JP2005536894A - Photovoltaic battery electrode, photovoltaic battery and photovoltaic module - Google Patents

Photovoltaic battery electrode, photovoltaic battery and photovoltaic module Download PDF

Info

Publication number
JP2005536894A
JP2005536894A JP2004531327A JP2004531327A JP2005536894A JP 2005536894 A JP2005536894 A JP 2005536894A JP 2004531327 A JP2004531327 A JP 2004531327A JP 2004531327 A JP2004531327 A JP 2004531327A JP 2005536894 A JP2005536894 A JP 2005536894A
Authority
JP
Japan
Prior art keywords
electrode
wires
bar
photovoltaic
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004531327A
Other languages
Japanese (ja)
Inventor
ルビン、レオニード、ビー.
ルビン、ジョージ、エル.
Original Assignee
デイ4 エネルギー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29594632&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005536894(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デイ4 エネルギー インコーポレイテッド filed Critical デイ4 エネルギー インコーポレイテッド
Publication of JP2005536894A publication Critical patent/JP2005536894A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

導電性表面に接触し、特に光起電力素子ウェーハ3の少なくとも一つの表面に接触する電極であって、電極は、電気的に絶縁性があり光学的に透明な膜10と、膜10の1つの表面上に設けられた接着層11と、接着層11に埋め込まれ実質的に平行で導電性を有する第1の複数のワイヤ5'とを含み、第1の複数のワイヤ5’の表面の一部は、接着層11から突出し、少なくとも表面において低融点の合金からなるコーティング2で覆われた接着層11から突出し第1の複数のワイヤ5’は、第1の端子バー20に接続される電極が記述されている。複数の電極は、一体の連続する一片として形成されPVモジュールを形成するために接続される隣接した光起電力素子3の配列の長さに相当する長さに、切断され、一片の長手方向に並んだワイヤ5'は、PV電池の長さに相当する長さに切断される。少なくとも1つの電極16あるいは1つの電極ストリップ16を含む光起電力電池もしくは光起電力モジュールは、上述したように、その少なくとも1つの表面が導電性であり、反射防止された光学的に透明なコーティング4を施した1つ以上の光起電力電池3備え、第1の複数のワイヤ5'が合金2を用いてコーティング4およびそれぞれの端子バー20あるいは端子フレーム17に半田付けされる。An electrode in contact with the conductive surface, in particular in contact with at least one surface of the photovoltaic element wafer 3, the electrode being electrically insulating and optically transparent film 10; An adhesive layer 11 provided on one surface, and a first plurality of wires 5 ′ embedded in the adhesive layer 11 and having substantially parallel conductivity, the surface of the first plurality of wires 5 ′ A part protrudes from the adhesive layer 11, protrudes from the adhesive layer 11 covered with the coating 2 made of an alloy having a low melting point at least on the surface, and the first plurality of wires 5 ′ are connected to the first terminal bar 20. An electrode is described. The plurality of electrodes are cut into a length corresponding to the length of the array of adjacent photovoltaic elements 3 formed as a single continuous piece and connected to form a PV module. The aligned wires 5 ′ are cut to a length corresponding to the length of the PV battery. A photovoltaic cell or photovoltaic module comprising at least one electrode 16 or one electrode strip 16 has, as described above, an optically transparent coating with at least one surface conductive and antireflective. 1 or more photovoltaic cells 3 provided with 4 and a first plurality of wires 5 ′ are soldered to the coating 4 and the respective terminal bar 20 or terminal frame 17 using the alloy 2.

Description

本発明は、導電性表面に接触する電極に関し、特に光起電力電池、即ち太陽電池の部品としての1つあるいは複数の光起電力素子(PV)に接触する電極に関する。本発明は、さらに、この電池を搭載して製造する光起電力電池に関する。   The present invention relates to an electrode in contact with a conductive surface, and more particularly to an electrode in contact with one or more photovoltaic elements (PV) as a component of a photovoltaic cell, ie a solar cell. The present invention further relates to a photovoltaic battery manufactured by mounting the battery.

光起電力技術を用いる電気エネルギ生成は、高い水準に到達している。しかし、PV電池およびPVモジュールの製造は、いまだに多少複雑かつ費用を要する。最大効率が17パーセントというようにPVモジュールによるエネルギ生成の効率は、かなり低い。経済という観点から見れば、光起電力技術による発電は、それが何らかの方法で、たとえば、ドイツにおける、いわゆる100,000ルーフ・プログラムあるいは米国、カリフォルニア州の同様なプログラムにおける援助および/または助成金を受けられる場合に限って現状では実行可能である。光起電力技術の分野では、生産コストを引き下げ、PV素子やPVモジュールによるエネルギ生成の効率を向上させるという厳しい要件残されている。   Electric energy generation using photovoltaic technology has reached a high level. However, the production of PV cells and PV modules is still somewhat complicated and expensive. The efficiency of energy generation by the PV module is quite low, with a maximum efficiency of 17 percent. From an economic point of view, the generation of photovoltaic technology can help and / or subsidize in some way, for example in the so-called 100,000 roof program in Germany or a similar program in California, USA. It can be executed at present only if it can be received. In the field of photovoltaic technology, strict requirements remain to reduce production costs and improve the efficiency of energy generation by PV elements and PV modules.

共通して使用される埋め込みp−n接合を持つ単結晶あるいは多結晶シリコン、非晶質シリコン、その他の薄膜半導体をベースにしたn+n(またはp)p+型接合を持つ半導体素子を含んでいる。素子の一表面は、アルミニウムまたはステンレス・スティールなどの金属層で覆われ、他の表面は、反射防止コーティングが施されている。両表面とも生成された電気エネルギを集め、取り出す電極に接続されている。この構造体は、ガラスなどの透明な保護層の間に埋め込まれている。 Includes semiconductor devices with n + n (or p) p + type junctions based on commonly used single-crystal or polycrystalline silicon with amorphous pn junctions, amorphous silicon, and other thin film semiconductors It is out. One surface of the element is covered with a metal layer such as aluminum or stainless steel, and the other surface is provided with an anti-reflection coating. Both surfaces are connected to electrodes that collect and extract the generated electrical energy. This structure is embedded between transparent protective layers such as glass.

これらの電極は、スクリーン印刷技術を利用して製造される。しかし、このようにして作られた電極は、高い直列抵抗を有している。これとは別に、この技術を用いる場合、製作に高価な装置、設備が必要となり、コスト削減は、制限される。   These electrodes are manufactured using screen printing technology. However, electrodes made in this way have a high series resistance. In addition to this, when this technique is used, expensive equipment and equipment are required for production, and cost reduction is limited.

米国特許5,759,291A(Ichinose et.al.)では、中に導電性粒子が分散されている導電性接着剤を用いて素子表面に固定されている平行な金属接触や電流収集ワイヤ(電極)を持つ半導体素子(ウェーハ)が知られている。これらの電極ワイヤは、素子の端部に沿って設けられている接続導体に挟まれて平行に並んでいる。このタイプの電極では、半導体表面とワイヤの間のオーム接触抵抗が比較的高く、そのため、特に集中太陽輻射においては、エネルギ・ロスが大きく、効率が低くなる。また、このようなPV電池の製造は、かなり複雑である。   In US Pat. No. 5,759,291 (Ichinose et. Al.), Parallel metal contacts and current collecting wires (electrodes) fixed to an element surface using a conductive adhesive in which conductive particles are dispersed. ) Semiconductor devices (wafers) are known. These electrode wires are arranged in parallel so as to be sandwiched between connection conductors provided along end portions of the element. This type of electrode has a relatively high ohmic contact resistance between the semiconductor surface and the wire, which results in large energy loss and low efficiency, especially in concentrated solar radiation. Also, the manufacture of such PV cells is quite complicated.

米国特許5,084,107A(Deguchi et.al.)では、同様な太陽電池と太陽電池配列が知られており、金属電極ワイヤは、接着剤を用いて光起電力素子の表面に接着される。この接着剤内には、導電性粒子が分散されている。この電極構造でも、製造コストおよびワイヤと素子表面の間の接触抵抗は、極めて高い。   In US Pat. No. 5,084,107A (Deguchi et al.), A similar solar cell and solar cell arrangement is known, where the metal electrode wire is bonded to the surface of the photovoltaic element using an adhesive. . Conductive particles are dispersed in the adhesive. Even in this electrode structure, the manufacturing cost and the contact resistance between the wire and the element surface are extremely high.

米国特許5,158,618A(Rubin et.al.)では、電極構造が知られている。ここでは、接触ワイヤは、ポリマ・ブロックから一部分が突出するように透明なポリマ・ブロックに埋め込まれている。電極は、一方の側からあるいは2つの側から素子に接触し、ガラスのような透明な保護層の間に挟まれている。電極のワイヤは、たとえば、コイルとして構成されているので、ワイヤとPV素子の表面の間では点接触だけとなる。したがって、この場合、PV電池の直列抵抗は、比較的高い。また、このようなタイプの太陽電池やPVモジュールのオートメーション製造は、不可能なので、製造コストも比較的高い。   In US Pat. No. 5,158,618A (Rubin et.al.), an electrode structure is known. Here, the contact wire is embedded in a transparent polymer block such that a portion protrudes from the polymer block. The electrode contacts the element from one side or from two sides and is sandwiched between transparent protective layers such as glass. Since the electrode wire is configured as a coil, for example, there is only a point contact between the wire and the surface of the PV element. Therefore, in this case, the series resistance of the PV battery is relatively high. Moreover, since it is impossible to manufacture such a solar cell or PV module by automation, the manufacturing cost is relatively high.

したがって、本発明の1つの目的は、低製造コストで電極と導電性表面、特に光起電力素子の一表面あるいは複数の表面との間で低接触抵抗を達成する電極を提供することである。   Accordingly, one object of the present invention is to provide an electrode that achieves a low contact resistance between the electrode and a conductive surface, particularly one or more surfaces of the photovoltaic element, at low manufacturing costs.

本発明のもう1つの目的は、このような電極を使用することにより合成直列抵抗とPV電池とPVモジュールの製造コストを低減し、費用効率を向上させることである。   Another object of the present invention is to reduce the manufacturing cost and improve the cost efficiency of the composite series resistance, PV cell and PV module by using such electrodes.

本発明は、導電性のある表面、特に光起電力素子の少なくとも1つの表面に接触する電極を提供する目的を達成する。電極は、電気的に絶縁性があり光学的に透明な膜と、膜の1つの表面上に設けられた接着剤層と、接着剤層に埋め込まれ実質的に平行で導電性のある第1の複数のワイヤとを含み、第1の複数のワイヤの表面の一部は、接着剤層から突出し、低融点の合金からなるコーティングで覆われた接着剤層から突出し、第1の複数のワイヤは、第1の端子バーに接続されている。   The present invention achieves the object of providing an electrode in contact with a conductive surface, in particular at least one surface of a photovoltaic device. The electrode includes an electrically insulating and optically transparent film, an adhesive layer provided on one surface of the film, and a substantially parallel and conductive first embedded in the adhesive layer. A part of the surface of the first plurality of wires protrudes from the adhesive layer and protrudes from the adhesive layer covered with the coating made of the low melting point alloy, and the first plurality of wires Is connected to the first terminal bar.

望ましくは、実質的に相互に平行に並んでいる第2の複数のワイヤは、透明な膜と第1の複数のワイヤの間に配設され、第1と第2の複数のワイヤは、共に網を形成し、第2の複数のワイヤは、第2の端子バーに電気的に接続される。   Desirably, the second plurality of wires that are substantially parallel to each other are disposed between the transparent film and the first plurality of wires, and the first and second plurality of wires are both A net is formed and the second plurality of wires are electrically connected to the second terminal bar.

別の好ましい実施例において、第1と第2の端子バーは、相互に電気的に接続される。
端子バーは、ワイヤのそれぞれの端部に設けることができる。
この実施例では、端子バーは、望ましくは、ワイヤが接続される表面に対して光起電力の外側の第1の複数のワイヤの両端あるいは第1と第2の複数のワイヤの両端に設けられる。
第1と第2の端子バーは、望ましくは、一定の角度を形成して接続される。
In another preferred embodiment, the first and second terminal bars are electrically connected to each other.
A terminal bar can be provided at each end of the wire.
In this embodiment, the terminal bar is desirably provided at both ends of the first plurality of wires or both ends of the first and second plurality of wires outside the photovoltaic surface relative to the surface to which the wires are connected. .
The first and second terminal bars are preferably connected to form a certain angle.

さらに別の好ましい実施例において、端子バーは、U型フレームとして形成され、複数の2つのワイヤの一方ワイヤは、基部に接続され、他方のワイヤは、U字の自由な足部に接続される。   In yet another preferred embodiment, the terminal bar is formed as a U-shaped frame, one wire of the plurality of two wires being connected to the base and the other wire being connected to a U-shaped free foot. .

この実施例では、端子バーが第1の複数のワイヤあるいは第1と第2の複数のワイヤの両端に設けられるとき、端子バーは、望ましくは、接続される2つの隣接した光起電力素子の全長にわたって延伸し、その中央にステップが設けられ、複数の端子バーが共に一列を形成し、端子バーの半分は、それぞれ、隣接する端子バーの下半分の上あるいは上半分の下になるように配列され、端子バーの間には、絶縁膜が設けられている。   In this embodiment, when the terminal bar is provided at both ends of the first plurality of wires or the first and second plurality of wires, the terminal bar is preferably connected to two adjacent photovoltaic elements. It extends over the entire length, and is provided with a step in the middle, so that multiple terminal bars together form a line, and half of the terminal bars are above or below the lower half of the adjacent terminal bars, respectively. An insulating film is provided between the terminal bars.

さらに、端子バーは、閉じたフレームとして形成されてもよく、フレームの開口領域(窓)は、これに対応する光起電力素子のサイズを超えている。   Further, the terminal bar may be formed as a closed frame, and the open area (window) of the frame exceeds the size of the corresponding photovoltaic element.

さらに別の実施例では、端子バーは、窓の開口領域が対応する光起電力素子のサイズを超えるような2つの隣接する窓を有するダブル・フレームとして形成される。
フレームは、2つの金属フレームとその間に絶縁膜を備えてもよい。
In yet another embodiment, the terminal bar is formed as a double frame having two adjacent windows such that the open area of the window exceeds the size of the corresponding photovoltaic element.
The frame may include two metal frames and an insulating film between them.

さらに別の実施例では、ダブル・フレームの中央のバーにステップが設けられ、複数のフレームが共に一列を形成することができ、ダブル・フレームの半分は、隣接するダブル・フレームの下半分の上あるいは上半分の下になるように配列される。   In yet another embodiment, a step is provided in the center bar of a double frame so that multiple frames can form a row together, with a half of a double frame above the lower half of an adjacent double frame. Or it arranges so that it may become under the upper half.

ダブル・フレームの中央のバーにスロットを設けることができ、スロットは、ステップに平行に並び、PVモジュールが完成すると、電極の横断ワイヤが切断されることができる。   Slots can be provided in the center bar of the double frame, and the slots can be aligned parallel to the steps, and when the PV module is complete, the electrode transverse wires can be cut.

最後に、金属バーは、フレームの少なくとも1つの窓に架かって配置することができ、バーは、対応する金属フレームと一体化して結合される。   Finally, the metal bar can be placed over at least one window of the frame, and the bar is integrally joined with the corresponding metal frame.

本発明は、以上の請求項のいずれかに記載の複数の電極を設けることにより前記の目的を達成する。このなかで、電極は、一体の連続する一片として形成され、PVモジュールを形成するために接続される隣接した光起電力素子の1つの配列の長さに相当する長さに切断され、一片の長手方向に並んだワイヤは、PV電池の長さに相当する長さに切断される。   The present invention achieves the above object by providing a plurality of electrodes according to any of the above claims. In this, the electrodes are formed as one continuous piece, cut to a length corresponding to the length of one array of adjacent photovoltaic elements connected to form a PV module, The wires arranged in the longitudinal direction are cut to a length corresponding to the length of the PV battery.

望ましくは、一体の端子バーは、透明膜の端部の少なくとも1つの端部に沿って設けることができる。さらに望ましくは、透明膜の各端部に沿って、櫛状のバーが配設され、2つの隣接した光起電力素子の間でそれぞれ、櫛状バーの歯が一方の側から第1の複数のワイヤの幅にわたって延伸し、対応する光起電力素子の上側と下側に交互に電気的に接続され他方の表面から分離される。   Desirably, the integral terminal bar can be provided along at least one end of the transparent membrane. More preferably, a comb-shaped bar is disposed along each end of the transparent film, and the teeth of the comb-shaped bar are arranged between the two adjacent photovoltaic elements from one side to the first plurality of bars. Extending across the width of the wire, alternately electrically connected to the upper and lower sides of the corresponding photovoltaic element and separated from the other surface.

本発明は、さらに上記の実施例のいずれかにしたがって少なくとも1つの電極あるいは1つの電極ストリップを含む光起電力電池もしくは光起電力モジュールを提供することにより上記目的を達成する。光起電力電池もしくは光起電力モジュールは、その少なくとも1つの表面上が導電性であり、反射防止の光学的に透明なコーティングを施した1つ以上の光起電力電池を有し第1の複数のワイヤが合金を用いてコーティングおよびそれぞれの端子バーあるいは端子フレームに半田付けされる。   The present invention further achieves the above objects by providing a photovoltaic cell or photovoltaic module comprising at least one electrode or one electrode strip according to any of the above embodiments. A photovoltaic cell or photovoltaic module has one or more photovoltaic cells that are electrically conductive on at least one surface and are coated with an anti-reflection optically transparent coating. The wire is soldered to the coating and the respective terminal bar or terminal frame using an alloy.

第1と第2の複数のワイヤを配置して網を形成するとき、第1と第2の複数のワイヤを合金を用いて端子バーあるいは端子フレームに接合することが望ましい。   When the first and second plurality of wires are arranged to form a net, it is desirable to join the first and second plurality of wires to the terminal bar or terminal frame using an alloy.

本発明における電極は、接続される表面と緊密で信頼性のあるオーム接触を提供し、PV電池あるいはPVモジュールにおいて8倍から10倍低い合成直列抵抗が達成できる。これによって、PV素子の効率を向上させるばかりではなく、これらの素子を8倍から10倍の集中太陽放射のもとで動作させることが可能となる。第1と第2の複数のワイヤを網状になるように互いに配置し、角状にもしくは方形状に形成した接続導体に接続される。同時に、製造中のオートメ化の度合いやスループット容量を実質的に増大できる。   The electrodes in the present invention provide an intimate and reliable ohmic contact with the surfaces to be connected and a combined series resistance 8 to 10 times lower can be achieved in PV cells or PV modules. This not only improves the efficiency of the PV elements, but also allows these elements to operate under 8-10 times concentrated solar radiation. The first and second plurality of wires are arranged in a net shape and connected to a connection conductor formed in a square shape or a square shape. At the same time, the degree of automation and throughput capacity during manufacture can be substantially increased.

図1は、上部表面が(常に図の描画に関連して)、たとえば、インジウム錫酸化物のような反射防止透明導電性コーティング4で覆われたシリコン(n+n(あるいはp)p)などの半導体構造体Sである。素子Sは、薄膜PV素子で構成されてもよい。素子Sの下部表面は、金属コーティング(アルミニウムなど)あるいは反射防止透明導電性コーティング4で覆われる。素子Sと上部コーティング4は、金属コーティング(図示せず)、すなわち、第2の下部ITOコーティング4と組んで、以下でウェーハ3と呼ぶ1つのユニットを形成する。ウェーハ3の両面には低融点の合金からなるコーティング2で覆われた金属ワイヤ1が接続されている。これらのワイヤ1は、合金コーティング2に完全に覆われてもよく、あるいは接続されるべき表面に対向する1つの側面もしくは複数の側面を部分的に覆ってもよい。以下では、被覆されたワイヤを第1の複数のワイヤ5'と呼ぶ。これらのワイヤは、ウェーハ3の一表面もしくは複数の表面に直接的に接触している。 FIG. 1 shows silicon (n + n (or p) p + ) with an upper surface (always related to the drawing of the figure) covered with an anti-reflective transparent conductive coating 4 such as, for example, indium tin oxide. Or the like. The element S may be composed of a thin film PV element. The lower surface of the element S is covered with a metal coating (such as aluminum) or an antireflection transparent conductive coating 4. The element S and the upper coating 4 are combined with a metal coating (not shown), ie a second lower ITO coating 4, to form one unit, hereinafter referred to as the wafer 3. Metal wires 1 covered with a coating 2 made of a low melting point alloy are connected to both surfaces of the wafer 3. These wires 1 may be completely covered by the alloy coating 2 or may partially cover one or more sides facing the surface to be connected. Hereinafter, the covered wire is referred to as a first plurality of wires 5 ′. These wires are in direct contact with one surface or a plurality of surfaces of the wafer 3.

図2は、加圧し120°まで加熱した後の配置を示している。合金コーティング2の材料は、幾分、軟化し、コーティング4を濡らしており、コーティングおよびワイヤ5'に対してオーム接触を形成している。このことは、素子Sの下側に反射防止透明保護コーティング4を設けず、金属コーティングを設けるケースについても言える。ワイヤ5'の間隔が均一である必要はなく、すなわち、平行なワイヤ5'が複数のワイヤと別の複数のワイヤとの間で間隔が異なる状態で2本のワイヤからなる複数あるいはそれ以上のワイヤからなる複数として配置してもよい。   FIG. 2 shows the arrangement after pressurization and heating to 120 °. The material of the alloy coating 2 is somewhat softened and wets the coating 4, making ohmic contact to the coating and the wire 5 '. This is also true for the case where the antireflection transparent protective coating 4 is not provided on the lower side of the element S but a metal coating is provided. The spacing of the wires 5 'need not be uniform, i.e. a plurality or more of two wires with the parallel wires 5' being spaced apart from one another. A plurality of wires may be arranged.

ワイヤの断面形状およびサイズがワイヤによる電流集電、ワイヤ内の電流密度、PV電池の直列抵抗、ワイヤ5'によって陰になるウェーハ面積の大きさ等を最適化できるように選択される。図1と図2に示すように、たとえば、円形、方形、三角形等の異なった断面形状を選択できる。   The cross-sectional shape and size of the wire are selected so that the current collection by the wire, the current density in the wire, the series resistance of the PV cell, the size of the wafer area hidden by the wire 5 ′, etc. can be optimized. As shown in FIGS. 1 and 2, for example, different cross-sectional shapes such as a circle, a square, and a triangle can be selected.

図3は、第1の複数のワイヤ5'と第2の複数のワイヤ5”によるワイヤ・メッシュ6を示す。第1と第2の複数のワイヤ5'と5”は、通常、互いに直角に延伸している。ワイヤ5”は、少なくともワイヤ5'に対向する表面上にあり、合金コーティング2で覆われている。しかし、第1の複数のワイヤ5'上の合金材料の量が交差点における2つの複数のワイヤを安全に機械的、電気的に接続するために十分であれば、第2の複数のワイヤ上の合金コーティングは、省略することができる。ワイヤ5”の間隔、断面形状および面積の選択において、ワイヤ5'の配置とサイズについての同じ考慮事項が適用される。もちろん、ワイヤ5”について、ワイヤ5'と異なった断面形状とサイズを選択することができる。   FIG. 3 shows a wire mesh 6 with a first plurality of wires 5 ′ and a second plurality of wires 5 ″. The first and second plurality of wires 5 ′ and 5 ″ are usually perpendicular to each other. Stretched. The wire 5 "is at least on the surface facing the wire 5 'and is covered with the alloy coating 2. However, the amount of alloy material on the first plurality of wires 5' is two wires at the intersection. The alloy coating on the second plurality of wires can be omitted if it is sufficient to safely and mechanically connect the wires. In selecting the spacing, cross-sectional shape and area of the wires 5 ″, The same considerations regarding the placement and size of the wire 5 'apply. Of course, for the wire 5 ″, a different cross-sectional shape and size from the wire 5 ′ can be selected.

図4は、フィルム状の接着性光学的透明電極を製造する装置の概略図である。まず、合金被覆ワイヤ5'は、数個のロール7に巻かれる、ロールの数は、PV電池の幅を第1の複数の平行配列ワイヤ間の必要な間隔で割ったものに等しい。たとえば、PV電池幅が100mmでワイヤ間の間隔が4mmの場合、26個のロール7が必要である。ロール7は、軸8に固定される、したがってフレーム9の対応開口を通るワイヤ5'の平行線を形成することができる。フレーム9の開口間の間隔は、平行ワイヤ5'の必要な間隔によって決まる。フレーム9の開口のサイズと形状は、ワイヤ5'のサイズと形状に対応する必要がある。   FIG. 4 is a schematic view of an apparatus for producing a film-like adhesive optical transparent electrode. First, the alloy coated wire 5 'is wound around several rolls 7, the number of rolls being equal to the PV cell width divided by the required spacing between the first plurality of parallel array wires. For example, when the PV battery width is 100 mm and the distance between the wires is 4 mm, 26 rolls 7 are required. The roll 7 is fixed to the shaft 8 and can thus form parallel lines of the wire 5 ′ through the corresponding opening of the frame 9. The spacing between the openings in the frame 9 is determined by the required spacing of the parallel wires 5 '. The size and shape of the opening of the frame 9 needs to correspond to the size and shape of the wire 5 ′.

平行ワイヤ5'は、ドラム12から供給されるポリマ・フィルム10の上に配置される。ワイヤ5'に対向するフィルム10の表面は、透明な接着剤11で覆われている。ワイヤが搭載されるフィルム10の全幅は、ウェーハ31個あるいはいくつかのウェーハ3の配列よりも広い。したがって、フィルム10の両側に、1.5cmから2cmまでのワイヤ5'のないゾーンが残る(図5A)。フィルム10は、回転ローラ13の表面上をドラム12によって導かれ、ドラム15に引かれ、同時にワイヤ5'を引き出す。ワイヤ5'は、回転ローラ13の上に配置された別のローラ14によってフィルム10に押し付けられる。同時に、フィルム10は、ローラ13、14によって加熱され、そのため、接着剤11が軟化し、ワイヤ5'は、接着剤11の中に入り、冷却されると、フィルム10に固定された状態になり、接着剤11に埋め込まれる。PV電池を保護層の間に封じ込むことができるように、ポリマ・フィルムに接着剤を下塗することが推奨される。   The parallel wire 5 ′ is disposed on the polymer film 10 supplied from the drum 12. The surface of the film 10 facing the wire 5 ′ is covered with a transparent adhesive 11. The total width of the film 10 on which the wires are mounted is wider than the arrangement of 31 wafers or several wafers 3. Thus, on both sides of the film 10, a zone without wires 5 ′ from 1.5 cm to 2 cm remains (FIG. 5A). The film 10 is guided on the surface of the rotating roller 13 by the drum 12, pulled by the drum 15, and simultaneously pulls out the wire 5 '. The wire 5 ′ is pressed against the film 10 by another roller 14 disposed on the rotating roller 13. At the same time, the film 10 is heated by the rollers 13, 14 so that the adhesive 11 softens and the wire 5 'enters the adhesive 11 and when cooled, becomes fixed to the film 10. Embedded in the adhesive 11. It is recommended to prime the polymer film with an adhesive so that the PV cell can be sealed between the protective layers.

図5Aと図5Bは、上記処理の結果、すなわち透明電極の詳細を示す。ポリマ・フィルム10に沿って延伸するワイヤ5'が接着剤11に埋め込まれ、フィルム10に押し付けられる。ワイヤ5'の一部が接着剤11の表面から突出している。図5Bは、ワイヤ5'の左側右側に、ほかに可能な断面形状をさらに示した。   5A and 5B show the result of the above process, that is, the details of the transparent electrode. A wire 5 ′ extending along the polymer film 10 is embedded in the adhesive 11 and pressed against the film 10. A part of the wire 5 ′ protrudes from the surface of the adhesive 11. FIG. 5B further shows other possible cross-sectional shapes on the left-hand right side of the wire 5 ′.

図4のものに類似した製造装置を使ってフィルム10の最初の方向に対して直角方向に配置した埋め込みワイヤ5'を有するポリマ・フィルム10を製造することができる。(図5C,図5D)ポリマ・フィルム10の幅は、PV電池あるいはPVモジュールの必要な長さに対応する必要がある。第1の複数のワイヤ5'をフィルム10に埋め込んだ後、フィルム10の最初の延伸に対して直角な切片に切断することができる。   A polymer film 10 having embedded wires 5 ′ disposed perpendicular to the initial direction of the film 10 can be manufactured using a manufacturing apparatus similar to that of FIG. (FIGS. 5C and 5D) The width of the polymer film 10 needs to correspond to the required length of the PV cell or PV module. After embedding the first plurality of wires 5 ′ in the film 10, it can be cut into sections perpendicular to the initial stretch of the film 10.

ワイヤ5'および/または5”の間隔が均一である必要はない、すなわち、平行なワイヤ5'および/または5”が各グループのワイヤの間で、またある数のそのようなグループの間で間隔が異なった状態で2本のワイヤからなるグループあるいはそれ以上のワイヤからなるグループとして配置することができる。   The spacing of the wires 5 'and / or 5 "need not be uniform, i.e. parallel wires 5' and / or 5" between each group of wires and between a number of such groups. They can be arranged as a group consisting of two wires or a group consisting of more wires with different intervals.

図6Aは、透明なポリマ・フィルム10と第1と第2の複数のワイヤ5'、5”からなるワイヤ・メッシュ6を備えている電極16を示す。ポリマ・フィルム10に接近して位置しているワイヤ5”だけが接着剤11に埋め込まれる(図6B、図6Cを参照)。ウェーハ3の一表面あるいは複数の表面に接触する上部ワイヤ5'は、接着剤11に埋め込まれず、少なくとも不完全に埋め込まれる(この種の電極16の製造中、ロール7がワイヤ・メッシュ6を搬送し、フレーム9は使用しない(図4)。この時点で既に、ワイヤ5'、5”は、一緒に半田付けすることができる。しかし、通常、これは電極16とウェーハ3の組み立て時に行われる。   6A shows an electrode 16 comprising a transparent polymer film 10 and a wire mesh 6 composed of first and second wires 5 ′, 5 ″. Located close to the polymer film 10. FIG. Only the wire 5 ″ is embedded in the adhesive 11 (see FIGS. 6B and 6C). The upper wire 5 ′ that contacts one or more surfaces of the wafer 3 is not embedded in the adhesive 11 but at least incompletely (during the manufacture of this type of electrode 16, the roll 7 carries the wire mesh 6. However, the frame 9 is not used (Fig. 4). At this point already, the wires 5 ', 5 "can be soldered together. However, this is usually done during assembly of the electrode 16 and the wafer 3. .

ポリマ・フィルム10には、広範囲の材料を使用できる。材料は、高い延性、良好な絶縁特性、光学的透明性、温度安定性、収縮耐性、良好な接着能力を有さなければならない。そのような材料の例をあげれば、セロファン(登録商標)、レイヨン、アセテート、フッ素樹脂、ポリスルフォン、エポキシ樹脂、ポリアミド樹脂である。使用すべき適切な材料は、透明ポリマ・フィルム マイラ(登録商標)である。使用することが望ましい材料は、フルオロポリマをベースとしたものであり、たとえば、ポリフッ化ビニル・フィルム・テドラおよび改質ETFEフルオロポリマ樹脂 テフツェル(登録商標)である。これらの材料は、光起電力産業ばかりではなく、一般用途ならびに積層目的で電気技術製品に使用されている。   A wide range of materials can be used for the polymer film 10. The material must have high ductility, good insulating properties, optical transparency, temperature stability, shrinkage resistance, and good adhesion capability. Examples of such materials are cellophane (registered trademark), rayon, acetate, fluorine resin, polysulfone, epoxy resin, and polyamide resin. A suitable material to use is a transparent polymer film Myra®. Desirable materials to use are those based on fluoropolymers, such as polyvinyl fluoride film tedla and modified ETFE fluoropolymer resin Tefzel. These materials are used not only in the photovoltaic industry, but also in electrotechnical products for general use as well as for lamination purposes.

軟化温度が約90℃から110℃であらかじめ下塗したポリマ・フィルムおよびウェーハ3の表面に良好な接着性を有する広い範囲の材料が接着剤11として適切である。好ましい材料は、エポキシ接着剤は、もとより、アクリル接着剤、ゴム接着剤、シリコン接着剤、ポリビニル・エーテル接着剤がある。最も使用することが望ましい材料としては、たとえば、HI−SHEET INDUSTRIES,LTDが供給するエチレン・ビニル・アセテートおよびデュポンが供給する68080ポリ・メチル・メタクリレート、68040メタクリレート・コポリマ、68070メタクリレート・コポリマがある。   A wide range of materials having good adhesion to the surface of the pre-primed polymer film and wafer 3 with a softening temperature of about 90 ° C. to 110 ° C. are suitable as the adhesive 11. Preferred materials include epoxy adhesives, acrylic adhesives, rubber adhesives, silicon adhesives, and polyvinyl ether adhesives. Materials that are most preferably used include, for example, ethylene vinyl acetate supplied by HI-SHEET INDUSTRIES, LTD and 68080 polymethyl methacrylate, 68040 methacrylate copolymer, 68070 methacrylate copolymer supplied by DuPont.

接着剤層11は、電極とウェーハ3の確実な結合を得るため十分な厚さが必要である。しかし、接着剤層の厚さは、ワイヤ5'の厚さを超えてはならない。合金2で覆われるが接着剤11に埋め込まないワイヤ5'の接着剤11から突出している部分は、このあと、ウェーハ3の伝導性表面と直接オーム接触を形成することができる(図5A、図5D、図6B、図6C)。   The adhesive layer 11 needs to have a sufficient thickness in order to obtain a reliable bond between the electrode and the wafer 3. However, the thickness of the adhesive layer should not exceed the thickness of the wire 5 '. The portion of the wire 5 'that protrudes from the adhesive 11 that is covered with the alloy 2 but not embedded in the adhesive 11 can then form direct ohmic contact with the conductive surface of the wafer 3 (FIG. 5A, FIG. 5). 5D, FIG. 6B, FIG. 6C).

ポリマ・フィルム10は、接着剤11が塗布されたとき、またワイヤ5',5”を取り付けて加圧し、加熱して引っ張られたとき十分な安定性を示すように十分な厚さが必要である。同時に、ポリマ・フィルム10は、高い弾力性と光を透過させる透明性を達成するためにできるだけ薄くすべきである。ポリマ・フィルム11の厚さは、10〜50μmが望ましい。すでに述べたように、ポリマ・フィルムの反対側に接着剤を下塗することが望ましい。   The polymer film 10 needs to be thick enough to show sufficient stability when the adhesive 11 is applied, or when the wires 5 ', 5 "are attached and pressurized and heated and pulled. At the same time, the polymer film 10 should be as thin as possible in order to achieve high elasticity and light transmitting transparency, and the thickness of the polymer film 11 is preferably 10-50 μm. Thus, it is desirable to prime the adhesive on the opposite side of the polymer film.

図5と図6では、ポリマ・フィルム10は、接着剤11とワイヤ5’(あるいはワイヤ5',5”を付けたメッシュ)を付けており、合金コーティング2が接着剤11の表面から突出し、連続したエンドレス・フィルム・タイプの光学的に透明な接着性電極として示されている。   5 and 6, the polymer film 10 has an adhesive 11 and a wire 5 ′ (or a mesh with wires 5 ′ and 5 ″), and the alloy coating 2 protrudes from the surface of the adhesive 11. Shown as a continuous endless film type optically transparent adhesive electrode.

本発明の電極16は、PV電池およびPVモジュールの製造のために適用されている。この結果、電極16から電流を集め、さらに送るために、異なったタイプの金属ロッドあるいはバーおよび接続部が必要とされる。ここで、勧めたいことは、数滴の接着剤もしくは短時間の部分的加熱によって金属ロッドあるいはバーを電極に取り付けて、電極16の接着剤11に金属ロッドあるいはバーを接合または固定することである。金属バーとその他の部品がウェーハ3と電極16の組み立て作業中、最高で160℃までの加熱によって膨張したとき、構造部の部品に直接接触しないように、ウェーハ3同士の間に十分なスペースを確保するため金属バーと異なったタイプの接続部分の間隔を設計する必要がある。   The electrode 16 of the present invention is applied for the production of PV cells and PV modules. As a result, different types of metal rods or bars and connections are required to collect and deliver current from the electrode 16. Here, it is recommended to attach the metal rod or bar to the adhesive 11 of the electrode 16 by attaching or fixing the metal rod or bar to the electrode by a few drops of adhesive or a brief partial heating. . When the metal bar and other parts are expanded by heating up to 160 ° C during the assembly operation of the wafer 3 and the electrode 16, a sufficient space is provided between the wafers 3 so as not to directly contact the parts of the structure. In order to ensure this, it is necessary to design the spacing between the metal bars and different types of connection parts.

図7は、加圧と加熱による組み立て前のPV電池の図である。電極16は、それぞれウェーハ3の上下に配置される。電極16のワイヤ5'が延伸する長手方向に対して直角な方向に、ウェーハ3の両側に第1の端子バー20と第2の端子バーがある。これらの端子バーの上面と下面は、低融点の導電性合金からなるコーティング21が施されている。上部の電極16のワイヤ5'は、ウェーハ3の右の境界から第2の端子バー22の左端まで延伸している。逆に、下部の電極16のワイヤ5’は、ウェーハ3の左端から端子バー20の右端まで延伸している。加圧と加熱をしたあと、上部電極16のワイヤ5’は、左側の第2端子バー22およびウェーハ3の上面にオーム接触を形成しており、下部電極16のワイヤ5’は、端子バー20の下面およびウェーハ3の下面にオーム接触をしている。   FIG. 7 is a view of a PV battery before assembly by pressurization and heating. The electrodes 16 are respectively disposed above and below the wafer 3. There are a first terminal bar 20 and a second terminal bar on both sides of the wafer 3 in a direction perpendicular to the longitudinal direction in which the wire 5 ′ of the electrode 16 extends. The upper and lower surfaces of these terminal bars are provided with a coating 21 made of a low melting point conductive alloy. The wire 5 ′ of the upper electrode 16 extends from the right boundary of the wafer 3 to the left end of the second terminal bar 22. Conversely, the wire 5 ′ of the lower electrode 16 extends from the left end of the wafer 3 to the right end of the terminal bar 20. After pressurization and heating, the wire 5 ′ of the upper electrode 16 forms ohmic contact with the second terminal bar 22 on the left side and the upper surface of the wafer 3, and the wire 5 ′ of the lower electrode 16 is connected to the terminal bar 20. Are in ohmic contact with the lower surface of the wafer 3 and the lower surface of the wafer 3.

導電性合金2、21の典型例は、一般の半田、あるいはAg,Bi,Cd,Ga,In,Pb,Sn,Ti等の異なった金属をもとに特に開発された半田である。金属や合金の粒子を含む有機接着剤からなる導電性材料を使用してもよい。   Typical examples of the conductive alloys 2 and 21 are general solders or solders that are specifically developed based on different metals such as Ag, Bi, Cd, Ga, In, Pb, Sn, and Ti. A conductive material made of an organic adhesive containing metal or alloy particles may be used.

また一方、図8は、角度をつけて形成した端子バー20、22およびメッシュ6状に配置されたワイヤ5'、5”を有する電極16を備えた類似した構造を示す。加圧および加熱をしたあと、下部電極16のメッシュ6は、右側の第1の角度をつけて形成した端子バー20とウェーハ3の下側にオーム接触が形成されており、一方、上部電極のメッシュ6は、第2の角度をつけて形成した端子バー22およびウェーハ3の上側にオーム接触が形成されている。   On the other hand, FIG. 8 shows a similar structure with terminal bars 20, 22 formed at an angle and an electrode 16 having wires 5 ', 5 "arranged in a mesh 6. Pressurization and heating. After that, the mesh 6 of the lower electrode 16 is in ohmic contact with the terminal bar 20 formed at the first right angle and the lower side of the wafer 3, while the mesh 6 of the upper electrode is An ohmic contact is formed on the terminal bar 22 formed at an angle of 2 and on the upper side of the wafer 3.

図9Aと図9Bは、PV電池であり、端子バーは、三層積層フレーム17として構成されており、その窓の中に対応するウェーハ3が収容されている。ワイヤ5’は、フレーム17の両面に配置され、加熱と加圧によって半田付けされている。   FIG. 9A and FIG. 9B are PV cells, and the terminal bar is configured as a three-layer laminated frame 17, and the corresponding wafer 3 is accommodated in the window. The wires 5 ′ are disposed on both sides of the frame 17 and are soldered by heating and pressing.

図9Bに詳細に示したように、フレーム17は、2つの金属フレーム18を有しており、その間に望ましくは両面接着剤の絶縁フィルム19が挟まれる。これら2つのフレーム18の外側には、それぞれ導電性合金コーティング21が塗布される。ワイヤ5’に付けた材料の量が十分であり、フレーム17とワイヤ5’の間に確実なオーム接触が形成されているときは、このコーティングは、省略することができる。この場合、フレーム17を錫コーティングすることを推奨する。   As shown in detail in FIG. 9B, the frame 17 has two metal frames 18 between which an insulating film 19 of a double-sided adhesive is preferably sandwiched. A conductive alloy coating 21 is applied to the outside of these two frames 18, respectively. If the amount of material applied to the wire 5 'is sufficient and a reliable ohmic contact is formed between the frame 17 and the wire 5', this coating can be omitted. In this case, it is recommended that the frame 17 be tin-coated.

この実施例は、メッシュ状の電極16について使用するのに適している。ここでは、第2の複数の(図示せず)ワイヤ5”が第1の複数のワイヤ5’に対して直角に配置され、図9に示すフレーム17の対応する面にオーム接触を形成する。   This embodiment is suitable for use with a mesh-like electrode 16. Here, a second plurality (not shown) of wires 5 '' are arranged at right angles to the first plurality of wires 5 'and form an ohmic contact on the corresponding surface of the frame 17 shown in FIG.

以下の実施例は、エンドレス・ストリップとして製造される本発明の電極16を利用して、PV電池の配列を互いに直列や並列に接続してPVモジュールを形成することができる。   The following examples can utilize the electrode 16 of the present invention manufactured as an endless strip to connect PV cell arrays in series or in parallel to form a PV module.

図10A,図10B,図10Cは、櫛型端子バー23を有するエンドレス電極16を示す。ワイヤ5’の外側の長手方向バー24は、エンドレス電極16の長手延伸方向にワイヤと平行して配列されている。長手方向バー24は、横方向に並ぶ横断バー25(櫛の「歯」)と一体的に接続されており、横断バーは、ウェーハ3の間のスペースに一方向あるいは反対方向に突出している。   10A, 10B, and 10C show the endless electrode 16 having the comb-shaped terminal bar 23. FIG. The longitudinal bars 24 outside the wire 5 ′ are arranged in parallel with the wires in the longitudinal extension direction of the endless electrode 16. The longitudinal bar 24 is integrally connected to a transverse bar 25 (comb “teeth”) aligned in the lateral direction, and the transverse bar protrudes in one or opposite direction into the space between the wafers 3.

図10B(図10Aの断面A―Aに示すように、左の横断バー25の上部表面は、絶縁フィルム19が施され、下部表面は、導電性合金からなるコーティング21が塗布されている。右側の横断バー25には、絶縁フィルム19が下部表面に堆積され、導電性合金からなるコーティング21が下部表面に堆積される。   10B (As shown in the cross section AA of FIG. 10A, the upper surface of the left transverse bar 25 is coated with an insulating film 19, and the lower surface is coated with a coating 21 made of a conductive alloy. On the transverse bar 25, an insulating film 19 is deposited on the lower surface, and a coating 21 made of a conductive alloy is deposited on the lower surface.

図10Cは、図10Aの断面B−Bを示す。
図10Aから図10Cに示す実施例では、左側の横断バー25は、ウェーハ3の下側に電気的に接続され、各右側横断バー25は、その右側に位置するウェーハ3の上側に電気的に接続される、したがって上記のように配置されたPV電池は、互いに並列に接続される。
FIG. 10C shows a cross section BB of FIG. 10A.
10A to 10C, the left cross bar 25 is electrically connected to the lower side of the wafer 3, and each right cross bar 25 is electrically connected to the upper side of the wafer 3 located on the right side thereof. The PV cells that are connected, and thus arranged as described above, are connected in parallel to each other.

図11Aと図11Bは、別の実施例であり、図9Aと図9Bに似た並列接続のPV電池は、直列に並んだ金属フレーム18のエンドレス配列とこれらのフレーム18の間に配置された絶縁ポリマ・フィルム19を積層した三層フレーム17として構成されている。フレーム18の外側に、低融点の導電性コーティング21が配置される。導電性コーティング21は、電極16のワイヤ5’と5”とにオーム接触を形成している。   FIG. 11A and FIG. 11B show another embodiment, and a parallel-connected PV cell similar to FIG. 9A and FIG. 9B is arranged between the endless array of metal frames 18 arranged in series and these frames 18. The three-layer frame 17 is formed by laminating insulating polymer films 19. A low melting point conductive coating 21 is disposed outside the frame 18. The conductive coating 21 makes ohmic contact with the wires 5 ′ and 5 ″ of the electrode 16.

この実施例では、ウェーハ3は、フレーム17の「窓」の中に位置しており、PV電池は、上下の電極16によって互いに並列に接続される。   In this embodiment, the wafer 3 is located in the “window” of the frame 17 and the PV cells are connected in parallel to each other by the upper and lower electrodes 16.

図12Aと図12Bは、数個のPV電池の直列接続を示している。周期的にワイヤ5’が切断された電極16の長手方向の延伸に対して直角方向に並ぶ端子バー25は、それぞれその上側と下側にコーティング21が施されている。上部電極16のワイヤ5’は、端子バー25の上側とその右側に配置されたウェーハ3の上側の間にオーム接触を形成しており、下部電極16のワイヤ5’は、各端子バー25の下側とその左側に配置されたウェーハ3の下側との間にオーム接触を形成している。   12A and 12B show a series connection of several PV cells. The terminal bars 25 arranged in a direction perpendicular to the longitudinal extension of the electrode 16 from which the wires 5 ′ are periodically cut are provided with coatings 21 on the upper side and the lower side, respectively. The wire 5 ′ of the upper electrode 16 forms an ohmic contact between the upper side of the terminal bar 25 and the upper side of the wafer 3 arranged on the right side thereof, and the wire 5 ′ of the lower electrode 16 is connected to each terminal bar 25. An ohmic contact is formed between the lower side and the lower side of the wafer 3 arranged on the left side.

図13は、PV電池の直列接続は、U型金属バー26によって達成されるエンドレス電極16を示す。長手方向に並んだ端子バーのバー24は、ワイヤ5”とオーム接触を形成しており、電極16に対して直角方向に配置された横断バー25は、ワイヤ5’とオーム接触を形成している。各ウェーハ3は、U型金属端子バー26の内側のスペースと上下の電極16の間に位置している。   FIG. 13 shows an endless electrode 16 in which a series connection of PV cells is achieved by a U-shaped metal bar 26. The longitudinally aligned terminal bar bars 24 make ohmic contact with the wire 5 ", and the transverse bars 25 arranged in a direction perpendicular to the electrode 16 make ohmic contact with the wire 5 '. Each wafer 3 is located between the space inside the U-shaped metal terminal bar 26 and the upper and lower electrodes 16.

ウェーハ3とワイヤ5’との接続は、図12Bと同様である。
図14Aと図14Bは、図12Aと図12Bに示したPV電池の直列接続に使用でき、図13の配置にも同じように使用できる電極16を示す。ワイヤ5’は、それぞれ穿孔29によって切断される。各穿孔は、一本あるいは数本のワイヤ5’にわたる場合がある。もちろん、数本の隣接ワイヤを穿孔する場合よりも、穿孔が一本のワイヤ5’の場合の方が電極16の堅牢さは優れている。後者の場合、電極16の長手延伸方向に対して直角の方向へ電極16の穿孔部分に透明接着ポリマ・フィルムを貼ることを推奨する。
The connection between the wafer 3 and the wire 5 ′ is the same as in FIG. 12B.
14A and 14B show an electrode 16 that can be used in series connection of the PV cells shown in FIGS. 12A and 12B and can be used in the arrangement of FIG. 13 as well. Each wire 5 ′ is cut by a perforation 29. Each perforation may span one or several wires 5 '. Of course, the robustness of the electrode 16 is better when the perforation is a single wire 5 ′ than when several adjacent wires are perforated. In the latter case, it is recommended to apply a transparent adhesive polymer film to the perforated portion of the electrode 16 in a direction perpendicular to the longitudinal stretching direction of the electrode 16.

同様に、図13の実施例において、長手方向に配列された端子バー24は、ワイヤ5’とともに切断してもよい。
したがって、ウェーハ3の下側と上側に、それぞれ同じ電極16を使用することができる。電極同士は、横断バー25と次のウェーハ3の端との間隔の幅だけ互いにずらして使用する。
Similarly, in the embodiment of FIG. 13, the terminal bars 24 arranged in the longitudinal direction may be cut together with the wires 5 ′.
Therefore, the same electrode 16 can be used on the lower side and the upper side of the wafer 3, respectively. The electrodes are used while being shifted from each other by the width of the interval between the transverse bar 25 and the end of the next wafer 3.

電気エネルギを運ぶ接続部の基本的に異なる構造が図15から図19を参照しながら説明される。   A fundamentally different structure of the connection carrying electrical energy will be described with reference to FIGS.

図15における配置の基本要素は、2つの金属フレーム(銅箔が望ましい)28とこれらのフレームの間に設けられた絶縁フィルム19からなる三層積層ダブル・フレーム27である。ダブル・フレーム27の中央のバーに、それと平行にステップが設けられている。ステップの高さは、金属箔の厚さに相当し、すなわち、0.2〜0.3mm(図15A,図15B,図15C)である。図15Bから見ると、金属フレーム28は、互いにずらした位置に重なっており、すなわち、金属フレーム28の左上方部は、左の隣接フレーム28の右下方部よりも上に配置されている。隣接するダブル・フレーム27の2つの重なり合った金属フレーム28の間に設けられた絶縁フィルム19は、その両端が上方あるいは下方に曲げられ、フレーム27構造の表面まで伸びている。ウェーハ3は、フレーム27の「窓」の中に位置している。上下の穿孔した電極16のワイヤ5’は、ウェーハ3の両面および各フレーム窓の左右のバーとオーム接触を形成している。ワイヤ5”は、ワイヤ5’およびフレームの上下のバーに電気的に接続される。ワイヤ5’に接触した金属フレーム28の表面は、必要なら、低融点の合金コーティング21または錫コーティングを行う。   The basic element of the arrangement in FIG. 15 is a three-layer laminated double frame 27 comprising two metal frames (preferably copper foil) 28 and an insulating film 19 provided between these frames. A step is provided in parallel with the central bar of the double frame 27. The height of the step corresponds to the thickness of the metal foil, that is, 0.2 to 0.3 mm (FIGS. 15A, 15B, and 15C). As seen from FIG. 15B, the metal frame 28 overlaps the positions shifted from each other, that is, the upper left part of the metal frame 28 is disposed above the lower right part of the left adjacent frame 28. The insulating film 19 provided between the two overlapping metal frames 28 of the adjacent double frame 27 is bent upward or downward, and extends to the surface of the frame 27 structure. The wafer 3 is located in the “window” of the frame 27. The upper and lower perforated electrode 16 wires 5 ′ are in ohmic contact with both sides of the wafer 3 and the left and right bars of each frame window. The wire 5 "is electrically connected to the wire 5 'and the upper and lower bars of the frame. The surface of the metal frame 28 in contact with the wire 5' is provided with a low melting alloy coating 21 or tin coating, if necessary.

多数のPV電池の配列を連続して相互に接続することが可能である。
図16A,図16B,図16Cは、無穿孔電極16が図5Cと図5Dの電極に相当し、同様に、相当に単純化した構造を示す。この場合、ステップ付きの長手方向バー32を利用している。これらの長手方向バー32は、図15Bと図15Cで図示したフレーム28のように並んでいる。
Multiple PV cell arrays can be connected to each other in series.
FIGS. 16A, 16B, and 16C show the structure in which the non-perforated electrode 16 corresponds to the electrode of FIGS. 5C and 5D, and similarly considerably simplified. In this case, a longitudinal bar 32 with a step is used. These longitudinal bars 32 are aligned like the frame 28 illustrated in FIGS. 15B and 15C.

図17は、2つの重ね合わせた金属フレーム28が中央にステップを形成し、互いに位置をずらした全体的配列を表わした図を示したものである。この構成の特徴は、横断バー31がそれぞれ右下の窓に架かっており、バー31は、金属フレーム28と一体的に接続されていることである。本実施例では、バー31が、本発明の下部電極16のワイヤ5’の機能を引き受けており、すなわち、完成したPV電池では、バー31は、その上にあるウェーハ3の各下部表面とオーム接触を形成している。   FIG. 17 shows an overall arrangement in which two superimposed metal frames 28 form a step in the center and are offset from each other. A feature of this configuration is that the crossing bars 31 are respectively hung on the lower right window, and the bars 31 are integrally connected to the metal frame 28. In this embodiment, the bar 31 assumes the function of the wire 5 'of the lower electrode 16 of the present invention, that is, in a completed PV cell, the bar 31 is in ohmic contact with each lower surface of the wafer 3 above it. Forming contact.

直列接続のPV電池のエンドレス配列を完成するため、単なるフレーム30を両端に設けてある。配列の左端に設けたこの単なるフレーム30には、バー31もとりつける。   In order to complete an endless arrangement of PV batteries connected in series, simple frames 30 are provided at both ends. A bar 31 is also attached to this simple frame 30 provided at the left end of the array.

この構造は、電極メッシュ6を有する上部電極16を取り付けて完成する。そのワイヤ5’は、穿孔され、加熱と加圧により、ウェーハ3およびフレーム28と30の上面に接続される。下方の電極16は、長手方向に並ぶ穿孔されたワイヤ5”セクションあるいはワイヤ5”フィールドを有する。ワイヤ・セクションあるいはワイヤ・フィールドは、バー31およびフレーム30を備えた完成品PV電池に接続されている。これにより、バーがワイヤ5”の機能、すなわち、ウェーハ3の下面に間接的に接続されただけワイヤの機能を引き受ける。   This structure is completed by attaching the upper electrode 16 having the electrode mesh 6. The wire 5 'is drilled and connected to the upper surface of the wafer 3 and frames 28 and 30 by heating and pressing. The lower electrode 16 has a longitudinally aligned perforated wire 5 "section or wire 5" field. The wire section or wire field is connected to a finished PV cell with bar 31 and frame 30. Thus, the bar assumes the function of the wire 5 ″, that is, the function of the wire only indirectly connected to the lower surface of the wafer 3.

図18は、下部電極16の代わりに、接着剤11を塗布した透明ポリマ・フィルム10が設けられたことだけが変化している図17の例に類似した実施例を示す。   FIG. 18 shows an embodiment similar to the example of FIG. 17 in which only the transparent polymer film 10 coated with the adhesive 11 is provided instead of the lower electrode 16.

最後に、図19は、図17と図18に示した例と類似した実施例である。上部電極6は、切断箇所のないメッシュ6を有している。PV電池の直列接続が完了したあと電極16のワイヤ5’が穿孔できるように、上下フレーム30の左右バーは、もとよりフレーム28の左バーおよび中央バーにスロット33を設ける。このスロット33は、ステップに平行に設けられる。PVモジュールを組み立てたあと、これらのスロット33によって、上部電極16のワイヤ5’を全体的に切断することができる。スロット33の幅は、穿孔後にワイヤ5’が永久に切断されて、互いに分離されたままになるように計算される。   Finally, FIG. 19 is an embodiment similar to the example shown in FIGS. The upper electrode 6 has a mesh 6 having no cut portions. Slots 33 are provided not only on the left and right bars of the upper and lower frames 30 but also on the left and center bars of the frame 28 so that the wire 5 'of the electrode 16 can be perforated after the series connection of PV cells is completed. The slot 33 is provided in parallel with the step. After assembling the PV module, these slots 33 can cut the wire 5 'of the upper electrode 16 as a whole. The width of the slot 33 is calculated such that the wires 5 'are permanently cut after drilling and remain separated from each other.

図1は、PV電池の加熱前の概略的等角部分図である。FIG. 1 is a schematic isometric partial view of a PV cell before heating. 図2は、PV電池製造中における加熱および/または加圧ステップ後の図である。FIG. 2 is a diagram after a heating and / or pressurizing step during PV cell manufacture. 図3は、接触ワイヤの網の概略的等角図である。FIG. 3 is a schematic isometric view of a network of contact wires. 図4は、フィルム・タイプ接着性をもつ光学的に透明な電極の製造装置の概略的等角図である。FIG. 4 is a schematic isometric view of an apparatus for producing an optically transparent electrode with film-type adhesion. 図5Aは、図4の装置で製造した電極の図である。FIG. 5A is a diagram of an electrode manufactured with the apparatus of FIG. 図5Bは、図5Aの断面A−Aである。FIG. 5B is a cross section AA of FIG. 5A. 図5Cは、図5Aのワイヤの方向に対し直角方向に並んだワイヤを有する電極ストリップの図である。FIG. 5C is an illustration of an electrode strip having wires aligned perpendicular to the direction of the wire of FIG. 5A. 図5Dは、図5Cの断面A−Aである。FIG. 5D is a cross section AA of FIG. 5C. 図6Aは、ワイヤ・メッシュを有する電極ストリップの図である。FIG. 6A is an illustration of an electrode strip having a wire mesh. 図6Bは、図6Aの断面B−Bである。6B is a cross-section BB of FIG. 6A. 図6Cは、図6Aの断面A−Aである。6C is a cross-section AA of FIG. 6A. 図7は、加熱と加圧前のPV電池の主要要素の概略的等角分解図である。FIG. 7 is a schematic isometric exploded view of the main elements of the PV cell before heating and pressing. 図8は、加熱と加圧前の要素の第2の実施例の概略的等角分解図である。FIG. 8 is a schematic isometric exploded view of a second embodiment of the element before heating and pressing. 図9Aは、PV電池の第三の実施例の図である。FIG. 9A is a diagram of a third embodiment of a PV cell. 図9Bは、図9Aの光起電力素子の断面A−Aである。FIG. 9B is a cross section AA of the photovoltaic device of FIG. 9A. 図10Aは、PV電池が互いに並列に接続されたストリップ状に並んだ数個のPV電池の図である。FIG. 10A is a diagram of several PV cells arranged in a strip shape in which PV cells are connected in parallel to each other. 図10Bは、図10Aの断面A−Aである。FIG. 10B is a cross section AA of FIG. 10A. 図10Cは、図10Aの断面B−Bである。FIG. 10C is a cross-section BB of FIG. 10A. 図11Aは、ストリップ状になった数個のPV電池の図、電極が網を形成し、電池が並列に接続されている。FIG. 11A is a diagram of several PV cells in the form of a strip, where the electrodes form a net and the cells are connected in parallel. 図11Bは、図11Aの断面A−Aである。FIG. 11B is a cross section AA of FIG. 11A. 図12Aは、PV電池が直列に接続されたストリップに並んだPV電池の配列の別の実施例を示す。FIG. 12A shows another example of an arrangement of PV cells arranged in a strip with PV cells connected in series. 図12Bは、図13の断面A−Aである。12B is a cross section AA of FIG. 図13は、PV電池が互いに直列に接続され、電極が網状に配置された電極ストリップの別な実施例を示す。FIG. 13 shows another embodiment of an electrode strip in which PV cells are connected in series with one another and the electrodes are arranged in a mesh. 図14Aは、単一の電極部分がそれぞれ一つのPV電池を形成しているエンドレス電極の図である。FIG. 14A is a diagram of an endless electrode in which each single electrode portion forms one PV cell. 図14Bは、図12Aの断面A−Aである。14B is a cross section AA of FIG. 12A. 図15Aは、ストリップに直列に並んだPV電池の配列の図である。FIG. 15A is a diagram of an array of PV cells arranged in series on a strip. 図15Bは、図15Aの断面A−Aである。FIG. 15B is a cross-section AA of FIG. 15A. 図15Cは、図15Aの断面B−Bである。FIG. 15C is a cross-section BB of FIG. 15A. 図16Aは、ストリップに直列に並んだ数個のPV電池の別の実施例を示す。FIG. 16A shows another embodiment of several PV cells arranged in series on a strip. 図16Bは、図16の断面A−Aである。FIG. 16B is a cross section AA of FIG. 図16Cは、図16の断面B−Bである。FIG. 16C is a cross-section BB of FIG. 図17は、直列接続PV電池を有するPVモジュールの要素の概略的分解図である。FIG. 17 is a schematic exploded view of the elements of a PV module having series connected PV cells. 図18は、図17のものに類似したPVモジュールの別の実施例を示す。FIG. 18 shows another embodiment of a PV module similar to that of FIG. 図19は、図17のものに類似したPVモジュールのさらに別の実施例を示す。FIG. 19 shows yet another embodiment of a PV module similar to that of FIG.

Claims (19)

導電性表面に接触する、特に光起電力素子(ウェーハ3)の少なくとも1つの表面に接触する電極であって、電極は、電気的に絶縁性があり光学的に透明な膜(10)と、膜(10)の1つの表面上に設けられた接着剤層(11)と、接着剤層(11)に埋め込まれ実質的に平行で導電性を有する第1の複数のワイヤ(5')とを含み、第1の複数のワイヤ(5')の表面の一部は、接着剤層(11)から突出し、少なくとも前記表面において低融点の合金からなるコーティング(2)で覆われた接着層(11)から突出し、第1の複数のワイヤ(5’)は、第1の端子バー(20)に接続される前記電極。   An electrode in contact with a conductive surface, in particular in contact with at least one surface of the photovoltaic element (wafer 3), the electrode being electrically insulating and optically transparent film (10); An adhesive layer (11) provided on one surface of the membrane (10), and a first plurality of wires (5 ′) embedded in the adhesive layer (11) and substantially parallel and conductive; A part of the surface of the first plurality of wires (5 ') protrudes from the adhesive layer (11) and is covered with a coating (2) made of a low melting point alloy at least on the surface ( 11) The electrode protruding from 11), wherein the first plurality of wires (5 ') are connected to the first terminal bar (20). 請求項1記載の電極において、実質的に相互に平行に並んでいる第2の複数のワイヤ(5”)は、透明な膜(10)と第1の複数のワイヤ(5”)の間に配設され、第1と第2の複数のワイヤ(5'、5”)は、共にメッシュ(6)を形成し、第2の複数のワイヤ(5”)は、第2の端子バー(22)に電気的に接続される前記電極。   2. The electrode according to claim 1, wherein the second plurality of wires (5 ″) arranged substantially parallel to one another are between the transparent film (10) and the first plurality of wires (5 ″). The first and second plurality of wires (5 ′, 5 ″) together form a mesh (6), and the second plurality of wires (5 ″) are connected to the second terminal bar (22). The electrode is electrically connected to. 請求項2記載の電極において、前記第1と第2の端子バー(20、22)は、相互に電気的に接続される電極。   3. The electrode according to claim 2, wherein the first and second terminal bars (20, 22) are electrically connected to each other. 請求項1から3のいずれかに記載の電極において、前記端子バー(20、22)は、前記ワイヤ(5'、5”)のそれぞれの端部に設けられる電極。   4. The electrode according to claim 1, wherein the terminal bar (20, 22) is provided at each end of the wire (5 ′, 5 ″). 請求項4記載の電極において、前記端子バー(20,22)は、ワイヤ(5'、5”)が接続される表面に対して前記光起電力素子(ウェーハ3)の外側の第1の複数のワイヤの両端あるいは第1と第2の複数のワイヤ(5'、5”)の両端に設けられる前記電極。   5. The electrode according to claim 4, wherein the terminal bars (20, 22) are a first plurality of outer surfaces of the photovoltaic element (wafer 3) with respect to a surface to which the wires (5 ′, 5 ″) are connected. The electrode provided on both ends of the first wire or both ends of the first and second plurality of wires (5 ′, 5 ″). 請求項1から5のいずれかに記載の電極において、前記第1と第2の端子バーは、一定の角度を形成して接続される前記電極(図8)。   6. The electrode according to claim 1, wherein the first and second terminal bars are connected to form a fixed angle (FIG. 8). 請求項1から5のいずれかに記載の電極において、前記端子バー(20、22)は、U型フレームとして形成され、複数の2つのワイヤの一方のワイヤ(5')は、基部に接続され、他方のワイヤ(5”)は、U字の自由端の足部に接続される前記電極(図13)。   The electrode according to any one of claims 1 to 5, wherein the terminal bar (20, 22) is formed as a U-shaped frame, and one wire (5 ') of a plurality of two wires is connected to the base. The other wire (5 ″) is connected to the foot of the U-shaped free end (FIG. 13). 請求項5記載の電極であって、端子バー(32)は、接続される2つの隣接した光起電力素子(3)の全長にわたって延伸し、その中央にステップが設けられ、複数の端子バー(32)が共に、一列を形成し、端子バー(32)の半分は、それぞれ、隣接する端子バーの下半分の上あるいは上半分の下になるように配列され、前記端子バー(32)の間には、絶縁膜(19)が設けられている前記電極(16図)。   6. The electrode according to claim 5, wherein the terminal bar (32) extends over the entire length of two adjacent photovoltaic elements (3) to be connected, a step is provided in the center thereof, and a plurality of terminal bars ( 32) together form a row, and half of the terminal bars (32) are arranged to be above or below the lower half of the adjacent terminal bars, respectively, between the terminal bars (32). The electrode (FIG. 16) is provided with an insulating film (19). 請求項5に記載の電極であって、前記端子バーは、閉じたフレームとして形成され、フレーム(17)の開口領域(窓)は、これに対応する光起電力素子(3)のサイズを超えている前記電極(図19)。   6. The electrode according to claim 5, wherein the terminal bar is formed as a closed frame and the open area (window) of the frame (17) exceeds the size of the corresponding photovoltaic element (3). The electrode (FIG. 19). 請求項5に記載の電極であって、前記端子バーは、窓の開口領域が対応する光起電力素子(3)のサイズを超えている2つの隣接する窓を有するダブル・フレーム(17)として形成される前記電極。   6. The electrode according to claim 5, wherein the terminal bar is as a double frame (17) having two adjacent windows whose opening area exceeds the size of the corresponding photovoltaic element (3). The electrode to be formed. 請求項9または10に記載の電極であって、前記フレーム(17)は、2つの金属フレーム(18)とその間に絶縁膜(19)が設けられる前記電極。   11. The electrode according to claim 9, wherein the frame (17) is provided with two metal frames (18) and an insulating film (19) between them. 請求項10または11に記載の電極であって、前記ダブル・フレーム(17)の中央のバーにステップが設けられ、複数のフレーム(17)が共に、一列を形成し、ダブル・フレーム(17)の半分は、それぞれ、隣接するダブル・フレーム(17)の下半分の上あるいは上半分の下になるように配列されてなる前記電極。   12. The electrode according to claim 10 or 11, wherein a step is provided in a central bar of the double frame (17), and the plurality of frames (17) together form a row, and the double frame (17). The electrodes are arranged so that half of each of them is above or below the lower half of the adjacent double frame (17). 請求項11または12に記載の電極であって、ダブル・フレーム(28)の中央のバーにスロット(33)が設けられ、スロットは、前記ステップに平行に並び、PVモジュールが完成すると、前記電極の横断ワイヤ(5')が切断される前記電極。   13. The electrode according to claim 11 or 12, wherein a slot (33) is provided in the central bar of the double frame (28), the slot being aligned parallel to the steps, and when the PV module is completed, the electrode Said electrode from which the transverse wire (5 ') of the wire is cut. 請求項9から13のいずれかに記載の電極であって、金属バー(31)は、前記フレームの少なくとも1つの窓に架かり、バー(31)は、対応する金属フレーム(18)と一体化して結合されている前記電極。   14. The electrode according to claim 9, wherein the metal bar (31) spans at least one window of the frame, and the bar (31) is integrated with the corresponding metal frame (18). The electrodes being joined together. 請求項1から14のいずれかに記載の複数の電極であって、電極は、一体の連続する一片として形成され、PVモジュールを形成するために接続される隣接した光起電力素子(3)の配列の長さに相当する長さに切断され、前記一片の長手方向に並んだワイヤ5'は、PV電池の長さに相当する長さに切断される前記複数の電極片(図14)。   15. A plurality of electrodes according to any of claims 1 to 14, wherein the electrodes are formed as an integral continuous piece of adjacent photovoltaic elements (3) connected to form a PV module. The plurality of electrode pieces (FIG. 14) cut into a length corresponding to the length of the array, and the wires 5 ′ arranged in the longitudinal direction of the one piece are cut into a length corresponding to the length of the PV battery. 請求項15に記載の電極片であって、一体の端子バー(22)は、前記透明膜(10)の端部のうちの少なくとも1つの端部に沿って設けられる電極片。   16. The electrode piece according to claim 15, wherein the integral terminal bar (22) is provided along at least one of the end portions of the transparent film (10). 請求項16に記載の電極片であって、前記透明膜(10)の各端部に沿って櫛状のバー(23)が配設され、2つの隣接した光起電力素子(3)の間でそれぞれ櫛状バーの歯(25)は、一方の側から前記第1の複数のワイヤ(5')の幅にわたって延伸し、対応する光起電力素子(3)の上側と下側に交互に電気的に接続され、他方の表面から分離される前記電極片。   17. The electrode piece according to claim 16, wherein a comb-like bar (23) is arranged along each end of the transparent film (10), and between two adjacent photovoltaic elements (3). Each comb bar tooth (25) extends across the width of the first plurality of wires (5 ') from one side and alternately above and below the corresponding photovoltaic element (3). The electrode piece electrically connected and separated from the other surface. 請求項1から17のいずれかに記載の少なくとも1つの電極(16)あるいは1つの電極片(16)を含む光起電力電池または光起電力モジュールであって、その少なくとも1つの表面が導電性であり、反射防止された光学的に透明なコーティング(4)を施した1つ以上の光起電力電池(3)を有し、第1の複数のワイヤ(5')が合金(2)を用いてコーティング(4)およびそれぞれの端子バー(20)あるいは端子フレーム(17)に半田付けされる前記光起電力電池または光起電力モジュール。   A photovoltaic cell or photovoltaic module comprising at least one electrode (16) or one electrode piece (16) according to any of claims 1 to 17, wherein at least one surface thereof is electrically conductive. Having one or more photovoltaic cells (3) with an anti-reflection optically transparent coating (4), the first plurality of wires (5 ') using the alloy (2) The photovoltaic cell or photovoltaic module being soldered to the coating (4) and the respective terminal bar (20) or terminal frame (17). 請求項2に記載の電極(16)を有する請求項18に記載の光起電力電池または光起電力モジュールであって、前記第1と第2の複数のワイヤ(5'、5”)は、合金(2)を用いてそれらの交差点において、それぞれの端子バーあるいは端子フレームに接合される前記光起電力電池または光起電力モジュール。   19. The photovoltaic cell or photovoltaic module according to claim 18 comprising the electrode (16) according to claim 2, wherein the first and second plurality of wires (5 ', 5 ") are: The photovoltaic cell or photovoltaic module that is joined to the respective terminal bar or terminal frame at their intersection using an alloy (2).
JP2004531327A 2002-08-29 2003-08-21 Photovoltaic battery electrode, photovoltaic battery and photovoltaic module Ceased JP2005536894A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10239845A DE10239845C1 (en) 2002-08-29 2002-08-29 Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module
PCT/CA2003/001278 WO2004021455A1 (en) 2002-08-29 2003-08-21 Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009265066A Division JP5185913B2 (en) 2002-08-29 2009-11-20 Photovoltaic battery electrode, photovoltaic battery and photovoltaic module

Publications (1)

Publication Number Publication Date
JP2005536894A true JP2005536894A (en) 2005-12-02

Family

ID=29594632

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004531327A Ceased JP2005536894A (en) 2002-08-29 2003-08-21 Photovoltaic battery electrode, photovoltaic battery and photovoltaic module
JP2009265066A Expired - Lifetime JP5185913B2 (en) 2002-08-29 2009-11-20 Photovoltaic battery electrode, photovoltaic battery and photovoltaic module

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009265066A Expired - Lifetime JP5185913B2 (en) 2002-08-29 2009-11-20 Photovoltaic battery electrode, photovoltaic battery and photovoltaic module

Country Status (20)

Country Link
US (2) US7432438B2 (en)
EP (1) EP1547158B1 (en)
JP (2) JP2005536894A (en)
KR (1) KR101014393B1 (en)
CN (2) CN100431175C (en)
AT (1) ATE379849T1 (en)
AU (1) AU2003258427B8 (en)
BR (1) BRPI0313851B1 (en)
CA (1) CA2496557C (en)
CY (1) CY1107220T1 (en)
DE (2) DE10239845C1 (en)
DK (1) DK1547158T3 (en)
ES (1) ES2297257T3 (en)
HK (2) HK1077122A1 (en)
IL (1) IL166854A (en)
MX (1) MXPA05002321A (en)
PT (1) PT1547158E (en)
SI (1) SI1547158T1 (en)
WO (1) WO2004021455A1 (en)
ZA (1) ZA200501563B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189132A (en) * 2006-01-16 2007-07-26 Canon Inc Photovoltaic element
JP2009117731A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Method for manufacturing solar cell
JP2009117742A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Electrode film for solar cell, method for manufacturing solar cell using same, and solar cell
JP2010283275A (en) * 2009-06-08 2010-12-16 Ulvac Japan Ltd Crystalline solar cell and method of manufacturing the same
JP2011018890A (en) * 2009-06-11 2011-01-27 Dainippon Printing Co Ltd Organic thin-film solar cell and manufacturing method thereof
WO2012133338A1 (en) * 2011-03-25 2012-10-04 ソニーケミカル&インフォメーションデバイス株式会社 Solar cell module, method for producing solar cell module, and tab wire
WO2013030991A1 (en) * 2011-08-31 2013-03-07 三洋電機株式会社 Solar cell and method for manufacturing same
WO2014080894A1 (en) * 2012-11-21 2014-05-30 長州産業株式会社 Photovoltaic apparatus
WO2014148443A1 (en) 2013-03-19 2014-09-25 長州産業株式会社 Photovoltaic element and manufacturing method therefor
JP5761172B2 (en) * 2010-02-25 2015-08-12 産機電業株式会社 Method for producing solar cell using silicon powder
WO2016125882A1 (en) * 2015-02-06 2016-08-11 長州産業株式会社 Photovoltaic module
WO2016125880A1 (en) * 2015-02-06 2016-08-11 三井・デュポンポリケミカル株式会社 Wiring sheet, structure, and photovoltaic generation module
KR20160113108A (en) * 2013-12-20 2016-09-28 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Photovoltaic cell, photovoltaic module, production thereof, and use thereof
JP2018507545A (en) * 2015-01-16 2018-03-15 ゾモント・ゲーエムベーハー Method and apparatus for manufacturing an interconnector assembly
JP2018530168A (en) * 2015-11-06 2018-10-11 マイヤー・バーガー・(スウィツァーランド)・アーゲー Polymer conductor sheet, solar cell, and manufacturing method thereof
JP2020061551A (en) * 2018-10-05 2020-04-16 エルジー エレクトロニクス インコーポレイティド Solar cell panel
JP2020513163A (en) * 2017-04-14 2020-04-30 マイヤー ブルガー (スイッツァランド) アーゲー Photovoltaic module, photovoltaic encapsulant, and method for manufacturing photovoltaic module

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314433A1 (en) * 1995-05-15 2008-12-25 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7732243B2 (en) 1995-05-15 2010-06-08 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US20090111206A1 (en) 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US8076568B2 (en) 2006-04-13 2011-12-13 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US7507903B2 (en) 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7635810B2 (en) * 1999-03-30 2009-12-22 Daniel Luch Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays
US7898053B2 (en) 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7898054B2 (en) 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8198696B2 (en) 2000-02-04 2012-06-12 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
DE10239845C1 (en) 2002-08-29 2003-12-24 Day4 Energy Inc Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module
US7838868B2 (en) 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
US7732229B2 (en) 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US8927315B1 (en) 2005-01-20 2015-01-06 Aeris Capital Sustainable Ip Ltd. High-throughput assembly of series interconnected solar cells
US7622666B2 (en) * 2005-06-16 2009-11-24 Soliant Energy Inc. Photovoltaic concentrator modules and systems having a heat dissipating element located within a volume in which light rays converge from an optical concentrating element towards a photovoltaic receiver
WO2007044384A2 (en) * 2005-10-04 2007-04-19 Soliant Energy, Inc. A heatsink for concentrating or focusing optical/electrical energy conversion systems
US20070144577A1 (en) * 2005-12-23 2007-06-28 Rubin George L Solar cell with physically separated distributed electrical contacts
CN101375112A (en) 2006-01-17 2009-02-25 索利安特能源公司 A hybrid primary optical component for optical concentrators
US7498508B2 (en) 2006-02-24 2009-03-03 Day4 Energy, Inc. High voltage solar cell and solar cell module
JP4755246B2 (en) * 2006-03-31 2011-08-24 パイオニア株式会社 Low resistance substrate fabrication method
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US20070283996A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
US20070283997A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with integrated current collection and interconnection
US20080053519A1 (en) * 2006-08-30 2008-03-06 Miasole Laminated photovoltaic cell
DE102006041046A1 (en) * 2006-09-01 2008-03-06 Cis Solartechnik Gmbh & Co. Kg Solar cell, process for the production of solar cells and electrical trace
US20080083448A1 (en) * 2006-09-29 2008-04-10 Borden Peter G Interconnect for thin film photovoltaic modules
US20080128586A1 (en) * 2006-10-13 2008-06-05 Johnson Richard L Sun sensor assembly and related method of using
US20080092944A1 (en) * 2006-10-16 2008-04-24 Leonid Rubin Semiconductor structure and process for forming ohmic connections to a semiconductor structure
DE102006052018A1 (en) * 2006-11-03 2008-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell and solar cell module with improved backside electrodes as well as process and fabrication
US20080142071A1 (en) * 2006-12-15 2008-06-19 Miasole Protovoltaic module utilizing a flex circuit for reconfiguration
US20090000612A1 (en) * 2007-05-04 2009-01-01 Hines Braden E Apparatuses and methods for shaping reflective surfaces of optical concentrators
US20080290368A1 (en) * 2007-05-21 2008-11-27 Day4 Energy, Inc. Photovoltaic cell with shallow emitter
US20080289953A1 (en) * 2007-05-22 2008-11-27 Miasole High rate sputtering apparatus and method
US8697980B2 (en) * 2007-06-19 2014-04-15 Hanergy Holding Group Ltd. Photovoltaic module utilizing an integrated flex circuit and incorporating a bypass diode
US20090014057A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic modules with integrated devices
US20090014058A1 (en) * 2007-07-13 2009-01-15 Miasole Rooftop photovoltaic systems
US20090014049A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic module with integrated energy storage
US20100047954A1 (en) * 2007-08-31 2010-02-25 Su Tzay-Fa Jeff Photovoltaic production line
JP2010538475A (en) 2007-08-31 2010-12-09 アプライド マテリアルズ インコーポレイテッド Production line module for forming multi-size photovoltaic devices
TW200939509A (en) * 2007-11-19 2009-09-16 Applied Materials Inc Crystalline solar cell metallization methods
JP2011503910A (en) * 2007-11-19 2011-01-27 アプライド マテリアルズ インコーポレイテッド Solar cell contact formation process using patterned etchant
US20100000602A1 (en) * 2007-12-11 2010-01-07 Evergreen Solar, Inc. Photovoltaic Cell with Efficient Finger and Tab Layout
EP2278623A2 (en) * 2007-12-11 2011-01-26 Evergreen Solar, Inc. Photovoltaic panel and cell with fine fingers and method of manufacturing the same
EP2232575A4 (en) * 2007-12-14 2012-07-11 Miasole Photovoltaic devices protected from environment
WO2009076740A1 (en) * 2007-12-18 2009-06-25 Day4 Energy Inc. Photovoltaic module with edge access to pv strings, interconnection method, apparatus, and system
US8212139B2 (en) 2008-01-18 2012-07-03 Tenksolar, Inc. Thin-film photovoltaic module
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US20090183764A1 (en) * 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US20090188603A1 (en) * 2008-01-25 2009-07-30 Applied Materials, Inc. Method and apparatus for controlling laminator temperature on a solar cell
US7908743B2 (en) * 2008-02-27 2011-03-22 Applied Materials, Inc. Method for forming an electrical connection
CN102089892B (en) * 2008-02-27 2013-02-13 应用材料公司 Method and apparatus for forming an electrical connection on a solar cell
US20100043863A1 (en) * 2008-03-20 2010-02-25 Miasole Interconnect assembly
US20110197947A1 (en) * 2008-03-20 2011-08-18 Miasole Wire network for interconnecting photovoltaic cells
US8912429B2 (en) * 2008-03-20 2014-12-16 Hanergy Holding Group Ltd. Interconnect assembly
JP5094509B2 (en) * 2008-03-31 2012-12-12 三洋電機株式会社 Solar cell module
DE102008020749A1 (en) * 2008-04-22 2009-10-29 Cis Solartechnik Gmbh & Co. Kg Process for producing a solar cell
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
CN102089887B (en) 2008-05-16 2014-12-31 昂科公司 Solar systems that include one or more shade-tolerant wiring schemes
DE102008030262A1 (en) * 2008-06-18 2009-12-24 Gebr. Schmid Gmbh & Co. Solar cell and process for producing a solar cell
JP5436805B2 (en) 2008-07-04 2014-03-05 三洋電機株式会社 Solar cell module
US8183081B2 (en) * 2008-07-16 2012-05-22 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a metal layer mask
JP5223004B2 (en) 2008-07-28 2013-06-26 デイ4 エネルギー インコーポレイテッド Crystalline silicon PV cell with selective emitters manufactured by low temperature precision etch-back and passivation process
US20100037933A1 (en) * 2008-08-12 2010-02-18 Harold John Hovel Solar cell panels and method of fabricating same
EP2324509A2 (en) * 2008-08-27 2011-05-25 Applied Materials, Inc. Back contact solar cells using printed dielectric barrier
JP2010067968A (en) * 2008-09-11 2010-03-25 Komax Holding Ag Device and method for attaching long conductor to solar element
JP5064353B2 (en) * 2008-10-27 2012-10-31 シャープ株式会社 Solar cell device, portable electronic device, and global positioning system device
US9059351B2 (en) 2008-11-04 2015-06-16 Apollo Precision (Fujian) Limited Integrated diode assemblies for photovoltaic modules
US8586857B2 (en) * 2008-11-04 2013-11-19 Miasole Combined diode, lead assembly incorporating an expansion joint
US20100122730A1 (en) * 2008-11-17 2010-05-20 Corneille Jason S Power-loss-inhibiting current-collector
DE102008043833B4 (en) * 2008-11-18 2016-03-10 Maximilian Scherff Solar cell system, solar module and method for the electrical connection of back-contacted solar cells
DE202008016139U1 (en) * 2008-12-08 2010-04-29 Usk Karl Utz Sondermaschinen Gmbh solar cell assembly
US20100206370A1 (en) * 2009-02-18 2010-08-19 Qualcomm Incorporated Photovoltaic Cell Efficiency Using Through Silicon Vias
EP2399296B1 (en) * 2009-02-23 2015-12-02 Tenksolar, Inc. Highly efficient renewable energy system
WO2010106899A1 (en) * 2009-03-17 2010-09-23 コニカミノルタホールディングス株式会社 Transparent conductive film and method for manufacturing transparent conductive film
DE102009020029A1 (en) 2009-05-05 2010-11-11 Feindrahtwerk Adolf Edelhoff Gmbh & Co. Kg Electrical contacting element for photovoltaic cells, particularly solar cells, has cross-sectional profile of wires with continuous contour
DE202009006542U1 (en) 2009-05-05 2009-07-23 Feindrahtwerk Adolf Edelhoff Gmbh & Co. Kg Electrical contacting element for photovoltaic cells
US8247243B2 (en) 2009-05-22 2012-08-21 Nanosolar, Inc. Solar cell interconnection
EP2438632A4 (en) * 2009-06-03 2014-01-22 First Solar Inc Self-remediating photovoltaic module
EP2443666A4 (en) 2009-06-15 2013-06-05 Tenksolar Inc Illumination agnostic solar panel
US20110023952A1 (en) * 2009-07-30 2011-02-03 Evergreen Solar, Inc. Photovoltaic cell with semiconductor fingers
CH701679A1 (en) 2009-08-19 2011-02-28 Cells S A Device and method for the contacting of silicon solar cells.
WO2011035272A1 (en) * 2009-09-20 2011-03-24 Intermolecular, Inc. Methods of building crystalline silicon solar cells for use in combinatorial screening
US8227723B2 (en) * 2009-10-19 2012-07-24 Applied Materials, Inc. Solder bonding method and apparatus
US20110146786A1 (en) * 2009-12-23 2011-06-23 First Solar, Inc. Photovoltaic module interlayer
US8759664B2 (en) 2009-12-28 2014-06-24 Hanergy Hi-Tech Power (Hk) Limited Thin film solar cell strings
EP2348539B1 (en) 2010-01-19 2019-05-29 SolarWorld Industries GmbH Photovoltaic cell electrode and method for electrically connecting a photovoltaic cell
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
DE102010016476B4 (en) 2010-04-16 2022-09-29 Meyer Burger (Germany) Gmbh Method for applying contact wires to a surface of a photovoltaic cell, photovoltaic cell, photovoltaic module, arrangement for applying contact wires to a surface of a photovoltaic cell
DE102010016675A1 (en) 2010-04-28 2011-11-03 Solarworld Innovations Gmbh Photovoltaic module, method for electrically connecting a plurality of photovoltaic cells, and means for electrically connecting a plurality of photovoltaic cells
US9061344B1 (en) 2010-05-26 2015-06-23 Apollo Precision (Fujian) Limited Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells
EP2577740B1 (en) * 2010-05-28 2018-11-14 SolarWorld Industries GmbH Method for contacting and connecting solar cells and solar cell combination produced by means of said method
DE102010017180A1 (en) 2010-06-01 2011-12-01 Solarworld Innovations Gmbh Solar cell, solar module, and method for wiring a solar cell, and contact wire
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
JPWO2012014806A1 (en) * 2010-07-30 2013-09-12 三洋電機株式会社 Manufacturing method of solar cell
WO2012021650A2 (en) 2010-08-10 2012-02-16 Tenksolar, Inc. Highly efficient solar arrays
ES2546311T3 (en) 2010-09-07 2015-09-22 Dow Global Technologies Llc Improved assembly of photovoltaic cells
WO2012037191A2 (en) 2010-09-17 2012-03-22 Dow Global Technologies Llc Improved photovoltaic cell assembly and method
CN103140936A (en) * 2010-09-29 2013-06-05 日立化成株式会社 Solar cell module
US10026859B2 (en) * 2010-10-04 2018-07-17 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Small gauge wire solar cell interconnect
KR20130132444A (en) * 2010-10-18 2013-12-04 데이4 에너지 인코포레이티드 Testing apparatus for photovoltaic cells
WO2012052542A1 (en) 2010-10-21 2012-04-26 Tag Hammam Arrangement in a solar panel
US8956888B2 (en) 2010-11-03 2015-02-17 Apollo Precision Fujian Limited Photovoltaic device and method and system for making photovoltaic device
WO2012077630A1 (en) * 2010-12-06 2012-06-14 阪本 順 Panel, method for producing panel, solar cell module, printing apparatus, and printing method
TW201234626A (en) * 2011-01-13 2012-08-16 Intevac Inc Non-contacting bus bars for solar cells and methods of making non-contacting bus bars
DE102011000753A1 (en) * 2011-02-15 2012-08-16 Solarworld Innovations Gmbh Solar cell, solar module and method for producing a solar cell
DE102011001061B4 (en) * 2011-03-03 2017-10-05 Solarworld Innovations Gmbh Solar cell connector, solar cell module and method of electrically connecting multiple solar cells
DE102011014795B4 (en) 2011-03-15 2021-05-06 Hegla Boraident Gmbh & Co. Kg Process for the production of flexible thin-film solar cells
US8951824B1 (en) 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
TWI433331B (en) 2011-05-17 2014-04-01 Neo Solar Power Corp Machine for manufacturing electrode tape
CN102786883A (en) 2011-05-17 2012-11-21 旺能光电股份有限公司 Electrode adhesive tape, solar cell module and manufacturing method thereof
EP2528097A1 (en) * 2011-05-27 2012-11-28 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Photovoltaic device and method of manufacturing the same
NL2006966C2 (en) 2011-06-17 2012-12-18 Stichting Energie Photovoltaic system and connector for a photovoltaic cell with interdigitated contacts.
JP5903550B2 (en) * 2011-07-28 2016-04-13 パナソニックIpマネジメント株式会社 Solar cell, solar cell module, and method for manufacturing solar cell
CN102983785A (en) * 2011-09-02 2013-03-20 杜邦太阳能有限公司 Photovoltaic conversion system
BR112014007097A8 (en) 2011-09-29 2017-06-20 Dow Global Technologies Llc photovoltaic article
US20140352753A1 (en) 2011-09-29 2014-12-04 Dow Global Technologies Llc Photovoltaic cell interconnect
US8497153B2 (en) 2011-10-31 2013-07-30 E I Du Pont De Nemours And Company Integrated back-sheet for back contact photovoltaic module
WO2013082091A2 (en) 2011-11-29 2013-06-06 Dow Global Technologies Llc Method of forming a photovoltaic cell
CN103975447B (en) 2011-12-08 2017-04-12 陶氏环球技术有限责任公司 Method of forming a photovoltaic cell
US9306103B2 (en) 2011-12-22 2016-04-05 E I Du Pont De Nemours And Company Back contact photovoltaic module with integrated circuitry
WO2013091725A1 (en) * 2011-12-23 2013-06-27 Aurubis Ag A conductor spool, a method for manufacturing a solar cell and a solar cell
CN104011882A (en) 2012-01-12 2014-08-27 应用材料公司 Methods of manufacturing solar cell devices
WO2013106896A1 (en) * 2012-01-17 2013-07-25 Day4 Energy Inc. Photovoltaic module with cell assemblies bearing adhesive for securing the assemblies in the module
WO2013124438A2 (en) 2012-02-22 2013-08-29 Muehlbauer Ag Method and device for producing a solar module and a solar module having flexible thin-film solar cells
DE102012003455A1 (en) 2012-02-22 2013-08-22 Mühlbauer Ag Method for producing thin film solar module, involves providing sequence of flexible thin-film solar cells for designing side portions in electrically conductive terminals and forming photovoltaic active layer with electrical conductor
US9385254B2 (en) 2012-04-17 2016-07-05 Hanergy Hi-Tech Power (Hk) Limited Integrated thin film solar cell interconnection
ITTO20120095U1 (en) 2012-05-22 2013-11-23 Domenico Gustavo Gioco FLEXIBLE PHOTOVOLTAIC PANEL.
DE102012017564B4 (en) * 2012-09-05 2018-10-11 Universität Konstanz Device for non-permanent electrical contacting of solar cells for measuring electrical properties
WO2014117138A1 (en) 2013-01-28 2014-07-31 Global Solar Energy, Inc. Photovoltaic interconnect systems, devices, and methods
KR102043425B1 (en) * 2013-03-06 2019-11-12 엘지전자 주식회사 Measurement equipment of solar cell
US8569096B1 (en) 2013-03-13 2013-10-29 Gtat Corporation Free-standing metallic article for semiconductors
US8916038B2 (en) 2013-03-13 2014-12-23 Gtat Corporation Free-standing metallic article for semiconductors
US8936709B2 (en) 2013-03-13 2015-01-20 Gtat Corporation Adaptable free-standing metallic article for semiconductors
DE102013204814A1 (en) * 2013-03-19 2014-09-25 Robert Bosch Gmbh Photovoltaic module and method of making a photovoltaic module
CN103325875A (en) * 2013-06-23 2013-09-25 深圳市华光达科技有限公司 Current collecting device of novel solar cell and manufacturing technology of current collecting device
CN103500773A (en) * 2013-09-16 2014-01-08 深圳市索阳新能源科技有限公司 Novel efficient back contact type solar power generation assembly and manufacturing method thereof
DE102013219526B4 (en) 2013-09-27 2022-10-13 Meyer Burger (Germany) Gmbh Solar cell assembly with connecting element and method for producing a solar cell assembly
WO2015056069A1 (en) 2013-10-15 2015-04-23 Meyer Burger Ag Method and system for forming laminates
US9921261B2 (en) * 2013-10-17 2018-03-20 Kla-Tencor Corporation Method and apparatus for non-contact measurement of sheet resistance and shunt resistance of p-n junctions
US10672927B2 (en) * 2014-06-20 2020-06-02 Merlin Solar Technologies, Inc. Photovoltaic cell having a coupled expanded metal article
CN105322036B (en) * 2014-07-17 2017-06-23 英属开曼群岛商精曜有限公司 Solar energy module and its manufacture method
EP2993210A1 (en) 2014-09-03 2016-03-09 Specialized Technology Resources Espana, S.A. Encapsulating film for a photovoltaic module
DE102014112650A1 (en) * 2014-09-03 2016-03-03 Hanwha Q Cells Gmbh Solar module backside encapsulation element and solar module
EP3582266B1 (en) * 2014-09-30 2021-01-27 Lg Electronics Inc. Solar cell and solar cell panel including the same
CN106206767B (en) * 2014-10-31 2019-01-11 比亚迪股份有限公司 Solar battery cell, battery chip arrays, battery component and preparation method thereof
CN105576057B (en) * 2014-10-31 2018-06-26 比亚迪股份有限公司 Solar cell module and preparation method thereof
US20160126361A1 (en) 2014-10-31 2016-05-05 Byd Company Limited Solar cell module and manufacturing method thereof
WO2016065935A1 (en) * 2014-10-31 2016-05-06 Byd Company Limited Solar cell module and manufacturing method thereof
DE102014118332A1 (en) * 2014-12-10 2016-06-16 Solarworld Innovations Gmbh photovoltaic module
JPWO2016103625A1 (en) * 2014-12-26 2017-09-14 パナソニックIpマネジメント株式会社 Solar cell module
EP3051595A1 (en) 2015-01-29 2016-08-03 Meyer Burger AG Method and device for making an interconnector for solar cells and such interconnector
EP3278370B1 (en) 2015-03-30 2020-07-29 IMEC vzw Electrically contacting and interconnecting photovoltaic cells
KR101680037B1 (en) 2015-07-28 2016-12-12 엘지전자 주식회사 Solar cell and solar cell panel including the same
KR20170017776A (en) * 2015-08-05 2017-02-15 엘지전자 주식회사 Ribbon for solar cell panel and method for manufacturing the same, and solar cell panel
KR101661859B1 (en) * 2015-09-09 2016-09-30 엘지전자 주식회사 Solar cell module and manufacturing method thereof
CN106558631B (en) * 2015-09-18 2020-05-12 上海太阳能工程技术研究中心有限公司 Main-grid-free double-sided battery assembly and manufacturing process thereof
US10840394B2 (en) 2015-09-25 2020-11-17 Total Marketing Services Conductive strip based mask for metallization of semiconductor devices
CN105576046B (en) * 2015-12-15 2017-08-11 黄河水电光伏产业技术有限公司 A kind of preparation method without main grid welding for solar cell
WO2017186592A1 (en) * 2016-04-29 2017-11-02 Agc Glass Europe Assembly
US10128391B2 (en) 2016-06-22 2018-11-13 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic module with flexible wire interconnection
CN106393815B (en) * 2016-08-31 2018-04-06 西安泰力松新材料股份有限公司 A kind of wire/film compounding machine and its control device and method
HUP1700044A2 (en) 2017-01-31 2018-12-28 Ecosolifer Invest Ag Solar cell with improved electrodes and solar module composed of such cells
CN109004041B (en) * 2017-06-06 2020-04-28 清华大学 Solar cell
FR3067519B1 (en) * 2017-06-08 2019-07-26 Centre National D'etudes Spatiales SOLAR PANEL COMPRISING IN PARTICULAR A STRUCTURE AND AT LEAST TWO PHOTOVOLTAIC CELLS
KR102593979B1 (en) * 2017-07-14 2023-10-26 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 Photovoltaic devices and methods
DE102017216528A1 (en) * 2017-09-19 2019-03-21 Continental Automotive Gmbh Protective film for solar cell, solar module with the protective film, method for producing the solar film and the solar module
DE102017122530B4 (en) 2017-09-28 2023-02-23 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Photovoltaic module with interlocking contacts on the back
RU2671912C1 (en) * 2017-11-27 2018-11-07 Общество с ограниченной ответственностью "НТЦ тонкопленочных технологий в энергетике", ООО "НТЦ ТПТ" Electrode for contacting of photoelectric converters
FR3074360B1 (en) * 2017-11-30 2019-12-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD OF INTERCONNECTING PHOTOVOLTAIC CELLS WITH AN ELECTRODE PROVIDED WITH METAL NANOWIRES
FR3074963B1 (en) * 2017-12-07 2022-08-12 Commissariat Energie Atomique PHOTOVOLTAIC MODULE COMPRISING PHOTOVOLTAIC CELLS INTERCONNECTED BY INTERCONNECTION ELEMENTS
CN107978890B (en) * 2018-01-03 2024-02-13 菲尼克斯亚太电气(南京)有限公司 Square stepped bolt light Fu Duanzi
CN108110080A (en) * 2018-01-10 2018-06-01 广东汉能薄膜太阳能有限公司 A kind of solar energy electrode structure and the solar cell using the electrode structure
US10490682B2 (en) 2018-03-14 2019-11-26 National Mechanical Group Corp. Frame-less encapsulated photo-voltaic solar panel supporting solar cell modules encapsulated within multiple layers of optically-transparent epoxy-resin materials
EP3776664A4 (en) 2018-03-29 2021-04-28 Sunpower Corporation Wire-based metallization and stringing for solar cells
CN110717364B (en) * 2018-07-13 2023-09-22 中兴通讯股份有限公司 Glass cover plate, terminal, fingerprint identification method, fingerprint identification device and storage medium
JP2021193695A (en) 2018-09-28 2021-12-23 パナソニック株式会社 Manufacturing method of solar cell module and solar cell module
JP2020088133A (en) * 2018-11-22 2020-06-04 パナソニック株式会社 Solar cell module
JP2020107758A (en) 2018-12-27 2020-07-09 パナソニック株式会社 Solar cell module
US11271126B2 (en) 2019-03-21 2022-03-08 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic panels with folded panel edges and methods of forming the same
NL2022801B1 (en) * 2019-03-25 2020-10-02 Lusoco B V Apparatus for recovering energy from ambient light and photo-voltaic converter
CN110165022A (en) * 2019-06-06 2019-08-23 苏州迈展自动化科技有限公司 A kind of Preparation equipment of solar battery metal wire film
CN110429143A (en) * 2019-07-19 2019-11-08 苏州迈展自动化科技有限公司 A kind of electrode, photovoltaic cell and photovoltaic cell component for photovoltaic cell
FR3102301B1 (en) 2019-10-16 2022-04-01 Commissariat Energie Atomique Process for interconnecting photovoltaic cells with metal wires in contact with solder paste pads
EP3905341A1 (en) 2020-04-29 2021-11-03 Meyer Burger AG Improved solar cell string for use in a photovoltaic module
WO2022143109A1 (en) 2020-12-30 2022-07-07 东方日升新能源股份有限公司 Packaging method for solar cell module, connection method for solar cell string, solar cell module, and preparation method therefor
CN116960207A (en) 2021-03-05 2023-10-27 浙江晶科能源有限公司 Battery string structure, photovoltaic module and manufacturing method thereof
CN113097327A (en) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 Grid line glue film and solar cell module
CN113097326A (en) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 Two-sided interconnection film and photovoltaic module
CN113097325A (en) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 Solar cell module
IT202100009254A1 (en) * 2021-04-13 2022-10-13 Fly Solartech Solutions S R L MACHINE AND PROCEDURE FOR THE PRODUCTION OF AN ELECTRODE
CN113299794B (en) * 2021-05-21 2023-04-21 无锡鼎森茂科技有限公司 Continuous manufacturing system of conductive connecting layer
EP4354522A1 (en) 2021-06-07 2024-04-17 Dai Nippon Printing Co., Ltd. Resin film for current collecting sheet, current collecting sheet, solar cell element with current collecting sheet, and solar cell
DE102021114906B4 (en) 2021-06-09 2023-10-12 Institut Für Solarenergieforschung Gmbh SOLAR MODULE WITH OPTIMIZED CIRCUIT AND METHOD FOR MANUFACTURING THE SAME
EP4102577A1 (en) 2021-06-09 2022-12-14 Meyer Burger (Switzerland) AG Improved parallel solar cell string assemblies for use in a photovoltaic module
GB202119068D0 (en) * 2021-12-29 2022-02-09 Rec Solar Pte Ltd A unitary film for an electrode assembly of a solar cell
GB202119064D0 (en) * 2021-12-29 2022-02-09 Rec Solar Pte Ltd Solar cell assembly
CN114267744B (en) * 2021-12-29 2023-09-08 明冠新材料股份有限公司 Double-glass photovoltaic cell, preparation method and photovoltaic module
CN114300549B (en) * 2021-12-29 2023-09-08 明冠新材料股份有限公司 Single-glass photovoltaic cell, preparation method and photovoltaic module

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982964A (en) * 1975-01-17 1976-09-28 Communications Satellite Corporation (Comsat) Dotted contact fine geometry solar cell
US4027652A (en) * 1975-04-15 1977-06-07 Frank Collura Solar energy collector
US4080703A (en) * 1975-08-01 1978-03-28 The Stolle Corporation Radiating or absorbing heat exchange panel
US3996067A (en) * 1975-12-30 1976-12-07 The United States Of America As Represented By The National Aeronautics And Space Administration Silicon nitride coated, plastic covered solar cell
FR2412164A1 (en) 1977-12-13 1979-07-13 Radiotechnique Compelec PROCESS FOR CREATING, BY SERIGRAPHY, A CONTACT ON THE SURFACE OF A SEMICONDUCTOR DEVICE AND DEVICE OBTAINED BY THIS PROCESS
US4173496A (en) 1978-05-30 1979-11-06 Texas Instruments Incorporated Integrated solar cell array
US4200472A (en) * 1978-06-05 1980-04-29 The Regents Of The University Of California Solar power system and high efficiency photovoltaic cells used therein
US4256513A (en) * 1978-10-19 1981-03-17 Matsushita Electric Industrial Co., Ltd. Photoelectric conversion device
DE2926754A1 (en) * 1979-07-03 1981-01-15 Licentia Gmbh SOLAR CELL ARRANGEMENT
US4278473A (en) * 1979-08-24 1981-07-14 Varian Associates, Inc. Monolithic series-connected solar cell
US4320154A (en) * 1980-07-18 1982-03-16 Westinghouse Electric Corp. Method of forming solar cells by grid contact isolation
US4315096A (en) * 1980-07-25 1982-02-09 Eastman Kodak Company Integrated array of photovoltaic cells having minimized shorting losses
US4380112A (en) * 1980-08-25 1983-04-19 Spire Corporation Front surface metallization and encapsulation of solar cells
US4443653A (en) * 1980-10-24 1984-04-17 The University Of Delaware Thin film photovoltaic device with multilayer substrate
US4330680A (en) * 1980-10-28 1982-05-18 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Integrated series-connected solar cell
US4341918A (en) * 1980-12-24 1982-07-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High voltage planar multijunction solar cell
US4376872A (en) * 1980-12-24 1983-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High voltage V-groove solar cell
JPS59115576A (en) 1982-12-22 1984-07-04 Sharp Corp Wiring method for solar battery
US4517403A (en) * 1983-05-16 1985-05-14 Atlantic Richfield Company Series connected solar cells and method of formation
US4628144A (en) 1983-06-07 1986-12-09 California Institute Of Technology Method for contact resistivity measurements on photovoltaic cells and cell adapted for such measurement
US4594471A (en) * 1983-07-13 1986-06-10 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US4499658A (en) 1983-09-06 1985-02-19 Atlantic Richfield Company Solar cell laminates
US5158818A (en) * 1984-01-30 1992-10-27 National Starch And Chemical Investment Holding Corporation Conductive die attach tape
US4499858A (en) * 1984-02-02 1985-02-19 Councell Graham D Fuel burning assembly
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US4667060A (en) * 1985-05-28 1987-05-19 Spire Corporation Back junction photovoltaic solar cell
US4703553A (en) 1986-06-16 1987-11-03 Spectrolab, Inc. Drive through doping process for manufacturing low back surface recombination solar cells
US4735662A (en) * 1987-01-06 1988-04-05 The Standard Oil Company Stable ohmic contacts to thin films of p-type tellurium-containing II-VI semiconductors
JPH01206671A (en) 1988-02-15 1989-08-18 Sharp Corp Solar cell
US4933021A (en) * 1988-11-14 1990-06-12 Electric Power Research Institute Monolithic series-connected solar cells employing shorted p-n junctions for electrical isolation
EP0369666B1 (en) * 1988-11-16 1995-06-14 Mitsubishi Denki Kabushiki Kaisha Solar cell
US4993021A (en) * 1989-03-23 1991-02-12 Telettra-Telefonia Elettronica E Radio Spa Automatic transmit power level control in radio links
US5389158A (en) * 1989-04-17 1995-02-14 The Boeing Company Low bandgap photovoltaic cell with inherent bypass diode
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
DE3927947A1 (en) 1989-08-24 1991-02-28 Inst Solarenergieforschung Device for controlling light transmission from sun - comprises focussing element together with reflectors and highly transparent elements
US5078803A (en) * 1989-09-22 1992-01-07 Siemens Solar Industries L.P. Solar cells incorporating transparent electrodes comprising hazy zinc oxide
US5011567A (en) * 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Method of fabricating solar cells
EP0440869A1 (en) * 1990-02-09 1991-08-14 Bio-Photonics, Inc. Photovoltaic element able to convert solar radiation into electric current and photoelectric battery
JP2593957B2 (en) * 1990-11-09 1997-03-26 シャープ株式会社 Solar cell with bypass diode
JP2703673B2 (en) * 1991-05-17 1998-01-26 三菱電機株式会社 Semiconductor device
US5164019A (en) 1991-07-31 1992-11-17 Sunpower Corporation Monolithic series-connected solar cells having improved cell isolation and method of making same
US5543729A (en) * 1991-09-10 1996-08-06 Photon Dynamics, Inc. Testing apparatus and connector for liquid crystal display substrates
JP2912496B2 (en) * 1991-09-30 1999-06-28 シャープ株式会社 Solar cell module
US5158136A (en) 1991-11-12 1992-10-27 At&T Laboratories Pin fin heat sink including flow enhancement
US6541695B1 (en) * 1992-09-21 2003-04-01 Thomas Mowles High efficiency solar photovoltaic cells produced with inexpensive materials by processes suitable for large volume production
JPH06151915A (en) * 1992-11-05 1994-05-31 Canon Inc Light generating element, and its manufacture, and manufacturing device used for it
US5391236A (en) * 1993-07-30 1995-02-21 Spectrolab, Inc. Photovoltaic microarray structure and fabrication method
JPH0763788A (en) * 1993-08-21 1995-03-10 Hewlett Packard Co <Hp> Probe, electrical part / circuit inspecting device and electrical part / method of circuit inspection
US5543726A (en) * 1994-01-03 1996-08-06 International Business Machines Corporation Open frame gantry probing system
US5474620A (en) * 1994-05-16 1995-12-12 United Solar Systems Corporation Cut resistant laminate for the light incident surface of a photovoltaic module
JPH07321351A (en) * 1994-05-19 1995-12-08 Canon Inc Electrode structure of photovoltaic element and manufacture
AU695669B2 (en) * 1994-05-19 1998-08-20 Canon Kabushiki Kaisha Photovoltaic element, electrode structure thereof, and process for producing the same
US5457057A (en) * 1994-06-28 1995-10-10 United Solar Systems Corporation Photovoltaic module fabrication process
US5498297A (en) * 1994-09-15 1996-03-12 Entech, Inc. Photovoltaic receiver
JP2992464B2 (en) * 1994-11-04 1999-12-20 キヤノン株式会社 Covering wire for current collecting electrode, photovoltaic element using the covering wire for current collecting electrode, and method of manufacturing the same
AUPM996094A0 (en) 1994-12-08 1995-01-05 Pacific Solar Pty Limited Multilayer solar cells with bypass diode protection
US6144216A (en) 1995-04-01 2000-11-07 Enplas Corporation Electric contact apparatus for inspecting a liquid crystal display panel
GB2302458A (en) * 1995-06-14 1997-01-15 Ibm Printed circuit testing apparatus
JP2992638B2 (en) * 1995-06-28 1999-12-20 キヤノン株式会社 Electrode structure and manufacturing method of photovoltaic element and solar cell
US5616185A (en) * 1995-10-10 1997-04-01 Hughes Aircraft Company Solar cell with integrated bypass diode and method
JPH09107119A (en) * 1995-10-11 1997-04-22 Canon Inc Solar cell module and its manufacture
ZA974261B (en) * 1996-05-17 1997-11-17 Canon Kk Photovoltaic device and process for the production thereof.
JP3548379B2 (en) * 1996-05-17 2004-07-28 キヤノン株式会社 Photovoltaic device and manufacturing method thereof
US5871591A (en) * 1996-11-01 1999-02-16 Sandia Corporation Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process
US6091021A (en) * 1996-11-01 2000-07-18 Sandia Corporation Silicon cells made by self-aligned selective-emitter plasma-etchback process
JP3722326B2 (en) * 1996-12-20 2005-11-30 三菱電機株式会社 Manufacturing method of solar cell
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
US5879172A (en) * 1997-04-03 1999-03-09 Emulation Technology, Inc. Surface mounted adapter using elastomeric conductors
JP3468670B2 (en) * 1997-04-28 2003-11-17 シャープ株式会社 Solar cell and manufacturing method thereof
DE19741832A1 (en) 1997-09-23 1999-03-25 Inst Solarenergieforschung Method of manufacturing a solar cell and solar cell
DE29720377U1 (en) 1997-11-19 1998-03-26 Inst Solarenergieforschung Thermally insulating housing or frame for integrating solar thermal converters in building facades
DE19752678A1 (en) 1997-11-28 1999-06-02 Inst Solarenergieforschung Manufacturing photovoltaic module with solar cell(s)
DE19757150A1 (en) 1997-12-20 1999-06-24 Inst Solarenergieforschung Low pressure device for distribution of gas over surface of workpiece
JP2002507835A (en) * 1998-03-13 2002-03-12 ケラー・シュテフェン Solar cell device
US6248948B1 (en) * 1998-05-15 2001-06-19 Canon Kabushiki Kaisha Solar cell module and method of producing the same
JP3754841B2 (en) * 1998-06-11 2006-03-15 キヤノン株式会社 Photovoltaic element and manufacturing method thereof
DE19845658C2 (en) * 1998-10-05 2001-11-15 Daimler Chrysler Ag Solar cell with bypass diode
JP2000124341A (en) * 1998-10-21 2000-04-28 Sony Corp Semiconductor device and its manufacture
US6807059B1 (en) 1998-12-28 2004-10-19 James L. Dale Stud welded pin fin heat sink
JP2000243990A (en) 1999-02-18 2000-09-08 Dainippon Printing Co Ltd Solar-cell cover film and manufacture thereof, and solar-cell module using same
US6034322A (en) * 1999-07-01 2000-03-07 Space Systems/Loral, Inc. Solar cell assembly
US6635507B1 (en) 1999-07-14 2003-10-21 Hughes Electronics Corporation Monolithic bypass-diode and solar-cell string assembly
US6344736B1 (en) * 1999-07-22 2002-02-05 Tensolite Company Self-aligning interface apparatus for use in testing electrical
NL1012961C2 (en) * 1999-09-02 2001-03-05 Stichting Energie A method of manufacturing a semiconductor device.
JP2001210849A (en) * 2000-01-24 2001-08-03 Sumitomo Wiring Syst Ltd Connector for solar battery panel
JP2001326370A (en) * 2000-05-12 2001-11-22 Mitsubishi Electric Corp Solar battery and method of manufacturing the same
US20020062828A1 (en) * 2000-05-26 2002-05-30 Nydahl John E. Solar collector system
DE10132113B4 (en) 2000-07-03 2004-05-27 Institut Für Solarenergieforschung Gmbh Procedure for determining the yield of solar thermal systems
DE10046170A1 (en) * 2000-09-19 2002-04-04 Fraunhofer Ges Forschung Method for producing a semiconductor-metal contact through a dielectric layer
US6620645B2 (en) * 2000-11-16 2003-09-16 G.T. Equipment Technologies, Inc Making and connecting bus bars on solar cells
KR100378016B1 (en) 2001-01-03 2003-03-29 삼성에스디아이 주식회사 Method of texturing semiconductor substrate for solar cell
US6638820B2 (en) * 2001-02-08 2003-10-28 Micron Technology, Inc. Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices
CN1291502C (en) * 2001-03-19 2006-12-20 信越半导体株式会社 Solar cell and its manufacturing method
US6524880B2 (en) * 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
US6774300B2 (en) * 2001-04-27 2004-08-10 Adrena, Inc. Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
JP2003031829A (en) * 2001-05-09 2003-01-31 Canon Inc Photovoltaic element
JP4551586B2 (en) * 2001-05-22 2010-09-29 キヤノン株式会社 Voltage applying probe, electron source manufacturing apparatus and manufacturing method
US20030000568A1 (en) * 2001-06-15 2003-01-02 Ase Americas, Inc. Encapsulated photovoltaic modules and method of manufacturing same
US7271333B2 (en) * 2001-07-20 2007-09-18 Ascent Solar Technologies, Inc. Apparatus and method of production of thin film photovoltaic modules
US6815818B2 (en) 2001-11-19 2004-11-09 Micron Technology, Inc. Electrode structure for use in an integrated circuit
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US20040016456A1 (en) * 2002-07-25 2004-01-29 Clean Venture 21 Corporation Photovoltaic device and method for producing the same
US6803513B2 (en) * 2002-08-20 2004-10-12 United Solar Systems Corporation Series connected photovoltaic module and method for its manufacture
DE10239845C1 (en) 2002-08-29 2003-12-24 Day4 Energy Inc Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module
US7335835B2 (en) * 2002-11-08 2008-02-26 The Boeing Company Solar cell structure with by-pass diode and wrapped front-side diode interconnection
US6784358B2 (en) * 2002-11-08 2004-08-31 The Boeing Co. Solar cell structure utilizing an amorphous silicon discrete by-pass diode
JP2004193350A (en) * 2002-12-11 2004-07-08 Sharp Corp Solar battery cell and its manufacturing method
US7153722B2 (en) 2003-06-06 2006-12-26 Canon Kabushiki Kaisha Method and apparatus for manufacturing photovoltaic device
US7196459B2 (en) * 2003-12-05 2007-03-27 International Resistive Co. Of Texas, L.P. Light emitting assembly with heat dissipating support
JP2005191479A (en) 2003-12-26 2005-07-14 Sekisui Jushi Co Ltd Solar cell module
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
US7406800B2 (en) 2004-05-18 2008-08-05 Andalay Solar, Inc. Mounting system for a solar panel
DE102004036734A1 (en) * 2004-07-29 2006-03-23 Konarka Technologies, Inc., Lowell Cost-effective organic solar cell and method of manufacture
JP2006049384A (en) * 2004-07-30 2006-02-16 Laserfront Technologies Inc Gantry xy stage
DE102004050269A1 (en) * 2004-10-14 2006-04-20 Institut Für Solarenergieforschung Gmbh Process for the contact separation of electrically conductive layers on back-contacted solar cells and solar cell
DE102004050463B3 (en) * 2004-10-16 2006-04-20 Manz Automation Ag Test system for solar cells
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
DE102004053873A1 (en) 2004-11-07 2006-05-11 Institut Für Solarenergieforschung Gmbh Process for the preparation of a double-sided light-sensitive solar cell and a photosensitive solar cell on both sides
DE102004061604A1 (en) 2004-12-17 2006-06-29 Institut Für Solarenergieforschung Gmbh Semiconductor-solar cell producing method, involves directly contacting films having openings with solar cell areas, applying voltage between cell surface and one film, locally removing cell material in openings after limiting gas discharge
DE102005001379A1 (en) 2005-01-12 2006-07-20 Institut Für Solarenergieforschung Gmbh Resistance thermometer for measurement of average temperature of heat reservoir, has resistors with different specific resistance or different temperature coefficients, in which temperature is determined from total resistance of resistors
DE102005040871A1 (en) * 2005-04-16 2006-10-19 Institut Für Solarenergieforschung Gmbh Back contacted solar cell and process for its production
US7375378B2 (en) 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices
WO2006123938A1 (en) 2005-05-19 2006-11-23 Renewable Energy Corporation Asa Method for interconnection of solar cells
US20060283495A1 (en) * 2005-06-06 2006-12-21 Solaria Corporation Method and system for integrated solar cell using a plurality of photovoltaic regions
US20070068567A1 (en) * 2005-09-23 2007-03-29 Rubin Leonid B Testing apparatus and method for solar cells
US20070102038A1 (en) * 2005-11-11 2007-05-10 Christian Kirschning Holding Element For Photovoltaic Modules
US20070137692A1 (en) * 2005-12-16 2007-06-21 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
US20070144577A1 (en) * 2005-12-23 2007-06-28 Rubin George L Solar cell with physically separated distributed electrical contacts
DE102006009112A1 (en) 2006-02-25 2008-02-21 Institut Für Solarenergieforschung Gmbh Solar circuit device for indirect thermal solar collector system, has heat exchanger cooling solar circuit with water to temperature above system dependent heat transfer medium evaporating temperature during downtime of solar circuit pump
DE102006013313A1 (en) * 2006-03-21 2007-09-27 Institut Für Solarenergieforschung Gmbh A method of producing a selectively doped region in a semiconductor layer using out-diffusion and corresponding semiconductor device
WO2008028123A2 (en) * 2006-09-01 2008-03-06 Evergreen Solar, Inc. Interconnected solar cells
DE102007011749A1 (en) 2006-09-05 2008-03-13 Institut Für Solarenergieforschung Gmbh Solar cell manufacturing method, involves providing semiconductor substrate with pn-junction formed in it and removing dielectric layer in local areas by ultra short pulse laser with laser pulse duration of less than hundred picoseconds
DE102006047579A1 (en) 2006-10-05 2008-04-17 Institut Für Solarenergieforschung Gmbh Solar cell manufacturing method for conversion of light into electrical energy, involves etching surface of solar cell substrate by etching solution during etching time, and removing etching solution from surface of substrate
US20080092944A1 (en) * 2006-10-16 2008-04-24 Leonid Rubin Semiconductor structure and process for forming ohmic connections to a semiconductor structure
DE102007003682A1 (en) 2007-01-25 2008-08-07 Institut Für Solarenergieforschung Gmbh Solar cell has positive and negative contact surfaces on contact side, and positive or negative contact surface is coated by insulation material
US20080290368A1 (en) 2007-05-21 2008-11-27 Day4 Energy, Inc. Photovoltaic cell with shallow emitter
US20100147368A1 (en) * 2007-05-17 2010-06-17 Day4 Energy Inc. Photovoltaic cell with shallow emitter
US20090025778A1 (en) * 2007-07-23 2009-01-29 Day4 Energy Inc. Shading protection for solar cells and solar cell modules
DE102007035883A1 (en) 2007-07-31 2009-02-12 Institut Für Solarenergieforschung Gmbh Solar module, has rear contact solar cells arranged at distance along translation direction, where contact surface is not overlapped with another contact surface when former surface is shifted to distance in translation direction
DE102007054384A1 (en) 2007-11-14 2009-05-20 Institut Für Solarenergieforschung Gmbh Method for producing a solar cell with a surface-passivating dielectric double layer and corresponding solar cell
DE102007059490B4 (en) 2007-12-11 2012-10-25 Institut Für Solarenergieforschung Gmbh Rear contact solar cell with integrated bypass diode function and manufacturing method thereof
DE102007059486A1 (en) 2007-12-11 2009-06-18 Institut Für Solarenergieforschung Gmbh Rear contact solar cell with elongated, interleaved emitter and base regions at the back and manufacturing method thereof
DE102008030880A1 (en) 2007-12-11 2009-06-18 Institut Für Solarenergieforschung Gmbh Rear contact solar cell with large backside emitter areas and manufacturing method therefor
WO2009076740A1 (en) 2007-12-18 2009-06-25 Day4 Energy Inc. Photovoltaic module with edge access to pv strings, interconnection method, apparatus, and system
DE102008013068B4 (en) 2008-03-06 2012-06-21 Institut Für Solarenergieforschung Gmbh Method and device for the spatially resolved determination of carrier lifetime in semiconductor structures
DE102008015157A1 (en) 2008-03-20 2009-09-24 Institut Für Solarenergieforschung Gmbh Prefabricated earth installed heat storage, particularly for storage medium like water, for use in product system, has carrier structure and concrete body which is formed in single piece

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642662B2 (en) * 2006-01-16 2011-03-02 キヤノン株式会社 Photovoltaic element
JP2007189132A (en) * 2006-01-16 2007-07-26 Canon Inc Photovoltaic element
JP2009117731A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Method for manufacturing solar cell
JP2009117742A (en) * 2007-11-09 2009-05-28 Bridgestone Corp Electrode film for solar cell, method for manufacturing solar cell using same, and solar cell
JP2010283275A (en) * 2009-06-08 2010-12-16 Ulvac Japan Ltd Crystalline solar cell and method of manufacturing the same
JP2011018890A (en) * 2009-06-11 2011-01-27 Dainippon Printing Co Ltd Organic thin-film solar cell and manufacturing method thereof
JP5761172B2 (en) * 2010-02-25 2015-08-12 産機電業株式会社 Method for producing solar cell using silicon powder
WO2012133338A1 (en) * 2011-03-25 2012-10-04 ソニーケミカル&インフォメーションデバイス株式会社 Solar cell module, method for producing solar cell module, and tab wire
JP2012204666A (en) * 2011-03-25 2012-10-22 Sony Chemical & Information Device Corp Solar cell module, manufacturing method of solar cell module, and tab line
WO2013030991A1 (en) * 2011-08-31 2013-03-07 三洋電機株式会社 Solar cell and method for manufacturing same
WO2014080894A1 (en) * 2012-11-21 2014-05-30 長州産業株式会社 Photovoltaic apparatus
JP2014103301A (en) * 2012-11-21 2014-06-05 Choshu Industry Co Ltd Photovoltaic generator
EP2924740A4 (en) * 2012-11-21 2016-07-27 Choshu Industry Co Ltd Photovoltaic apparatus
WO2014148443A1 (en) 2013-03-19 2014-09-25 長州産業株式会社 Photovoltaic element and manufacturing method therefor
KR20160113108A (en) * 2013-12-20 2016-09-28 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Photovoltaic cell, photovoltaic module, production thereof, and use thereof
JP2017503346A (en) * 2013-12-20 2017-01-26 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. SOLAR CELL, SOLAR CELL MODULE, PRODUCTION AND USE THEREOF
KR102440163B1 (en) * 2013-12-20 2022-09-06 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Photovoltaic cell, photovoltaic module, production thereof, and use thereof
JP2018507545A (en) * 2015-01-16 2018-03-15 ゾモント・ゲーエムベーハー Method and apparatus for manufacturing an interconnector assembly
WO2016125880A1 (en) * 2015-02-06 2016-08-11 三井・デュポンポリケミカル株式会社 Wiring sheet, structure, and photovoltaic generation module
WO2016125882A1 (en) * 2015-02-06 2016-08-11 長州産業株式会社 Photovoltaic module
JPWO2016125880A1 (en) * 2015-02-06 2017-11-16 三井・デュポンポリケミカル株式会社 Wiring sheet, structure and photovoltaic module
JP2020161825A (en) * 2015-02-06 2020-10-01 三井・ダウポリケミカル株式会社 Wiring sheet, structure body, and photovoltaic module
JP2018530168A (en) * 2015-11-06 2018-10-11 マイヤー・バーガー・(スウィツァーランド)・アーゲー Polymer conductor sheet, solar cell, and manufacturing method thereof
JP2020513163A (en) * 2017-04-14 2020-04-30 マイヤー ブルガー (スイッツァランド) アーゲー Photovoltaic module, photovoltaic encapsulant, and method for manufacturing photovoltaic module
JP2020061551A (en) * 2018-10-05 2020-04-16 エルジー エレクトロニクス インコーポレイティド Solar cell panel
US11810991B2 (en) 2018-10-05 2023-11-07 Lg Electronics Inc. Solar cell panel

Also Published As

Publication number Publication date
KR101014393B1 (en) 2011-02-15
CY1107220T1 (en) 2012-11-21
WO2004021455A1 (en) 2004-03-11
AU2003258427B8 (en) 2009-07-16
IL166854A (en) 2012-04-30
PT1547158E (en) 2008-02-18
CN1679174A (en) 2005-10-05
EP1547158A1 (en) 2005-06-29
US20050241692A1 (en) 2005-11-03
DE60317805T2 (en) 2008-10-30
CA2496557A1 (en) 2004-03-11
SI1547158T1 (en) 2008-04-30
ATE379849T1 (en) 2007-12-15
CA2496557C (en) 2013-04-16
ZA200501563B (en) 2006-07-26
US20090025788A1 (en) 2009-01-29
BR0313851A (en) 2005-07-05
AU2003258427B2 (en) 2009-05-07
CN100431175C (en) 2008-11-05
BRPI0313851B1 (en) 2016-12-13
ES2297257T3 (en) 2008-05-01
DE10239845C1 (en) 2003-12-24
MXPA05002321A (en) 2005-09-12
HK1130365A1 (en) 2009-12-24
EP1547158B1 (en) 2007-11-28
DE60317805D1 (en) 2008-01-10
JP2010045402A (en) 2010-02-25
CN101425546B (en) 2010-12-01
DK1547158T3 (en) 2008-04-14
HK1077122A1 (en) 2006-02-03
US8013239B2 (en) 2011-09-06
AU2003258427A1 (en) 2004-03-19
US7432438B2 (en) 2008-10-07
KR20050059156A (en) 2005-06-17
CN101425546A (en) 2009-05-06
JP5185913B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5185913B2 (en) Photovoltaic battery electrode, photovoltaic battery and photovoltaic module
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
US6803513B2 (en) Series connected photovoltaic module and method for its manufacture
JP3323573B2 (en) Solar cell module and method of manufacturing the same
US20080216887A1 (en) Interconnect Technologies for Back Contact Solar Cells and Modules
IL97164A (en) Photovoltaic cells for converting light energy to electric energy and photoelectric battery.
WO2007065092A2 (en) Means and method for electrically connecting photovoltaic cells in a solar module
EP3278370B1 (en) Electrically contacting and interconnecting photovoltaic cells
JP2022135851A (en) Cell string structure, photovoltaic module and manufacturing methods therefor
US20190386604A1 (en) Cascaded solar cell string using adhesive conductive film
JPH07302923A (en) Photovoltaic device
JPH0567017U (en) Solar cell module
TW201214727A (en) Photovoltaic module including transparent sheet with channel
JP4061525B2 (en) Manufacturing method of solar cell module
JP3972233B2 (en) Solar cell module
RU2671912C1 (en) Electrode for contacting of photoelectric converters
TW202341506A (en) An electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100423