JP2011080094A - Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device - Google Patents

Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device Download PDF

Info

Publication number
JP2011080094A
JP2011080094A JP2009230526A JP2009230526A JP2011080094A JP 2011080094 A JP2011080094 A JP 2011080094A JP 2009230526 A JP2009230526 A JP 2009230526A JP 2009230526 A JP2009230526 A JP 2009230526A JP 2011080094 A JP2011080094 A JP 2011080094A
Authority
JP
Japan
Prior art keywords
fine particles
silver fine
sem
fine silver
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009230526A
Other languages
Japanese (ja)
Inventor
Yasuo Kakihara
康男 柿原
Mineko Osugi
峰子 大杉
Hiroko Morii
弘子 森井
Kazuyuki Hayashi
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009230526A priority Critical patent/JP2011080094A/en
Priority to KR1020117029916A priority patent/KR20120082347A/en
Priority to PCT/JP2010/067075 priority patent/WO2011040521A1/en
Priority to CN2010800263191A priority patent/CN102470436A/en
Priority to TW099133531A priority patent/TWI490063B/en
Publication of JP2011080094A publication Critical patent/JP2011080094A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Abstract

<P>PROBLEM TO BE SOLVED: To provide fine silver particles having an average particle diameter of 30 to 100 nm and suitable as a starting material for a conductive paste or the like that can be fired at low temperatures. <P>SOLUTION: The fine silver particles can be obtained by the following procedure: an alcohol solution of an amine complex of silver nitrate prepared using silver nitrate and one or more amines that are water-soluble or water-soluble to some extent and have a boiling point of not more than 200°C is added into a water-alcohol mixed solvent, into which ascorbic acid or erythorbic acid is dissolved, for reducing and depositing fine silver particles, and the thus-obtained fine silver particles are separated, cleaned, and then vacuum dried or vacuum freeze dried at a temperature of not more than 30°C. The thus-obtained fine silver particles are polycrystallized fine silver particles that have an average particle diameter (D<SB>SEM</SB>) of 30 to 100 nm and a polycrystallization degree (which is the ratio of the average particle diameter (D<SB>SEM</SB>) to the crystallite diameter (D<SB>X</SB>), namely (D<SB>SEM</SB>)/(D<SB>X</SB>)) of not less than 2.8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低温焼成が可能な導電性組成物の原料用として好適な、多結晶化された平均粒子径30〜100nmの銀微粒子とその製造法並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイスに関する。   The present invention relates to a polycrystallized silver fine particle having an average particle size of 30 to 100 nm suitable for use as a raw material for a conductive composition capable of low-temperature firing, a method for producing the same, a conductive paste containing the silver fine particle, and conductive The present invention relates to a conductive film and an electronic device.

電子デバイスの電極や回路パターンの形成は、金属粒子を含む導電性ペーストを用いて基板上に電極や回路パターンを印刷した後、加熱焼成して導電性ペーストに含まれる金属粒子を焼結させることにより行われているが、近年、その加熱焼成温度は低温化する傾向にある。   The electrodes and circuit patterns of electronic devices are formed by printing electrodes and circuit patterns on a substrate using a conductive paste containing metal particles, and then baking by heating and sintering the metal particles contained in the conductive paste. However, in recent years, the heating and baking temperature tends to be lowered.

例えば、電子デバイスの実装基板としては、一般に、300℃程度までの加熱が可能であるためポリイミド製フレキシブル基板が用いられているが、耐熱性に優れるものの高価であるため、最近では、より安価なPET(ポリエチレンテレフタレート)基板やPEN(ポリエチレンナフタレート)基板が代替材料として検討されている。しかしながら、PET基板やPEN基板はポリイミド製フレキシブル基板と比較して耐熱性が低く、加熱焼成を200℃以下で行う必要がある。   For example, as a mounting substrate for an electronic device, a polyimide flexible substrate is generally used because it can be heated up to about 300 ° C. However, since it is excellent in heat resistance but is expensive, recently, it is more inexpensive. A PET (polyethylene terephthalate) substrate and a PEN (polyethylene naphthalate) substrate have been studied as alternative materials. However, PET substrates and PEN substrates have lower heat resistance than polyimide flexible substrates, and it is necessary to carry out heating and baking at 200 ° C. or lower.

また、加熱焼成を200℃より更に低い温度で行うことができれば、ポリカーボネートや紙等の基板への電極や回路パターンの形成も可能となり、各種電極材等の用途が広がることが期待される。   Moreover, if heating and baking can be performed at a temperature lower than 200 ° C., it becomes possible to form electrodes and circuit patterns on a substrate such as polycarbonate and paper, and it is expected that applications of various electrode materials and the like will be expanded.

このような低温焼成が可能な導電性ペーストの原料となる金属粒子として、ナノメートルオーダーの銀微粒子が期待されている。その理由として、金属粒子の大きさがナノメートルオーダーになると表面活性が高くなり、融点が金属のバルクのものよりもはるかに低下するため、低い温度で焼結させることが可能になるためである。また、金属粒子の中でも銀微粒子は低抵抗であり、価格も他の貴金属と比較して安価であることが挙げられる。   Nanometer-order silver fine particles are expected as metal particles that can be used as a raw material for conductive paste that can be fired at such a low temperature. The reason for this is that when the size of the metal particles is on the order of nanometers, the surface activity becomes high and the melting point is much lower than that of the bulk metal, so that it can be sintered at a low temperature. . Among metal particles, silver fine particles have low resistance, and the price is low compared with other noble metals.

また、ナノメートルオーダーの銀微粒子は低温で焼結が可能であると共に、一度焼結すると耐熱性が維持されるという、従来のはんだにはない性質を利用した鉛フリーのはんだ代替材料としても期待されている。   In addition, nanometer-order silver fine particles can be sintered at low temperatures, and heat resistance is maintained once sintered, which is also expected as a lead-free solder replacement material using a property not found in conventional solder. Has been.

これまでに、低温焼成が可能な銀微粒子として、サブミクロン以下の銀微粒子が提案されており、ヘキシルアミンを表面に吸着させた平均粒子径(DTEM)3〜20nmの銀微粉(特許文献1)、粒子表面が有機保護剤で覆われた平均粒子径(DTEM)が50nm以下であり、単結晶化度(DTEM/D)が2.0以下である銀粒子(特許文献2)、平均粒子径が40〜100nmであり、単結晶化度(DTEM/D)が1〜5である銀微粒子(特許文献3)、粒子表面に硝酸銀のアンミン錯体及びアミンが1wt%以下付着している平均粒子径が20〜100nmである銀微粒子(特許文献4)、表面処理剤によって被覆された、平均粒子径が200nm未満、BET比表面積が1.0m/g以上である貴金属微粒子(特許文献5)、可溶性金属を1%未満含有する平均粒子径が50〜100nm、BET比表面積が6〜25m/gであるナノ粉末(特許文献6)等が知られている。 Until now, silver fine particles of submicron or less have been proposed as silver fine particles that can be fired at low temperature, and silver fine powder having an average particle diameter (D TEM ) of 3 to 20 nm in which hexylamine is adsorbed on the surface (Patent Document 1). ), Silver particles having an average particle diameter (D TEM ) of 50 nm or less and a single crystallinity (D TEM / D X ) of 2.0 or less with the particle surface covered with an organic protective agent (Patent Document 2) Silver fine particles having an average particle diameter of 40 to 100 nm and a single crystallinity (D TEM / D X ) of 1 to 5 (Patent Document 3), and silver nitrate ammine complex and amine adhere to 1 wt% or less on the particle surface. and fine silver particles the average particle size is is 20 to 100 nm (Patent Document 4), coated with a surface treatment agent, average particle size of less than 200 nm, the noble metal particles BET specific surface area of 1.0 m 2 / g or more Patent Document 5), the average particle diameter containing a soluble metal less than 1% 50 to 100 nm, nano powder (Patent Document 6) are known BET specific surface area of 6~25m 2 / g.

特開2009−161808号公報JP 2009-161808 A 特開2007−19055号公報JP 2007-19055 A 特開2006−183072号公報JP 2006-183072 A 特開2009−144197号公報JP 2009-144197 A 特開2004−43892号公報JP 2004-43892 A 特表2005−530048号公報JP 2005-530048 gazette

銀微粒子が低温で焼結するためには、銀微粒子が活性であることが必要であるが、前出特許文献1に開示されているような平均粒子サイズが20nm以下の銀微粒子の場合、活性が高すぎて不安定あるため多量の有機物で被覆する必要がある。特許文献1では、被覆物質として沸点が130℃程度のヘキシルアミンを用いているが、たとえ比較的沸点が低い被覆物質を選択したとしても多量に付着している被覆物を完全に除去することは困難である。また、特許文献1では銀微粒子を製造する上で50〜60℃の温度をかけているので、銀微粒子の結晶子径は大きくなる傾向にあるため銀微粒子内部の反応性としては低いものとなり、低温焼結には不利となる。   In order for the silver fine particles to sinter at a low temperature, the silver fine particles need to be active. However, in the case of silver fine particles having an average particle size of 20 nm or less as disclosed in Patent Document 1, the silver fine particles are active. Is too high and unstable, so it must be coated with a large amount of organic matter. In Patent Document 1, hexylamine having a boiling point of about 130 ° C. is used as the coating material, but even if a coating material having a relatively low boiling point is selected, it is impossible to completely remove the coating material adhering to a large amount. Have difficulty. In addition, in Patent Document 1, since a temperature of 50 to 60 ° C. is applied to produce silver fine particles, the crystallite diameter of the silver fine particles tends to increase, so the reactivity inside the silver fine particles is low, This is disadvantageous for low temperature sintering.

また、前出特許文献2には、粒子表面が有機保護剤で覆われた平均粒子径(DTEM)が50nm以下であり、単結晶化度(DTEM/D)が2.0以下である銀粒子が記載されているが、前述と同様、(DTEM/D)が2.0以下であり単結晶化度が高いものであるため、銀微粒子内部の反応性としては低いものとなり、低温焼結には不利となる。 Patent Document 2 supra, the average particle size the particle surface was covered with an organic protective agent (D TEM) is not less 50nm or less, the single crystallinity (D TEM / D X) is 2.0 or less Although certain silver particles are described, (D TEM / D X ) is 2.0 or less and the single crystallinity is high as described above, so the reactivity inside the silver fine particles is low. This is disadvantageous for low temperature sintering.

また、前出特許文献3には、平均粒子径が40〜100nmであり、単結晶化度(DTEM/D)が1〜5である銀微粒子が記載されているが、銀微粒子を製造する上で40℃前後に温度を調整しているので、銀微粒子の結晶子径は大きくなる傾向にある。そのため銀微粒子内部の反応性としては低いものとなり、低温焼結には不利となる。 Moreover, although the above-mentioned patent document 3 describes silver fine particles having an average particle diameter of 40 to 100 nm and a single crystallinity (D TEM / D X ) of 1 to 5, silver fine particles are produced. Therefore, since the temperature is adjusted to around 40 ° C., the crystallite diameter of the silver fine particles tends to increase. Therefore, the reactivity inside the silver fine particles is low, which is disadvantageous for low-temperature sintering.

また、前出特許文献4には、粒子表面に硝酸銀のアンミン錯体及びアミンが1wt%以下付着している平均粒子径が20〜100nmである銀微粒子が記載されているが、還元反応における反応温度については考慮なされておらず、また、40℃に加熱して乾燥しているために結晶粒径が大きくなる傾向にあるため、銀微粒子内部の反応性としては低いものとなり、低温焼結には不利となる。   Further, in the aforementioned Patent Document 4, silver fine particles having an average particle diameter of 20 to 100 nm in which 1 wt% or less of silver nitrate ammine complex and amine are adhered to the particle surface are described. Is not taken into account, and since the crystal grain size tends to increase because it is heated to 40 ° C. and dried, the reactivity inside the silver fine particles is low. Disadvantageous.

また、前出特許文献5には、表面処理剤によって被覆された、平均粒子径が200nm未満、BET比表面積が1.0m/g以上である貴金属微粒子が記載されているが、粒子表面を被覆する表面処理剤はいずれも高沸点の物質であるため、特許文献5の実施例においても200℃の加熱条件では表面処理剤が残っており、低温焼結を目的とした導電性ペーストの原料に用いることは困難である。また、BET比表面積値が粒子サイズに対して小さく表面活性が低いため、低温焼結には不利となる。 Further, in the aforementioned Patent Document 5, noble metal fine particles coated with a surface treatment agent and having an average particle diameter of less than 200 nm and a BET specific surface area of 1.0 m 2 / g or more are described. Since the surface treatment agent to be coated is a high-boiling substance, even in the examples of Patent Document 5, the surface treatment agent remains under the heating condition of 200 ° C., and the raw material for the conductive paste intended for low-temperature sintering. It is difficult to use. Further, since the BET specific surface area value is small with respect to the particle size and the surface activity is low, it is disadvantageous for low temperature sintering.

また、前出特許文献6には、可溶性金属を1%未満含有する平均粒子径が50〜100nm、BET比表面積が6〜25m/gであるナノ粉末が記載されているが、製法由来の可溶性金属を含有しており、特許文献6に示されるナノ粉末を用いて得られた焼結体には導電性を阻害する不純物金属が含まれるため、所望の高い導電性を有する焼結体を得ることが困難である。また、存在する可溶性金属によって焼結が阻害されるため、低温で焼結させることが困難である。 In addition, the above-mentioned Patent Document 6 describes a nanopowder having an average particle diameter of less than 1% containing a soluble metal of 50 to 100 nm and a BET specific surface area of 6 to 25 m 2 / g. Since the sintered body containing the soluble metal and obtained by using the nanopowder shown in Patent Document 6 contains an impurity metal that impedes conductivity, a sintered body having a desired high conductivity can be obtained. It is difficult to obtain. In addition, it is difficult to sinter at a low temperature because the existing soluble metal inhibits the sintering.

そこで、本発明は、低温焼成が可能な導電性ペーストの原料用として好適な、平均粒子径30〜100nmである多結晶化された銀微粒子を提供することを技術的課題とする。   In view of this, an object of the present invention is to provide polycrystallized silver fine particles having an average particle diameter of 30 to 100 nm, which is suitable for use as a raw material for conductive paste that can be fired at a low temperature.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、平均粒子径(DSEM)が30〜100nmであり、多結晶化度[平均粒子径(DSEM)と結晶子径(D)の比(DSEM/D)]が2.8以上であることを特徴とする銀微粒子である(本発明1)。 That is, the present invention has an average particle size (D SEM ) of 30 to 100 nm and a polycrystallinity [ratio of average particle size (D SEM ) to crystallite size (D X ) (D SEM / D X )] Is a silver fine particle characterized by being 2.8 or more (Invention 1).

また、本発明は、加熱による結晶子径の変化率[(150℃で30分間加熱後の銀微粒子の結晶子径/加熱前の銀微粒子の結晶子径)×100]が150%以上であることを特徴とする本発明1の銀微粒子である(本発明2)。   In the present invention, the change rate of the crystallite diameter by heating [(crystallite diameter of silver fine particles after heating at 150 ° C. for 30 minutes / crystallite diameter of silver fine particles before heating) × 100] is 150% or more. This is the silver fine particle of the present invention 1 (Invention 2).

また、本発明は、BET比表面積値(SSA)(m/g)が下記式(1)で表されることを特徴とする本発明1又は本発明2の銀微粒子である(本発明3)。
SSA (m/g) ≧ −0.05×DSEM+7.4 ・・・(1)
Further, the present invention is the silver fine particles of the present invention 1 or the present invention 2, wherein the BET specific surface area value (SSA) (m 2 / g) is represented by the following formula (1) (the present invention 3): ).
SSA (m 2 /g)≧−0.05×D SEM +7.4 (1)

また、本発明は、硝酸銀と、水溶性あるいは水可溶性であって沸点が200℃以下のアミンの1種類以上とを用いて調製した硝酸銀のアミン錯体のアルコール溶液を、アスコルビン酸又はエリソルビン酸を溶解させた水−アルコール混合溶媒中に添加して還元析出させ、得られた銀微粒子を分離・洗浄した後、温度30℃以下で真空乾燥により銀微粒子を乾燥させることを特徴とする本発明1乃至本発明3のいずれかに記載の銀微粒子の製造方法である(本発明4)。   The present invention also provides an alcohol solution of an amine complex of silver nitrate prepared using silver nitrate and one or more amines having a water-soluble or water-soluble boiling point of 200 ° C. or lower, and dissolving ascorbic acid or erythorbic acid. The present invention is characterized in that the silver fine particles are dried by vacuum drying at a temperature of 30 ° C. or lower after the resulting silver fine particles are separated and washed by being added to the water-alcohol mixed solvent reduced and precipitated. It is a manufacturing method of the silver fine particle in any one of this invention 3 (this invention 4).

また、本発明は、本発明1乃至本発明3のいずれかに記載の銀微粒子を含む導電性ペーストである(本発明5)。   Moreover, this invention is the electrically conductive paste containing the silver fine particle in any one of this invention 1 thru | or this invention 3 (this invention 5).

また、本発明は、本発明5の導電性ペーストを用いて形成された導電性膜である(本発明6)。   Moreover, this invention is a conductive film formed using the electrically conductive paste of this invention 5 (this invention 6).

また、本発明は、本発明6の導電性膜を有する電子デバイスである(本発明7)。   Moreover, this invention is an electronic device which has the electroconductive film of this invention 6 (this invention 7).

本発明に係る銀微粒子は、平均粒子径30〜100nmであるためシングルナノオーダーの銀微粒子のように多量の有機物で表面を被覆する必要がなく、また、多結晶化度が2.8以上であることから粒子内部の活性が高いため、低温においても銀微粒子同士の焼結が進行するので、低温焼成が可能な導電性ペースト等の原料として好適である。   Since the silver fine particles according to the present invention have an average particle diameter of 30 to 100 nm, it is not necessary to cover the surface with a large amount of organic matter unlike the single nano-order silver fine particles, and the polycrystallinity is 2.8 or more. For this reason, since the activity inside the particles is high, the silver fine particles are sintered even at a low temperature, which is suitable as a raw material for a conductive paste that can be fired at a low temperature.

本発明の構成をより詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る銀微粒子について述べる。   First, the silver fine particles according to the present invention will be described.

本発明に係る銀微粒子は、平均粒子径(DSEM)が30〜100nmであり、多結晶化度[平均粒子径(DSEM)と結晶子径(D)の比(DSEM/D)]が2.8以上であることを特徴とする。 The silver fine particles according to the present invention have an average particle diameter (D SEM ) of 30 to 100 nm, and a degree of polycrystallinity [ratio of average particle diameter (D SEM ) to crystallite diameter (D X ) (D SEM / D X )] Is 2.8 or more.

本発明に係る銀微粒子の平均粒子径(DSEM)は30〜100nmであり、好ましくは40〜100nm、より好ましくは50〜100nmである。平均粒子径(DSEM)が30nm未満の場合には、銀微粒子の持つ表面活性が高くなり、その微細な粒子径を安定に維持するために多量の有機物等を付着させる必要があるため好ましくない。また、平均粒子径(DSEM)が100nmを超える場合には、銀微粒子の持つ表面活性が低くなり、低温焼結性が損なわれてしまうため好ましくない。 The average particle diameter (D SEM ) of the silver fine particles according to the present invention is 30 to 100 nm, preferably 40 to 100 nm, more preferably 50 to 100 nm. When the average particle size (D SEM ) is less than 30 nm, the surface activity of the silver fine particles increases, and it is not preferable because a large amount of organic matter or the like needs to be adhered to maintain the fine particle size stably. . Moreover, when the average particle diameter (D SEM ) exceeds 100 nm, the surface activity of the silver fine particles is lowered, and the low-temperature sinterability is impaired.

本発明に係る銀微粒子の多結晶化度[平均粒子径(DSEM)と結晶子径(D)の比(DSEM/D)]は2.8以上であり、より好ましくは3.0以上、更により好ましくは3.2以上である。多結晶化度が2.8未満の場合には、銀微粒子中の結晶子径が大きくなり単結晶に近づくため銀微粒子中の反応性が低下し、低温焼結性が損なわれてしまうため好ましくない。前記多結晶化度の上限値は10程度であり、より好ましくは8程度である。 The polycrystallinity [the ratio of the average particle diameter (D SEM ) to the crystallite diameter (D X ) (D SEM / D X )] of the silver fine particles according to the present invention is 2.8 or more, more preferably 3. It is 0 or more, still more preferably 3.2 or more. When the degree of polycrystallinity is less than 2.8, the crystallite size in the silver fine particles becomes large and approaches a single crystal, so that the reactivity in the silver fine particles is lowered and the low-temperature sinterability is impaired. Absent. The upper limit of the polycrystallinity is about 10, more preferably about 8.

本発明に係る銀微粒子の加熱による結晶子径の変化率[(150℃で30分間加熱後の銀微粒子の結晶子径/加熱前の銀微粒子の結晶子径)×100]は、150%以上である。結晶子径の変化率が150%未満の場合には、低温焼結性が優れているとは言いがたい。本発明においては、120℃で30分間加熱した場合においても結晶子径の変化率は150%以上であることが好ましく、100℃で30分間加熱した場合においても同様に結晶子径の変化率は150%以上であることがより好ましい。   The rate of change of crystallite diameter by heating of silver fine particles according to the present invention [(crystallite diameter of silver fine particles after heating at 150 ° C. for 30 minutes / crystallite diameter of silver fine particles before heating) × 100] is 150% or more It is. When the change rate of the crystallite diameter is less than 150%, it cannot be said that the low-temperature sinterability is excellent. In the present invention, the rate of change in crystallite size is preferably 150% or more even when heated at 120 ° C. for 30 minutes, and the rate of change in crystallite size is also the same when heated at 100 ° C. for 30 minutes. More preferably, it is 150% or more.

本発明に係る銀微粒子のBET比表面積値(SSA)は、下記式(1)で表される範囲にある。BET比表面積値(SSA)が下記式(1)の範囲よりも小さい場合には、銀微粒子表面に多量の有機物が処理されていたりすることで表面活性が低下しているため、良好な低温焼結性を得ることが困難である。
SSA (m/g) ≧ −0.05×DSEM+7.4 ・・・(1)
The BET specific surface area value (SSA) of the silver fine particles according to the present invention is in the range represented by the following formula (1). When the BET specific surface area value (SSA) is smaller than the range of the following formula (1), the surface activity is reduced due to the treatment of a large amount of organic substances on the surface of the silver fine particles. It is difficult to obtain cohesion.
SSA (m 2 /g)≧−0.05×D SEM +7.4 (1)

本発明に係る銀微粒子の粒子形状は、球状もしくは粒状が好ましい。   The particle shape of the silver fine particles according to the present invention is preferably spherical or granular.

本発明に係る銀微粒子の不純物金属は500ppm以下であることが好ましく、より好ましくは200ppm以下、更により好ましくは100ppm以下である。不純物金属の含有量が500ppmを超える場合には、これを用いて得られた焼結体には導電性を阻害する不純物金属が含まれるため、所望の高い導電性を有する焼結体を得ることが困難である。また、存在する不純物金属によって焼結が阻害されるため、低温で焼結させることが困難である。   The impurity metal of the silver fine particles according to the present invention is preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less. When the impurity metal content exceeds 500 ppm, the sintered body obtained by using this contains an impurity metal that impedes conductivity, so that a sintered body having a desired high conductivity is obtained. Is difficult. In addition, since the impurity metal present inhibits the sintering, it is difficult to sinter at a low temperature.

本発明に係る銀微粒子は、上記特性を満たす範囲であれば、表面処理をされていても構わない。表面処理剤としては、沸点が200℃以下のアルコールもしくはアミンが好ましい。アルコールとしては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、エチレングリコール等を用いることができる。また、アミンとしてはアンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、モノエタノールアミン等を用いることができる。   The silver fine particles according to the present invention may be surface-treated as long as they satisfy the above characteristics. As the surface treating agent, alcohol or amine having a boiling point of 200 ° C. or less is preferable. As the alcohol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, ethylene glycol and the like can be used. As the amine, ammonia, methylamine, ethylamine, propylamine, butylamine, monoethanolamine or the like can be used.

銀微粒子に表面処理を施す場合には、被覆、もしくは付着しているアミン及び/又はアルコールの量は1重量%以下である。1重量%を超える場合、低温焼結性が低下するため好ましくない。より好ましくは0.9重量%以下、更により好ましくは0.8重量%以下である。   When the silver fine particles are subjected to a surface treatment, the amount of amine and / or alcohol coated or adhering is 1% by weight or less. If it exceeds 1% by weight, the low-temperature sinterability is lowered, which is not preferable. More preferably, it is 0.9 weight% or less, More preferably, it is 0.8 weight% or less.

次に、本発明に係る銀微粒子の製造方法について述べる。   Next, a method for producing silver fine particles according to the present invention will be described.

本発明に係る銀微粒子は、硝酸銀と、水溶性あるいは水可溶性であって沸点が200℃以下のアミンの1種類以上とを用いて調製した硝酸銀のアミン錯体のアルコール溶液を、アスコルビン酸又はエリソルビン酸を溶解させた水−アルコール混合溶媒中に添加して還元析出させ、得られた銀微粒子を分離・洗浄した後、温度30℃以下で真空乾燥により銀微粒子を乾燥させることで得ることができる。   Silver fine particles according to the present invention are prepared by using an alcohol solution of an amine complex of silver nitrate prepared using silver nitrate and one or more amines having a water-soluble or water-soluble boiling point of 200 ° C. or lower, ascorbic acid or erythorbic acid. It can be obtained by reducing and precipitating by adding it in a water-alcohol mixed solvent in which is dissolved, separating and washing the obtained silver fine particles, and then drying the silver fine particles by vacuum drying at a temperature of 30 ° C. or lower.

本発明における水溶性あるいは水可溶性であって沸点が200℃以下のアミンとしては、ブチルアミン、プロピルアミン、モノエタノールアミン等を用いることができる。   As the water-soluble or water-soluble amine having a boiling point of 200 ° C. or lower in the present invention, butylamine, propylamine, monoethanolamine and the like can be used.

本発明におけるアルコールとしては、水と相溶性のあるものを用いることができる。具体的には、メタノール、エタノール、プロパノール及びイソプロパノール等を用いることができ、好ましくはメタノール及びエタノールである。これらアルコールは単独でも混合して用いてもよい。   As alcohol in this invention, what is compatible with water can be used. Specifically, methanol, ethanol, propanol, isopropanol, and the like can be used, and methanol and ethanol are preferable. These alcohols may be used alone or in combination.

以下、水溶性あるいは水可溶性であり沸点が200℃以下のアミンの代表としてブチルアミンを用いた例について記述するが、プロピルアミン、モノエタノールアミン等のアミンでも同様に調製が可能である。   Hereinafter, an example using butylamine as a representative of an amine having a water-soluble or water-soluble boiling point of 200 ° C. or less will be described, but an amine such as propylamine and monoethanolamine can be similarly prepared.

また、上述した硝酸銀と水溶性あるいは水可溶性であり沸点が200℃以下のアミンを1種類以上用いて調製した硝酸銀のアンミン錯体のアルコール溶液を、水−アルコール混合溶媒中においてアスコルビン酸またはエリソルビン酸により還元することを特徴とする基本的な概念が同様であれば、以下の条件に限定されるものではない。例えば、メタノールの量や水の量は、用いるアミンの溶液への溶解性、反応容器と攪拌機構によりその最適な体積比率は変化する。   In addition, an alcohol solution of an ammine complex of silver nitrate prepared using one or more of the above-described silver nitrate and water-soluble or water-soluble amine having a boiling point of 200 ° C. or less is prepared with ascorbic acid or erythorbic acid in a water-alcohol mixed solvent. As long as the basic concept characterized by reduction is the same, it is not limited to the following conditions. For example, the optimal volume ratio of the amount of methanol and the amount of water varies depending on the solubility of the amine used in the solution, the reaction vessel and the stirring mechanism.

まず、硝酸銀とブチルアミンにより硝酸銀のアンミン錯体をアルコール溶媒中で形成させる。ブチルアミンは硝酸銀に対して2.0〜2.5当量が好ましく、より好ましくは2.0〜2.3当量である。ブチルアミンの量が硝酸銀に対して2.0当量未満の場合には、大きな粒子が生成しやすい傾向がある。   First, an ammine complex of silver nitrate is formed in an alcohol solvent with silver nitrate and butylamine. Butylamine is preferably 2.0 to 2.5 equivalents, more preferably 2.0 to 2.3 equivalents, with respect to silver nitrate. When the amount of butylamine is less than 2.0 equivalents with respect to silver nitrate, large particles tend to be generated.

次に、還元剤であるアスコルビン酸又はエリソルビン酸を水中に溶解させた後、アルコールを添加し混合する。アスコルビン酸又はエリソルビン酸は硝酸銀に対して1.0〜2.0当量が好ましく、より好ましくは1.0〜1.8当量である。アスコルビン酸又はエリソルビン酸が2.0当量を超える場合には、生成した銀微粒子同士が凝集する傾向があるため好ましくない。   Next, ascorbic acid or erythorbic acid as a reducing agent is dissolved in water, and then alcohol is added and mixed. Ascorbic acid or erythorbic acid is preferably 1.0 to 2.0 equivalents, more preferably 1.0 to 1.8 equivalents with respect to silver nitrate. When ascorbic acid or erythorbic acid exceeds 2.0 equivalents, the resulting silver fine particles tend to aggregate, which is not preferable.

続いて、硝酸銀のアンミン錯体を形成させたアルコール溶液を、アスコルビン酸またはエリソルビン酸を溶解させた水−アルコール溶液中に滴下し、還元反応を行うことにより銀微粒子を析出させる。還元反応における反応温度は15〜30℃の範囲であり、より好ましくは18〜30℃である。反応温度が30℃を超える場合、結晶子径が大きくなり、得られる銀微粒子は単結晶に近づくため好ましくない。   Subsequently, an alcohol solution in which an ammine complex of silver nitrate is formed is dropped into a water-alcohol solution in which ascorbic acid or erythorbic acid is dissolved, and silver fine particles are precipitated by performing a reduction reaction. The reaction temperature in the reduction reaction is in the range of 15 to 30 ° C, more preferably 18 to 30 ° C. When the reaction temperature exceeds 30 ° C., the crystallite size becomes large, and the resulting silver fine particles are close to a single crystal, which is not preferable.

滴下終了後、1時間以上攪拌を続けた後、静置することにより銀微粒子を沈降させ、上澄み液をデカンテーションにより取り除いた後、アルコール及び水を用いて余分な還元剤、ブチルアミン、硝酸銀等を洗浄する。   After the completion of dripping, after stirring for 1 hour or more, the silver fine particles are allowed to settle by allowing to stand, and after removing the supernatant liquid by decantation, an excess reducing agent, butylamine, silver nitrate, etc. are removed using alcohol and water. Wash.

洗浄した銀微粒子を、温度30℃以下で真空乾燥後、常法により粉砕することによって本発明の銀微粒子を得ることができる。乾燥温度が30℃を超える場合には結晶子径が大きくなり、得られる銀微粒子は単結晶に近づくため好ましくない。   The silver fine particles of the present invention can be obtained by vacuum-drying the washed silver fine particles at a temperature of 30 ° C. or lower and then pulverizing them by a conventional method. When the drying temperature exceeds 30 ° C., the crystallite size becomes large, and the resulting silver fine particles are not preferable because they approach single crystals.

次に、本発明に係る銀微粒子を含む導電性ペーストについて述べる。   Next, the conductive paste containing silver fine particles according to the present invention will be described.

本発明に係る導電性ペーストは、本発明に係る銀微粒子及び溶剤からなり、必要に応じて、バインダ樹脂、硬化剤、分散剤、レオロジー調整剤等の他の成分を配合してもよい。   The conductive paste according to the present invention is composed of the silver fine particles according to the present invention and a solvent, and may contain other components such as a binder resin, a curing agent, a dispersant, and a rheology modifier as necessary.

バインダ樹脂としては、当該分野において公知のものを使用することができ、例えば、エチルセルロース、ニトロセルロース等のセルロース系樹脂、ポリエステル樹脂、ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステル等の各種変性ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル・酢酸ビニル共重合体、アクリル樹脂、エポキシ樹脂、フェノール樹脂、アルキド樹脂、ブチラール樹脂、ポリビニルアルコール、ポリイミド、ポリアミドイミド等が挙げられる。これらバインダ樹脂は、単独でも、又は2種類以上を併用することもできる。   As the binder resin, those known in the art can be used. For example, cellulose resins such as ethyl cellulose and nitrocellulose, various modified resins such as polyester resins, urethane-modified polyester resins, epoxy-modified polyester resins, and acrylic-modified polyesters. Examples include polyester resin, polyurethane resin, vinyl chloride / vinyl acetate copolymer, acrylic resin, epoxy resin, phenol resin, alkyd resin, butyral resin, polyvinyl alcohol, polyimide, and polyamideimide. These binder resins can be used alone or in combination of two or more.

溶剤としては、当該分野において公知のものを使用することができ、例えば、テトラデカン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、p−シメン、テトラリン及び石油系芳香族炭化水素混合物等の炭化水素系溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノ−t−ブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコ−ルモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテル又はグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶剤;メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;テルピネオール、リナロール、ゲラニオール、シトロネロール等のテルペンアルコール;n−ブタノール、s−ブタノール、t−ブタノール等のアルコール系溶剤;エチレングリコール、ジエチレングリコール等のグリコール系溶剤;γ−ブチロラクトン及び水等が挙げられる。溶剤は、単独でも、又は2種類以上を併用することもできる。   As the solvent, those known in the art can be used, for example, tetradecane, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, p-cymene, tetralin and petroleum aromatic hydrocarbon mixtures. Hydrocarbon solvents: ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol monoethyl ether, diethylene glyco- Monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripro Ether or glycol ether solvents such as pyrene glycol monomethyl ether; glycol ester solvents such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Ketone solvents such as methyl isobutyl ketone and cyclohexanone; terpene alcohols such as terpineol, linalool, geraniol and citronellol; alcohol solvents such as n-butanol, s-butanol and t-butanol; glycol solvents such as ethylene glycol and diethylene glycol; Γ-butyrolactone and water. Solvents can be used alone or in combination of two or more.

導電性ペースト中の銀微粒子の含有量は用途に応じて様々であるが、例えば配線形成用途の場合などは可能な限り100重量%に近いことが好ましい。   Although the content of silver fine particles in the conductive paste varies depending on the application, it is preferably as close to 100% by weight as possible, for example, in the case of wiring formation.

本発明に係る導電性ペーストは、各成分を、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等の各種混練機、分散機を用いて、混合・分散させることにより得ることができる。   The conductive paste according to the present invention is obtained by mixing and dispersing each component using various kneaders and dispersers such as a laika machine, a pot mill, a three roll mill, a rotary mixer, a twin screw mixer, and the like. Can do.

本発明に係る導電性ペーストは、スクリーン印刷、インクジェット法、グラビア印刷、転写印刷、ロールコート、フローコート、スプレー塗装、スピンコート、ディッピング、ブレードコート、めっき等各種塗布方法に適用可能である。   The conductive paste according to the present invention can be applied to various coating methods such as screen printing, inkjet method, gravure printing, transfer printing, roll coating, flow coating, spray coating, spin coating, dipping, blade coating, and plating.

また、本発明に係る導電性ペーストは、FPD(フラットパネルディスプレイ)、太陽電池、有機EL等の電極形成やLSI基板の配線形成、更には微細なトレンチ、ビアホール、コンタクトホールの埋め込み等の配線形成材料として用いることができる。また、積層セラミックコンデンサや積層インダクタの内部電極形成用等の高温での焼成用途はもちろん、低温焼成が可能であることからフレキシブル基板やICカード、その他の基板上への配線形成材料及び電極形成材料として好適である。また、導電性被膜として電磁波シールド膜や赤外線反射シールド等にも用いることができる。エレクトロニクス実装においては部品実装用接合材として用いることもできる。   In addition, the conductive paste according to the present invention is used for forming electrodes such as FPD (flat panel display), solar cell, organic EL, wiring for LSI substrates, and wiring for filling fine trenches, via holes, contact holes, etc. It can be used as a material. In addition to firing applications at high temperatures, such as for the formation of internal electrodes for multilayer ceramic capacitors and multilayer inductors, as well as low temperature firing, it is possible to form wiring and materials for wiring on flexible substrates, IC cards, and other substrates. It is suitable as. Moreover, it can also be used for an electromagnetic wave shielding film, an infrared reflection shield, etc. as a conductive film. In electronics mounting, it can also be used as a bonding material for component mounting.

<作用>
本発明において重要な点は、平均粒子径(DSEM)が30〜100nmであり、多結晶化度[平均粒子径(DSEM)と結晶子径(D)の比(DSEM/D)]が2.8以上である銀微粒子は、低温焼成が可能であるという事実である。
<Action>
The important point in the present invention is that the average particle diameter (D SEM ) is 30 to 100 nm and the degree of polycrystallinity [ratio of average particle diameter (D SEM ) to crystallite diameter (D X ) (D SEM / D X )] Is a fact that silver fine particles having a value of 2.8 or more can be fired at a low temperature.

本発明に係る銀微粒子が低温焼結性に優れている理由について、本発明者は次のように考えている。即ち、銀微粒子が低温で焼結するためには、銀微粒子が活性であることが必要であるが、平均粒子サイズが20nm以下では活性が高すぎて不安定あるため、通常、多量の有機物で被覆する必要があり、その被覆物は通常、高分子であり低温では除去できないため、焼成温度を下げることは困難であった。多量の有機物で被覆する必要がなく、できる限り表面活性が高い粒子サイズとしては30〜100nmが考えられるが、従来あるこの粒子サイズの銀微粒子の場合、低温で焼結するための表面活性エネルギーとしては不十分であり、低温焼成が困難であった。本発明に係る銀微粒子の場合、粒子内部、即ち、銀微粒子が単結晶ではなく多結晶体で構成されることにより、粒子内部のエネルギーが高くなり、そのため、低温焼成が可能となったと考えている。   The present inventor considers the reason why the silver fine particles according to the present invention are excellent in low temperature sinterability as follows. That is, in order for silver fine particles to sinter at a low temperature, it is necessary that the silver fine particles be active. However, when the average particle size is 20 nm or less, the activity is too high and unstable. It is necessary to coat, and the coating is usually a polymer and cannot be removed at a low temperature. Therefore, it has been difficult to lower the firing temperature. It is not necessary to coat with a large amount of organic matter, and the particle size with as high a surface activity as possible is considered to be 30 to 100 nm, but in the case of conventional silver fine particles of this particle size, as the surface active energy for sintering at low temperature Was insufficient, and low-temperature firing was difficult. In the case of the silver fine particles according to the present invention, it is considered that the internal energy of the particles, that is, the silver fine particles are composed of a polycrystal rather than a single crystal, so that the energy inside the particles is increased, and therefore, low-temperature firing is possible. Yes.

以下に、本発明における実施例を示し、本発明を具体的に説明する。 Examples of the present invention are shown below, and the present invention will be specifically described.

銀微粒子の平均粒子径は、走査型電子顕微鏡写真「S−4800」(HITACHI製)を用いて粒子の写真を撮影し、該写真を用いて粒子100個以上について粒子径を測定し、その平均値を算出し、平均粒子径(DSEM)とした。 The average particle diameter of the silver fine particles was obtained by taking a photograph of the particles using a scanning electron micrograph “S-4800” (manufactured by HITACHI), measuring the particle diameter of 100 or more particles using the photograph, The value was calculated and taken as the average particle size (D SEM ).

銀微粒子の比表面積は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。   The specific surface area of the silver fine particles was shown as a value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

銀微粒子の結晶子径(D)は、X線回折装置「RINT2500」(株式会社リガク製)を用いて、CuのKα線を線源とした面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より結晶子径を計算した。 The crystallite diameter (D X ) of the silver fine particles is a surface index (1,1,1) plane peak using an X-ray diffractometer “RINT 2500” (manufactured by Rigaku Corporation) as a source of Cu Kα rays. The full width at half maximum was determined, and the crystallite diameter was calculated from the Scherrer equation.

銀微粒子の多結晶化度は、平均粒子径(DSEM)と結晶子径(D)の比(DSEM/D)で示した。 The degree of polycrystallinity of the silver fine particles was indicated by the ratio (D SEM / D X ) between the average particle diameter (D SEM ) and the crystallite diameter (D X ).

銀微粒子の加熱による結晶子径の変化率(%)は、銀微粒子を150℃で30分間加熱した後の結晶子径と加熱前の銀微粒子の結晶子径を用いて、下記数1に従って算出した値である。尚、加熱条件を120℃で30分間、100℃で30分間と変えた場合も同様にして結晶子径の変化率を求めた。   The change rate (%) of the crystallite diameter due to heating of the silver fine particles is calculated according to the following formula 1 using the crystallite diameter after heating the silver fine particles at 150 ° C. for 30 minutes and the crystallite diameter of the silver fine particles before heating. It is the value. The change rate of the crystallite diameter was similarly determined when the heating conditions were changed at 120 ° C. for 30 minutes and at 100 ° C. for 30 minutes.

<数1>
結晶子径の変化率(%)=加熱後の銀微粒子の結晶子径/加熱前の銀微粒子の結晶子径×100
<Equation 1>
Change rate of crystallite diameter (%) = crystallite diameter of silver fine particles after heating / crystallite diameter of silver fine particles before heating × 100

銀微粒子の不純物金属の含有量は、「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定し、Agを除いた元素で含有量が多いもののうち上位3元素の合計量で示した。   The content of the impurity metal in the silver fine particles is measured using an “inductively coupled plasma emission spectrometer SPS4000” (manufactured by Seiko Denshi Kogyo Co., Ltd.). Shown in total amount.

導電性塗膜の比抵抗は、後述する導電性ペーストをポリエステルフィルム上に塗布し、120℃で予備乾燥した後、150℃で30分間加熱硬化さることにより得られた導電性膜について、4端子電気抵抗測定装置「ロレスタGP/MCP−T610」(株式会社ダイアインスツルメンツ製)を用いて測定し、シート抵抗と膜厚より比抵抗を算出した。   The specific resistance of the conductive coating film is 4 terminals for a conductive film obtained by applying a conductive paste described later on a polyester film, preliminarily drying at 120 ° C., and then heat-curing at 150 ° C. for 30 minutes. It measured using the electrical resistance measuring apparatus "Loresta GP / MCP-T610" (made by Dia Instruments Co., Ltd.), and calculated the specific resistance from the sheet resistance and the film thickness.

<実施例1−1:銀微粒子の製造>
500mLのビーカーに硝酸銀40gとメタノール200mLを加えた後、水浴にて冷却しながらn−ブチルアミン37.9gを添加・攪拌してA液を調製した。別に、2Lのビーカーにエリソルビン酸62.2gを量り取り、水400mLを加え攪拌して溶解した後、メタノール200mLを加えてB液を調製した。
<Example 1-1: Production of silver fine particles>
After adding 40 g of silver nitrate and 200 mL of methanol to a 500 mL beaker, 37.9 g of n-butylamine was added and stirred while cooling in a water bath to prepare solution A. Separately, 62.2 g of erythorbic acid was weighed into a 2 L beaker, 400 mL of water was added and dissolved by stirring, and then 200 mL of methanol was added to prepare solution B.

次いで、B液を攪拌しつつA液をB液に1時間20分かけて滴下した。滴下終了後、14時間攪拌した後、30分間静置して固形物を沈降させた。上澄み液をデカンテーションにより取り除いた後、ろ紙を用いて吸引ろ過し、続いて、メタノールと純水を用いて洗浄・ろ過した。得られた銀微粒子の固形物を真空乾燥機中30℃で6時間乾燥した後、常法により粉砕して実施例1−1の銀微粒子を得た。   Subsequently, A liquid was dripped at B liquid over 1 hour and 20 minutes, stirring B liquid. After the completion of dropping, the mixture was stirred for 14 hours and then allowed to stand for 30 minutes to precipitate a solid. After removing the supernatant liquid by decantation, suction filtration was performed using a filter paper, followed by washing and filtration using methanol and pure water. The obtained solid matter of silver fine particles was dried in a vacuum dryer at 30 ° C. for 6 hours and then pulverized by a conventional method to obtain silver fine particles of Example 1-1.

得られた銀微粒子の平均粒子径(DSEM)は82.5nm、結晶子径(D)は21.3nm、多結晶化度(DSEM/D)は3.9、BET比表面積値は5.3m/gであり、結晶子径の変化率(150℃×30分)は245%、可溶性金属の含有量は50ppm未満であった。 The obtained silver fine particles had an average particle size (D SEM ) of 82.5 nm, a crystallite size (D X ) of 21.3 nm, a polycrystallinity (D SEM / D X ) of 3.9, and a BET specific surface area value. Was 5.3 m 2 / g, the rate of change in crystallite diameter (150 ° C. × 30 minutes) was 245%, and the content of soluble metal was less than 50 ppm.

<実施例2−1:導電性ペーストの製造>
本発明の銀微粒子100重量部に対してポリエステル樹脂11.0重量部及び硬化剤1.4重量部と、導電性ペーストにおける銀微粒子の含有量が70wt%となるようにジエチレングリコールモノエチルエーテルを加え、プレミックスを行った後、3本ロールを用いて均一に混練・分散処理を行い、導電性ペーストを得た。
<Example 2-1: Production of conductive paste>
Add 11.0 parts by weight of polyester resin and 1.4 parts by weight of curing agent to 100 parts by weight of silver fine particles of the present invention, and add diethylene glycol monoethyl ether so that the content of silver fine particles in the conductive paste is 70 wt%. After premixing, the mixture was uniformly kneaded and dispersed using three rolls to obtain a conductive paste.

得られた導電性塗膜の比抵抗は5.5×10−5Ω・cmであった。 The specific resistance of the obtained conductive coating film was 5.5 × 10 −5 Ω · cm.

前記実施例1−1及び実施例2−1に従って銀微粒子及び導電性ペーストを作製した。各製造条件及び得られた銀微粒子末及び電性ペーストの諸特性を示す。   Silver fine particles and a conductive paste were prepared according to Example 1-1 and Example 2-1. Various characteristics of each production condition and the obtained silver fine particle powder and electric paste are shown.

実施例1−2〜1−4及び比較例1−1〜1−2:
銀微粒子の生成条件を種々変更することにより、銀微粒子得た。
Examples 1-2 to 1-4 and Comparative Examples 1-1 to 1-2:
Silver fine particles were obtained by variously changing the production conditions of the silver fine particles.

このときの製造条件を表1に、得られた銀微粒子の諸特性を表2に示す。   The production conditions at this time are shown in Table 1, and the characteristics of the obtained silver fine particles are shown in Table 2.

Figure 2011080094
Figure 2011080094

Figure 2011080094
Figure 2011080094

<導電性塗料の製造>
実施例2−2〜2−4及び比較例2−1〜2−2:
銀微粒子の種類を種々変化させた以外は、前記実施例2−1の導電性塗料の作製方法に従って導電性塗料及び導電性膜を製造した。
<Manufacture of conductive paint>
Examples 2-2 to 2-4 and comparative examples 2-1 to 2-2:
A conductive paint and a conductive film were produced according to the method for producing a conductive paint of Example 2-1 except that the type of silver fine particles was variously changed.

このときの製造条件及び得られた導電性塗膜の諸特性を表3に示す。   Table 3 shows the production conditions at this time and various characteristics of the obtained conductive coating film.

Figure 2011080094
Figure 2011080094

本発明に係る銀微粒子は、平均粒子径30〜100nmであるためシングルナノオーダーの銀微粒子のように多量の有機物で表面を被覆する必要がなく、また、多結晶化度が2.8以上であることから粒子内部の活性が高いため、低温においても銀微粒子同士の焼結が進行するので、低温焼成が可能な導電性ペースト等の原料として好適である。

Since the silver fine particles according to the present invention have an average particle diameter of 30 to 100 nm, it is not necessary to cover the surface with a large amount of organic matter unlike the single nano-order silver fine particles, and the polycrystallinity is 2.8 or more. For this reason, since the activity inside the particles is high, the silver fine particles are sintered even at a low temperature, which is suitable as a raw material for a conductive paste that can be fired at a low temperature.

Claims (7)

平均粒子径(DSEM)が30〜100nmであり、多結晶化度[平均粒子径(DSEM)と結晶子径(D)の比(DSEM/D)]が2.8以上であることを特徴とする銀微粒子。 The average particle diameter (D SEM ) is 30 to 100 nm, and the polycrystallinity [ratio of average particle diameter (D SEM ) to crystallite diameter (D X ) (D SEM / D X )] is 2.8 or more. Silver fine particles characterized by being. 加熱による結晶子径の変化率[(150℃で30分間加熱後の銀微粒子の結晶子径/加熱前の銀微粒子の結晶子径)×100]が150%以上であることを特徴とする請求項1記載の銀微粒子。 The rate of change in crystallite diameter by heating [(crystallite diameter of silver fine particles after heating at 150 ° C. for 30 minutes / crystallite diameter of silver fine particles before heating) × 100] is 150% or more. Item 2. The silver fine particles according to Item 1. BET比表面積値(SSA)(m/g)が下記式(1)で表されることを特徴とする請求項1又は請求項2記載の銀微粒子。
SSA (m/g) ≧ −0.05×DSEM+7.4 ・・・(1)
The silver fine particles according to claim 1 or 2, wherein a BET specific surface area value (SSA) (m 2 / g) is represented by the following formula (1).
SSA (m 2 /g)≧−0.05×D SEM +7.4 (1)
硝酸銀と、水溶性あるいは水可溶性であって沸点が200℃以下のアミンの1種類以上とを用いて調製した硝酸銀のアミン錯体のアルコール溶液を、アスコルビン酸又はエリソルビン酸を溶解させた水−アルコール混合溶媒中に添加して還元析出させ、得られた銀微粒子を分離・洗浄した後、温度30℃以下で真空乾燥により銀微粒子を乾燥させることを特徴とする請求項1乃至3のいずれかに記載の銀微粒子の製造方法。 A water-alcohol mixture in which ascorbic acid or erythorbic acid is dissolved in an alcohol solution of a silver nitrate amine complex prepared using silver nitrate and one or more amines having a water-soluble or water-soluble boiling point of 200 ° C. or lower. 4. The silver fine particles are dried by vacuum drying at a temperature of 30 ° C. or less after the resulting silver fine particles are added to a solvent for reduction precipitation and separated and washed. Method for producing silver fine particles. 請求項1乃至3のいずれかに記載の銀微粒子を含む導電性ペースト。 The electrically conductive paste containing the silver fine particles in any one of Claims 1 thru | or 3. 請求項5記載の導電性ペーストを用いて形成された導電性膜。 A conductive film formed using the conductive paste according to claim 5. 請求項6記載の導電性膜を有する電子デバイス。 An electronic device having the conductive film according to claim 6.
JP2009230526A 2009-10-02 2009-10-02 Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device Pending JP2011080094A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009230526A JP2011080094A (en) 2009-10-02 2009-10-02 Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
KR1020117029916A KR20120082347A (en) 2009-10-02 2010-09-30 Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
PCT/JP2010/067075 WO2011040521A1 (en) 2009-10-02 2010-09-30 Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
CN2010800263191A CN102470436A (en) 2009-10-02 2010-09-30 Fine silver particles, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
TW099133531A TWI490063B (en) 2009-10-02 2010-10-01 Silver fine particles and a method for producing the same, and an electric paste containing the silver fine particles, a conductive film, and an electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230526A JP2011080094A (en) 2009-10-02 2009-10-02 Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device

Publications (1)

Publication Number Publication Date
JP2011080094A true JP2011080094A (en) 2011-04-21

Family

ID=43826333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230526A Pending JP2011080094A (en) 2009-10-02 2009-10-02 Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device

Country Status (5)

Country Link
JP (1) JP2011080094A (en)
KR (1) KR20120082347A (en)
CN (1) CN102470436A (en)
TW (1) TWI490063B (en)
WO (1) WO2011040521A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236453A (en) * 2010-05-07 2011-11-24 Toda Kogyo Corp Silver particulate and method for producing the same, conductive paste containing the silver particulates, conductive film, and electronic device
WO2013008706A1 (en) * 2011-07-13 2013-01-17 エム・テクニック株式会社 Method for manufacturing microparticles with regulated crystallite diameter
WO2013099818A1 (en) * 2011-12-28 2013-07-04 戸田工業株式会社 Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP2013142173A (en) * 2012-01-11 2013-07-22 Daicel Corp Method for producing silver nanoparticle, silver nanoparticle, and silver coating composition
JP2013142172A (en) * 2012-01-11 2013-07-22 Yamagata Univ Method for production of silver nanoparticles, silver nanoparticles, and silver coating composition
WO2013115339A1 (en) * 2012-02-02 2013-08-08 戸田工業株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
JP2013159804A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Silver microparticle, method for producing same, and conductive paste, conductive film and electronic device containing silver microparticle
JP2013159805A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Method for producing silver microparticle, silver microparticle produced by the method for producing silver microparticle, and conductive paste containing the silver microparticle
JP2014023997A (en) * 2012-07-26 2014-02-06 M Technique Co Ltd Method for manufacturing particulates
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
CN104160490A (en) * 2012-03-05 2014-11-19 纳美仕股份有限公司 Sintered silver microparticle compact
US20150211090A1 (en) * 2012-08-31 2015-07-30 Corning Incorporated Low-Temperature Dispersion-Based Syntheses of Silver and Silver Products Produced Thereby
JP2017183247A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Conductive metal powder paste
US9982322B2 (en) 2012-08-30 2018-05-29 Corning Incorporated Solvent-free syntheses of silver products produced thereby
CN111276296A (en) * 2020-03-05 2020-06-12 南京理工大学 Conductive silver paste composite sintering method and device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768553B2 (en) * 2011-07-20 2015-08-26 住友金属鉱山株式会社 Silver powder manufacturing method
WO2013018645A1 (en) * 2011-07-29 2013-02-07 戸田工業株式会社 Fine silver particles, conductive paste containing fine silver particles, conductive film and electronic device
JP5445721B1 (en) * 2012-03-07 2014-03-19 住友金属鉱山株式会社 Silver powder and method for producing the same
KR101618093B1 (en) * 2014-03-17 2016-05-09 주식회사 상보 A Conductive Paste Composition for Forming Conductive Thin Film on a Flexible Substrate and a method for producing the same
CN104240795B (en) * 2014-09-25 2016-11-30 东莞太洋橡塑制品有限公司 The method that application flex endurant conductive silver paste prepares flexible circuit board
CN106795375B (en) * 2014-10-24 2020-08-21 纳美仕股份有限公司 Conductive composition and electronic component using the same
JP6285397B2 (en) * 2015-02-27 2018-02-28 株式会社ノリタケカンパニーリミテド Ag paste and Ag powder for Ag paste
US10357824B2 (en) * 2015-12-03 2019-07-23 Mitsui Mining & Smelting Co., Ltd. Dendritic silver powder
WO2017175661A1 (en) * 2016-04-04 2017-10-12 株式会社ダイセル Ink for screen printing
CN105761778B (en) * 2016-04-22 2018-09-21 无锡南理工科技发展有限公司 A kind of preparation method of low temperature curing type conductive silver paste
JP7278861B2 (en) * 2018-10-12 2023-05-22 花王株式会社 Method for producing fine metal particle dispersion

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129318A (en) * 1998-10-22 2000-05-09 Dowa Mining Co Ltd Silver powder and its production
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP2005048237A (en) * 2003-07-29 2005-02-24 Mitsui Mining & Smelting Co Ltd Superfine silver powder and method of producing the superfine silver powder
JP2005048236A (en) * 2003-07-29 2005-02-24 Mitsui Mining & Smelting Co Ltd Superfine silver powder and method of producing superfine silver powder
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2006183072A (en) * 2004-12-27 2006-07-13 Namics Corp Silver particulate, method for producing the same and conductive paste containing silver particulate
JP2006348345A (en) * 2005-06-16 2006-12-28 Shoei Chem Ind Co Method for manufacturing ultrafine silver particle, silver powder, and ultrafine silver particle-dispersion liquid
WO2008018718A1 (en) * 2006-08-07 2008-02-14 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
JP2008133527A (en) * 2006-10-31 2008-06-12 Toda Kogyo Corp Silver particulate, and method for producing the same
JP2008198595A (en) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp Metal particulate ink paste and organic acid treated metal particulate
JP2009088340A (en) * 2007-10-01 2009-04-23 Harima Chem Inc Method of manufacturing metal nanoparticle sintered compact
JP2009127085A (en) * 2007-11-22 2009-06-11 Kyushu Univ Surface treatment method of fine metal particle, and dried body or dispersion liquid of the fine metal particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263573C (en) * 2003-09-28 2006-07-12 中国印钞造币总公司 Method for preparing nano silver powder
JP5032005B2 (en) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 High crystal silver powder and method for producing the high crystal silver powder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129318A (en) * 1998-10-22 2000-05-09 Dowa Mining Co Ltd Silver powder and its production
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP2005048237A (en) * 2003-07-29 2005-02-24 Mitsui Mining & Smelting Co Ltd Superfine silver powder and method of producing the superfine silver powder
JP2005048236A (en) * 2003-07-29 2005-02-24 Mitsui Mining & Smelting Co Ltd Superfine silver powder and method of producing superfine silver powder
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2006183072A (en) * 2004-12-27 2006-07-13 Namics Corp Silver particulate, method for producing the same and conductive paste containing silver particulate
JP2006348345A (en) * 2005-06-16 2006-12-28 Shoei Chem Ind Co Method for manufacturing ultrafine silver particle, silver powder, and ultrafine silver particle-dispersion liquid
WO2008018718A1 (en) * 2006-08-07 2008-02-14 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
JP2008133527A (en) * 2006-10-31 2008-06-12 Toda Kogyo Corp Silver particulate, and method for producing the same
JP2008198595A (en) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp Metal particulate ink paste and organic acid treated metal particulate
JP2009088340A (en) * 2007-10-01 2009-04-23 Harima Chem Inc Method of manufacturing metal nanoparticle sintered compact
JP2009127085A (en) * 2007-11-22 2009-06-11 Kyushu Univ Surface treatment method of fine metal particle, and dried body or dispersion liquid of the fine metal particle

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236453A (en) * 2010-05-07 2011-11-24 Toda Kogyo Corp Silver particulate and method for producing the same, conductive paste containing the silver particulates, conductive film, and electronic device
JPWO2013008706A1 (en) * 2011-07-13 2015-02-23 エム・テクニック株式会社 Method for producing fine particles with controlled crystallite size
WO2013008706A1 (en) * 2011-07-13 2013-01-17 エム・テクニック株式会社 Method for manufacturing microparticles with regulated crystallite diameter
US9492763B2 (en) 2011-07-13 2016-11-15 M. Technique Co., Ltd. Method for producing microparticles having controlled crystallite diameter
WO2013099818A1 (en) * 2011-12-28 2013-07-04 戸田工業株式会社 Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP2013142172A (en) * 2012-01-11 2013-07-22 Yamagata Univ Method for production of silver nanoparticles, silver nanoparticles, and silver coating composition
JP2013142173A (en) * 2012-01-11 2013-07-22 Daicel Corp Method for producing silver nanoparticle, silver nanoparticle, and silver coating composition
JP2013159805A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Method for producing silver microparticle, silver microparticle produced by the method for producing silver microparticle, and conductive paste containing the silver microparticle
JP2013159804A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Silver microparticle, method for producing same, and conductive paste, conductive film and electronic device containing silver microparticle
CN104080561A (en) * 2012-02-02 2014-10-01 户田工业株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
WO2013115339A1 (en) * 2012-02-02 2013-08-08 戸田工業株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
CN104160490A (en) * 2012-03-05 2014-11-19 纳美仕股份有限公司 Sintered silver microparticle compact
JP2014023997A (en) * 2012-07-26 2014-02-06 M Technique Co Ltd Method for manufacturing particulates
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
US9982322B2 (en) 2012-08-30 2018-05-29 Corning Incorporated Solvent-free syntheses of silver products produced thereby
US20150211090A1 (en) * 2012-08-31 2015-07-30 Corning Incorporated Low-Temperature Dispersion-Based Syntheses of Silver and Silver Products Produced Thereby
US9670564B2 (en) * 2012-08-31 2017-06-06 Corning Incorporated Low-temperature dispersion-based syntheses of silver and silver products produced thereby
JP2017183247A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Conductive metal powder paste
CN111276296A (en) * 2020-03-05 2020-06-12 南京理工大学 Conductive silver paste composite sintering method and device

Also Published As

Publication number Publication date
KR20120082347A (en) 2012-07-23
CN102470436A (en) 2012-05-23
WO2011040521A1 (en) 2011-04-07
TWI490063B (en) 2015-07-01
TW201124215A (en) 2011-07-16

Similar Documents

Publication Publication Date Title
JP2011080094A (en) Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP5761483B2 (en) Silver fine particles and production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
Lee et al. A low-cure-temperature copper nano ink for highly conductive printed electrodes
JP5937730B2 (en) Method for producing copper powder
JP2013139589A (en) Silver fine particles, method for producing the same, and conductive paste, conductive film, and electronic device containing the silver fine particles
WO2013115339A1 (en) Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
JP5924481B2 (en) Method for producing silver fine particles, silver fine particles obtained by the method for producing silver fine particles, and conductive paste containing the silver fine particles
JP5773148B2 (en) Silver fine particles, and conductive paste, conductive film and electronic device containing the silver fine particles
CN106715601A (en) Silver particle coating composition
US20200131392A1 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
JP2009144197A (en) Silver fine particle, method for producing the same, and method for producing conductive film
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2012031478A (en) Silver fine particle and method of manufacturing the same, conductive paste containing the silver fine particle, conductive film, and electronic device
KR102260398B1 (en) Method for producing metal nanoparticles
KR20140047663A (en) Fine silver particles, conductive paste containing fine silver particles, conductive film and electronic device
JP4575867B2 (en) Conductive paste
JP5991459B2 (en) Silver fine particles, production method thereof, and conductive paste, conductive film and electronic device containing the silver fine particles
JP5773147B2 (en) Silver fine particles, and conductive paste, conductive film and electronic device containing the silver fine particles
JP7283703B2 (en) Method for producing silver nanoparticles with wide particle size distribution and silver nanoparticles
TWI791829B (en) Photosintering composition and method of forming conductive film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140820