparticle dispersion liquid 2 was prepared and evaluated. The results are shown in Table 1.
≪実施例3≫
 YSレジンPX1150の代わりに、変性テルペン樹脂YSレジンTO115(ヤスハラケミカル(株)製・軟化点115±5℃)を0.04g(銀固形分に対して2.0重量%)用いたこと以外は、実施例1と同様にして銀ナノ粒子分散液3を調製して評価試験を行った。結果を表1に示した。
Example 3
Instead of using YS resin PX1150, 0.04 g of modified terpene resin YS resin TO115 (manufactured by Yasuhara Chemical Co., Ltd., softening point 115 ± 5 ° C.) (2.0% by weight based on silver solid content) was used. In the same manner as in Example 1, a silver nanoparticle dispersion 3 was prepared and evaluated. The results are shown in Table 1.
≪実施例4≫
 YSレジンPX1150の代わりに、テルペン樹脂YSレジンPX1000(ヤスハラケミカル(株)製・軟化点100±5℃)を0.04g(銀固形分に対して2.0重量%)用いたこと以外は、実施例1と同様にして銀ナノ粒子分散液4を調製して評価試験を行った。結果を表1に示した。
Example 4
Implemented except that 0.04 g (2.0% by weight based on silver solid content) of terpene resin YS resin PX1000 (manufactured by Yashara Chemical Co., Ltd., softening point 100 ± 5 ° C.) was used instead of YS resin PX1150. In the same manner as in Example 1, a silver nanoparticle dispersion 4 was prepared and evaluated. The results are shown in Table 1.
≪実施例5≫
 YSレジンPX1150の代わりに、テルペン系淡色ロジンエステルKE-311(荒川化学工業(株)製・軟化点95±5℃)を0.04g(銀固形分に対して2.0重量%)用いたこと以外は実施例1と同様にして銀ナノ粒子分散液5を調製して評価試験を行った。結果を表1に示した。
Example 5
Instead of YS resin PX1150, 0.04 g (2.0% by weight based on silver solid content) of terpene light-colored rosin ester KE-311 (Arakawa Chemical Industries, softening point 95 ± 5 ° C.) was used. Except for this, a silver nanoparticle dispersion 5 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 1.
≪実施例6≫
 KE-311の代わりに、テルペン系ロジン樹脂KE-604(荒川化学工業(株)製・軟化点129±5℃)を0.04g(銀固形分に対して2.0重量%)用いたこと以外は実施例5と同様にして銀ナノ粒子分散液6を調製して評価試験を行った。結果を表1に示した。
Example 6
Instead of KE-311, 0.04 g of terpene-based rosin resin KE-604 (Arakawa Chemical Industries, softening point 129 ± 5 ° C.) was used (2.0 wt% based on silver solid content). A silver nanoparticle dispersion liquid 6 was prepared in the same manner as in Example 5 except that the evaluation test was performed. The results are shown in Table 1.
≪実施例7≫
 ブチルアミン(和光純薬工業(株)製試薬一級、炭素数:4)1.7gと、ヘキシルアミン(和光純薬工業(株)製試薬一級、炭素数:6)3.5gと高分子分散剤であるSOLSPERSE21000(日本ルーブリゾール(株)製)を0.2gとテルペン樹脂YSレジンPX1150(ヤスハラケミカル(株)製・軟化点115±5℃)を0.08g(銀固形分に対して4.0重量%)を加え混合し、マグネティックスターラーにてよく撹拌してアミン混合液を生成した。次いで、撹拌を行いながら、シュウ酸銀3.0gを添加した。シュウ酸銀の添加後、室温で攪拌を続けることでシュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で撹拌を終了した(第1工程)。
 得られた混合液をオイルバスに移し、120℃で加熱撹拌を行った。撹拌の開始直後に二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで撹拌を行うことで、銀ナノ粒子がアミン混合物中に懸濁した懸濁液を得た(第2工程)。
 次に、当該懸濁液の分散媒を置換するため、メタノールとアセトンの混合溶媒10mLを加えて撹拌後、遠心分離により銀ナノ粒子を沈殿させて分離し、分離した銀ナノ粒子に対してアセトン10mLを加え、撹拌、遠心分離を行うことで銀ナノ粒子を沈殿させて分離し、ジヒドロターピニルアセテート1.5gに分散させ銀ナノ粒子分散液7を得た。実施例1と同様にして評価試験を行い、結果を表1に示した。
Example 7
1.7 g of butylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 4) and hexylamine (Wako Pure Chemical Industries, Ltd., first grade reagent, carbon number: 6) 3.5 g and polymer dispersant SOLSPERSE21000 (manufactured by Nippon Lubrizol Co., Ltd.) and 0.08 g of terpene resin YS resin PX1150 (manufactured by Yasuhara Chemical Co., Ltd., softening point 115 ± 5 ° C.) (4.0 based on silver solid content) (% By weight) was added and mixed, and stirred well with a magnetic stirrer to produce an amine mixture. Next, 3.0 g of silver oxalate was added while stirring. After the addition of silver oxalate, stirring was continued at room temperature to change the silver oxalate to a viscous white substance, and stirring was terminated when the change was found to be apparently finished (first step) ).
The obtained mixed solution was transferred to an oil bath and heated and stirred at 120 ° C. The reaction with the generation of carbon dioxide started immediately after the start of stirring, and then stirring was performed until the generation of carbon dioxide was completed, thereby obtaining a suspension in which silver nanoparticles were suspended in the amine mixture ( Second step).
Next, in order to replace the dispersion medium of the suspension, 10 mL of a mixed solvent of methanol and acetone is added and stirred, and then silver nanoparticles are precipitated and separated by centrifugation, and acetone is separated from the separated silver nanoparticles. By adding 10 mL, stirring and centrifuging, silver nanoparticles were precipitated and separated, and dispersed in 1.5 g of dihydroterpinyl acetate to obtain silver nanoparticle dispersion liquid 7. An evaluation test was conducted in the same manner as in Example 1, and the results are shown in Table 1.
≪実施例8≫
 配合時にSOLSPERSE21000を用いないこと以外は、実施例7と同様にして銀ナノ粒子分散液8を調製して評価試験を行った。結果を表1に示した。
Example 8
A silver nanoparticle dispersion liquid 8 was prepared and evaluated in the same manner as in Example 7 except that SOLPERSE21000 was not used at the time of blending. The results are shown in Table 1.
≪実施例9≫
 配合時にテルペン樹脂YSレジンPX1150を0.20g(銀固形分に対して10.0重量%)用いたこと以外は、実施例7と同様にして銀ナノ粒子分散液9を調製して評価試験を行った。結果を表1に示した。
Example 9
A silver nanoparticle dispersion 9 was prepared in the same manner as in Example 7 except that 0.20 g of terpene resin YS resin PX1150 (10.0% by weight with respect to the silver solid content) was used at the time of blending. went. The results are shown in Table 1.
≪実施例10≫
 YSレジンPX1150を0.02g(銀固形分に対して1.0重量%)を用いたこと以外は、実施例7と同様にして銀ナノ粒子分散液10を調製して評価試験を行った。結果を表1に示した。
Example 10
A silver nanoparticle dispersion liquid 10 was prepared and evaluated in the same manner as in Example 7 except that 0.02 g of YS resin PX1150 (1.0% by weight based on the silver solid content) was used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
≪比較例1≫
 配合時に高分子分散剤であるSOLSPERSE21000とテルペン樹脂YSレジンPX1150を加えないこと以外は、実施例7と同様にして合成を行ったが、銀ナノ粒子分散液を得ることができなかった。
≪Comparative example 1≫
Synthesis was performed in the same manner as in Example 7 except that SOLSPERSE21000 which is a polymer dispersant and terpene resin YS resin PX1150 were not added at the time of blending, but a silver nanoparticle dispersion liquid could not be obtained.
≪比較例2≫
 配合時にテルペン樹脂YSレジンPX1150を加えないこと以外は、実施例8と同様にして銀ナノ粒子分散液11を調製して評価試験を行った。結果を表2に示した。
≪Comparative example 2≫
A silver nanoparticle dispersion liquid 11 was prepared and evaluated in the same manner as in Example 8 except that the terpene resin YS resin PX1150 was not added at the time of blending. The results are shown in Table 2.
≪比較例3≫
 ジヒドロターピニルアセテート1.5gに加える樹脂をポリエステル樹脂溶液であるアラキード7046(荒川化学工業(株)製)を固形分換算で0.04g(銀固形分に対して2.0重量%)に変更したこと以外は、実施例1と同様にして銀ナノ粒子分散液12を調製して評価試験を行った。結果を表2に示した。
«Comparative Example 3»
The resin added to 1.5 g of dihydroterpinyl acetate is 0.04 g (2.0% by weight with respect to the silver solid content) of Arachid 7046 (Arakawa Chemical Industry Co., Ltd.), which is a polyester resin solution, in terms of solid content. A silver nanoparticle dispersion liquid 12 was prepared in the same manner as in Example 1 except that the change was made, and an evaluation test was performed. The results are shown in Table 2.
≪比較例4≫
 ジヒドロターピニルアセテート1.5gに加える樹脂をウレタン変性アクリルポリマー溶液であるアクリット8UA-140(大成ファインケミカル(株)製)を固形分換算で0.04g(銀固形分に対して2.0重量%)に変更したこと以外は、実施例1と同様にして銀ナノ粒子分散液13を調製して評価試験を行った。結果を表2に示した。
<< Comparative Example 4 >>
Acrylate 8UA-140 (made by Taisei Fine Chemical Co., Ltd.), which is a urethane-modified acrylic polymer solution, is added to 1.5 g of dihydroterpinyl acetate, 0.04 g in terms of solid content (2.0 weight based on silver solid content) %) Except that the silver nanoparticle dispersion liquid 13 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.
≪比較例5≫
 ジヒドロターピニルアセテート1.5gに加える樹脂をテルペン樹脂YSレジンPX800(ヤスハラケミカル(株)製・軟化点80±5℃)を固形分換算で0.04g(銀固形分に対して2.0重量%)に変更したこと以外は、実施例1と同様にして銀ナノ粒子分散液14を調製して評価試験を行った。結果を表2に示した。
<< Comparative Example 5 >>
The resin added to 1.5 g of dihydroterpinyl acetate is 0.04 g of terpene resin YS resin PX800 (manufactured by Yashara Chemical Co., Ltd., softening point 80 ± 5 ° C.) in terms of solid content (2.0 weight based on silver solid content) %) Except that the silver nanoparticle dispersion liquid 14 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.
≪比較例6≫
 ジヒドロターピニルアセテート1.5gに加える樹脂をテルペン樹脂YSレジンPX300N(ヤスハラケミカル(株)製・軟化点30±5℃)を固形分換算で0.04g(銀固形分に対して2.0重量%)に変更したこと以外は、実施例1と同様にして銀ナノ粒子分散液15を調製して評価試験を行った。結果を表2に示した。
<< Comparative Example 6 >>
The resin added to 1.5 g of dihydroterpinyl acetate is 0.04 g of terpene resin YS resin PX300N (manufactured by Yasuhara Chemical Co., Ltd., softening point 30 ± 5 ° C.) in terms of solid content (2.0 weight based on silver solid content) %) Except that the silver nanoparticle dispersion liquid 15 was prepared in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~6よりテルペン系樹脂であれば(ピネン重合体、テルペンフェノール樹脂、ロジン、ロジンエステル等幅広く適用可能であることがわかる。また、実施例8より高分子分散剤と併用する事が好ましいが、テルペン系樹脂を合成時に加えておけばナノ粒子を合成できることがわかる。なお、比較例1では、高分子分散剤及びテルペン系樹脂の両方が無いためナノ粒子を合成ができなかった。
 また、実施例9より銀固形分に対してのテルペン樹脂配合量が10質量%以下であれば導通が可能であることがわかる。 
From Examples 1 to 6, it can be seen that terpene resins (pinene polymer, terpene phenol resin, rosin, rosin ester, etc. can be widely applied. In Example 8, it can be used in combination with a polymer dispersant. Although it is preferable, it can be seen that nanoparticles can be synthesized by adding a terpene resin at the time of synthesis, and it was not possible to synthesize nanoparticles in Comparative Example 1 because both the polymer dispersant and the terpene resin were absent.
Moreover, it turns out that conduction | electrical_connection is possible from Example 9 if the terpene resin compounding quantity with respect to silver solid content is 10 mass% or less.
 更に、実施例7~9より、分散媒に後添加しなくても、ナノ粒子形成時に保護分散剤としてテルペン系樹脂を用いること(銀ナノ粒子表面に付着)でも効果が得られることがわかった。 Furthermore, from Examples 7 to 9, it was found that the effect can also be obtained by using a terpene resin as a protective dispersant (adhering to the surface of the silver nanoparticles) at the time of nanoparticle formation without being added to the dispersion medium. .
 また、比較例2よりテルペン系樹脂を用いなかった場合はガラス基材に密着しないこと、更に、比較例3及び4よりポリエステル樹脂やアクリル樹脂等のテルペン系樹脂以外の樹脂を入れても密着性と導電性は両立しないことがわかる。比較例5及び6よりテルペン系樹脂の軟化点が90℃を下回れば密着性が発現しないこともわかる。
 
 

 
Moreover, when a terpene resin is not used from Comparative Example 2, it does not adhere to the glass substrate. Furthermore, even if a resin other than a terpene resin such as a polyester resin or an acrylic resin is added from Comparative Examples 3 and 4, adhesion is achieved. And conductivity are not compatible. It can also be seen from Comparative Examples 5 and 6 that if the softening point of the terpene resin is lower than 90 ° C., the adhesion is not expressed.



Claims (4)

  1.  銀ナノ粒子と、
     分散媒と、
     前記銀ナノ粒子の表面に付着するか、又は、前記分散媒中に含まれる、軟化点90℃以上のテルペン系樹脂と、を含むこと
    を特徴とする導電性インク。
    Silver nanoparticles,
    A dispersion medium;
    A conductive ink comprising: a terpene resin having a softening point of 90 ° C. or higher, which adheres to the surface of the silver nanoparticles or is contained in the dispersion medium.
  2.  前記テルペン系樹脂が、α-ピネン重合体、β-ピネン重合体、α、βピネン共重合体、リモネン重合体、ロジン、ロジンエステル、変性ロジン、テルペンフェノール重合体、水素添加テルペン重合体、芳香族変性テルペン重合体及びロジン変性フェノール樹脂からなる群より選択される少なくとも1種であること、
    を特徴する請求項1に記載の導電性インク。
    The terpene resin is an α-pinene polymer, β-pinene polymer, α, β-pinene copolymer, limonene polymer, rosin, rosin ester, modified rosin, terpene phenol polymer, hydrogenated terpene polymer, aromatic Is at least one selected from the group consisting of a group-modified terpene polymer and a rosin-modified phenolic resin,
    The conductive ink according to claim 1.
  3.  前記分散媒中に、前記テルペン樹脂と高分子分散剤とを含むこと、
    を特徴する請求項1又は2に記載の導電性インク。
    In the dispersion medium, containing the terpene resin and a polymer dispersant,
    The conductive ink according to claim 1, wherein:
  4.  前記導電性インクに含まれる前記テルペン系樹脂は、銀固形分に対して10重量%以下であること、
    を特徴する請求項1~3のうちのいずれかに記載の導電性インク。
     
     
     
     
    The terpene resin contained in the conductive ink is 10% by weight or less based on the silver solid content,
    The conductive ink according to any one of claims 1 to 3, wherein:



PCT/JP2017/013314 2016-05-10 2017-03-30 Electroconductive ink WO2017195491A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780027780.0A CN109071984A (en) 2016-05-10 2017-03-30 Electric conductivity ink
JP2017518272A JP6262404B1 (en) 2016-05-10 2017-03-30 Conductive ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016094465 2016-05-10
JP2016-094465 2016-05-10

Publications (1)

Publication Number Publication Date
WO2017195491A1 true WO2017195491A1 (en) 2017-11-16

Family

ID=60267720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013314 WO2017195491A1 (en) 2016-05-10 2017-03-30 Electroconductive ink

Country Status (4)

Country Link
JP (1) JP6262404B1 (en)
CN (1) CN109071984A (en)
TW (1) TWI744314B (en)
WO (1) WO2017195491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017747A1 (en) * 2021-08-10 2023-02-16 株式会社ダイセル Electroconductive ink

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222326A (en) * 1992-02-13 1993-08-31 Dainippon Ink & Chem Inc Offset ink for forming silver conductor circuit and method for forming silver conductor circuit
JPH05266708A (en) * 1992-03-23 1993-10-15 Tanaka Kikinzoku Kogyo Kk Printing ink for silver conductor circuit and method of forming silver conductor circuit
JP2006328472A (en) * 2005-05-26 2006-12-07 Mitsui Chemicals Inc Production method of silver nanoparticle, silver nanoparticle and application thereof
JP2011140635A (en) * 2009-12-10 2011-07-21 Riso Kagaku Corp Electrically conductive emulsion ink and method for producing electrically conductive thin film using the same
JP2014202937A (en) * 2013-04-05 2014-10-27 カシオ電子工業株式会社 Magenta toner for electrophotography using bioplastic and manufacturing method of the same
JP2015505865A (en) * 2011-12-21 2015-02-26 アグフア−ゲヴエルト Dispersion system comprising metallic, metal oxide or metal precursor nanoparticles, polymer dispersant and sintering aid
JP2016014111A (en) * 2014-07-03 2016-01-28 田中貴金属工業株式会社 Photocurable conductive ink composition
JP2016020403A (en) * 2014-07-11 2016-02-04 綜研化学株式会社 Adhesive composition, adhesive sheet, laminate, image display device and input-output device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487143B2 (en) * 2004-12-27 2010-06-23 ナミックス株式会社 Silver fine particles and method for producing the same, conductive paste and method for producing the same
JP5266708B2 (en) * 2007-10-15 2013-08-21 宇部興産株式会社 Process for producing hydroxypentafluorosulfanylbenzene compounds
CN102304287A (en) * 2011-07-19 2012-01-04 彩虹集团公司 Organic adhesive composite used for silicon solar cell silver paste and preparation method thereof
CN104507600B (en) * 2012-08-02 2017-11-14 国立大学法人山形大学 The manufacture method of coated silver particles and the coated silver particles using manufacture method manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222326A (en) * 1992-02-13 1993-08-31 Dainippon Ink & Chem Inc Offset ink for forming silver conductor circuit and method for forming silver conductor circuit
JPH05266708A (en) * 1992-03-23 1993-10-15 Tanaka Kikinzoku Kogyo Kk Printing ink for silver conductor circuit and method of forming silver conductor circuit
JP2006328472A (en) * 2005-05-26 2006-12-07 Mitsui Chemicals Inc Production method of silver nanoparticle, silver nanoparticle and application thereof
JP2011140635A (en) * 2009-12-10 2011-07-21 Riso Kagaku Corp Electrically conductive emulsion ink and method for producing electrically conductive thin film using the same
JP2015505865A (en) * 2011-12-21 2015-02-26 アグフア−ゲヴエルト Dispersion system comprising metallic, metal oxide or metal precursor nanoparticles, polymer dispersant and sintering aid
JP2014202937A (en) * 2013-04-05 2014-10-27 カシオ電子工業株式会社 Magenta toner for electrophotography using bioplastic and manufacturing method of the same
JP2016014111A (en) * 2014-07-03 2016-01-28 田中貴金属工業株式会社 Photocurable conductive ink composition
JP2016020403A (en) * 2014-07-11 2016-02-04 綜研化学株式会社 Adhesive composition, adhesive sheet, laminate, image display device and input-output device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017747A1 (en) * 2021-08-10 2023-02-16 株式会社ダイセル Electroconductive ink

Also Published As

Publication number Publication date
JPWO2017195491A1 (en) 2018-05-31
TW201807102A (en) 2018-03-01
TWI744314B (en) 2021-11-01
CN109071984A (en) 2018-12-21
JP6262404B1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6220920B2 (en) Silver fine particle dispersion, silver fine particle and method for producing the same
JP5495465B1 (en) Conductive paste
TWI783947B (en) Conductive film composite and production method thereof
JP6329703B1 (en) Conductive paste and conductive pattern forming method
TW201542731A (en) Bonding composition and metal bonded article using the same
JP6220966B2 (en) Silver fine particle composition
TWI744372B (en) Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle
JP6101403B2 (en) Conductive ink
JP6348241B1 (en) Conductive paste for gravure offset printing, method for forming conductive pattern, and method for manufacturing conductive substrate
JP6262404B1 (en) Conductive ink
TWI754708B (en) Conductive paste for gravure transfer, method for forming conductive pattern, and method for producing conductive substrate
TWI757412B (en) Manufacturing method of silver nanoparticles
JP6267835B1 (en) Bonding composition and method for producing the same
JP6290402B2 (en) Inorganic particle dispersion
JP2016207439A (en) Manufacturing method of conducive coated film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795852

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795852

Country of ref document: EP

Kind code of ref document: A1