WO2016125882A1 - Photovoltaic module - Google Patents

Photovoltaic module Download PDF

Info

Publication number
WO2016125882A1
WO2016125882A1 PCT/JP2016/053464 JP2016053464W WO2016125882A1 WO 2016125882 A1 WO2016125882 A1 WO 2016125882A1 JP 2016053464 W JP2016053464 W JP 2016053464W WO 2016125882 A1 WO2016125882 A1 WO 2016125882A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
layer
resin
adhesive layer
film
Prior art date
Application number
PCT/JP2016/053464
Other languages
French (fr)
Japanese (ja)
Inventor
史陽 石村
Original Assignee
長州産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長州産業株式会社 filed Critical 長州産業株式会社
Publication of WO2016125882A1 publication Critical patent/WO2016125882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic module.
  • photovoltaic module there is a type having a heterojunction photovoltaic element.
  • the heterojunction type photovoltaic device includes a first amorphous semiconductor film and a first conductive type second amorphous system on one surface side of a first conductive type (mainly n-type) crystalline semiconductor substrate.
  • a semiconductor film, a first translucent electrode film, and a first electrode are provided in this order.
  • the first amorphous semiconductor film is an intrinsic amorphous semiconductor film, or the first conductivity type amorphous system having an impurity concentration lower than that of the second amorphous semiconductor film. It is a semiconductor film.
  • the photovoltaic element has an intrinsic amorphous semiconductor film, a second conductive type (mainly p-type) amorphous semiconductor film, and a second light-transmitting electrode on the other surface side of the crystalline semiconductor substrate.
  • the membrane and the second electrode are provided in this order.
  • the photovoltaic module is bonded to one surface of the photovoltaic element via the first adhesive layer and a plurality of first fine wirings bonded and fixed to the first electrode on one surface of the photovoltaic element by the first adhesive layer. And a first resin film sandwiching a plurality of first fine wirings between one surface of the photovoltaic device, a translucent substrate, and between the translucent substrate and the first resin film And a filled first sealing layer. Further, the photovoltaic module includes a plurality of second fine wirings bonded and fixed to the second electrode on the other surface of the photovoltaic element by the second adhesive layer, and the other of the photovoltaic elements via the second adhesive layer.
  • a second resin film bonded to the surface and sandwiching a plurality of second fine wirings between the other surface of the photovoltaic element, a back sheet or a second translucent substrate, and a back sheet or first And a second sealing layer filled between the translucent substrate 2 and the second resin film.
  • Patent Document 1 describes an epoxy adhesive, an acrylic adhesive, a rubber adhesive, a silicon adhesive, and a polyvinyl ether adhesive as materials for the first adhesive layer.
  • the heterojunction photovoltaic device has an amorphous semiconductor film on both surfaces of a crystalline semiconductor substrate.
  • the amorphous semiconductor film is vulnerable to moisture and sodium. For this reason, when a material having an insufficient barrier property against moisture or sodium is used as the material of the sealing layer, the amorphous semiconductor film is deteriorated.
  • the material of the 1st contact bonding layer described in patent document 1 has very weak tolerance with respect to an ultraviolet-ray. For this reason, when using such a material, generally, the first adhesive layer is protected by including an ultraviolet absorber in the first sealing layer. However, when the first sealing layer contains an ultraviolet absorber, ultraviolet light cannot be effectively used for power generation.
  • the present invention has been made in view of the above problems, and provides a photovoltaic module that has a high degree of freedom in selecting a material for a sealing layer and can obtain better power generation efficiency.
  • a photovoltaic module comprising photovoltaic elements
  • the photovoltaic element is A first conductivity type crystalline semiconductor substrate;
  • An intrinsic third amorphous semiconductor film, a second conductivity type fourth amorphous semiconductor film, a second translucent electrode film, and a second electrode are formed on the other surface side of the crystalline semiconductor substrate.
  • the first amorphous semiconductor film is a first conductivity type having an impurity concentration lower than that of the second amorphous semiconductor film, or is intrinsic.
  • the photovoltaic module further includes A plurality of first fine wires bonded and fixed to the first electrode on one surface of the photovoltaic element by a first adhesive layer;
  • the first resin having the plurality of first fine wirings sandwiched between the one surface of the photovoltaic element and bonded to the one surface of the photovoltaic element via the first adhesive layer With film, A translucent first protective layer;
  • a plurality of second fine wires bonded and fixed to the second electrode on the other surface of the photovoltaic element by a second adhesive layer;
  • the second resin having the plurality of second fine wirings sandwiched between the other surface of the photovoltaic element and bonded to the other surface of the photovoltaic element via the second adhesive layer With film, A second protective layer;
  • the first adhesive layer provides a photovoltaic module configured of a resin material including any of the following (A) and (B).
  • the present invention it is possible to provide a photovoltaic module that has a high degree of freedom in selecting a material for the sealing layer and can obtain better power generation efficiency.
  • the photovoltaic module 100 includes a photovoltaic element 10.
  • the photovoltaic device 10 includes a first conductive type crystalline semiconductor substrate 11, a first amorphous semiconductor film 12 and a first conductive type second semiconductor film on one surface side of the crystalline semiconductor substrate 11.
  • the amorphous semiconductor film 13, the first translucent electrode film 14, and the first electrode 15 are provided in this order.
  • the photovoltaic element 10 further includes an intrinsic third amorphous semiconductor film 16, a second conductivity type fourth amorphous semiconductor film 17, and a second conductive film on the other surface side of the crystalline semiconductor substrate 11.
  • the translucent electrode film 18 and the second electrode 19 are provided in this order.
  • the first amorphous semiconductor film 12 is a first conductivity type having an impurity concentration lower than that of the second amorphous semiconductor film 13 or is intrinsic.
  • the photovoltaic module 100 further includes a plurality of first fine wirings 21 bonded and fixed to the first electrode 15 on one surface of the photovoltaic element 10 by the first adhesive layer 22, and one surface of the photovoltaic element 10.
  • the photovoltaic module 100 further includes a plurality of second fine wirings 51 bonded and fixed to the second electrode 19 on the other surface of the photovoltaic element 10 by the second adhesive layer 52, and the other surface of the photovoltaic element 10.
  • a second resin film 53 bonded to the other surface of the photovoltaic device 10 via the second adhesive layer 52, a second protective layer 70, And a second sealing layer 60 filled between the second protective layer 70 and the second resin film 53.
  • the 1st contact bonding layer 22 is comprised by the resin material containing either of the following (A) and (B).
  • B A copolymer containing ethylene and glycidyl (meth) acrylate is described in detail below.
  • the photovoltaic device 10 is a heterojunction photovoltaic device.
  • the conductivity type of each component of the photovoltaic element 10 will be described.
  • the crystalline semiconductor substrate 11 is, for example, n-type.
  • the second amorphous semiconductor film 13 is n-type
  • the first amorphous semiconductor film 12 is intrinsic or n ⁇ -type (n-type having a lower impurity concentration than the second amorphous semiconductor film 13).
  • the fourth amorphous semiconductor film 17 is p-type.
  • the crystal semiconductor substrate 11 is not particularly limited as long as it is a crystal having n-type semiconductor characteristics, and a known substrate can be used.
  • the n-type crystal semiconductor composing the crystalline semiconductor substrate 11 include SiC, SiGe, SiN and the like in addition to silicon (Si). Silicon is preferable from the viewpoint of productivity.
  • the crystalline semiconductor substrate 11 may be a single crystal or a polycrystal. Both surfaces (one surface and the other surface) of the crystalline semiconductor substrate 11 are preferably subjected to uneven processing (not shown) in order to make light confinement due to irregular reflection of light more effective. For example, by immersing the substrate material in an etching solution containing about 1 to 5% by weight of sodium hydroxide or potassium hydroxide, a large number of pyramidal irregularities can be formed.
  • the first amorphous semiconductor film 12, the second amorphous semiconductor film 13, the third amorphous semiconductor film 16, and the fourth amorphous semiconductor film 17 are each made of a silicon thin film. it can.
  • the first amorphous semiconductor film 12 is stacked on one surface of the crystalline semiconductor substrate 11 (upper surface in FIG. 1).
  • the second amorphous semiconductor film 13 is stacked on one surface (the upper surface in FIG. 1) of the first amorphous semiconductor film 12.
  • the total thickness of the first amorphous semiconductor film 12 and the second amorphous semiconductor film 13 is not particularly limited, but is preferably 1 nm to 20 nm, for example, and more preferably 4 nm to 10 nm. By setting the film thickness within such a range, it is possible to reduce the short-circuit current and the occurrence of carrier recombination in a well-balanced manner.
  • the first translucent electrode film 14 is stacked on one surface (the upper surface in FIG. 1) of the second amorphous semiconductor film 13.
  • the transparent electrode material constituting the first translucent electrode film 14 include indium tin oxide (ITO), tungsten-doped indium oxide (InWO), and cerium-doped indium oxide (ITO).
  • ITO indium tin oxide
  • ITO cerium-doped indium oxide
  • Well-known materials such as Indium Cerium Oxide (ICO), IZO (Indium Zinc Oxide), AZO (aluminum doped ZnO), and GZO (gallium doped ZnO) can be exemplified.
  • the third amorphous semiconductor film 16 is stacked on the other surface (the lower surface in FIG. 1) of the crystalline semiconductor substrate 11. In other words, the third amorphous semiconductor film 16 is interposed between the crystalline semiconductor substrate 11 and the fourth amorphous semiconductor film 17.
  • the film thickness of the third amorphous semiconductor film 16 is not particularly limited, but may be, for example, 1 nm or more and 10 nm or less.
  • the fourth amorphous semiconductor film 17 is laminated on one surface (the lower surface in FIG. 1) of the third amorphous semiconductor film 16.
  • the film thickness of the 4th amorphous semiconductor film 17 is not specifically limited, For example, 1 nm or more and 20 nm or less are preferable, and 3 nm or more and 10 nm or less are more preferable.
  • the second translucent electrode film 18 is laminated on one surface (the lower surface in FIG. 1) of the fourth amorphous semiconductor film 17.
  • the material constituting the second translucent electrode film 18 is the same as that of the first translucent electrode film 14.
  • intrinsic means that impurities are not intentionally doped. Therefore, the intrinsic amorphous semiconductor film includes impurities that are originally included in the raw material and impurities that are unintentionally mixed in the manufacturing process. Moreover, an amorphous system means that not only an amorphous body but a microcrystal body is included.
  • An n-type amorphous semiconductor film refers to a film containing impurities of about 10 ⁇ 5 or more relative to silicon as a number density ratio of elements contained in a thin film.
  • the first electrode 15 is, for example, a finger electrode, or a metal film formed on the entire surface of one surface (the upper surface in FIG. 1) of the first light-transmissive electrode film 14.
  • the second electrode 19 is, for example, a finger electrode or a metal film formed on the entire surface of one surface (the lower surface in FIG. 1) of the second translucent electrode film 18.
  • a conductive adhesive such as a silver paste or a metal conductor such as a copper wire can be used.
  • the width of the finger electrode is, for example, about 20 ⁇ m or more and 80 ⁇ m or less.
  • silver, a silver alloy, an aluminum alloy, or the like can be used as a material of the metal film constituting the first electrode 15 and the second electrode 19.
  • the plurality of first fine wirings 21 are, for example, a plurality of wires or bus bars arranged in parallel to each other.
  • the first fine wiring 21 has a core 21a and a low melting point metal film 21b coated on the surface of the core 21a.
  • the metal material of the core 21a include copper.
  • the metal material of the low melting point metal film 21b include an alloy of indium and tin.
  • the diameter of the first fine wiring 21 is preferably 100 ⁇ m or more and 400 ⁇ m or less, and more preferably 200 ⁇ m or more and 300 ⁇ m or less.
  • the second fine wiring 51 is configured in the same manner as the first fine wiring 21.
  • the 1st electrode 15 is a finger electrode
  • the some 1st fine wiring 21 is orthogonally crossed with the 1st electrode 15 (refer FIG. 2).
  • the second electrode 19 is a finger electrode
  • the plurality of second fine wirings 51 are orthogonal to the second electrode 19.
  • the first adhesive layer 22 is translucent.
  • the 1st contact bonding layer 22 is comprised with the resin material containing either of the following (A) and (B).
  • Examples of the copolymer of ethylene and unsaturated carboxylic acid include an ionomer of a copolymer of ethylene and unsaturated carboxylic acid.
  • the ionomer of the copolymer of ethylene and unsaturated carboxylic acid may contain a metal species derived from an alkali metal such as lithium or sodium, or a polyvalent metal such as calcium, magnesium, cerium, zinc or aluminum. it can. Among these, sodium, magnesium, and zinc are preferably used.
  • ionomers are known to have excellent transparency and a high storage elastic modulus E ′ at high temperatures.
  • the ionomer neutralization degree of the copolymer of ethylene and unsaturated carboxylic acid according to this embodiment is preferably 80% or less, and more preferably 60% or less from the viewpoint of adhesiveness. Most preferably, it is 40% or less.
  • the unsaturated carboxylic acid component in the ionomer of a copolymer of ethylene and an unsaturated carboxylic acid or a copolymer of ethylene and an unsaturated carboxylic acid includes acrylic acid, methacrylic acid, ethacrylic acid, fumaric acid, maleic acid, maleic acid. Examples thereof include monomethyl acid and maleic anhydride. Among these, (meth) acrylic acid is preferable as the unsaturated carboxylic acid component. Therefore, the ethylene / unsaturated carboxylic acid copolymer is preferably an ethylene / (meth) acrylic acid copolymer.
  • the ethylene / unsaturated carboxylic acid copolymer according to the present embodiment is not limited to a binary copolymer of ethylene and unsaturated carboxylic acid, but an ethylene / unsaturated carboxylic acid / unsaturated carboxylic acid ester copolymer. Also included are multicomponent copolymers containing ethylene and unsaturated carboxylic acids. Examples of the unsaturated carboxylic acid ester component in the ethylene / unsaturated carboxylic acid / unsaturated carboxylic acid ester copolymer include alkyl esters having 1 to 20 carbon atoms of various carboxylic acids used as the unsaturated carboxylic acid component described above. It is done.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a 2-ethylhexyl group, and an isooctyl group.
  • the content of unsaturated carboxylic acid units such as (meth) acrylic acid units in the copolymer of ethylene and unsaturated carboxylic acid or its ionomer according to the present embodiment is preferable from the viewpoint of realizing excellent ultraviolet transparency. Is 2 wt% or more and 30 wt% or less, more preferably 9 wt% or more and 25 wt% or less, and most preferably 12 wt% or more and 20 wt% or less.
  • the content of the unsaturated carboxylic acid ester with respect to the total amount of the copolymer is preferably 1% by weight or more and 35% by weight or less, and preferably 3% by weight or more and 32% by weight or less. Is more preferable, and 5 to 30 weight% is further more preferable.
  • the content of the unsaturated carboxylic acid with respect to the total amount of the copolymer is preferably 1% by weight or more. % Or more, more preferably 3% by weight or more.
  • the content of the unsaturated carboxylic acid with respect to the total amount of the copolymer is preferably 20% by weight or less, and more preferably 15% by weight or less from the viewpoint of reducing hygroscopicity.
  • the content of the unsaturated carboxylic acid ester with respect to the total amount of the copolymer is 1% by weight or more from the viewpoint of improving the transparency and adhesiveness of the copolymer. Preferably, it is 3% by weight or more, more preferably 5% by weight or more.
  • the content of the unsaturated carboxylic acid ester with respect to the total amount of the copolymer is preferably 35% by weight or less, more preferably, from the viewpoint of reducing hygroscopicity. Is 32% by weight or less, more preferably 30% by weight or less.
  • the copolymer of ethylene and unsaturated carboxylic acid according to this embodiment can be obtained by performing a radical copolymerization reaction under high temperature and high pressure conditions. Further, an ionomer of a copolymer of ethylene and unsaturated carboxylic acid can be obtained by reacting a copolymer of ethylene and unsaturated carboxylic acid with a metal compound.
  • the glycidyl (meth) acrylate contained in the copolymer containing ethylene and glycidyl (meth) acrylate contained in the first adhesive layer 22 refers to at least one of glycidyl methacrylate or glycidyl acrylate.
  • the copolymer containing ethylene and glycidyl (meth) acrylate include ethylene / (meth) acrylic acid glycidyl copolymer, ethylene / (meth) acrylic acid glycidyl / vinyl acetate copolymer, and ethylene / (meta ) One or more selected from glycidyl acrylate / (meth) acrylic acid ester copolymer and the like.
  • the content ratio of the structural unit derived from glycidyl (meth) acrylate in the copolymer containing ethylene and glycidyl (meth) acrylate is preferably 2% by weight to 30% by weight, more preferably 3% by weight to 25%. % By weight or less.
  • the content ratio of the structural unit derived from glycidyl (meth) acrylate is within the above range, the balance of the adhesiveness, flexibility, handleability, workability, etc. of the obtained first adhesive layer 22 is further improved. It can be.
  • the content ratio of the “ethylene-derived structural unit” in the copolymer containing ethylene and glycidyl (meth) acrylate is preferably 65% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more. is there.
  • the copolymer containing ethylene and glycidyl (meth) acrylate further contains other monomer units (for example, vinyl acetate, (meth) acrylate ester, etc.) other than ethylene and glycidyl (meth) acrylate. Can do.
  • a composition derived from vinyl acetate in addition to these two structural units, a composition derived from vinyl acetate.
  • examples thereof include a copolymer containing at least one of a unit and a structural unit derived from a (meth) acrylic acid ester.
  • the content ratio of the structural unit derived from vinyl acetate and the structural unit derived from (meth) acrylic acid ester is preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the lower limit of the content ratio of the structural unit derived from vinyl acetate and the structural unit derived from (meth) acrylic acid ester is not particularly limited, but is preferably 0.1% by weight or more, more preferably 0.5% by weight. More preferably, 1% by weight or more is desirable. Further, the content ratio of the structural unit derived from vinyl acetate or the structural unit derived from (meth) acrylic acid ester is preferably in the range of 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, particularly 1 A range of ⁇ 20% by weight is preferred.
  • a copolymer containing ethylene and glycidyl (meth) acrylate is used alone or in combination of two or more of copolymers having different copolymerization ratios or two or more of copolymers having different monomer types. be able to.
  • At least a part of the copolymer containing ethylene and glycidyl (meth) acrylate may be modified with a silane coupling agent.
  • the content of the silane coupling agent is preferably 0.01 to 5% by weight in 100% by weight of the copolymer containing ethylene and glycidyl (meth) acrylate.
  • the first adhesive layer 22 only needs to contain one of the above (A) and (B), but the above-mentioned (A) and (B) are contained in 100% by weight of the resin component of the first adhesive layer 22.
  • ) In total is preferably 30% by weight or more, more preferably 40% by weight or more, and even more preferably 50% by weight or more.
  • the upper limit is not particularly limited, but when it contains (B), it is preferably 80% by weight or less, more preferably 60% by weight or less.
  • the resin material forming the first adhesive layer 22 may include other resins.
  • other resins include propylene-based resins and ethylene-based resins.
  • ethylene resins include ethylene / ⁇ -olefin copolymers and ethylene / polar monomer copolymers in which the content of structural units derived from ⁇ -olefins having 3 to 20 carbon atoms is 5 mol% or more and less than 50 mol%. Examples include coalescence.
  • ⁇ -olefin having 3 to 20 carbon atoms examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and 1-undecene.
  • Linear ⁇ -olefins such as 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nanodecene, 1-eicocene;
  • Examples include branched ⁇ -olefins such as 1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-hexene, and 2,2,4-trimethyl-1-pentene. These can be used in combination of two types.
  • the number of carbon atoms of the ⁇ -olefin is preferably 3 to 10, more preferably 3 to 8 in view of versatility (cost, mass productivity, or availability).
  • the ethylene / ⁇ -olefin copolymer is preferably an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 4-methyl-1-pentene copolymer, or an ethylene / 1-hexene copolymer.
  • This is an ethylene / 1-octene copolymer, and any ethylene / ⁇ -olefin copolymer means that the content of the structural unit derived from ethylene is 50 mol% or more.
  • the ethylene / ⁇ -olefin copolymer can be produced by, for example, a slurry polymerization method, a solution polymerization method, a bulk polymerization method, or a gas phase polymerization method using a metallocene catalyst.
  • the ethylene / polar monomer copolymer examples include an ethylene / vinyl ester copolymer and an ethylene / unsaturated carboxylic acid ester copolymer.
  • the polar monomer means a monomer having a functional group.
  • the ethylene / vinyl ester copolymer is selected from, for example, an ethylene / vinyl acetate copolymer, an ethylene / vinyl propionate copolymer, an ethylene / vinyl butyrate copolymer, an ethylene / vinyl stearate copolymer, and the like. One kind or two or more kinds can be used.
  • the ethylene / unsaturated carboxylic acid ester copolymer according to this embodiment is a polymer obtained by copolymerizing ethylene and at least one unsaturated carboxylic acid ester.
  • a copolymer composed of ethylene and an alkyl ester of an unsaturated carboxylic acid can be exemplified.
  • the unsaturated carboxylic acid in the unsaturated carboxylic acid ester include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride and the like.
  • alkyl moiety in the alkyl ester of the unsaturated carboxylic acid examples include those having 1 to 12 carbon atoms, and more specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, secondary butyl. And alkyl groups such as 2-ethylhexyl and isooctyl.
  • the alkyl moiety of the alkyl ester preferably has 1 to 8 carbon atoms.
  • unsaturated carboxylic acid esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylic acid It is preferable to include one or more selected from (meth) acrylic acid esters such as n-butyl, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. These unsaturated carboxylic acid esters may be used alone or in combination of two or more.
  • a preferable ethylene / unsaturated carboxylic acid ester copolymer is an ethylene / (meth) acrylic acid ester copolymer.
  • a copolymer composed of one kind of compound is preferable as the (meth) acrylic acid ester.
  • examples of such copolymers include ethylene / methyl (meth) acrylate copolymer, ethylene / (meth) ethyl acrylate copolymer, ethylene / (meth) isopropyl acrylate copolymer, ethylene / (meth).
  • N-propyl acrylate copolymer ethylene / (meth) acrylate isobutyl copolymer, ethylene / (meth) acrylate n-butyl copolymer, ethylene / (meth) acrylate isooctyl copolymer, ethylene / ( And (meth) acrylic acid 2-ethylhexyl copolymer.
  • the ethylene / polar monomer copolymer includes ethylene / vinyl acetate copolymer, ethylene / (meth) methyl acrylate copolymer, ethylene / (meth) ethyl acrylate copolymer, ethylene / (meth) acrylate isopropyl copolymer.
  • the ethylene / polar monomer copolymer may be used alone or in combination of two or more. These other resins may be modified with a silane coupling agent.
  • the content of the silane coupling agent is preferably 0.01 to 5% by weight in 100% by weight of other resin components.
  • Examples of the resin material forming the first adhesive layer 22 include antioxidants such as hydroquinone monobenzyl ether and triphenyl phosphite, thermal stabilizers such as lead stearate and barium laurate, fine titanium oxide, Various additives such as fillers such as zinc oxide, pigments, dyes, lubricants, antiblocking agents, foaming agents, foaming aids, crosslinking agents, crosslinking aids, flame retardants, and the like may be blended.
  • the content of each component is preferably 0.005 to 2 parts by weight and more preferably 0.008 to 1 part by weight with respect to 100 parts by weight of the resin component in the first adhesive layer 22.
  • a metal fatty acid salt such as cadmium or barium may be arbitrarily blended as a discoloration preventing agent.
  • the light transmittance at a wavelength of 350 nm of the first adhesive layer 22 measured according to JIS-K7105 is 70% or more. By doing so, light energy derived from ultraviolet rays can be efficiently contributed to power generation.
  • light energy derived from ultraviolet rays refers to light energy derived from light in a wavelength region of less than 380 nm.
  • the light transmittance at a wavelength of 350 nm of the first adhesive layer 22 measured according to JIS-K7105 is preferably 75% or more, and more preferably 80% or more. By doing so, it becomes possible to more effectively contribute light energy derived from ultraviolet rays to power generation.
  • the layer thickness T (FIG. 3) of the first adhesive layer 22 can be, for example, 8 ⁇ m or more and 100 ⁇ m or less, and preferably 16 ⁇ m or more and 75 ⁇ m or less.
  • the layer thickness T of the first adhesive layer 22 is preferably set in a range of D / 6 ⁇ D / 12. That is, as an example, when the first fine wiring 21 is a wire having a diameter of 300 ⁇ m, the layer thickness T can be set to 25 ⁇ m or more and 75 ⁇ m or less.
  • the layer thickness T of the first adhesive layer 22 is a layer thickness in a range where the layer thickness of the first adhesive layer 22 is substantially constant in the interval between adjacent wires (see FIG. 3). ).
  • the 1st resin film 23 is formed with the material containing 1 or more selected from the group which consists of a fluororesin and an acrylic resin, for example.
  • the fluororesin include tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polychlorotriethylene.
  • EFE tetrafluoroethylene / ethylene copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • PCTFE fluoroethylene
  • PCTFEE chlorotrifluoroethylene / ethylene copolymer
  • PVDF polyvinylidene fluoride
  • the acrylic resin include acrylic acid ester polymers and methacrylic acid ester polymers.
  • a methacrylic resin that is a polymer mainly composed of methyl methacrylate units is preferable.
  • the methacrylic resin include polymethyl methacrylate (PMMA), a copolymer of methyl methacrylate and another monomer, and the like.
  • the thickness of the 1st resin film 23 can be 5 micrometers or more and 100 micrometers or less (preferably 10 micrometers or more and 80 micrometers or less), for example.
  • the first sealing layer 30 is translucent.
  • the material of the first sealing layer 30 may be the same as that of the first adhesive layer 22, TPO (olefin elastomer), or silicon resin.
  • the layer thickness of the 1st sealing layer 30 can be 300 micrometers or more and 500 micrometers or less, for example.
  • the thickness of the first sealing layer 30 is set to be thicker than the protruding length of the first fine wiring 21 from the adhesive layer 22 (the protruding length to the first protective layer 40 side).
  • the surface of the first protective layer 40 on the first sealing layer 30 side may be embossed. In that case, it is preferable to fill the unevenness of the embossment in the first protective layer 40 with the first sealing layer 30. For this reason, it is preferable that the thickness of the first sealing layer 30 has at least a thickness obtained by adding the height of the unevenness of the emboss to the protruding length of the first fine wiring 21 from the adhesive layer 22.
  • the first protective layer 40 is a translucent substrate.
  • Examples of the material of the first protective layer 40 include glass, acrylic resin, polycarbonate, polyester, fluorine-containing resin, and the like.
  • the second protective layer 70 may be a translucent substrate similar to the first protective layer 40, or may be a non-translucent (eg, light reflective) backsheet.
  • the back sheet for example, a single-layer or multi-layer sheet formed of a metal such as tin, aluminum, and stainless steel, an inorganic material such as glass, a polyester, an inorganic vapor-deposited polyester, a fluorine-containing resin, and a thermoplastic resin such as polyolefin. Is mentioned.
  • the photovoltaic module 100 can receive light on both sides (the first protective layer 40 side and the second protective layer 70 side).
  • the second adhesive layer 52 can be made of the same material as the first adhesive layer 22.
  • the second resin film 53 can be made of the same material as the first resin film 23.
  • the second sealing layer 60 can be made of the same material as the first sealing layer 30. However, when light reception on both sides is not necessary, the second sealing layer 60 may contain a pigment or the like as described later.
  • the light receiving surface of the photovoltaic module 100 is one side (the first protective layer 40 side).
  • the material of the second adhesive layer 52 can be the same resin material as that of the first adhesive layer 22.
  • the material of the second sealing layer 60 when the second protective layer 70 is a non-translucent backsheet may be the same as that of the first sealing layer 30, but in this case, the second sealing layer 60 Since the stop layer 60 is not required to be transparent, it is preferable to blend a pigment, a dye, and an inorganic filler from the viewpoint of improving the power generation efficiency.
  • the pigment examples include white pigments such as titanium oxide and calcium carbonate, blue pigments such as ultramarine, and black pigments such as carbon black.
  • blending an inorganic pigment such as titanium oxide is preferable from the viewpoint of preventing the insulation resistance of the photovoltaic module 100 from being lowered.
  • the blending amount of the inorganic pigment is preferably 0 parts by weight or more and 100 parts by weight or less, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the resin component contained in the second sealing layer 60. 50 parts by weight or less, and most preferably 4 parts by weight or more and 50 parts by weight or less.
  • the material of the second resin film 53 when the second protective layer 70 is a non-translucent back sheet may be the same as that of the first resin film 23 or may be other resin materials.
  • the second adhesive layer 52 can have the same thickness as the first adhesive layer 22. That is, when the second fine wiring 51 is a wire having a diameter D, the layer thickness T of the second adhesive layer 52 is preferably set in a range of D / 6 ⁇ D / 12. That is, as an example, when the second fine wiring 51 is a wire having a diameter of 300 ⁇ m, the layer thickness T can be set to 25 ⁇ m or more and 75 ⁇ m or less.
  • the second resin film 53 can have the same thickness as the first resin film 23.
  • the second protective layer 70 may be a hard substrate such as a glass substrate, or may be a flexible resin sheet.
  • the second adhesive layer 52 can have the same thickness as the first adhesive layer 22.
  • the second protective layer 70 is a flexible resin sheet, even if the second fine wiring 51 protrudes on the back surface side (the lower side in FIG. 1) of the second sealing layer 60, The second protective layer 70 can be deformed along the protruding portion of the second fine wiring 51 (the surface of the second protective layer 70 has a shape reflecting the protruding portion of the second fine wiring 51).
  • the second protective layer 70 can suitably protect the back surface of the photovoltaic module 100 while being in close contact with the second sealing layer 60 and the second fine wiring 51. For this reason, when the second protective layer 70 is a flexible resin sheet, the second sealing layer 60 can be made thinner than the first sealing layer 30. Even when the second protective layer 70 is a flexible resin sheet, it is needless to say that the thickness of the second sealing layer 60 may be equal to the thickness of the first sealing layer 30.
  • the photovoltaic module 100 is normally used by connecting a plurality in series. By using a plurality of photovoltaic modules 100 connected in series, the generated voltage can be increased.
  • the first amorphous semiconductor film 12, the second amorphous semiconductor film 13, and the first light-transmissive electrode film 14 are arranged in this order on one surface of the crystalline semiconductor substrate 11.
  • the third amorphous semiconductor film 16, the fourth amorphous semiconductor film 17, and the second translucent electrode film 18 are formed in this order on the other surface of the crystalline semiconductor substrate 11.
  • the first electrode 15 is formed on one surface (the upper surface in FIG. 1) of the first light-transmissive electrode film 14, and the first surface (the lower surface in FIG. 1) of the second light-transmissive electrode film 18. It is obtained by forming the second electrodes 19 respectively.
  • a first wiring sheet (see the wiring sheet 200 shown in FIGS. 4 and 5) in which the first resin film 23, the first adhesive layer 22, and the first fine wiring 21 are integrated, and the first protection.
  • a layer 40 and a sheet-like first sealing layer 30 are prepared.
  • the wiring sheet 200 includes a resin film (the first resin film 23 or the second resin film 53) and an adhesive layer (the first adhesive layer 22 or the second adhesive layer 52) laminated on each other, and the resin film side in the adhesive layer.
  • the fine wiring is preferably a plurality of wires arranged in parallel to each other, and in this way, the amount of the metal material used for forming the fine wiring is reduced. Can be reduced.
  • the resin film is formed of a material including one or more selected from the group consisting of a fluororesin and an acrylic resin.
  • the thickness of the resin film is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 80 ⁇ m or less.
  • the first resin film 23 disposed on the light receiving surface side preferably has a light transmittance of 70% or more at a wavelength of 350 nm measured according to JIS-K7105. . By doing so, it is possible to realize a module capable of efficiently contributing to the power generation by light energy derived from ultraviolet rays.
  • the second resin film 53 preferably has a light transmittance at a wavelength of 350 nm measured in accordance with JIS-K7105 of 70% or more. By doing so, it is possible to realize a module capable of efficiently contributing to the power generation by light energy derived from ultraviolet rays.
  • the first wiring sheet is interposed between the first electrode 15 on one side of the photovoltaic element 10 and the first protective layer 40, and between the first wiring sheet and the first protective layer 40.
  • the first sealing layer 30 is interposed.
  • a second wiring sheet (see the wiring sheet 200 shown in FIGS. 4 and 5) in which the second resin film 53, the second adhesive layer 52, and the second fine wiring 51 are integrated, and the second protective layer 70.
  • a sheet-like second sealing layer 60 are prepared.
  • the second wiring sheet is interposed between the second electrode 19 on the other surface of the photovoltaic element 10 and the second protective layer 70, and the second wiring sheet is interposed between the second wiring sheet and the second protective layer 70.
  • Two sealing layers 60 are interposed.
  • the first fine wiring 21 is welded to the first electrode 15 via the first adhesive layer 22 and the first sealing layer 30 is interposed.
  • the first resin film 23 and the first protective layer 40 are welded, the second fine wiring 51 is welded to the second electrode 19 through the second adhesive layer 52, and the second sealing layer 60 is used.
  • the second resin film 53 and the second protective layer 70 are welded.
  • the core 21 a and the first electrode 15 are welded by melting the low melting point metal film 21 b on the surface layer of the first fine wiring 21.
  • the low melting point metal film (not shown) on the surface layer of the second fine wiring 51 is melted, so that the core (not shown) of the second fine wiring 51 and the second electrode 19 are welded.
  • the photovoltaic module 100 can be obtained.
  • the wiring sheet 200 having the structure shown in FIG. 4 is used as the first wiring sheet and the second wiring sheet has been described, but the structure shown in FIG. 6 is used as the first wiring sheet and the second wiring sheet.
  • the wiring sheet 200 may be used.
  • a resin film (first resin film 23, second resin film 53) is prepared separately from the wiring sheet 200 (first wiring sheet, second wiring sheet).
  • the first The layer thickness T (FIG. 3) of the one adhesive layer 22 is preferably set in a range of D / 6 ⁇ D / 12.
  • the layer thickness T is preferably in the range of 50 ⁇ m ⁇ 25 ⁇ m.
  • the first resin film 23 can be bonded to the first electrode 15 with sufficient adhesive strength by the first adhesive layer 22.
  • the layer thickness T of the first adhesive layer 22 is set to D / 6 ⁇ D / 12 or more, reliability is reduced due to the formation of voids (cavities) around the first fine wiring 21. Can be suppressed.
  • the layer thickness T of the second adhesive layer 52 is D / 6. It is preferable to be set within a range of ⁇ D / 12. By doing so, it is possible to suppress the floating of the second fine wiring 51 from the second electrode 19, and more reliably weld the second fine wiring 51 to the second electrode 19, and the second resin.
  • the film 53 can be adhered to the second electrode 19 with sufficient adhesive strength by the second adhesive layer 52.
  • the layer thickness T of the second adhesive layer 52 to be equal to or greater than D / 6-D / 12, it is possible to suppress a decrease in reliability due to the formation of voids around the second fine wiring 51. Can do.
  • the copolymer including the heterojunction photovoltaic element 10 and the first adhesive layer 22 includes (A) ethylene and an unsaturated carboxylic acid. Or an ionomer of the above copolymer and (B) a resin material containing either a copolymer containing ethylene and glycidyl (meth) acrylate.
  • said (A) and (B) have the characteristic that a moisture permeability is low. For this reason, even if a material having a relatively high moisture permeability is selected as the first protective layer 40, the second amorphous semiconductor film 13 and the first amorphous semiconductor are formed by the first adhesive layer 22.
  • the membrane 12 can be protected from moisture.
  • the sodium component contained in the first protective layer 40 can also be prevented from migrating to the second amorphous semiconductor film 13 and the first amorphous semiconductor film 12 side together with moisture. For this reason, the freedom degree of selection of the material of the 1st sealing layer 30 becomes high. Further, (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the above copolymer and (B) a copolymer containing ethylene and glycidyl (meth) acrylate have good resistance to ultraviolet rays. . Therefore, even when the first sealing layer 30 does not substantially contain the ultraviolet absorber, it is possible to ensure good resistance of the first adhesive layer 22. For this reason, since ultraviolet light can be used effectively for power generation, better power generation efficiency can be obtained.
  • the copolymer in the resin material (resin material containing a copolymer of ethylene and unsaturated carboxylic acid) constituting the first adhesive layer 22 is an ionomer, good transparency of the first adhesive layer 22; Since the ultraviolet resistance and the low transmittance of moisture can be realized, the above-described effects can be obtained more reliably.
  • the light transmittance at a wavelength of 350 nm of the first adhesive layer 22 measured according to JIS-K7105 is set to 70% or more, light energy derived from ultraviolet rays can be efficiently contributed to power generation. Therefore, good power generation efficiency of the photovoltaic module 100 can be obtained.
  • the light transmittance is more preferably 75% or more, and more preferably 80% or more.
  • the light transmittance at a wavelength of 350 nm of the first sealing layer 30 measured according to JIS-K7105 can be set to 70% or more. Good power generation efficiency can be obtained.
  • This light transmittance is also preferably 75% or more, and more preferably 80% or more.
  • the layer thickness T of the first adhesive layer 22 is D / 6 ⁇ D. / 12 can be set.
  • the first fine wiring 21 can be more securely welded to the first electrode 15 by suppressing the floating of the first fine wiring 21 from the first electrode 15.
  • the first resin film 23 can be bonded to the first electrode 15 with sufficient adhesive strength by the first adhesive layer 22.
  • the second adhesive layer 52 is made of (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or the above copolymer, as with the first adhesive layer 22. It can be constituted by a resin material containing either a polymer ionomer or a copolymer containing (B) ethylene and glycidyl (meth) acrylate. By doing so, the same effect as that of the first adhesive layer 22 is obtained by the second adhesive layer 52. That is, even if a material having a relatively high moisture permeability is selected as the second protective layer 70, the fourth amorphous semiconductor film 17 and the third amorphous semiconductor film are formed by the second adhesive layer 52.
  • the copolymer in the resin material (resin material containing a copolymer of ethylene and unsaturated carboxylic acid) constituting the second adhesive layer 52 is an ionomer, good transparency of the second adhesive layer 52, Since the ultraviolet light resistance and the low moisture transmittance can be realized, the above-described effects can be obtained more reliably.
  • the light transmittance at a wavelength of 350 nm of the second adhesive layer 52 measured in accordance with JIS-K7105 for the second adhesive layer 52 is 70% or more, light energy derived from ultraviolet rays contributes to power generation efficiently. Therefore, good power generation efficiency of the photovoltaic module 100 can be obtained.
  • This light transmittance is also preferably 75% or more, and more preferably 80% or more.
  • the light transmittance at a wavelength of 350 nm of the second protective layer 70 measured according to JIS-K7105 can be set to 70% or more. Power generation efficiency can be obtained.
  • This light transmittance is also preferably 75% or more, and more preferably 80% or more.
  • each component of the photovoltaic device 10 may be reversed from the above example.
  • Example 1 The photovoltaic module according to Example 1 was manufactured by the following method. A light-transmitting substrate (first protective layer), a first sealing layer (using a resin sheet 1 described later), a first wiring sheet (using a wiring sheet 1 described later), and a photovoltaic element were stacked in this order. Furthermore, on the photovoltaic element, a second wiring sheet (using a wiring sheet 1 described later), a second sealing layer (using a resin sheet 3 described later), and a back sheet (second protective layer) in this order. These were stacked and laminated using a vacuum laminator to produce a photovoltaic module.
  • first protective layer A light-transmitting substrate (first protective layer), a first sealing layer (using a resin sheet 1 described later), a first wiring sheet (using a wiring sheet 1 described later), and a photovoltaic element were stacked in this order. Furthermore, on the photovoltaic element, a second wiring sheet (using a wiring sheet 1 described later), a second sealing layer (using a resin sheet 3 described
  • Comparative Example 1 The photovoltaic module according to Comparative Example 1 uses the resin sheet 4 described later as the first sealing layer and the second sealing layer, and uses the wiring sheet 2 described later as the first wiring sheet and the second wiring sheet, respectively. Except that, the photovoltaic power generation module according to Example 1 was produced.
  • Examples 2 to 5 Each was produced in the same manner as the photovoltaic module according to Example 1, except that wiring sheets 3 to 6 described later were used as the first wiring sheet and the second wiring sheet, respectively.
  • a base sheet (corresponding to a first resin film or a second resin film) formed of tetrafluoroethylene / ethylene copolymer (ETFE) having a thickness of 25 ⁇ m, and a thickness formed on one surface of the base sheet
  • EFE tetrafluoroethylene / ethylene copolymer
  • a metal micro-wiring with a diameter of 300 ⁇ m is arranged at equal intervals on the surface of the sheet having a thickness of 75 ⁇ m resin sheet 2 (which will be described later: corresponding to the first adhesive layer or the second adhesive layer) and thermocompression-bonded.
  • the wiring sheet 2 was produced by heat-pressing the metal fine wiring with a diameter of 300 micrometers on the surface of the resin sheet 4 (after-mentioned) with a thickness of 100 micrometers, arranging it at equal intervals. In the obtained wiring sheet 2, wires were embedded in the resin sheet 4.
  • ⁇ Wiring sheet 3> Instead of using the sheet obtained by bonding the resin sheet 5 having a thickness of 60 ⁇ m to one side of the sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 ⁇ m instead of the resin sheet 2 Produced a wiring sheet 3 in the same manner as in Example 1. In the obtained wiring sheet 3, a wire was embedded in the resin sheet 5.
  • PMMA polymethyl methacrylate
  • ⁇ Wiring sheet 4> Instead of using the sheet obtained by bonding the resin sheet 6 having a thickness of 60 ⁇ m to one side of the sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 ⁇ m instead of the resin sheet 2 In the same manner as in Example 1, a wiring sheet 4 was produced. In the obtained wiring sheet 4, the wire was embedded in the resin sheet 6.
  • PMMA polymethyl methacrylate
  • ⁇ Wiring sheet 5> In place of the resin sheet 2, except that a sheet obtained by bonding a resin sheet 7 having a thickness of 60 ⁇ m to one side of a sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 ⁇ m was used. In the same manner as in Example 1, a wiring sheet 5 was produced. In the obtained wiring sheet 5, the wire was embedded in the resin sheet 7.
  • PMMA polymethyl methacrylate
  • ⁇ Wiring sheet 6> Instead of using the sheet obtained by adhering the resin sheet 8 having a thickness of 60 ⁇ m to one side of the sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 ⁇ m instead of the resin sheet 2 In the same manner as in Example 1, a wiring sheet 6 was produced. In the obtained wiring sheet 6, wires were embedded in the resin sheet 8.
  • PMMA polymethyl methacrylate
  • Each of the resin sheets 1 to 8 includes an A layer ((A) -1, (A) -2, (A) -3, (A) -4, (A) -5 or (A) -6) described later).
  • the resin sheet 1 is a three-layer sheet, and has a structure in which a surface layer (A) -1, an intermediate layer (B) -1, and a surface layer (A) -1 are laminated in this order. It has become.
  • the resin sheet 2 is a single-layer sheet and is configured by (A) -1.
  • the resin sheet 3 is a three-layer sheet having a structure in which the surface layer (A) -2, the intermediate layer (B) -2, and the surface layer (A) -2 are laminated in this order. It has become.
  • the resin sheet 5 is a single-layer sheet and is made of (A) -3.
  • the resin sheet 6 is a single-layer sheet and is configured by (A) -4.
  • the resin sheet 7 is a single layer sheet, and is constituted by (A) -5.
  • the resin sheet 8 is a single layer sheet and is constituted by (A) -6.
  • Additive- Antioxidant Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, Irganox 1010)
  • UV absorber 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenolLight stabilizer: bis (2,2,6,6, -tetramethyl-4-piperidyl )
  • Sebacate silane coupling agent N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane
  • the same resin as the resin for each layer, the antioxidant, the ultraviolet absorber, and the light stabilizer are resin / antioxidant / ultraviolet absorber.
  • / Light stabilizer 93.7 / 0.3 / 4/2
  • the weight ratio of the mixture was used and the mixture was extruded in advance with a biaxial extruder.
  • a weight ratio of 96/2/2 was used and the mixture was previously extruded by a twin screw extruder.
  • a white masterbatch PE-M 13N4700 manufactured by Dainichi Seika Kogyo Co., Ltd., an antioxidant, an ultraviolet absorber, and a light stabilizer are mixed in a predetermined weight ratio, and a twin-screw extruder is prepared in advance. What was produced in (1) was used.
  • the stabilizer masterbatch 3 used for the layer A includes an ethylene / ⁇ -olefin copolymer (Tafmer A-4090S manufactured by Mitsui Chemicals) as a base resin, an antioxidant, and a light stabilizer. Antioxidants / light stabilizers were mixed at a weight ratio of 96/2/2, and those prepared in advance by a twin screw extruder were used.
  • EVA1 Ethylene / glycidyl methacrylate / vinyl acetate copolymer (EGMAVA, manufactured by Sumitomo Chemical Co., Ltd., Bondfast 7B, ethylene content: 83 wt%, glycidyl methacrylate content: 12 wt%, vinyl acetate content: 5 wt% %, MFR (190 ° C., 2160 g load): 7 g / 10 min): 49.1 parts by weight, ethylene / vinyl acetate copolymer (vinyl acetate content: 10% by weight): 49.1 parts by weight, 3-methacrylic acid Roxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM503”): 1.5 parts by weight and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (Arkema Yoshitomi
  • EMA1 ethylene / methyl methacrylate copolymer (ethylene content: 80% by weight, methyl methacrylate content: 20% by weight) was used instead of ethylene / vinyl acetate copolymer. EMA1 was obtained in the same manner as EVA1.
  • EOC1 was obtained in the same manner as EVA1, except that EOC1: ethylene / ⁇ -olefin copolymer (Tafmer A-4090S manufactured by Mitsui Chemicals) was used instead of ethylene / vinyl acetate copolymer in preparation of EVA1.
  • EOC2 was obtained in the same manner as EVA1, except that EOC2: ethylene / ⁇ -olefin copolymer (Tafmer H-5030S manufactured by Mitsui Chemicals) was used instead of ethylene / vinyl acetate copolymer in the preparation of EVA1.
  • Resin sheets 1 and 3 which are multilayer resin sheets, are each extruded into two types and three layers of multilayer cast molding machine (manufactured by Tanabe Plastics Machinery), feed block type (manufactured by EDI), 40 mm ⁇ single screw extruder, and die width 500 mm extrusion It was produced by forming into a sheet shape at a processing temperature of 140 ° C. using a machine. Further, the resin sheets 2 and 4 to 8 which are single layer resin sheets were respectively converted into the above using a single layer T-die molding machine (manufactured by Tanabe Plastics Machinery Co., Ltd.), 40 mm ⁇ single screw extruder, and die width 500 mm extruder.
  • the sheet was formed into a sheet shape at a processing temperature of 140 ° C.
  • the wiring sheet 1 having a laminated structure of the base sheet and the resin sheet 2 was manufactured by supplying the base sheet from the feeding portion of the molding machine and heat-pressing the resin sheet 2 with a nip roll at the time of molding.
  • the wiring sheets 3 to 6 were manufactured by supplying a base sheet from the feeding portion of the molding machine and heat-pressing the resin sheets 5 to 8 with a nip roll at the time of molding.
  • Wiring connection quality The wiring connection quality of the photovoltaic modules according to the examples and comparative examples was evaluated by an EL (electroluminescence) method. That is, an EL image was acquired in a state where a current was inputted to each photovoltaic module to emit light, and the quality was evaluated.
  • an EL image inspection device manufactured by ITES, PVX100
  • the measurement conditions for acquiring the EL image were as follows: shutter time 15 seconds, aperture 8, ISO sensitivity 800, input voltage 0.73V to the photovoltaic module, and input current 8A to the photovoltaic module.
  • the evaluation results were as follows: A: no shadow (good connection), C: shadow (part of wiring connection was difficult). The results were all A in Examples 1 to 5 and C in Comparative Example 1.
  • Maximum output (Pmax) About the photovoltaic module which concerns on an Example and a comparative example, the maximum output (Pmax) was measured. That is, the current was measured while changing the bias voltage input to each photovoltaic module, and the obtained data was plotted to obtain an IV curve (not shown).
  • Sumitomo Heavy Industries, Ltd. M130-DDYTB383 J-JA was used.
  • the bias voltage is changed in the range of ⁇ 0.1V to 0.8V. Within this range, the bias voltage is changed in increments of 0.02V from ⁇ 0.1V to 0.4V.
  • the bias voltage was changed in increments of 0.01V up to 0.8V.
  • AM1.5G and 1SUN were adopted as measurement conditions, and measurement was performed at 25 ° C.
  • the fill factor (FF) is the maximum output (Pmax) / (Voc ⁇ Isc), 0.789 in the first embodiment, 0.770 in the second embodiment, 0.755 in the third embodiment, and 0 in the fourth embodiment. 789, 0.789 in Example 5, and 0.743 in Comparative Example 1.
  • Light transmittance of resin sheet at a wavelength of 350 nm was measured according to JIS-K7105 under the condition of 25 ° C. The unit is%.
  • the light transmittance at a wavelength of 350 nm was 85%.
  • the light transmittance at a wavelength of 350 nm was 85%.
  • the light transmittance at a wavelength of 350 nm was 85%.
  • the light transmittance at a wavelength of 350 nm was 85%.
  • the light transmittance at a wavelength of 350 nm was 85%.
  • the wiring sheet 6 of Example 5 the light transmittance at a wavelength of 350 nm was 85%.
  • the light transmittance at a wavelength of 350 nm was 4.3%.
  • Total light transmittance Under the condition of 25 ° C., the total light transmittance of the resin sheet was measured according to JIS-K7105. The unit is%. In the wiring sheet 1 of Example 1, the total light transmittance was 89.6%. In the wiring sheet 3 of Example 2, the total light transmittance was 88.9%. In the wiring sheet 4 of Example 3, the total light transmittance was 88.8%. In the wiring sheet 5 of Example 4, the total light transmittance was 90.2%. In the wiring sheet 6 of Example 5, the total light transmittance was 90.2%. On the other hand, in the wiring sheet 2 of the comparative example, the total light transmittance was 92.2%.

Abstract

A photovoltaic module (100) is provided with the following: a heterojunction-type photovoltaic element (10); a plurality of first super-fine wires (21) that are joined and fixed, by a first adhesive layer (22), to a first electrode (15) of one surface of the photovoltaic element (10); and a first resin film (23) that sandwiches the plurality of first super-fine wires (21) between the film itself and the one surface of the photovoltaic element (10), and that is joined to the one surface of the photovoltaic element (10) via the first adhesive layer (22). The photovoltaic module (100) is further provided with a first protective layer (40) which is light transmissive, and a first sealing layer (30) which is filled in between the first protective layer (40) and the first resin film (23). The first adhesive layer (22) is formed from a resin material which includes any of (A) and (B) below. (A) A copolymer containing ethylene and unsaturated carboxylic acid, or an ionomer of the copolymer. (B) A copolymer containing ethylene and glycidyl (meth)acrylate.

Description

光発電モジュールPhotovoltaic module
 本発明は、光発電モジュールに関する。 The present invention relates to a photovoltaic module.
 光発電モジュールの一種として、ヘテロ接合型の光発電素子を有するタイプのものがある。 As a type of photovoltaic module, there is a type having a heterojunction photovoltaic element.
 ヘテロ接合型の光発電素子は、第1導電型(主としてn型)の結晶半導体基板の一方の面側に、第1非晶質系半導体膜と、第1導電型の第2非晶質系半導体膜と、第1透光性電極膜と、第1電極と、をこの順に備えている。ここで、第1非晶質系半導体膜は、真性の非晶質系半導体膜であるか、又は、第2非晶質系半導体膜よりも不純物濃度が低い第1導電型の非晶質系半導体膜である。
 更に、光発電素子は、結晶半導体基板の他方の面側に、真性非晶質系半導体膜と、第2導電型(主としてp型)の非晶質系半導体膜と、第2透光性電極膜と、第2電極と、をこの順に備えている。
The heterojunction type photovoltaic device includes a first amorphous semiconductor film and a first conductive type second amorphous system on one surface side of a first conductive type (mainly n-type) crystalline semiconductor substrate. A semiconductor film, a first translucent electrode film, and a first electrode are provided in this order. Here, the first amorphous semiconductor film is an intrinsic amorphous semiconductor film, or the first conductivity type amorphous system having an impurity concentration lower than that of the second amorphous semiconductor film. It is a semiconductor film.
Further, the photovoltaic element has an intrinsic amorphous semiconductor film, a second conductive type (mainly p-type) amorphous semiconductor film, and a second light-transmitting electrode on the other surface side of the crystalline semiconductor substrate. The membrane and the second electrode are provided in this order.
 光発電モジュールは、光発電素子の一方の面の第1電極に第1接着層により接合固定された複数の第1微細配線と、第1接着層を介して光発電素子の一方の面に接合されているとともに光発電素子の一方の面との間に複数の第1微細配線を挟んでいる第1樹脂フィルムと、透光性基板と、透光性基板と第1樹脂フィルムとの間に充填された第1封止層と、を備えている。
 更に、光発電モジュールは、光発電素子の他方の面の第2電極に第2接着層により接合固定された複数の第2微細配線と、第2接着層を介して光発電素子の前記他方の面に接合されているとともに光発電素子の他方の面との間に複数の第2微細配線を挟んでいる第2樹脂フィルムと、バックシート又は第2の透光性基板と、バックシート又は第2の透光性基板と第2樹脂フィルムとの間に充填された第2封止層と、を備えている。
The photovoltaic module is bonded to one surface of the photovoltaic element via the first adhesive layer and a plurality of first fine wirings bonded and fixed to the first electrode on one surface of the photovoltaic element by the first adhesive layer. And a first resin film sandwiching a plurality of first fine wirings between one surface of the photovoltaic device, a translucent substrate, and between the translucent substrate and the first resin film And a filled first sealing layer.
Further, the photovoltaic module includes a plurality of second fine wirings bonded and fixed to the second electrode on the other surface of the photovoltaic element by the second adhesive layer, and the other of the photovoltaic elements via the second adhesive layer. A second resin film bonded to the surface and sandwiching a plurality of second fine wirings between the other surface of the photovoltaic element, a back sheet or a second translucent substrate, and a back sheet or first And a second sealing layer filled between the translucent substrate 2 and the second resin film.
 特許文献1には、第1接着層の材料として、エポキシ接着剤、アクリル接着剤、ゴム接着剤、シリコン接着剤、ポリビニル・エーテル接着剤が記載されている。 Patent Document 1 describes an epoxy adhesive, an acrylic adhesive, a rubber adhesive, a silicon adhesive, and a polyvinyl ether adhesive as materials for the first adhesive layer.
特表2005-536894号公報JP 2005-536894 A
 上述のように、ヘテロ接合型の光発電素子は、結晶半導体基板の両面に、非晶質系半導体膜を有する。
 ここで、非晶質系半導体膜は、水分やナトリウムに対して脆弱である。
 このため、封止層の材料として、水分やナトリウムに対するバリア性が十分でないものを用いた場合、非晶質系半導体膜が劣化してしまう。
As described above, the heterojunction photovoltaic device has an amorphous semiconductor film on both surfaces of a crystalline semiconductor substrate.
Here, the amorphous semiconductor film is vulnerable to moisture and sodium.
For this reason, when a material having an insufficient barrier property against moisture or sodium is used as the material of the sealing layer, the amorphous semiconductor film is deteriorated.
 また、特許文献1に記載された第1接着層の材料は、紫外線に対する耐性が非常に弱い。このため、このような材料を用いる場合、一般的に、第1封止層に紫外線吸収剤を含有させることにより、第1接着層を保護する。
 しかしながら、第1封止層が紫外線吸収剤を含有する場合、紫外光を発電に有効に利用することができない。
Moreover, the material of the 1st contact bonding layer described in patent document 1 has very weak tolerance with respect to an ultraviolet-ray. For this reason, when using such a material, generally, the first adhesive layer is protected by including an ultraviolet absorber in the first sealing layer.
However, when the first sealing layer contains an ultraviolet absorber, ultraviolet light cannot be effectively used for power generation.
 本発明は、上記の課題に鑑みなされたものであり、封止層の材料の選択の自由度が高く、且つ、より良好な発電効率を得ることが可能な光発電モジュールを提供する。 The present invention has been made in view of the above problems, and provides a photovoltaic module that has a high degree of freedom in selecting a material for a sealing layer and can obtain better power generation efficiency.
 本発明は、
 光発電素子を備える光発電モジュールであって、
 前記光発電素子は、
 第1導電型の結晶半導体基板を備えているとともに、
 前記結晶半導体基板の一方の面側に、第1非晶質系半導体膜と、第1導電型の第2非晶質系半導体膜と、第1透光性電極膜と、第1電極と、をこの順に備え、
 前記結晶半導体基板の他方の面側に、真性の第3非晶質系半導体膜と、第2導電型の第4非晶質系半導体膜と、第2透光性電極膜と、第2電極と、をこの順に備え、
 前記第1非晶質系半導体膜は、前記第2非晶質系半導体膜よりも不純物濃度が低い第1導電型であるか、又は、真性であり、
 当該光発電モジュールは、更に、
 前記光発電素子の一方の面の前記第1電極に第1接着層により接合固定された複数の第1微細配線と、
 前記光発電素子の前記一方の面との間に前記複数の第1微細配線を挟んでいるとともに、前記第1接着層を介して前記光発電素子の前記一方の面に接合された第1樹脂フィルムと、
 透光性の第1保護層と、
 前記第1保護層と前記第1樹脂フィルムとの間に充填された第1封止層と、
 前記光発電素子の他方の面の前記第2電極に第2接着層により接合固定された複数の第2微細配線と、
 前記光発電素子の前記他方の面との間に前記複数の第2微細配線を挟んでいるとともに、前記第2接着層を介して前記光発電素子の前記他方の面に接合された第2樹脂フィルムと、
 第2保護層と、
 前記第2保護層と前記第2樹脂フィルムとの間に充填された第2封止層と、
 を備え、
 前記第1接着層は、以下の(A)および(B)のいずれかを含む樹脂材料により構成されている光発電モジュールを提供する。
(A)エチレンと不飽和カルボン酸を含む共重合体、または前記共重合体のアイオノマー
(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体
The present invention
A photovoltaic module comprising photovoltaic elements,
The photovoltaic element is
A first conductivity type crystalline semiconductor substrate;
A first amorphous semiconductor film, a first conductive type second amorphous semiconductor film, a first translucent electrode film, a first electrode, on one surface side of the crystalline semiconductor substrate; In this order,
An intrinsic third amorphous semiconductor film, a second conductivity type fourth amorphous semiconductor film, a second translucent electrode film, and a second electrode are formed on the other surface side of the crystalline semiconductor substrate. And in this order,
The first amorphous semiconductor film is a first conductivity type having an impurity concentration lower than that of the second amorphous semiconductor film, or is intrinsic.
The photovoltaic module further includes
A plurality of first fine wires bonded and fixed to the first electrode on one surface of the photovoltaic element by a first adhesive layer;
The first resin having the plurality of first fine wirings sandwiched between the one surface of the photovoltaic element and bonded to the one surface of the photovoltaic element via the first adhesive layer With film,
A translucent first protective layer;
A first sealing layer filled between the first protective layer and the first resin film;
A plurality of second fine wires bonded and fixed to the second electrode on the other surface of the photovoltaic element by a second adhesive layer;
The second resin having the plurality of second fine wirings sandwiched between the other surface of the photovoltaic element and bonded to the other surface of the photovoltaic element via the second adhesive layer With film,
A second protective layer;
A second sealing layer filled between the second protective layer and the second resin film;
With
The first adhesive layer provides a photovoltaic module configured of a resin material including any of the following (A) and (B).
(A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the copolymer (B) a copolymer containing ethylene and glycidyl (meth) acrylate
 本発明によれば、封止層の材料の選択の自由度が高く、且つ、より良好な発電効率を得ることが可能な光発電モジュールを提供することができる。 According to the present invention, it is possible to provide a photovoltaic module that has a high degree of freedom in selecting a material for the sealing layer and can obtain better power generation efficiency.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る光発電モジュールの層構造を示す模式的な断面図である。It is typical sectional drawing which shows the layer structure of the photovoltaic module which concerns on embodiment. 実施形態に係る光発電モジュールの模式的な平面図である。It is a typical top view of the photovoltaic module concerning an embodiment. 実施形態に係る光発電モジュールの一部分を示す模式的な断面図である。It is typical sectional drawing which shows a part of photovoltaic module which concerns on embodiment. 実施形態に係る光発電モジュールの製造に用いられる配線シートの一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the wiring sheet used for manufacture of the photovoltaic module which concerns on embodiment. 実施形態に係る光発電モジュールの製造に用いられる配線シートの一例を示す模式的な平面図である。It is a typical top view which shows an example of the wiring sheet used for manufacture of the photovoltaic module which concerns on embodiment. 実施形態に係る光発電モジュールの製造に用いられる配線シートの他の一例を示す模式的な断面図である。It is typical sectional drawing which shows another example of the wiring sheet used for manufacture of the photovoltaic module which concerns on embodiment.
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 図1に示すように、本実施形態に係る光発電モジュール100は、光発電素子10を備えている。
 光発電素子10は、第1導電型の結晶半導体基板11を備えているとともに、結晶半導体基板11の一方の面側に、第1非晶質系半導体膜12と、第1導電型の第2非晶質系半導体膜13と、第1透光性電極膜14と、第1電極15と、をこの順に備えている。
 光発電素子10は、更に、結晶半導体基板11の他方の面側に、真性の第3非晶質系半導体膜16と、第2導電型の第4非晶質系半導体膜17と、第2透光性電極膜18と、第2電極19と、をこの順に備えている。
 第1非晶質系半導体膜12は、第2非晶質系半導体膜13よりも不純物濃度が低い第1導電型であるか、又は、真性である。
 光発電モジュール100は、更に、光発電素子10の一方の面の第1電極15に第1接着層22により接合固定された複数の第1微細配線21と、光発電素子10の一方の面との間に複数の第1微細配線21を挟んでいるとともに第1接着層22を介して光発電素子10の一方の面に接合された第1樹脂フィルム23と、透光性の第1保護層40と、第1保護層40と第1樹脂フィルム23との間に充填された第1封止層30と、を備えている。
 光発電モジュール100は、更に、光発電素子10の他方の面の第2電極19に第2接着層52により接合固定された複数の第2微細配線51と、光発電素子10の他方の面との間に複数の第2微細配線51を挟んでいるとともに、第2接着層52を介して光発電素子10の他方の面に接合された第2樹脂フィルム53と、第2保護層70と、第2保護層70と第2樹脂フィルム53との間に充填された第2封止層60と、を備えている。
 そして、第1接着層22は、以下の(A)および(B)のいずれかを含む樹脂材料により構成されている。
(A)エチレンと不飽和カルボン酸を含む共重合体、または上記共重合体のアイオノマー
(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体
 以下、詳細に説明する。
As shown in FIG. 1, the photovoltaic module 100 according to this embodiment includes a photovoltaic element 10.
The photovoltaic device 10 includes a first conductive type crystalline semiconductor substrate 11, a first amorphous semiconductor film 12 and a first conductive type second semiconductor film on one surface side of the crystalline semiconductor substrate 11. The amorphous semiconductor film 13, the first translucent electrode film 14, and the first electrode 15 are provided in this order.
The photovoltaic element 10 further includes an intrinsic third amorphous semiconductor film 16, a second conductivity type fourth amorphous semiconductor film 17, and a second conductive film on the other surface side of the crystalline semiconductor substrate 11. The translucent electrode film 18 and the second electrode 19 are provided in this order.
The first amorphous semiconductor film 12 is a first conductivity type having an impurity concentration lower than that of the second amorphous semiconductor film 13 or is intrinsic.
The photovoltaic module 100 further includes a plurality of first fine wirings 21 bonded and fixed to the first electrode 15 on one surface of the photovoltaic element 10 by the first adhesive layer 22, and one surface of the photovoltaic element 10. A first resin film 23 sandwiched between the plurality of first fine wirings 21 and bonded to one surface of the photovoltaic element 10 via the first adhesive layer 22, and a translucent first protective layer 40 and a first sealing layer 30 filled between the first protective layer 40 and the first resin film 23.
The photovoltaic module 100 further includes a plurality of second fine wirings 51 bonded and fixed to the second electrode 19 on the other surface of the photovoltaic element 10 by the second adhesive layer 52, and the other surface of the photovoltaic element 10. A second resin film 53 bonded to the other surface of the photovoltaic device 10 via the second adhesive layer 52, a second protective layer 70, And a second sealing layer 60 filled between the second protective layer 70 and the second resin film 53.
And the 1st contact bonding layer 22 is comprised by the resin material containing either of the following (A) and (B).
(A) A copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the above copolymer (B) A copolymer containing ethylene and glycidyl (meth) acrylate is described in detail below.
 光発電素子10は、ヘテロ接合型の光発電素子である。 The photovoltaic device 10 is a heterojunction photovoltaic device.
 光発電素子10の各構成要素の導電型について説明すると、結晶半導体基板11は、例えばn型である。この場合、第2非晶質系半導体膜13はn型、第1非晶質系半導体膜12は真性又はn型(第2非晶質系半導体膜13よりも不純物濃度が低いn型)、第4非晶質系半導体膜17はp型である。 The conductivity type of each component of the photovoltaic element 10 will be described. The crystalline semiconductor substrate 11 is, for example, n-type. In this case, the second amorphous semiconductor film 13 is n-type, and the first amorphous semiconductor film 12 is intrinsic or n -type (n-type having a lower impurity concentration than the second amorphous semiconductor film 13). The fourth amorphous semiconductor film 17 is p-type.
 結晶半導体基板11としては、n型の半導体特性を有する結晶体であれば特に限定されず公知のものを用いることができる。結晶半導体基板11を構成するn型の結晶半導体としては、シリコン(Si)の他、SiC、SiGe、SiN等を挙げることができるが、生産性等の点からシリコンが好ましい。結晶半導体基板11は、単結晶体であってもよいし、多結晶体であってもよい。結晶半導体基板11の両面(一方の面及び他方の面)には、光の乱反射による光閉じ込めをより有効にするために、凹凸加工が施されているのが好ましい(不図示)。なお、例えば、約1~5重量%の水酸化ナトリウム、又は水酸化カリウムを含むエッチング液に基板材料を浸漬することによって、多数のピラミッド状の凹凸部を形成することができる。 The crystal semiconductor substrate 11 is not particularly limited as long as it is a crystal having n-type semiconductor characteristics, and a known substrate can be used. Examples of the n-type crystal semiconductor composing the crystalline semiconductor substrate 11 include SiC, SiGe, SiN and the like in addition to silicon (Si). Silicon is preferable from the viewpoint of productivity. The crystalline semiconductor substrate 11 may be a single crystal or a polycrystal. Both surfaces (one surface and the other surface) of the crystalline semiconductor substrate 11 are preferably subjected to uneven processing (not shown) in order to make light confinement due to irregular reflection of light more effective. For example, by immersing the substrate material in an etching solution containing about 1 to 5% by weight of sodium hydroxide or potassium hydroxide, a large number of pyramidal irregularities can be formed.
 また、第1非晶質系半導体膜12、第2非晶質系半導体膜13、第3非晶質系半導体膜16及び第4非晶質系半導体膜17は、それぞれシリコン薄膜とすることができる。 The first amorphous semiconductor film 12, the second amorphous semiconductor film 13, the third amorphous semiconductor film 16, and the fourth amorphous semiconductor film 17 are each made of a silicon thin film. it can.
 第1非晶質系半導体膜12は、結晶半導体基板11の一方の面(図1における上面)に積層されている。
 第2非晶質系半導体膜13は、第1非晶質系半導体膜12の一方の面(図1における上面)に積層されている。
 第1非晶質系半導体膜12と第2非晶質系半導体膜13との合計の膜厚は、特に限定されないが、例えば1nm以上20nm以下が好ましく、4nm以上10nm以下がより好ましい。このような範囲の膜厚とすることにより、短絡電流とキャリアの再結合の発生とをバランス良く低減することができる。
The first amorphous semiconductor film 12 is stacked on one surface of the crystalline semiconductor substrate 11 (upper surface in FIG. 1).
The second amorphous semiconductor film 13 is stacked on one surface (the upper surface in FIG. 1) of the first amorphous semiconductor film 12.
The total thickness of the first amorphous semiconductor film 12 and the second amorphous semiconductor film 13 is not particularly limited, but is preferably 1 nm to 20 nm, for example, and more preferably 4 nm to 10 nm. By setting the film thickness within such a range, it is possible to reduce the short-circuit current and the occurrence of carrier recombination in a well-balanced manner.
 第1透光性電極膜14は、第2非晶質系半導体膜13の一方の面(図1における上面)に積層されている。
 第1透光性電極膜14を構成する透明電極材料としては、例えば、インジウム錫酸化物(Indium Tin Oxide:ITO)、タングステンドープインジウム酸化物(Indium Tungsten Oxide:IWO)、セリウムドープインジウム酸化物(Indium Cerium Oxide:ICO)、IZO(Indium Zinc Oxide)、AZO(アルミニウムドープZnO)、GZO(ガリウムドープZnO)等の公知の材料を挙げることができる。
The first translucent electrode film 14 is stacked on one surface (the upper surface in FIG. 1) of the second amorphous semiconductor film 13.
Examples of the transparent electrode material constituting the first translucent electrode film 14 include indium tin oxide (ITO), tungsten-doped indium oxide (InWO), and cerium-doped indium oxide (ITO). Well-known materials such as Indium Cerium Oxide (ICO), IZO (Indium Zinc Oxide), AZO (aluminum doped ZnO), and GZO (gallium doped ZnO) can be exemplified.
 第3非晶質系半導体膜16は、結晶半導体基板11の他方の面(図1における下面)に積層されている。換言すれば、第3非晶質系半導体膜16は、結晶半導体基板11と第4非晶質系半導体膜17との間に介在している。第3非晶質系半導体膜16の膜厚は特に限定されないが、例えば1nm以上10nm以下とすることができる。 The third amorphous semiconductor film 16 is stacked on the other surface (the lower surface in FIG. 1) of the crystalline semiconductor substrate 11. In other words, the third amorphous semiconductor film 16 is interposed between the crystalline semiconductor substrate 11 and the fourth amorphous semiconductor film 17. The film thickness of the third amorphous semiconductor film 16 is not particularly limited, but may be, for example, 1 nm or more and 10 nm or less.
 第4非晶質系半導体膜17は、第3非晶質系半導体膜16の一方の面(図1における下面)に積層されている。第4非晶質系半導体膜17の膜厚は、特に限定されないが、例えば1nm以上20nm以下が好ましく、3nm以上10nm以下がより好ましい。 The fourth amorphous semiconductor film 17 is laminated on one surface (the lower surface in FIG. 1) of the third amorphous semiconductor film 16. Although the film thickness of the 4th amorphous semiconductor film 17 is not specifically limited, For example, 1 nm or more and 20 nm or less are preferable, and 3 nm or more and 10 nm or less are more preferable.
 第2透光性電極膜18は、第4非晶質系半導体膜17の一方の面(図1における下面)に積層されている。第2透光性電極膜18を構成する材料は、第1透光性電極膜14と同様である。 The second translucent electrode film 18 is laminated on one surface (the lower surface in FIG. 1) of the fourth amorphous semiconductor film 17. The material constituting the second translucent electrode film 18 is the same as that of the first translucent electrode film 14.
 ここで、真性とは、不純物が意図的にドープされていないことをいう。したがって、真性の非晶質系半導体膜には、原料に本来含まれる不純物や製造過程において非意図的に混入した不純物が存在するものも含まれる。
 また、非晶質系とは、非晶質体のみならず、微結晶体を含むことを意味する。
 n型の非晶質半導体膜とは、薄膜中に含有される元素の数密度比として、シリコンに対して10-5程度以上の不純物が含有されているものをいう。
Here, intrinsic means that impurities are not intentionally doped. Therefore, the intrinsic amorphous semiconductor film includes impurities that are originally included in the raw material and impurities that are unintentionally mixed in the manufacturing process.
Moreover, an amorphous system means that not only an amorphous body but a microcrystal body is included.
An n-type amorphous semiconductor film refers to a film containing impurities of about 10 −5 or more relative to silicon as a number density ratio of elements contained in a thin film.
 第1電極15は、例えば、フィンガー電極であるか、又は、第1透光性電極膜14の一方の面(図1における上面)の全面に成膜された金属膜である。
 同様に、第2電極19は、例えば、フィンガー電極であるか、又は、第2透光性電極膜18の一方の面(図1における下面)の全面に成膜された金属膜である。
 第1電極15及び第2電極19を構成するフィンガー電極の材料としては、銀ペースト等の導電性接着剤や、銅線等の金属導線を用いることができる。フィンガー電極の幅は、例えば、20μm以上80μm以下程度である。
 また、第1電極15及び第2電極19を構成する金属膜の材料としては、銀、銀合金又はアルミニウム合金等を用いることができる。
The first electrode 15 is, for example, a finger electrode, or a metal film formed on the entire surface of one surface (the upper surface in FIG. 1) of the first light-transmissive electrode film 14.
Similarly, the second electrode 19 is, for example, a finger electrode or a metal film formed on the entire surface of one surface (the lower surface in FIG. 1) of the second translucent electrode film 18.
As a material of the finger electrode constituting the first electrode 15 and the second electrode 19, a conductive adhesive such as a silver paste or a metal conductor such as a copper wire can be used. The width of the finger electrode is, for example, about 20 μm or more and 80 μm or less.
In addition, as a material of the metal film constituting the first electrode 15 and the second electrode 19, silver, a silver alloy, an aluminum alloy, or the like can be used.
 複数の第1微細配線21は、例えば、互いに平行に配置された複数のワイヤ又はバスバーである。
 以下、第1微細配線21がワイヤである場合の構成を説明する。
 この場合、第1微細配線21は、コア21aと、コア21aの表面にコーティングされている低融点金属膜21bと、を有している。コア21aの金属材料としては、銅等が挙げられる。低融点金属膜21bの金属材料としては、インジウムとスズとの合金等が挙げられる。
 第1微細配線21の直径は、100μm以上400μm以下が好ましく、200μm以上300μm以下がより好ましい。
 第2微細配線51は、第1微細配線21と同様に構成されている。
The plurality of first fine wirings 21 are, for example, a plurality of wires or bus bars arranged in parallel to each other.
Hereinafter, a configuration in the case where the first fine wiring 21 is a wire will be described.
In this case, the first fine wiring 21 has a core 21a and a low melting point metal film 21b coated on the surface of the core 21a. Examples of the metal material of the core 21a include copper. Examples of the metal material of the low melting point metal film 21b include an alloy of indium and tin.
The diameter of the first fine wiring 21 is preferably 100 μm or more and 400 μm or less, and more preferably 200 μm or more and 300 μm or less.
The second fine wiring 51 is configured in the same manner as the first fine wiring 21.
 なお、第1電極15がフィンガー電極である場合、複数の第1微細配線21は、第1電極15と直交している(図2参照)。
 同様に、第2電極19がフィンガー電極である場合、複数の第2微細配線51は、第2電極19と直交している。
In addition, when the 1st electrode 15 is a finger electrode, the some 1st fine wiring 21 is orthogonally crossed with the 1st electrode 15 (refer FIG. 2).
Similarly, when the second electrode 19 is a finger electrode, the plurality of second fine wirings 51 are orthogonal to the second electrode 19.
 第1接着層22は、透光性である。
 第1接着層22は、以下の(A)および(B)のいずれかを含む樹脂材料により構成されている。
(A)エチレンと不飽和カルボン酸を含む共重合体、または上記共重合体のアイオノマー
(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体
The first adhesive layer 22 is translucent.
The 1st contact bonding layer 22 is comprised with the resin material containing either of the following (A) and (B).
(A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the above copolymer (B) a copolymer containing ethylene and glycidyl (meth) acrylate
 エチレンと不飽和カルボン酸との共重合体としては、たとえば、エチレンと不飽和カルボン酸との共重合体のアイオノマーが挙げられる。このエチレンと不飽和カルボン酸との共重合体のアイオノマーには、リチウム、ナトリウム等のアルカリ金属、カルシウム、マグネシウム、セリウム、亜鉛、アルミニウム等の多価金属等に由来する金属種を含有させることができる。これらの中でも、ナトリウム、マグネシウム、亜鉛が好ましく用いられる。一般に、アイオノマーは、透明性に優れ、かつ高温における貯蔵弾性率E´が高いことが知られている。また、本実施形態に係るエチレンと不飽和カルボン酸との共重合体のアイオノマーの中和度は、好ましくは、80%以下であり、さらに好ましくは、接着性の観点から60%以下であり、最も好ましくは、40%以下である。 Examples of the copolymer of ethylene and unsaturated carboxylic acid include an ionomer of a copolymer of ethylene and unsaturated carboxylic acid. The ionomer of the copolymer of ethylene and unsaturated carboxylic acid may contain a metal species derived from an alkali metal such as lithium or sodium, or a polyvalent metal such as calcium, magnesium, cerium, zinc or aluminum. it can. Among these, sodium, magnesium, and zinc are preferably used. Generally, ionomers are known to have excellent transparency and a high storage elastic modulus E ′ at high temperatures. Further, the ionomer neutralization degree of the copolymer of ethylene and unsaturated carboxylic acid according to this embodiment is preferably 80% or less, and more preferably 60% or less from the viewpoint of adhesiveness. Most preferably, it is 40% or less.
 エチレンと不飽和カルボン酸との共重合体またはエチレンと不飽和カルボン酸との共重合体のアイオノマーにおける不飽和カルボン酸成分としては、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、マレイン酸モノメチル、無水マレイン酸等が挙げられる。中でも、不飽和カルボン酸成分としては、(メタ)アクリル酸が好ましい。そのため、エチレンと不飽和カルボン酸との共重合体としては、エチレン・(メタ)アクリル酸共重合体が好ましい。なお、本実施形態に係るエチレン・不飽和カルボン酸共重合体は、エチレンと不飽和カルボン酸との2元共重合体に限らず、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体等のエチレンと不飽和カルボン酸を含む多元共重合体も包含している。上記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステル成分としては、上述した不飽和カルボン酸成分として用いられる各種カルボン酸の炭素数1~20のアルキルエステルが挙げられる。具体的に、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、2-エチルヘキシル基、イソオクチル基等が挙げられる。 The unsaturated carboxylic acid component in the ionomer of a copolymer of ethylene and an unsaturated carboxylic acid or a copolymer of ethylene and an unsaturated carboxylic acid includes acrylic acid, methacrylic acid, ethacrylic acid, fumaric acid, maleic acid, maleic acid. Examples thereof include monomethyl acid and maleic anhydride. Among these, (meth) acrylic acid is preferable as the unsaturated carboxylic acid component. Therefore, the ethylene / unsaturated carboxylic acid copolymer is preferably an ethylene / (meth) acrylic acid copolymer. The ethylene / unsaturated carboxylic acid copolymer according to the present embodiment is not limited to a binary copolymer of ethylene and unsaturated carboxylic acid, but an ethylene / unsaturated carboxylic acid / unsaturated carboxylic acid ester copolymer. Also included are multicomponent copolymers containing ethylene and unsaturated carboxylic acids. Examples of the unsaturated carboxylic acid ester component in the ethylene / unsaturated carboxylic acid / unsaturated carboxylic acid ester copolymer include alkyl esters having 1 to 20 carbon atoms of various carboxylic acids used as the unsaturated carboxylic acid component described above. It is done. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a 2-ethylhexyl group, and an isooctyl group.
 本実施形態に係るエチレンと不飽和カルボン酸との共重合体またはそのアイオノマーにおける(メタ)アクリル酸単位等の不飽和カルボン酸単位の含有量は、優れた紫外線透過性を実現する観点から、好ましくは、2重量%以上30重量%以下であり、より好ましくは、9重量%以上25重量%以下であり、最も好ましくは、12重量%以上20重量%以下である。
 また、共重合体が不飽和カルボン酸エステルを含有する場合、共重合体全量に対する不飽和カルボン酸エステルの含有量は、1重量%以上35重量%以下が好ましく、3重量%以上32重量%以下がより好ましく、5重量%以上30重量%以下がさらに好ましい。
The content of unsaturated carboxylic acid units such as (meth) acrylic acid units in the copolymer of ethylene and unsaturated carboxylic acid or its ionomer according to the present embodiment is preferable from the viewpoint of realizing excellent ultraviolet transparency. Is 2 wt% or more and 30 wt% or less, more preferably 9 wt% or more and 25 wt% or less, and most preferably 12 wt% or more and 20 wt% or less.
In addition, when the copolymer contains an unsaturated carboxylic acid ester, the content of the unsaturated carboxylic acid ester with respect to the total amount of the copolymer is preferably 1% by weight or more and 35% by weight or less, and preferably 3% by weight or more and 32% by weight or less. Is more preferable, and 5 to 30 weight% is further more preferable.
 エチレンと不飽和カルボン酸との共重合体の透明性および接着性を良好にする観点から、共重合体全量に対する不飽和カルボン酸の含有量は、1重量%以上であることが好ましく、2重量%以上であることがより好ましく、3重量%以上であることがさらに好ましい。
 一方、共重合体全量に対する不飽和カルボン酸の含有量は、吸湿性を低減させる観点から、好ましくは、20重量%以下であり、さらに好ましくは、15重量%以下である。
 また、共重合体が不飽和カルボン酸エステルを含有する場合、共重合体の透明性および接着性を良好にする観点から、共重合体全量に対する不飽和カルボン酸エステルの含有量は1重量%以上であることが好ましく、3重量%以上であることがより好ましく、5重量%以上であることがさらに好ましい。一方、共重合体が不飽和カルボン酸エステルを含有する場合、吸湿性を低減させる観点から、共重合体全量に対する不飽和カルボン酸エステルの含有量は、好ましくは35重量%以下であり、より好ましくは32重量%以下であり、さらに好ましくは30重量%以下である。
From the viewpoint of improving the transparency and adhesiveness of the copolymer of ethylene and unsaturated carboxylic acid, the content of the unsaturated carboxylic acid with respect to the total amount of the copolymer is preferably 1% by weight or more. % Or more, more preferably 3% by weight or more.
On the other hand, the content of the unsaturated carboxylic acid with respect to the total amount of the copolymer is preferably 20% by weight or less, and more preferably 15% by weight or less from the viewpoint of reducing hygroscopicity.
In addition, when the copolymer contains an unsaturated carboxylic acid ester, the content of the unsaturated carboxylic acid ester with respect to the total amount of the copolymer is 1% by weight or more from the viewpoint of improving the transparency and adhesiveness of the copolymer. Preferably, it is 3% by weight or more, more preferably 5% by weight or more. On the other hand, when the copolymer contains an unsaturated carboxylic acid ester, the content of the unsaturated carboxylic acid ester with respect to the total amount of the copolymer is preferably 35% by weight or less, more preferably, from the viewpoint of reducing hygroscopicity. Is 32% by weight or less, more preferably 30% by weight or less.
 本実施形態に係るエチレンと不飽和カルボン酸との共重合体は、高温、高圧条件下、ラジカル共重合反応を行うことにより得ることができる。また、エチレンと不飽和カルボン酸との共重合体のアイオノマーは、エチレンと不飽和カルボン酸との共重合体と金属化合物とを反応させることによって得ることができる。 The copolymer of ethylene and unsaturated carboxylic acid according to this embodiment can be obtained by performing a radical copolymerization reaction under high temperature and high pressure conditions. Further, an ionomer of a copolymer of ethylene and unsaturated carboxylic acid can be obtained by reacting a copolymer of ethylene and unsaturated carboxylic acid with a metal compound.
 第1接着層22に含まれるエチレンと(メタ)アクリル酸グリシジルを含む共重合体に含まれる(メタ)アクリル酸グリシジルとは、メタクリル酸グリシジルまたはアクリル酸グリシジルの少なくとも一方を指す。
 エチレンと(メタ)アクリル酸グリシジルを含む共重合体としては、例えば、エチレン・(メタ)アクリル酸グリシジル共重合体、エチレン・(メタ)アクリル酸グリシジル・酢酸ビニル共重合体、およびエチレン・(メタ)アクリル酸グリシジル・(メタ)アクリル酸エステル共重合体等から選択される一種または二種以上が挙げられる。
The glycidyl (meth) acrylate contained in the copolymer containing ethylene and glycidyl (meth) acrylate contained in the first adhesive layer 22 refers to at least one of glycidyl methacrylate or glycidyl acrylate.
Examples of the copolymer containing ethylene and glycidyl (meth) acrylate include ethylene / (meth) acrylic acid glycidyl copolymer, ethylene / (meth) acrylic acid glycidyl / vinyl acetate copolymer, and ethylene / (meta ) One or more selected from glycidyl acrylate / (meth) acrylic acid ester copolymer and the like.
 エチレンと(メタ)アクリル酸グリシジルを含む共重合体中の(メタ)アクリル酸グリシジルに由来の構成単位の含有割合は、好ましくは2重量%以上30重量%以下、より好ましくは3重量%以上25重量%以下である。
 (メタ)アクリル酸グリシジルに由来の構成単位の含有割合が上記範囲内であると、得られる第1接着層22の接着性や柔軟性、取扱い性、加工性等のバランスをより一層良好なものとすることができる。
The content ratio of the structural unit derived from glycidyl (meth) acrylate in the copolymer containing ethylene and glycidyl (meth) acrylate is preferably 2% by weight to 30% by weight, more preferably 3% by weight to 25%. % By weight or less.
When the content ratio of the structural unit derived from glycidyl (meth) acrylate is within the above range, the balance of the adhesiveness, flexibility, handleability, workability, etc. of the obtained first adhesive layer 22 is further improved. It can be.
 エチレンと(メタ)アクリル酸グリシジルを含む共重合体中の「エチレン由来の構成単位」の含有割合は、好ましくは65重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上である。このとき、エチレンと(メタ)アクリル酸グリシジルを含む共重合体は、エチレン、(メタ)アクリル酸グリシジル以外の他のモノマー単位(例えば、酢酸ビニル、(メタ)アクリル酸エステル等)をさらに含むことができる。 The content ratio of the “ethylene-derived structural unit” in the copolymer containing ethylene and glycidyl (meth) acrylate is preferably 65% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more. is there. At this time, the copolymer containing ethylene and glycidyl (meth) acrylate further contains other monomer units (for example, vinyl acetate, (meth) acrylate ester, etc.) other than ethylene and glycidyl (meth) acrylate. Can do.
 具体的には、エチレンに由来の構成単位と、(メタ)アクリル酸グリシジルに由来の構成単位とを含有する共重合体のほか、この2つの構成単位のほかに、さらに酢酸ビニルに由来の構成単位および(メタ)アクリル酸エステルに由来の構成単位の少なくとも一方を含有する共重合体等が挙げられる。
 酢酸ビニルに由来の構成単位および(メタ)アクリル酸エステルに由来の構成単位の含有割合は30重量%以下であることが好ましく、20重量%以下であることがより好ましい。
Specifically, in addition to a copolymer containing a structural unit derived from ethylene and a structural unit derived from glycidyl (meth) acrylate, in addition to these two structural units, a composition derived from vinyl acetate. Examples thereof include a copolymer containing at least one of a unit and a structural unit derived from a (meth) acrylic acid ester.
The content ratio of the structural unit derived from vinyl acetate and the structural unit derived from (meth) acrylic acid ester is preferably 30% by weight or less, and more preferably 20% by weight or less.
 酢酸ビニルに由来の構成単位および(メタ)アクリル酸エステルに由来の構成単位の含有割合の下限値は、特に制限はないが、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1重量%以上が望ましい。さらには、酢酸ビニルに由来の構成単位または(メタ)アクリル酸エステルに由来の構成単位の含有割合は、0.1~30重量%の範囲が好ましく、さらに0.5~20重量%、特に1~20重量%の範囲が好ましい。
 エチレンと(メタ)アクリル酸グリシジルを含む共重合体は、1種を単独でまたは共重合比等の異なる共重合体の2種以上またはモノマー種の異なる共重合体の2種以上を組み合わせて用いることができる。
The lower limit of the content ratio of the structural unit derived from vinyl acetate and the structural unit derived from (meth) acrylic acid ester is not particularly limited, but is preferably 0.1% by weight or more, more preferably 0.5% by weight. More preferably, 1% by weight or more is desirable. Further, the content ratio of the structural unit derived from vinyl acetate or the structural unit derived from (meth) acrylic acid ester is preferably in the range of 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, particularly 1 A range of ˜20% by weight is preferred.
A copolymer containing ethylene and glycidyl (meth) acrylate is used alone or in combination of two or more of copolymers having different copolymerization ratios or two or more of copolymers having different monomer types. be able to.
 エチレンと(メタ)アクリル酸グリシジルを含む共重合体の少なくとも一部はシランカップリング剤により変性されていてもよい。
 シランカップリング剤の含有量はエチレンと(メタ)アクリル酸グリシジルを含む共重合体100重量%中0.01~5重量%が好ましい。
At least a part of the copolymer containing ethylene and glycidyl (meth) acrylate may be modified with a silane coupling agent.
The content of the silane coupling agent is preferably 0.01 to 5% by weight in 100% by weight of the copolymer containing ethylene and glycidyl (meth) acrylate.
 第1接着層22には、上記の(A)および(B)のいずれか一方を含んでいればよいが、第1接着層22の樹脂成分100重量%中に上記の(A)および(B)を合計で30重量%以上含むことが好ましく、40重量%以上含むことがより好ましく、50重量%以上含むことがさらに好ましい。上限値は特に制限はないが上記の(B)を含む場合は80重量%以下が好ましく、60重量%以下がより好ましい。 The first adhesive layer 22 only needs to contain one of the above (A) and (B), but the above-mentioned (A) and (B) are contained in 100% by weight of the resin component of the first adhesive layer 22. ) In total is preferably 30% by weight or more, more preferably 40% by weight or more, and even more preferably 50% by weight or more. The upper limit is not particularly limited, but when it contains (B), it is preferably 80% by weight or less, more preferably 60% by weight or less.
 また、第1接着層22を形成する樹脂材料は、その他の樹脂を含んでもよい。その他の樹脂としては、例えば、プロピレン系樹脂やエチレン系樹脂等が挙げられる。 Further, the resin material forming the first adhesive layer 22 may include other resins. Examples of other resins include propylene-based resins and ethylene-based resins.
 エチレン系樹脂としては、炭素数3~20のα-オレフィンに由来する構成単位の含有割合が、5モル%以上50モル%未満であるエチレン・α-オレフィン共重合体やエチレン・極性モノマー共重合体等が挙げられる。 Examples of ethylene resins include ethylene / α-olefin copolymers and ethylene / polar monomer copolymers in which the content of structural units derived from α-olefins having 3 to 20 carbon atoms is 5 mol% or more and less than 50 mol%. Examples include coalescence.
 上記炭素数3~20のα-オレフィンの具体例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ナノデセン、1-エイコセン等の直鎖状のα-オレフィン;3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ヘキセン、2,2,4-トリメチル-1-ペンテン等の分岐状のα-オレフィン等が挙げられ、これらは2種類を組み合わせて使用することもできる。
 中でも、上記α-オレフィンの炭素数は、汎用性(コストや量産性あるいは入手のしやすさ)の点で、3~10が好ましく、さらには3~8が好ましい。
Specific examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and 1-undecene. Linear α-olefins such as 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nanodecene, 1-eicocene; Examples include branched α-olefins such as 1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-hexene, and 2,2,4-trimethyl-1-pentene. These can be used in combination of two types.
In particular, the number of carbon atoms of the α-olefin is preferably 3 to 10, more preferably 3 to 8 in view of versatility (cost, mass productivity, or availability).
 エチレン・α-オレフィン共重合体としては、好ましくは、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体であり、いずれのエチレン・α-オレフィン共重合体も、エチレン由来の構成単位の含有割合が50モル%以上であることを意味する。
 エチレン・α-オレフィン共重合体は、例えば、メタロセン系触媒を用いた、スラリー重合法、溶液重合法、塊状重合法、気相重合法等で製造できる。
The ethylene / α-olefin copolymer is preferably an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 4-methyl-1-pentene copolymer, or an ethylene / 1-hexene copolymer. This is an ethylene / 1-octene copolymer, and any ethylene / α-olefin copolymer means that the content of the structural unit derived from ethylene is 50 mol% or more.
The ethylene / α-olefin copolymer can be produced by, for example, a slurry polymerization method, a solution polymerization method, a bulk polymerization method, or a gas phase polymerization method using a metallocene catalyst.
 エチレン・極性モノマー共重合体は、例えば、エチレン・ビニルエステル共重合体およびエチレン・不飽和カルボン酸エステル共重合体等が挙げられる。本実施形態において極性モノマーとは官能基を有するモノマーを意味する。
 エチレン・ビニルエステル共重合体としては、例えば、エチレン・酢酸ビニル共重合体、エチレン・プロピオン酸ビニル共重合体、エチレン・酪酸ビニル共重合体、エチレン・ステアリン酸ビニル共重合体等から選択される一種または二種以上を用いることができる。
Examples of the ethylene / polar monomer copolymer include an ethylene / vinyl ester copolymer and an ethylene / unsaturated carboxylic acid ester copolymer. In the present embodiment, the polar monomer means a monomer having a functional group.
The ethylene / vinyl ester copolymer is selected from, for example, an ethylene / vinyl acetate copolymer, an ethylene / vinyl propionate copolymer, an ethylene / vinyl butyrate copolymer, an ethylene / vinyl stearate copolymer, and the like. One kind or two or more kinds can be used.
 本実施形態に係るエチレン・不飽和カルボン酸エステル共重合体は、エチレンと、不飽和カルボン酸エステルの少なくとも1種とを共重合した重合体である。
 具体的には、エチレンと、不飽和カルボン酸のアルキルエステルと、からなる共重合体を例示することができる。
 不飽和カルボン酸エステルにおける不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸等が挙げられる。
 不飽和カルボン酸のアルキルエステルにおけるアルキル部位としては、炭素数1~12のものを挙げることができ、より具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、セカンダリーブチル、2-エチルヘキシル、イソオクチル等のアルキル基を例示することができる。本実施形態では、アルキルエステルのアルキル部位の炭素数は、1~8が好ましい。
The ethylene / unsaturated carboxylic acid ester copolymer according to this embodiment is a polymer obtained by copolymerizing ethylene and at least one unsaturated carboxylic acid ester.
Specifically, a copolymer composed of ethylene and an alkyl ester of an unsaturated carboxylic acid can be exemplified.
Examples of the unsaturated carboxylic acid in the unsaturated carboxylic acid ester include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride and the like.
Examples of the alkyl moiety in the alkyl ester of the unsaturated carboxylic acid include those having 1 to 12 carbon atoms, and more specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, secondary butyl. And alkyl groups such as 2-ethylhexyl and isooctyl. In this embodiment, the alkyl moiety of the alkyl ester preferably has 1 to 8 carbon atoms.
 不飽和カルボン酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステル等から選択される一種または二種以上を含むことが好ましい。これらの不飽和カルボン酸エステルは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これら中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソブチル、および(メタ)アクリル酸n-ブチル等から選択される一種または二種以上を含むことがより好ましい。 Examples of unsaturated carboxylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, isobutyl (meth) acrylate, (meth) acrylic acid It is preferable to include one or more selected from (meth) acrylic acid esters such as n-butyl, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. These unsaturated carboxylic acid esters may be used alone or in combination of two or more. Among these, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, isobutyl (meth) acrylate, n-butyl (meth) acrylate, etc. It is more preferable that 1 type or 2 types or more selected from are included.
 本実施形態において、好ましいエチレン・不飽和カルボン酸エステル共重合体は、エチレン・(メタ)アクリル酸エステル共重合体である。その中でも(メタ)アクリル酸エステルとして1種類の化合物からなる共重合体が好ましい。このような共重合体としては、エチレン・(メタ)アクリル酸メチル共重合体、エチレン・(メタ)アクリル酸エチル共重合体、エチレン・(メタ)アクリル酸イソプロピル共重合体、エチレン・(メタ)アクリル酸n-プロピル共重合体、エチレン・(メタ)アクリル酸イソブチル共重合体、エチレン・(メタ)アクリル酸n-ブチル共重合体、エチレン・(メタ)アクリル酸イソオクチル共重合体、エチレン・(メタ)アクリル酸2-エチルヘキシル共重合体等が挙げられる。 In this embodiment, a preferable ethylene / unsaturated carboxylic acid ester copolymer is an ethylene / (meth) acrylic acid ester copolymer. Among them, a copolymer composed of one kind of compound is preferable as the (meth) acrylic acid ester. Examples of such copolymers include ethylene / methyl (meth) acrylate copolymer, ethylene / (meth) ethyl acrylate copolymer, ethylene / (meth) isopropyl acrylate copolymer, ethylene / (meth). N-propyl acrylate copolymer, ethylene / (meth) acrylate isobutyl copolymer, ethylene / (meth) acrylate n-butyl copolymer, ethylene / (meth) acrylate isooctyl copolymer, ethylene / ( And (meth) acrylic acid 2-ethylhexyl copolymer.
 エチレン・極性モノマー共重合体は、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸メチル共重合体、エチレン・(メタ)アクリル酸エチル共重合体、エチレン・(メタ)アクリル酸イソプロピル共重合体、エチレン・(メタ)アクリル酸n-プロピル共重合体、エチレン・(メタ)アクリル酸イソブチル共重合体、エチレン・(メタ)アクリル酸n-ブチル共重合体から選択される一種または二種以上を含むことが好ましく、エチレン・酢酸ビニル共重合体を含むことがより好ましい。
 なお、本実施形態においてはエチレン・極性モノマー共重合体は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 これらのその他の樹脂はシランカップリング剤で変性されていてもよい。
 シランカップリング剤の含有量はその他の樹脂成分100重量%中0.01~5重量%が好ましい。
The ethylene / polar monomer copolymer includes ethylene / vinyl acetate copolymer, ethylene / (meth) methyl acrylate copolymer, ethylene / (meth) ethyl acrylate copolymer, ethylene / (meth) acrylate isopropyl copolymer. One or two types selected from polymers, ethylene / (meth) acrylate n-propyl copolymer, ethylene / (meth) acrylate isobutyl copolymer, ethylene / (meth) acrylate n-butyl copolymer It is preferable to include the above, and it is more preferable to include an ethylene / vinyl acetate copolymer.
In the present embodiment, the ethylene / polar monomer copolymer may be used alone or in combination of two or more.
These other resins may be modified with a silane coupling agent.
The content of the silane coupling agent is preferably 0.01 to 5% by weight in 100% by weight of other resin components.
 また、第1接着層22を形成する樹脂材料中には、たとえば、ヒドロキノンモノベンジルエーテル、トリフェニルホスファイト等の酸化防止剤、ステアリン酸鉛、ラウリン酸バリウム等の熱安定剤、微粒酸化チタン、酸化亜鉛等の充填剤、顔料、染料、滑剤、ブロッキング防止剤、発泡剤、発泡助剤、架橋剤、架橋助剤、難燃剤等の各種添加剤を配合してもよい。各成分の含有量は、第1接着層22中の樹脂成分100重量部に対して0.005~2重量部が好ましく、0.008~1重量部がより好ましい。 Examples of the resin material forming the first adhesive layer 22 include antioxidants such as hydroquinone monobenzyl ether and triphenyl phosphite, thermal stabilizers such as lead stearate and barium laurate, fine titanium oxide, Various additives such as fillers such as zinc oxide, pigments, dyes, lubricants, antiblocking agents, foaming agents, foaming aids, crosslinking agents, crosslinking aids, flame retardants, and the like may be blended. The content of each component is preferably 0.005 to 2 parts by weight and more preferably 0.008 to 1 part by weight with respect to 100 parts by weight of the resin component in the first adhesive layer 22.
 第1接着層22を形成する樹脂材料中には、たとえば、変色防止剤として、カドミウム、バリウム等の金属の脂肪酸塩を任意に配合してもよい。 In the resin material forming the first adhesive layer 22, for example, a metal fatty acid salt such as cadmium or barium may be arbitrarily blended as a discoloration preventing agent.
 JIS-K7105に準じて測定した第1接着層22の350nmの波長における光線透過率が、70%以上であることが好ましい。こうすることで、紫外線由来の光エネルギーを効率よく発電に寄与させることが可能となる。本明細書において、紫外線由来の光エネルギーとは、380nm未満の波長領域の光に由来する光エネルギーを指す。
 第1接着層22の材料として、上述した材料を用いることにより、このような光線透過率を実現することができる。
 第1接着層22が紫外線吸収剤を実質的に含まない構成とすることによって、より確実に、このような光線透過率を実現することができる。
 なお、JIS-K7105に準じて測定した第1接着層22の350nmの波長における光線透過率は、好ましくは、75%以上であり、より好ましくは、80%以上である。こうすることで、より一層効果的に紫外線に由来する光エネルギーを発電に寄与させることが可能となる。
It is preferable that the light transmittance at a wavelength of 350 nm of the first adhesive layer 22 measured according to JIS-K7105 is 70% or more. By doing so, light energy derived from ultraviolet rays can be efficiently contributed to power generation. In this specification, light energy derived from ultraviolet rays refers to light energy derived from light in a wavelength region of less than 380 nm.
By using the above-described material as the material of the first adhesive layer 22, such light transmittance can be realized.
Such a light transmittance can be realized more reliably by adopting a configuration in which the first adhesive layer 22 does not substantially contain an ultraviolet absorber.
Note that the light transmittance at a wavelength of 350 nm of the first adhesive layer 22 measured according to JIS-K7105 is preferably 75% or more, and more preferably 80% or more. By doing so, it becomes possible to more effectively contribute light energy derived from ultraviolet rays to power generation.
 第1接着層22の層厚T(図3)は、例えば、8μm以上100μm以下とすることができ、好ましくは、16μm以上75μm以下とすることができる。後述するように、第1微細配線21が直径Dのワイヤである場合、第1接着層22の層厚Tは、D/6±D/12の範囲に設定されていることが好ましい。すなわち、一例として、第1微細配線21が直径300μmのワイヤである場合、層厚Tは25μm以上75μm以下とすることができる。ここで、第1接着層22の層厚Tは、隣り合うワイヤどうしの間隔において、第1接着層22の層厚がほぼ一定となっている範囲における層厚であるものとする(図3参照)。 The layer thickness T (FIG. 3) of the first adhesive layer 22 can be, for example, 8 μm or more and 100 μm or less, and preferably 16 μm or more and 75 μm or less. As will be described later, when the first fine wiring 21 is a wire having a diameter D, the layer thickness T of the first adhesive layer 22 is preferably set in a range of D / 6 ± D / 12. That is, as an example, when the first fine wiring 21 is a wire having a diameter of 300 μm, the layer thickness T can be set to 25 μm or more and 75 μm or less. Here, the layer thickness T of the first adhesive layer 22 is a layer thickness in a range where the layer thickness of the first adhesive layer 22 is substantially constant in the interval between adjacent wires (see FIG. 3). ).
 第1樹脂フィルム23は、例えば、フッ素樹脂およびアクリル樹脂からなる群より選択される1以上を含む材料により形成されている。
 上記フッ素樹脂としては、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(PCTFEE)、ポリフッ化ビニル(PVF)及びポリフッ化ビニリデン(PVDF)等が挙げられる。中でも、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)およびポリフッ化ビニル(PVF)からなる群より選択される1種以上であることが好ましい。
 上記アクリル樹脂としては、アクリル酸エステルの重合体、メタクリル酸エステルの重合体等が挙げられる。中でも、メタクリル酸メチル単位を主成分とした重合体であるメタクリル樹脂が好ましい。このメタクリル樹脂としては、ポリメタクリル酸メチル(PMMA)、メタクリル酸メチルと他の単量体との共重合体等が挙げられる。
 第1樹脂フィルム23の厚さは、例えば、5μm以上100μm以下(好ましくは10μm以上80μm以下)とすることができる。
The 1st resin film 23 is formed with the material containing 1 or more selected from the group which consists of a fluororesin and an acrylic resin, for example.
Examples of the fluororesin include tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polychlorotriethylene. Examples include fluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (PCTFEE), polyvinyl fluoride (PVF), and polyvinylidene fluoride (PVDF). Among these, at least one selected from the group consisting of tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and polyvinyl fluoride (PVF) is preferable.
Examples of the acrylic resin include acrylic acid ester polymers and methacrylic acid ester polymers. Among these, a methacrylic resin that is a polymer mainly composed of methyl methacrylate units is preferable. Examples of the methacrylic resin include polymethyl methacrylate (PMMA), a copolymer of methyl methacrylate and another monomer, and the like.
The thickness of the 1st resin film 23 can be 5 micrometers or more and 100 micrometers or less (preferably 10 micrometers or more and 80 micrometers or less), for example.
 第1封止層30は、透光性である。
 第1封止層30の材料は、第1接着層22と同様であってもよいし、TPO(オレフィン系エラストマー)であってもよいし、シリコン樹脂であってもよい。
 第1封止層30の層厚は、例えば、300μm以上500μm以下とすることができる。
 ここで、第1封止層30の厚みは、接着層22からの第1微細配線21の突出長(第1保護層40側への突出長)よりも厚く設定されている。
 ここで、第1保護層40における第1封止層30側の面には、エンボス加工が施されている場合がある。その場合、第1封止層30により第1保護層40におけるエンボスの凹凸を埋めることが好ましい。このため、第1封止層30の厚みは、接着層22からの第1微細配線21の突出長に、エンボスの凹凸の高さを加えた厚さを少なくとも有することが好ましい。
The first sealing layer 30 is translucent.
The material of the first sealing layer 30 may be the same as that of the first adhesive layer 22, TPO (olefin elastomer), or silicon resin.
The layer thickness of the 1st sealing layer 30 can be 300 micrometers or more and 500 micrometers or less, for example.
Here, the thickness of the first sealing layer 30 is set to be thicker than the protruding length of the first fine wiring 21 from the adhesive layer 22 (the protruding length to the first protective layer 40 side).
Here, the surface of the first protective layer 40 on the first sealing layer 30 side may be embossed. In that case, it is preferable to fill the unevenness of the embossment in the first protective layer 40 with the first sealing layer 30. For this reason, it is preferable that the thickness of the first sealing layer 30 has at least a thickness obtained by adding the height of the unevenness of the emboss to the protruding length of the first fine wiring 21 from the adhesive layer 22.
 第1保護層40は、透光性の基板である。第1保護層40の材料としては、例えば、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂等が挙げられる。 The first protective layer 40 is a translucent substrate. Examples of the material of the first protective layer 40 include glass, acrylic resin, polycarbonate, polyester, fluorine-containing resin, and the like.
 第2保護層70は、第1保護層40と同様の透光性の基板であってもよいし、非透光性(例えば光反射性)のバックシートであってもよい。バックシートとしては、たとえば、錫、アルミ、ステンレススチール等の金属や、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等の熱可塑性樹脂により形成された1層もしくは多層のシートが挙げられる。 The second protective layer 70 may be a translucent substrate similar to the first protective layer 40, or may be a non-translucent (eg, light reflective) backsheet. As the back sheet, for example, a single-layer or multi-layer sheet formed of a metal such as tin, aluminum, and stainless steel, an inorganic material such as glass, a polyester, an inorganic vapor-deposited polyester, a fluorine-containing resin, and a thermoplastic resin such as polyolefin. Is mentioned.
 第2保護層70が透光性の基板である場合、光発電モジュール100は、両面(第1保護層40側及び第2保護層70側)での受光が可能となる。この場合、第2接着層52は、第1接着層22と同様の材料のものとすることができる。また、第2樹脂フィルム53は、第1樹脂フィルム23と同様の材料のものとすることができる。
 また、第2封止層60は、第1封止層30と同様の材料のものとすることができる。ただし、両面での受光が不要の場合には、後述のように、第2封止層60に顔料等を含有させる場合がある。
When the second protective layer 70 is a translucent substrate, the photovoltaic module 100 can receive light on both sides (the first protective layer 40 side and the second protective layer 70 side). In this case, the second adhesive layer 52 can be made of the same material as the first adhesive layer 22. The second resin film 53 can be made of the same material as the first resin film 23.
The second sealing layer 60 can be made of the same material as the first sealing layer 30. However, when light reception on both sides is not necessary, the second sealing layer 60 may contain a pigment or the like as described later.
 第2保護層70が非透光性のバックシートである場合、光発電モジュール100の受光面は片面(第1保護層40側)となる。この場合、第2接着層52の材料は、第1接着層22と同様の樹脂材料とすることができる。
 また、第2保護層70が非透光性のバックシートである場合の第2封止層60の材料は、第1封止層30と同様であってもよいが、この場合の第2封止層60には透明性は要求されないため、発電効率を向上させる観点から、顔料、染料、無機充填剤を配合することが好ましい。上記顔料としては、酸化チタンや炭酸カルシウム等の白色顔料、ウルトラマリン等の青色顔料、カーボンブラックのような黒色顔料等が挙げられる。特に、酸化チタンのような無機顔料を配合することは、光発電モジュール100の絶縁抵抗が低下することを防止する観点から好ましい。上記無機顔料の配合量は、第2封止層60に含まれる樹脂成分100重量部に対して、好ましくは、0重量部以上100重量部以下であり、さらに好ましくは、0.5重量部以上50重量部以下であり、最も好ましくは、4重量部以上50重量部以下である。
 第2保護層70が非透光性のバックシートである場合の第2樹脂フィルム53の材料は、第1樹脂フィルム23と同様であってもよいし、その他の樹脂材料であってもよい。
In the case where the second protective layer 70 is a non-translucent back sheet, the light receiving surface of the photovoltaic module 100 is one side (the first protective layer 40 side). In this case, the material of the second adhesive layer 52 can be the same resin material as that of the first adhesive layer 22.
Further, the material of the second sealing layer 60 when the second protective layer 70 is a non-translucent backsheet may be the same as that of the first sealing layer 30, but in this case, the second sealing layer 60 Since the stop layer 60 is not required to be transparent, it is preferable to blend a pigment, a dye, and an inorganic filler from the viewpoint of improving the power generation efficiency. Examples of the pigment include white pigments such as titanium oxide and calcium carbonate, blue pigments such as ultramarine, and black pigments such as carbon black. In particular, blending an inorganic pigment such as titanium oxide is preferable from the viewpoint of preventing the insulation resistance of the photovoltaic module 100 from being lowered. The blending amount of the inorganic pigment is preferably 0 parts by weight or more and 100 parts by weight or less, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the resin component contained in the second sealing layer 60. 50 parts by weight or less, and most preferably 4 parts by weight or more and 50 parts by weight or less.
The material of the second resin film 53 when the second protective layer 70 is a non-translucent back sheet may be the same as that of the first resin film 23 or may be other resin materials.
 なお、第2接着層52は、第1接着層22と同様の厚さにすることができる。
 すなわち、第2微細配線51が直径Dのワイヤである場合、第2接着層52の層厚Tは、D/6±D/12の範囲に設定されていることが好ましい。すなわち、一例として、第2微細配線51が直径300μmのワイヤである場合、層厚Tは25μm以上75μm以下とすることができる。
 また、第2樹脂フィルム53は、第1樹脂フィルム23と同様の厚さにすることができる。
The second adhesive layer 52 can have the same thickness as the first adhesive layer 22.
That is, when the second fine wiring 51 is a wire having a diameter D, the layer thickness T of the second adhesive layer 52 is preferably set in a range of D / 6 ± D / 12. That is, as an example, when the second fine wiring 51 is a wire having a diameter of 300 μm, the layer thickness T can be set to 25 μm or more and 75 μm or less.
The second resin film 53 can have the same thickness as the first resin film 23.
 なお、第2保護層70は、ガラス基板等の硬質の基板であってもよいし、可撓性の樹脂シートであってもよい。
 第2保護層70がガラス基板等の硬質の基板である場合、第2接着層52は、第1接着層22と同様の厚さにすることができる。
 一方、第2保護層70が可撓性の樹脂シートである場合は、仮に第2封止層60の裏面側(図1における下側)に第2微細配線51が突出していたとしても、第2微細配線51の突出部分に沿って第2保護層70が変形できる(第2保護層70の表面が、第2微細配線51の突出部分を反映した形状となる)。よって、第2保護層70は、第2封止層60及び第2微細配線51に対して密着した状態で、光発電モジュール100の裏面を好適に保護することができる。このため、第2保護層70が可撓性の樹脂シートである場合は、第2封止層60は第1封止層30よりも薄くすることができる。なお、第2保護層70が可撓性の樹脂シートである場合においても、第2封止層60の厚さを第1封止層30の厚さと同等としてもよいのは勿論である。
The second protective layer 70 may be a hard substrate such as a glass substrate, or may be a flexible resin sheet.
When the second protective layer 70 is a hard substrate such as a glass substrate, the second adhesive layer 52 can have the same thickness as the first adhesive layer 22.
On the other hand, when the second protective layer 70 is a flexible resin sheet, even if the second fine wiring 51 protrudes on the back surface side (the lower side in FIG. 1) of the second sealing layer 60, The second protective layer 70 can be deformed along the protruding portion of the second fine wiring 51 (the surface of the second protective layer 70 has a shape reflecting the protruding portion of the second fine wiring 51). Therefore, the second protective layer 70 can suitably protect the back surface of the photovoltaic module 100 while being in close contact with the second sealing layer 60 and the second fine wiring 51. For this reason, when the second protective layer 70 is a flexible resin sheet, the second sealing layer 60 can be made thinner than the first sealing layer 30. Even when the second protective layer 70 is a flexible resin sheet, it is needless to say that the thickness of the second sealing layer 60 may be equal to the thickness of the first sealing layer 30.
 なお、光発電モジュール100は、通常、複数を直列に接続して用いられる。複数の光発電モジュール100を直列接続して使用することにより、発電電圧を高めることができる。 In addition, the photovoltaic module 100 is normally used by connecting a plurality in series. By using a plurality of photovoltaic modules 100 connected in series, the generated voltage can be increased.
 次に、光発電モジュール100を製造する方法の一例を説明する。 Next, an example of a method for manufacturing the photovoltaic module 100 will be described.
 先ず、光発電素子10は、結晶半導体基板11の一方の面上に、第1非晶質系半導体膜12、第2非晶質系半導体膜13及び第1透光性電極膜14をこの順に成膜する一方で、結晶半導体基板11の他方の面上に、第3非晶質系半導体膜16、第4非晶質系半導体膜17及び第2透光性電極膜18をこの順に成膜し、更に、第1透光性電極膜14の一方の面(図1における上面)上に第1電極15を、第2透光性電極膜18の一方の面(図1における下面)上に第2電極19を、それぞれ形成することにより得られる。 First, in the photovoltaic device 10, the first amorphous semiconductor film 12, the second amorphous semiconductor film 13, and the first light-transmissive electrode film 14 are arranged in this order on one surface of the crystalline semiconductor substrate 11. On the other hand, the third amorphous semiconductor film 16, the fourth amorphous semiconductor film 17, and the second translucent electrode film 18 are formed in this order on the other surface of the crystalline semiconductor substrate 11. Further, the first electrode 15 is formed on one surface (the upper surface in FIG. 1) of the first light-transmissive electrode film 14, and the first surface (the lower surface in FIG. 1) of the second light-transmissive electrode film 18. It is obtained by forming the second electrodes 19 respectively.
 次に、例えば、第1樹脂フィルム23、第1接着層22及び第1微細配線21が一体化した第1配線シート(図4、図5に示される配線シート200を参照)と、第1保護層40と、シート状の第1封止層30を準備する。 Next, for example, a first wiring sheet (see the wiring sheet 200 shown in FIGS. 4 and 5) in which the first resin film 23, the first adhesive layer 22, and the first fine wiring 21 are integrated, and the first protection. A layer 40 and a sheet-like first sealing layer 30 are prepared.
 ここで、配線シート200について説明する。
 配線シート200は、相互に積層された樹脂フィルム(第1樹脂フィルム23又は第2樹脂フィルム53)及び接着層(第1接着層22又は第2接着層52)と、接着層における樹脂フィルム側とは反対側の面に設けられた微細配線(第1微細配線21又は第2微細配線51)と、を有する。
 図4に示すように、各微細配線の一部分は、接着層に埋設されていることが好ましく、このようにすることにより、接着層と微細配線との一体性を良好なものとすることができる。
 また、図5に示すように、微細配線は、互いに平行に配置されている複数のワイヤであることが好ましく、このようにすることにより、微細配線を形成するために使用する金属材料の量を低減させることができる。
 樹脂フィルムは、フッ素樹脂およびアクリル樹脂からなる群より選択される1以上を含む材料により形成されている。樹脂フィルムの厚みは、5μm以上100μm以下であることが好ましく、10μm以上80μm以下であるとさらに好ましい。光発電モジュール100の受光面が片面である場合、受光面側に配置する第1樹脂フィルム23は、JIS-K7105に準じて測定した350nmの波長における光線透過率が70%以上であることが好ましい。こうすることで、紫外線由来の光エネルギーも効率よく発電に寄与させることのできるモジュールを実現することができる。また、光発電モジュール100の受光面が両面である場合、第2樹脂フィルム53は、JIS-K7105に準じて測定した350nmの波長における光線透過率が70%以上であることが好ましい。こうすることで、紫外線由来の光エネルギーも効率よく発電に寄与させることのできるモジュールを実現することができる。
Here, the wiring sheet 200 will be described.
The wiring sheet 200 includes a resin film (the first resin film 23 or the second resin film 53) and an adhesive layer (the first adhesive layer 22 or the second adhesive layer 52) laminated on each other, and the resin film side in the adhesive layer. Has fine wiring (first fine wiring 21 or second fine wiring 51) provided on the opposite surface.
As shown in FIG. 4, it is preferable that a part of each fine wiring is embedded in the adhesive layer, and by doing so, the integrity of the adhesive layer and the fine wiring can be improved. .
In addition, as shown in FIG. 5, the fine wiring is preferably a plurality of wires arranged in parallel to each other, and in this way, the amount of the metal material used for forming the fine wiring is reduced. Can be reduced.
The resin film is formed of a material including one or more selected from the group consisting of a fluororesin and an acrylic resin. The thickness of the resin film is preferably 5 μm or more and 100 μm or less, and more preferably 10 μm or more and 80 μm or less. When the light receiving surface of the photovoltaic module 100 is a single side, the first resin film 23 disposed on the light receiving surface side preferably has a light transmittance of 70% or more at a wavelength of 350 nm measured according to JIS-K7105. . By doing so, it is possible to realize a module capable of efficiently contributing to the power generation by light energy derived from ultraviolet rays. When the light receiving surface of the photovoltaic module 100 is double-sided, the second resin film 53 preferably has a light transmittance at a wavelength of 350 nm measured in accordance with JIS-K7105 of 70% or more. By doing so, it is possible to realize a module capable of efficiently contributing to the power generation by light energy derived from ultraviolet rays.
 次に、第1配線シートを光発電素子10の一方の面の第1電極15と第1保護層40との間に介在させ、且つ、第1配線シートと第1保護層40との間に第1封止層30を介在させる。
 同様に、第2樹脂フィルム53、第2接着層52及び第2微細配線51が一体化した第2配線シート(図4、図5に示される配線シート200を参照)と、第2保護層70と、シート状の第2封止層60とを準備する。
 そして、第2配線シートを光発電素子10の他方の面の第2電極19と第2保護層70との間に介在させ、且つ、第2配線シートと第2保護層70との間に第2封止層60を介在させる。
 そして、これらを一括して加熱及び両面から加圧することにより、第1接着層22を介して第1微細配線21を第1電極15に対して溶着するとともに、第1封止層30を介して第1樹脂フィルム23と第1保護層40とを溶着し、第2接着層52を介して第2微細配線51を第2電極19に対して溶着するとともに、第2封止層60を介して第2樹脂フィルム53と第2保護層70とを溶着する。
 このとき、第1微細配線21の表層の低融点金属膜21bが溶融することにより、コア21aと第1電極15とが溶着する。
 同様に、第2微細配線51の表層の低融点金属膜(不図示)が溶融することにより、第2微細配線51のコア(不図示)と第2電極19とが溶着する。
 こうして、光発電モジュール100を得ることができる。
Next, the first wiring sheet is interposed between the first electrode 15 on one side of the photovoltaic element 10 and the first protective layer 40, and between the first wiring sheet and the first protective layer 40. The first sealing layer 30 is interposed.
Similarly, a second wiring sheet (see the wiring sheet 200 shown in FIGS. 4 and 5) in which the second resin film 53, the second adhesive layer 52, and the second fine wiring 51 are integrated, and the second protective layer 70. And a sheet-like second sealing layer 60 are prepared.
Then, the second wiring sheet is interposed between the second electrode 19 on the other surface of the photovoltaic element 10 and the second protective layer 70, and the second wiring sheet is interposed between the second wiring sheet and the second protective layer 70. Two sealing layers 60 are interposed.
Then, these are collectively heated and pressurized from both sides, whereby the first fine wiring 21 is welded to the first electrode 15 via the first adhesive layer 22 and the first sealing layer 30 is interposed. The first resin film 23 and the first protective layer 40 are welded, the second fine wiring 51 is welded to the second electrode 19 through the second adhesive layer 52, and the second sealing layer 60 is used. The second resin film 53 and the second protective layer 70 are welded.
At this time, the core 21 a and the first electrode 15 are welded by melting the low melting point metal film 21 b on the surface layer of the first fine wiring 21.
Similarly, the low melting point metal film (not shown) on the surface layer of the second fine wiring 51 is melted, so that the core (not shown) of the second fine wiring 51 and the second electrode 19 are welded.
Thus, the photovoltaic module 100 can be obtained.
 ここでは、第1配線シート及び第2配線シートとして、図4に示される構造の配線シート200を用いる例を説明したが、第1配線シート及び第2配線シートとしては、図6に示される構造の配線シート200を用いてもよい。この場合、配線シート200(第1配線シート、第2配線シート)とは別に、樹脂フィルム(第1樹脂フィルム23、第2樹脂フィルム53)を準備する。 Here, the example in which the wiring sheet 200 having the structure shown in FIG. 4 is used as the first wiring sheet and the second wiring sheet has been described, but the structure shown in FIG. 6 is used as the first wiring sheet and the second wiring sheet. The wiring sheet 200 may be used. In this case, a resin film (first resin film 23, second resin film 53) is prepared separately from the wiring sheet 200 (first wiring sheet, second wiring sheet).
 ここで、本発明者の検討によれば、複数の第1微細配線21が、互いに平行に配置された複数のワイヤである場合に、このワイヤの外径をD(図3)とすると、第1接着層22の層厚T(図3)は、D/6±D/12の範囲に設定されていることが好ましい。例えば、ワイヤの外径Dが300μmの場合、層厚Tは50μm±25μmの範囲が好ましい。
 このようにすることにより、図3に示すように、第1電極15からの第1微細配線21の浮き上がりを抑制し、より確実に第1電極15に対して第1微細配線21を溶着させることができるとともに、第1接着層22により第1樹脂フィルム23を第1電極15に対して十分な接着強度で接着することができる。また、第1接着層22の層厚Tを、D/6-D/12以上に設定することにより、第1微細配線21の周辺にボイド(空洞)が形成されることによる信頼性の低下を抑制することができる。
Here, according to the study of the present inventor, when the plurality of first fine wirings 21 are a plurality of wires arranged in parallel to each other, when the outer diameter of the wires is D (FIG. 3), the first The layer thickness T (FIG. 3) of the one adhesive layer 22 is preferably set in a range of D / 6 ± D / 12. For example, when the outer diameter D of the wire is 300 μm, the layer thickness T is preferably in the range of 50 μm ± 25 μm.
By doing so, as shown in FIG. 3, the first fine wiring 21 can be more securely welded to the first electrode 15 by suppressing the floating of the first fine wiring 21 from the first electrode 15. In addition, the first resin film 23 can be bonded to the first electrode 15 with sufficient adhesive strength by the first adhesive layer 22. In addition, by setting the layer thickness T of the first adhesive layer 22 to D / 6−D / 12 or more, reliability is reduced due to the formation of voids (cavities) around the first fine wiring 21. Can be suppressed.
 同様に、複数の第2微細配線51が、互いに平行に配置された複数のワイヤである場合に、このワイヤの外径をDとすると、第2接着層52の層厚Tは、D/6±D/12の範囲に設定されていることが好ましい。
 このようにすることにより、第2電極19からの第2微細配線51の浮き上がりを抑制し、より確実に第2電極19に対して第2微細配線51を溶着させることができるとともに、第2樹脂フィルム53を第2接着層52により十分な接着強度で第2電極19に対して接着することができる。また、第2接着層52の層厚Tを、D/6-D/12以上に設定することにより、第2微細配線51の周辺にボイドが形成されることによる信頼性の低下を抑制することができる。
Similarly, when the plurality of second fine wirings 51 are a plurality of wires arranged in parallel to each other and the outer diameter of the wires is D, the layer thickness T of the second adhesive layer 52 is D / 6. It is preferable to be set within a range of ± D / 12.
By doing so, it is possible to suppress the floating of the second fine wiring 51 from the second electrode 19, and more reliably weld the second fine wiring 51 to the second electrode 19, and the second resin. The film 53 can be adhered to the second electrode 19 with sufficient adhesive strength by the second adhesive layer 52. Further, by setting the layer thickness T of the second adhesive layer 52 to be equal to or greater than D / 6-D / 12, it is possible to suppress a decrease in reliability due to the formation of voids around the second fine wiring 51. Can do.
 以上のような実施形態に係る光発電モジュール100によれば、ヘテロ接合型の光発電素子10を備え、且つ、第1接着層22が、(A)エチレンと不飽和カルボン酸を含む共重合体、または上記共重合体のアイオノマーおよび(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体のいずれかを含む樹脂材料により構成されている。ここで、上記の(A)および(B)は、水分透過率が低いという特性を有している。このため、第1保護層40として、水分透過率が比較的高い材料を選択した場合であっても、第1接着層22によって第2非晶質系半導体膜13及び第1非晶質系半導体膜12を水分から保護することができる。よって、例えば、第1保護層40に含まれるナトリウム成分が水分とともに第2非晶質系半導体膜13及び第1非晶質系半導体膜12側に泳動することも抑制することができる。
 このため、第1封止層30の材料の選択の自由度が高くなる。
 また、(A)エチレンと不飽和カルボン酸を含む共重合体、または上記共重合体のアイオノマーおよび(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体は、紫外線に対する耐性も良好である。よって、第1封止層30が紫外線吸収剤を実質的に含んでいなくても、第1接着層22の良好な耐性を確保できる。このため、紫外光を発電に有効に利用することができるので、より良好な発電効率を得ることができる。
According to the photovoltaic module 100 according to the embodiment as described above, the copolymer including the heterojunction photovoltaic element 10 and the first adhesive layer 22 includes (A) ethylene and an unsaturated carboxylic acid. Or an ionomer of the above copolymer and (B) a resin material containing either a copolymer containing ethylene and glycidyl (meth) acrylate. Here, said (A) and (B) have the characteristic that a moisture permeability is low. For this reason, even if a material having a relatively high moisture permeability is selected as the first protective layer 40, the second amorphous semiconductor film 13 and the first amorphous semiconductor are formed by the first adhesive layer 22. The membrane 12 can be protected from moisture. Therefore, for example, the sodium component contained in the first protective layer 40 can also be prevented from migrating to the second amorphous semiconductor film 13 and the first amorphous semiconductor film 12 side together with moisture.
For this reason, the freedom degree of selection of the material of the 1st sealing layer 30 becomes high.
Further, (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the above copolymer and (B) a copolymer containing ethylene and glycidyl (meth) acrylate have good resistance to ultraviolet rays. . Therefore, even when the first sealing layer 30 does not substantially contain the ultraviolet absorber, it is possible to ensure good resistance of the first adhesive layer 22. For this reason, since ultraviolet light can be used effectively for power generation, better power generation efficiency can be obtained.
 特に、第1接着層22を構成する樹脂材料(エチレンと不飽和カルボン酸との共重合体を含む樹脂材料)における共重合体がアイオノマーである場合、第1接着層22の良好な透明性、紫外線耐性及び水分の低い透過率を実現できるため、上述した効果をより確実に得ることができる。 In particular, when the copolymer in the resin material (resin material containing a copolymer of ethylene and unsaturated carboxylic acid) constituting the first adhesive layer 22 is an ionomer, good transparency of the first adhesive layer 22; Since the ultraviolet resistance and the low transmittance of moisture can be realized, the above-described effects can be obtained more reliably.
 また、JIS-K7105に準じて測定した第1接着層22の350nmの波長における光線透過率を、70%以上とすることにより、紫外線由来の光エネルギーを効率よく発電に寄与させることが可能となるので、光発電モジュール100の良好な発電効率を得ることができる。この光線透過率は、75%以上であることがより好ましく、80%以上であることがより好ましい。
 第1封止層30の光線透過率についても、JIS-K7105に準じて測定した第1封止層30の350nmの波長における光線透過率を、70%以上とすることができ、その場合、特に良好な発電効率を得ることができる。この光線透過率も、75%以上であることがより好ましく、80%以上であることがより好ましい。
In addition, when the light transmittance at a wavelength of 350 nm of the first adhesive layer 22 measured according to JIS-K7105 is set to 70% or more, light energy derived from ultraviolet rays can be efficiently contributed to power generation. Therefore, good power generation efficiency of the photovoltaic module 100 can be obtained. The light transmittance is more preferably 75% or more, and more preferably 80% or more.
Regarding the light transmittance of the first sealing layer 30, the light transmittance at a wavelength of 350 nm of the first sealing layer 30 measured according to JIS-K7105 can be set to 70% or more. Good power generation efficiency can be obtained. This light transmittance is also preferably 75% or more, and more preferably 80% or more.
 また、複数の第1微細配線21が、互いに平行に配置された複数のワイヤである場合において、ワイヤの外径をDとすると、第1接着層22の層厚Tは、D/6±D/12の範囲に設定することができる。このようにすることにより、図3に示すように、第1電極15からの第1微細配線21の浮き上がりを抑制し、より確実に第1電極15に対して第1微細配線21を溶着させることができるとともに、第1接着層22により第1樹脂フィルム23を第1電極15に対して十分な接着強度で接着することができる。 Further, when the plurality of first fine wirings 21 are a plurality of wires arranged in parallel to each other, and the outer diameter of the wires is D, the layer thickness T of the first adhesive layer 22 is D / 6 ± D. / 12 can be set. By doing so, as shown in FIG. 3, the first fine wiring 21 can be more securely welded to the first electrode 15 by suppressing the floating of the first fine wiring 21 from the first electrode 15. In addition, the first resin film 23 can be bonded to the first electrode 15 with sufficient adhesive strength by the first adhesive layer 22.
 また、第2保護層70が透光性である場合において、第2接着層52を、第1接着層22と同様に、(A)エチレンと不飽和カルボン酸を含む共重合体、または上記共重合体のアイオノマーおよび(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体のいずれかを含む樹脂材料により構成することができる。このようにすることにより、第2接着層52によって第1接着層22と同様の効果が得られる。
 すなわち、第2保護層70として、水分透過率が比較的高い材料を選択した場合であっても、第2接着層52によって第4非晶質系半導体膜17及び第3非晶質系半導体膜16を水分から保護することができる。よって、例えば、第2保護層70に含まれるナトリウム成分が水分とともに第4非晶質系半導体膜17、及び第3非晶質系半導体膜16側に泳動することも抑制することができる。
 このため、第2保護層70の材料の選択の自由度が高くなる。
 また、(A)エチレンと不飽和カルボン酸を含む共重合体、または上記共重合体のアイオノマーおよび(B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体は、紫外線に対する耐性も良好である。よって、第2保護層70が紫外線吸収剤を実質的に含んでいなくても、第2接着層52の良好な耐性を確保できる。このため、紫外光を発電に有効に利用することができるので、より良好な発電効率を得ることができる。
 特に、第2接着層52を構成する樹脂材料(エチレンと不飽和カルボン酸との共重合体を含む樹脂材料)における共重合体がアイオノマーである場合、第2接着層52の良好な透明性、紫外線耐性、水分の低い透過率を実現できるため、上述した効果をより確実に得ることができる。
In the case where the second protective layer 70 is translucent, the second adhesive layer 52 is made of (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or the above copolymer, as with the first adhesive layer 22. It can be constituted by a resin material containing either a polymer ionomer or a copolymer containing (B) ethylene and glycidyl (meth) acrylate. By doing so, the same effect as that of the first adhesive layer 22 is obtained by the second adhesive layer 52.
That is, even if a material having a relatively high moisture permeability is selected as the second protective layer 70, the fourth amorphous semiconductor film 17 and the third amorphous semiconductor film are formed by the second adhesive layer 52. 16 can be protected from moisture. Therefore, for example, migration of the sodium component contained in the second protective layer 70 to the fourth amorphous semiconductor film 17 and the third amorphous semiconductor film 16 side together with moisture can be suppressed.
For this reason, the freedom degree of selection of the material of the 2nd protective layer 70 becomes high.
Further, (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the above copolymer and (B) a copolymer containing ethylene and glycidyl (meth) acrylate have good resistance to ultraviolet rays. . Therefore, even if the second protective layer 70 does not substantially contain the ultraviolet absorber, it is possible to ensure good resistance of the second adhesive layer 52. For this reason, since ultraviolet light can be used effectively for power generation, better power generation efficiency can be obtained.
In particular, when the copolymer in the resin material (resin material containing a copolymer of ethylene and unsaturated carboxylic acid) constituting the second adhesive layer 52 is an ionomer, good transparency of the second adhesive layer 52, Since the ultraviolet light resistance and the low moisture transmittance can be realized, the above-described effects can be obtained more reliably.
 また、第2接着層52についてJIS-K7105に準じて測定した第2接着層52の350nmの波長における光線透過率を、70%以上とすることにより、紫外線由来の光エネルギーを効率よく発電に寄与させることが可能となるので、光発電モジュール100の良好な発電効率を得ることができる。この光線透過率も、75%以上であることがより好ましく、80%以上であることがより好ましい。
 第2保護層70の光線透過率についても、JIS-K7105に準じて測定した第2保護層70の350nmの波長における光線透過率を、70%以上とすることができ、その場合、特に良好な発電効率を得ることができる。この光線透過率も、75%以上であることがより好ましく、80%以上であることがより好ましい。
Further, by making the light transmittance at a wavelength of 350 nm of the second adhesive layer 52 measured in accordance with JIS-K7105 for the second adhesive layer 52 to be 70% or more, light energy derived from ultraviolet rays contributes to power generation efficiently. Therefore, good power generation efficiency of the photovoltaic module 100 can be obtained. This light transmittance is also preferably 75% or more, and more preferably 80% or more.
Regarding the light transmittance of the second protective layer 70, the light transmittance at a wavelength of 350 nm of the second protective layer 70 measured according to JIS-K7105 can be set to 70% or more. Power generation efficiency can be obtained. This light transmittance is also preferably 75% or more, and more preferably 80% or more.
 なお、光発電素子10の各構成要素の導電型は、上述の例とは反転していてもよい。 In addition, the conductivity type of each component of the photovoltaic device 10 may be reversed from the above example.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these.
(実施例1)
 実施例1に係る光発電モジュールを、以下の方法で作製した。
 透光性基板(第1保護層)、第1封止層(後述する樹脂シート1を使用)、第1配線シート(後述する配線シート1を使用)、光発電素子の順に重ねた。更に、光発電素子の上に、第2配線シート(後述する配線シート1を使用)、第2封止層(後述する樹脂シート3を使用)、バックシート(第2保護層)をこの順で重ね、これらを真空ラミネータを用いてラミネートし、光発電モジュールを作製した。
(Example 1)
The photovoltaic module according to Example 1 was manufactured by the following method.
A light-transmitting substrate (first protective layer), a first sealing layer (using a resin sheet 1 described later), a first wiring sheet (using a wiring sheet 1 described later), and a photovoltaic element were stacked in this order. Furthermore, on the photovoltaic element, a second wiring sheet (using a wiring sheet 1 described later), a second sealing layer (using a resin sheet 3 described later), and a back sheet (second protective layer) in this order. These were stacked and laminated using a vacuum laminator to produce a photovoltaic module.
(比較例1)
 比較例1に係る光発電モジュールは、第1封止層および第2封止層としてそれぞれ後述する樹脂シート4を使用し、第1配線シート及び第2配線シートとしてそれぞれ後述する配線シート2を使用した以外は、実施例1に係る光発電モジュールと同様に作製した。
(Comparative Example 1)
The photovoltaic module according to Comparative Example 1 uses the resin sheet 4 described later as the first sealing layer and the second sealing layer, and uses the wiring sheet 2 described later as the first wiring sheet and the second wiring sheet, respectively. Except that, the photovoltaic power generation module according to Example 1 was produced.
(実施例2~5)
 第1配線シート及び第2配線シートとしてそれぞれ後述する配線シート3~6を使用した以外は、実施例1に係る光発電モジュールと同様にそれぞれ作製した。
(Examples 2 to 5)
Each was produced in the same manner as the photovoltaic module according to Example 1, except that wiring sheets 3 to 6 described later were used as the first wiring sheet and the second wiring sheet, respectively.
 <配線シート1>
 厚さ25μmのテトラフルオロエチレン・エチレン共重合体(ETFE)により形成された基材シート(第1樹脂フィルム又は第2樹脂フィルムに相当)と、当該基材シートの一方の面に形成された厚さ75μmの樹脂シート2(後述:第1接着層又は第2接着層に相当)と、を有するシートにおける樹脂シート2側の表面に対して、直径300μmの金属微細配線を等間隔に並べて加熱圧着することにより、配線シート1を作製した。得られた配線シート1は、樹脂シート2にワイヤが埋設されていた。
<Wiring sheet 1>
A base sheet (corresponding to a first resin film or a second resin film) formed of tetrafluoroethylene / ethylene copolymer (ETFE) having a thickness of 25 μm, and a thickness formed on one surface of the base sheet A metal micro-wiring with a diameter of 300 μm is arranged at equal intervals on the surface of the sheet having a thickness of 75 μm resin sheet 2 (which will be described later: corresponding to the first adhesive layer or the second adhesive layer) and thermocompression-bonded. By doing this, the wiring sheet 1 was produced. In the obtained wiring sheet 1, wires were embedded in the resin sheet 2.
 <配線シート2>
 厚さ100μmの樹脂シート4(後述)の表面に対して、直径300μmの金属微細配線を等間隔に並べて加熱圧着することにより、配線シート2を作製した。得られた配線シート2は、樹脂シート4にワイヤが埋設されていた。
<Wiring sheet 2>
The wiring sheet 2 was produced by heat-pressing the metal fine wiring with a diameter of 300 micrometers on the surface of the resin sheet 4 (after-mentioned) with a thickness of 100 micrometers, arranging it at equal intervals. In the obtained wiring sheet 2, wires were embedded in the resin sheet 4.
 <配線シート3>
 樹脂シート2に代えて、厚さ50μmのポリメタクリル酸メチル(PMMA)により形成されたシートの片面に対して、厚さ60μmの樹脂シート5を接着して得られたシートを使用したという点以外は、実施例1と同様の方法で、配線シート3を作製した。得られた配線シート3は、樹脂シート5にワイヤが埋設されていた。
<Wiring sheet 3>
Instead of using the sheet obtained by bonding the resin sheet 5 having a thickness of 60 μm to one side of the sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 μm instead of the resin sheet 2 Produced a wiring sheet 3 in the same manner as in Example 1. In the obtained wiring sheet 3, a wire was embedded in the resin sheet 5.
<配線シート4>
 樹脂シート2に代えて、厚さ50μmのポリメタクリル酸メチル(PMMA)により形成されたシートの片面に対して、厚さ60μmの樹脂シート6を接着して得られたシートを使用したという点以外は、実施例1と同様の方法で、配線シート4を作製した。得られた配線シート4は、樹脂シート6にワイヤが埋設されていた。
<Wiring sheet 4>
Instead of using the sheet obtained by bonding the resin sheet 6 having a thickness of 60 μm to one side of the sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 μm instead of the resin sheet 2 In the same manner as in Example 1, a wiring sheet 4 was produced. In the obtained wiring sheet 4, the wire was embedded in the resin sheet 6.
<配線シート5>
 樹脂シート2に代えて、厚さ50μmのポリメタクリル酸メチル(PMMA)により形成されたシートの片面に対して、厚さ60μmの樹脂シート7を接着して得られたシートを使用したという点以外は、実施例1と同様の方法で、配線シート5を作製した。得られた配線シート5は、樹脂シート7にワイヤが埋設されていた。
<Wiring sheet 5>
In place of the resin sheet 2, except that a sheet obtained by bonding a resin sheet 7 having a thickness of 60 μm to one side of a sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 μm was used. In the same manner as in Example 1, a wiring sheet 5 was produced. In the obtained wiring sheet 5, the wire was embedded in the resin sheet 7.
<配線シート6>
 樹脂シート2に代えて、厚さ50μmのポリメタクリル酸メチル(PMMA)により形成されたシートの片面に対して、厚さ60μmの樹脂シート8を接着して得られたシートを使用したという点以外は、実施例1と同様の方法で、配線シート6を作製した。得られた配線シート6は、樹脂シート8にワイヤが埋設されていた。
<Wiring sheet 6>
Instead of using the sheet obtained by adhering the resin sheet 8 having a thickness of 60 μm to one side of the sheet formed of polymethyl methacrylate (PMMA) having a thickness of 50 μm instead of the resin sheet 2 In the same manner as in Example 1, a wiring sheet 6 was produced. In the obtained wiring sheet 6, wires were embedded in the resin sheet 8.
 各樹脂シート1~8は、後述するA層((A)-1、(A)-2、(A)-3、(A)-4、(A)-5又は(A)-6)と、後述するB層((B)-1又は(B)-2)と、のうちの少なくとも何れか1層を有する単層又は多層の樹脂シートである。 Each of the resin sheets 1 to 8 includes an A layer ((A) -1, (A) -2, (A) -3, (A) -4, (A) -5 or (A) -6) described later). A single-layer or multilayer resin sheet having at least one of a B layer ((B) -1 or (B) -2) described later.
 <樹脂シート1>
 樹脂シート1は、3層シートであり、表層である(A)-1と、中間層である(B)-1と、表層である(A)-1と、がこの順に積層された構造となっている。
<Resin sheet 1>
The resin sheet 1 is a three-layer sheet, and has a structure in which a surface layer (A) -1, an intermediate layer (B) -1, and a surface layer (A) -1 are laminated in this order. It has become.
 <樹脂シート2>
 樹脂シート2は、単層シートであり、(A)-1により構成されている。
<Resin sheet 2>
The resin sheet 2 is a single-layer sheet and is configured by (A) -1.
 <樹脂シート3>
 樹脂シート3は、3層シートであり、表層である(A)-2と、中間層である(B)-2と、表層である(A)-2と、がこの順に積層された構造となっている。
<Resin sheet 3>
The resin sheet 3 is a three-layer sheet having a structure in which the surface layer (A) -2, the intermediate layer (B) -2, and the surface layer (A) -2 are laminated in this order. It has become.
 <樹脂シート4>
 樹脂シート4は、単層シートであり、エチレン-酢酸ビニル共重合体(酢酸ビニル単位含有量=28重量%)により構成されている。
<Resin sheet 4>
The resin sheet 4 is a single-layer sheet, and is composed of an ethylene-vinyl acetate copolymer (vinyl acetate unit content = 28 wt%).
 <樹脂シート5>
 樹脂シート5は、単層シートであり、(A)-3により構成されている。
<Resin sheet 5>
The resin sheet 5 is a single-layer sheet and is made of (A) -3.
 <樹脂シート6>
 樹脂シート6は、単層シートであり、(A)-4により構成されている。
<Resin sheet 6>
The resin sheet 6 is a single-layer sheet and is configured by (A) -4.
 <樹脂シート7>
 樹脂シート7は、単層シートであり、(A)-5により構成されている。
<Resin sheet 7>
The resin sheet 7 is a single layer sheet, and is constituted by (A) -5.
 <樹脂シート8>
 樹脂シート8は、単層シートであり、(A)-6により構成されている。
<Resin sheet 8>
The resin sheet 8 is a single layer sheet and is constituted by (A) -6.
 以下、各層の原料と配合を説明する。 Hereinafter, the raw materials and the composition of each layer will be described.
<原料>
-1.樹脂-
 (A層)用の樹脂
・アイオノマー1:エチレン・メタクリル酸・アクリル酸ブチル三元共重合体(メタクリル酸単位含有量=5重量%、アクリル酸ブチル7重量%)の亜鉛アイオノマー(中和度10%、MFR11g/10分)
・アイオノマー2:エチレン・メタクリル酸共重合体(メタクリル酸単位含有量=8.5重量%)の亜鉛アイオノマー(中和度18%、MFR6g/10分)
<Raw material>
-1. resin-
Resin and ionomer for (A layer) 1: Zinc ionomer (degree of neutralization 10) of ethylene / methacrylic acid / butyl acrylate terpolymer (methacrylic acid unit content = 5 wt%, butyl acrylate 7 wt%) %, MFR11g / 10min)
Ionomer 2: Zinc ionomer of ethylene / methacrylic acid copolymer (methacrylic acid unit content = 8.5% by weight) (degree of neutralization 18%, MFR 6 g / 10 min)
 (B層)用の樹脂
・アイオノマー3:エチレン・メタクリル酸・アクリル酸ブチル三元共重合体(メタクリル酸単位含有量=5重量%、アクリル酸ブチル7重量%)の亜鉛アイオノマー(中和度10%、MFR11g/10分)
・アイオノマー4:エチレン・メタクリル酸共重合体(メタクリル酸単位含有量=12重量%)の亜鉛アイオノマー(中和度36%、MFR1.5g/10分)
Resin and ionomer 3 for (B layer): Zinc ionomer (degree of neutralization 10) of ethylene / methacrylic acid / butyl acrylate terpolymer (methacrylic acid unit content = 5 wt%, butyl acrylate 7 wt%) %, MFR11g / 10min)
-Ionomer 4: Zinc ionomer of ethylene / methacrylic acid copolymer (methacrylic acid unit content = 12 wt%) (degree of neutralization 36%, MFR 1.5 g / 10 min)
-2.添加剤-
・酸化防止剤:ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](BASF社製、Irganox1010)
・紫外線吸収剤:2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール
・光安定剤:ビス(2,2,6,6,-テトラメチル-4-ピペリジル)セバケート
・シランカップリング剤:N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン
-2. Additive-
Antioxidant: Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, Irganox 1010)
UV absorber: 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenolLight stabilizer: bis (2,2,6,6, -tetramethyl-4-piperidyl ) Sebacate silane coupling agent: N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane
 なお、A層およびB層に用いられる安定剤マスターバッチ1としては、各層用の樹脂と同じ樹脂と、酸化防止剤、紫外線吸収剤および光安定剤とを、樹脂/酸化防止剤/紫外線吸収剤/光安定剤=93.7/0.3/4/2の重量比で混合し、あらかじめ2軸押し出し機にて押し出したものを用いた。
 また、A層およびB層に用いられる安定剤マスターバッチ2としては、各層用の樹脂と同じ樹脂と、酸化防止剤、紫外線吸収剤および光安定剤とを、樹脂/酸化防止剤/光安定剤=96/2/2の重量比で混合し、あらかじめ2軸押出機にて押し出したものを用いた。
 白色マスターバッチとしては、大日精化工業株式会社製白色マスターバッチPE-M 13N4700と、酸化防止剤と、紫外線吸収剤と、光安定剤と、を所定重量比で混合し、あらかじめ2軸押出機にて作製したものを用いた。
 また、A層に用いられる安定剤マスターバッチ3としては、ベース樹脂としてエチレン・α-オレフィン共重合体(三井化学製タフマーA-4090S)と、酸化防止剤、光安定剤とを、ベース樹脂/酸化防止剤/光安定剤=96/2/2の重量比で混合し、あらかじめ2軸押出機にて作製したものを用いた。
In addition, as the stabilizer masterbatch 1 used for the A layer and the B layer, the same resin as the resin for each layer, the antioxidant, the ultraviolet absorber, and the light stabilizer are resin / antioxidant / ultraviolet absorber. / Light stabilizer = 93.7 / 0.3 / 4/2 The weight ratio of the mixture was used and the mixture was extruded in advance with a biaxial extruder.
Further, as the stabilizer masterbatch 2 used for the A layer and the B layer, the same resin as the resin for each layer, an antioxidant, an ultraviolet absorber, and a light stabilizer are used as a resin / antioxidant / light stabilizer. = 96/2/2 A weight ratio of 96/2/2 was used and the mixture was previously extruded by a twin screw extruder.
As a white masterbatch, a white masterbatch PE-M 13N4700 manufactured by Dainichi Seika Kogyo Co., Ltd., an antioxidant, an ultraviolet absorber, and a light stabilizer are mixed in a predetermined weight ratio, and a twin-screw extruder is prepared in advance. What was produced in (1) was used.
The stabilizer masterbatch 3 used for the layer A includes an ethylene / α-olefin copolymer (Tafmer A-4090S manufactured by Mitsui Chemicals) as a base resin, an antioxidant, and a light stabilizer. Antioxidants / light stabilizers were mixed at a weight ratio of 96/2/2, and those prepared in advance by a twin screw extruder were used.
-3.配合-
<A層>
・(A)-1:アイオノマー1/安定剤マスターバッチ2/シランカップリング剤=90/10/0.2
・(A)-2:アイオノマー2/安定剤マスターバッチ1/白色マスターバッチ/シランカップリング剤=85/10/5/0.2
・(A)-3:EVA1/安定剤マスターバッチ3=90/10
・(A)-4:EMA1/安定剤マスターバッチ3=90/10
・(A)-5:EOC1/安定剤マスターバッチ3=90/10
・(A)-6:EOC2/安定剤マスターバッチ3=90/10
-3. Formulation-
<A layer>
(A) -1: ionomer 1 / stabilizer masterbatch 2 / silane coupling agent = 90/10 / 0.2
(A) -2: ionomer 2 / stabilizer masterbatch 1 / white masterbatch / silane coupling agent = 85/10/5 / 0.2
(A) -3: EVA1 / stabilizer masterbatch 3 = 90/10
(A) -4: EMA1 / stabilizer masterbatch 3 = 90/10
(A) -5: EOC1 / stabilizer masterbatch 3 = 90/10
(A) -6: EOC2 / stabilizer masterbatch 3 = 90/10
(EVA1の調製)
 エチレン・メタクリル酸グリシジル・酢酸ビニル共重合体(EGMAVA、住友化学(株)製、ボンドファースト7B、エチレン含有量:83重量%、メタクリル酸グリシジル含有量:12重量%、酢酸ビニル含有量:5重量%、MFR(190℃、2160g荷重):7g/10分):49.1重量部、エチレン・酢酸ビニル共重合体(酢酸ビニル含有量:10重量%):49.1重量部、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)製、商品名「KBM503」):1.5重量部および2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(アルケマ吉富(株)製、商品名「ルペロックス101」):0.3重量部を予め混合し、溶融温度220℃にて40mmφ単軸押出機で、EGMAVAおよびエチレン・酢酸ビニル共重合体にシランカップリング剤である3-メタクリロキシプロピルトリメトキシシランをグラフト変性させることにより、シランカップリグ剤により変性されたエチレンと(メタ)アクリル酸グリシジルを含むEVA1を得た。
(Preparation of EVA1)
Ethylene / glycidyl methacrylate / vinyl acetate copolymer (EGMAVA, manufactured by Sumitomo Chemical Co., Ltd., Bondfast 7B, ethylene content: 83 wt%, glycidyl methacrylate content: 12 wt%, vinyl acetate content: 5 wt% %, MFR (190 ° C., 2160 g load): 7 g / 10 min): 49.1 parts by weight, ethylene / vinyl acetate copolymer (vinyl acetate content: 10% by weight): 49.1 parts by weight, 3-methacrylic acid Roxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM503”): 1.5 parts by weight and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (Arkema Yoshitomi ( Co., Ltd., trade name “Lupelox 101”): 0.3 parts by weight were mixed in advance and EGMAVA and D were mixed with a 40 mmφ single screw extruder at a melting temperature of 220 ° C. By graft-modifying 3-methacryloxypropyltrimethoxysilane, which is a silane coupling agent, to a ethylene / vinyl acetate copolymer, EVA1 containing ethylene modified with a silane coupling agent and glycidyl (meth) acrylate is obtained. It was.
(EMA1の調製)
 EVA1の調製において、エチレン・酢酸ビニル共重合体の代わりに、EMA:エチレン・メタクリル酸メチル共重合体(エチレン含有量:80重量%、メタクリル酸メチル含有量:20重量%)を使用した以外はEVA1と同様にしてEMA1を得た。
(Preparation of EMA1)
In the preparation of EVA1, EMA: ethylene / methyl methacrylate copolymer (ethylene content: 80% by weight, methyl methacrylate content: 20% by weight) was used instead of ethylene / vinyl acetate copolymer. EMA1 was obtained in the same manner as EVA1.
(EOC1の調製)
 EVA1の調製において、エチレン・酢酸ビニル共重合体の代わりに、EOC1:エチレン・α-オレフィン共重合体(三井化学製 タフマーA-4090S)を使用した以外はEVA1と同様にしてEOC1を得た。
(Preparation of EOC1)
EOC1 was obtained in the same manner as EVA1, except that EOC1: ethylene / α-olefin copolymer (Tafmer A-4090S manufactured by Mitsui Chemicals) was used instead of ethylene / vinyl acetate copolymer in preparation of EVA1.
(EOC2の調製)
 EVA1の調製において、エチレン・酢酸ビニル共重合体の代わりに、EOC2:エチレン・α-オレフィン共重合体(三井化学製 タフマーH-5030S)を使用した以外はEVA1と同様にしてEOC2を得た。
(Preparation of EOC2)
EOC2 was obtained in the same manner as EVA1, except that EOC2: ethylene / α-olefin copolymer (Tafmer H-5030S manufactured by Mitsui Chemicals) was used instead of ethylene / vinyl acetate copolymer in the preparation of EVA1.
<B層>
・(B)-1:アイオノマー3/安定剤マスターバッチ2=90/10
・(B)-2:アイオノマー4/安定剤マスターバッチ1/白色マスターバッチ=85/10/5
<B layer>
(B) -1: ionomer 3 / stabilizer masterbatch 2 = 90/10
(B) -2: ionomer 4 / stabilizer masterbatch 1 / white masterbatch = 85/10/5
<樹脂シートの作製>
 多層樹脂シートである樹脂シート1および3を、それぞれ2種3層多層キャスト成形機(田辺プラスチックス機械社製)、フィードブロック式(EDI社製)、40mmφ単軸押出機、およびダイ幅500mm押出機を用いて加工温度140℃にてシート状に成形することにより作製した。
 また、単層樹脂シートである樹脂シート2、4~8を、それぞれ単層T-ダイ成形機(田辺プラスチックス機械社製)、40mmφ単軸押出機、ダイ幅500mm押出機を用いて、上記樹脂シート1、3と同様に、加工温度140℃にてシート状に成形し、作製した。
 なお、基材シートと樹脂シート2との積層構造を有する配線シート1は、上記成形機の繰出し部分より基材シートを供給し、樹脂シート2を成形時にニップロールにて加熱圧着することで製造した。同様に、配線シート3~6も上記成形機の繰出し部分より基材シートを供給し、樹脂シート5~8を成形時にニップロールにて加熱圧着することで製造した。
<Production of resin sheet>
Resin sheets 1 and 3, which are multilayer resin sheets, are each extruded into two types and three layers of multilayer cast molding machine (manufactured by Tanabe Plastics Machinery), feed block type (manufactured by EDI), 40 mmφ single screw extruder, and die width 500 mm extrusion It was produced by forming into a sheet shape at a processing temperature of 140 ° C. using a machine.
Further, the resin sheets 2 and 4 to 8 which are single layer resin sheets were respectively converted into the above using a single layer T-die molding machine (manufactured by Tanabe Plastics Machinery Co., Ltd.), 40 mmφ single screw extruder, and die width 500 mm extruder. Similarly to the resin sheets 1 and 3, the sheet was formed into a sheet shape at a processing temperature of 140 ° C.
In addition, the wiring sheet 1 having a laminated structure of the base sheet and the resin sheet 2 was manufactured by supplying the base sheet from the feeding portion of the molding machine and heat-pressing the resin sheet 2 with a nip roll at the time of molding. . Similarly, the wiring sheets 3 to 6 were manufactured by supplying a base sheet from the feeding portion of the molding machine and heat-pressing the resin sheets 5 to 8 with a nip roll at the time of molding.
 実施例および比較例の光発電モジュールを用いて行った測定および評価について、以下に説明する。 Measures and evaluations performed using the photovoltaic modules of Examples and Comparative Examples are described below.
 配線接続良否(EL画像): 
 実施例及び比較例に係る光発電モジュールの配線接続良否について、EL(エレクトロルミネッセンス)法により評価した。すなわち、各光発電モジュールに電流を入力して発光させた状態で、EL画像を取得し、良否の評価を行った。
 各光発電モジュールのEL画像の取得には、EL画像検査装置(アイテス社製、PVX100)を用いた。また、EL画像を取得するための測定条件は、シャッター時間15秒、絞り8、ISO感度800、光発電モジュールへの入力電圧0.73V、光発電モジュールへの入力電流8Aという条件を採用した。
 そして、得られたEL画像を目視にて確認し、配線接続良否の評価を行った。
 評価結果は、A:影なし(接続良好)、C:影あり(配線接続の一部に難あり)、とした。
 結果は、実施例1~5ではすべてA、比較例1ではCとなった。
Wiring connection quality (EL image):
The wiring connection quality of the photovoltaic modules according to the examples and comparative examples was evaluated by an EL (electroluminescence) method. That is, an EL image was acquired in a state where a current was inputted to each photovoltaic module to emit light, and the quality was evaluated.
For obtaining the EL image of each photovoltaic module, an EL image inspection device (manufactured by ITES, PVX100) was used. The measurement conditions for acquiring the EL image were as follows: shutter time 15 seconds, aperture 8, ISO sensitivity 800, input voltage 0.73V to the photovoltaic module, and input current 8A to the photovoltaic module.
And the obtained EL image was confirmed visually and the quality of wiring connection was evaluated.
The evaluation results were as follows: A: no shadow (good connection), C: shadow (part of wiring connection was difficult).
The results were all A in Examples 1 to 5 and C in Comparative Example 1.
 最大出力(Pmax):
 実施例及び比較例に係る光発電モジュールについて、最大出力(Pmax)を測定した。
 すなわち、各光発電モジュールに入力するバイアス電圧を変化させながら、電流を測定し、得られたデータをプロットすることにより、I-V曲線(図示略)を得た。
 ここで、電流の測定には、住友重機械工業株式会社 太陽電池IV測定装置No.M130-DDYTB383 J-JAを用いた。
 また、バイアス電圧は、-0.1Vから0.8Vの範囲で変化させ、この範囲のうち、-0.1Vから0.4Vまではバイアス電圧を0.02V刻みで変化させ、0.4Vから0.8Vまではバイアス電圧を0.01V刻みで変化させた。
 また、測定条件として、AM1.5G、1SUNを採用し、25℃で測定を行った。
 そして、得られたI-V曲線に関し、電圧と電流の積が最大になる点、すなわち「最大出力(Pmax)」を求めた。
 その結果、最大出力(Pmax)は、実施例1では5.13、実施例2では5.06、実施例3では5.04、実施例4では5.13、実施例5では5.13、比較例1では4.82となった。
Maximum output (Pmax):
About the photovoltaic module which concerns on an Example and a comparative example, the maximum output (Pmax) was measured.
That is, the current was measured while changing the bias voltage input to each photovoltaic module, and the obtained data was plotted to obtain an IV curve (not shown).
Here, in the measurement of current, Sumitomo Heavy Industries, Ltd. M130-DDYTB383 J-JA was used.
The bias voltage is changed in the range of −0.1V to 0.8V. Within this range, the bias voltage is changed in increments of 0.02V from −0.1V to 0.4V. The bias voltage was changed in increments of 0.01V up to 0.8V.
Further, AM1.5G and 1SUN were adopted as measurement conditions, and measurement was performed at 25 ° C.
Then, with respect to the obtained IV curve, the point at which the product of voltage and current becomes maximum, that is, “maximum output (Pmax)” was obtained.
As a result, the maximum output (Pmax) is 5.13 in Example 1, 5.06 in Example 2, 5.04 in Example 3, 5.13 in Example 4, 5.13 in Example 5, In Comparative Example 1, it was 4.82.
 フィルファクタ(FF):
 更に、上記の最大出力(Pmax)の測定結果を用いて、実施例及び比較例に係る光発電モジュールのフィルファクタ(FF)を求めた。
 ここで、電圧が0V時の電流は短絡電流(short-circuit current=Isc)といい、光発電モジュールに電流が流れていない時の電圧を開放電圧(open-circuit voltage=Voc)という。
 フィルファクタ(FF)は、最大出力(Pmax)/(Voc×Isc)であり、実施例1では0.789、実施例2では0.770、実施例3では0.755、実施例4では0.789、実施例5では0.789、比較例1では0.743となった。
Fill factor (FF):
Furthermore, the fill factor (FF) of the photovoltaic module which concerns on an Example and a comparative example was calculated | required using the measurement result of said maximum output (Pmax).
Here, the current when the voltage is 0 V is called a short-circuit current (short-circuit current = Isc), and the voltage when no current flows through the photovoltaic module is called an open-circuit voltage (Voc).
The fill factor (FF) is the maximum output (Pmax) / (Voc × Isc), 0.789 in the first embodiment, 0.770 in the second embodiment, 0.755 in the third embodiment, and 0 in the fourth embodiment. 789, 0.789 in Example 5, and 0.743 in Comparative Example 1.
 また、上記の配線シート1~6を用いて行った測定および評価について、以下に説明する。 Further, the measurement and evaluation performed using the above wiring sheets 1 to 6 will be described below.
 ・350nmの波長における樹脂シートの光線透過率:25℃という条件下、JIS-K7105に準じて樹脂シートの350nmの波長における光線透過率を測定した。なお、単位は、%とした。
 実施例1の配線シート1では、350nmの波長における光線透過率は、85%であった。
 実施例2の配線シート3では、350nmの波長における光線透過率は、85%であった。
 実施例3の配線シート4では、350nmの波長における光線透過率は、85%であった。
 実施例4の配線シート5では、350nmの波長における光線透過率は、85%であった。
 実施例5の配線シート6では、350nmの波長における光線透過率は、85%であった。
 一方、比較例1の配線シート2では、350nmの波長における光線透過率は、4.3%であった。
Light transmittance of resin sheet at a wavelength of 350 nm: The light transmittance at a wavelength of 350 nm of the resin sheet was measured according to JIS-K7105 under the condition of 25 ° C. The unit is%.
In the wiring sheet 1 of Example 1, the light transmittance at a wavelength of 350 nm was 85%.
In the wiring sheet 3 of Example 2, the light transmittance at a wavelength of 350 nm was 85%.
In the wiring sheet 4 of Example 3, the light transmittance at a wavelength of 350 nm was 85%.
In the wiring sheet 5 of Example 4, the light transmittance at a wavelength of 350 nm was 85%.
In the wiring sheet 6 of Example 5, the light transmittance at a wavelength of 350 nm was 85%.
On the other hand, in the wiring sheet 2 of Comparative Example 1, the light transmittance at a wavelength of 350 nm was 4.3%.
 ・全光線透過率:25℃という条件下、JIS-K7105に準じて樹脂シートの全光線透過率を測定した。なお、単位は、%とした。
 実施例1の配線シート1では、全光線透過率は、89.6%であった。
 実施例2の配線シート3では、全光線透過率は、88.9%であった。
 実施例3の配線シート4では、全光線透過率は、88.8%であった。
 実施例4の配線シート5では、全光線透過率は、90.2%であった。
 実施例5の配線シート6では、全光線透過率は、90.2%であった。
 一方、比較例の配線シート2では、全光線透過率は、92.2%であった。
Total light transmittance: Under the condition of 25 ° C., the total light transmittance of the resin sheet was measured according to JIS-K7105. The unit is%.
In the wiring sheet 1 of Example 1, the total light transmittance was 89.6%.
In the wiring sheet 3 of Example 2, the total light transmittance was 88.9%.
In the wiring sheet 4 of Example 3, the total light transmittance was 88.8%.
In the wiring sheet 5 of Example 4, the total light transmittance was 90.2%.
In the wiring sheet 6 of Example 5, the total light transmittance was 90.2%.
On the other hand, in the wiring sheet 2 of the comparative example, the total light transmittance was 92.2%.
 この出願は、2015年2月6日に出願された日本出願特願2015-022074号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-022074 filed on February 6, 2015, the entire disclosure of which is incorporated herein.

Claims (5)

  1.  光発電素子を備える光発電モジュールであって、
     前記光発電素子は、
     第1導電型の結晶半導体基板を備えているとともに、
     前記結晶半導体基板の一方の面側に、第1非晶質系半導体膜と、第1導電型の第2非晶質系半導体膜と、第1透光性電極膜と、第1電極と、をこの順に備え、
     前記結晶半導体基板の他方の面側に、真性の第3非晶質系半導体膜と、第2導電型の第4非晶質系半導体膜と、第2透光性電極膜と、第2電極と、をこの順に備え、
     前記第1非晶質系半導体膜は、前記第2非晶質系半導体膜よりも不純物濃度が低い第1導電型であるか、又は、真性であり、
     当該光発電モジュールは、更に、
     前記光発電素子の一方の面の前記第1電極に第1接着層により接合固定された複数の第1微細配線と、
     前記光発電素子の前記一方の面との間に前記複数の第1微細配線を挟んでいるとともに、前記第1接着層を介して前記光発電素子の前記一方の面に接合された第1樹脂フィルムと、
     透光性の第1保護層と、
     前記第1保護層と前記第1樹脂フィルムとの間に充填された第1封止層と、
     前記光発電素子の他方の面の前記第2電極に第2接着層により接合固定された複数の第2微細配線と、
     前記光発電素子の前記他方の面との間に前記複数の第2微細配線を挟んでいるとともに、前記第2接着層を介して前記光発電素子の前記他方の面に接合された第2樹脂フィルムと、
     第2保護層と、
     前記第2保護層と前記第2樹脂フィルムとの間に充填された第2封止層と、
     を備え、
     前記第1接着層は、以下の(A)および(B)のいずれかを含む樹脂材料により構成されている光発電モジュール。
    (A)エチレンと不飽和カルボン酸を含む共重合体、または前記共重合体のアイオノマー
    (B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体
    A photovoltaic module comprising photovoltaic elements,
    The photovoltaic element is
    A first conductivity type crystalline semiconductor substrate;
    A first amorphous semiconductor film, a first conductive type second amorphous semiconductor film, a first translucent electrode film, a first electrode, on one surface side of the crystalline semiconductor substrate; In this order,
    An intrinsic third amorphous semiconductor film, a second conductivity type fourth amorphous semiconductor film, a second translucent electrode film, and a second electrode are formed on the other surface side of the crystalline semiconductor substrate. And in this order,
    The first amorphous semiconductor film is a first conductivity type having an impurity concentration lower than that of the second amorphous semiconductor film, or is intrinsic.
    The photovoltaic module further includes
    A plurality of first fine wires bonded and fixed to the first electrode on one surface of the photovoltaic element by a first adhesive layer;
    The first resin having the plurality of first fine wirings sandwiched between the one surface of the photovoltaic element and bonded to the one surface of the photovoltaic element via the first adhesive layer With film,
    A translucent first protective layer;
    A first sealing layer filled between the first protective layer and the first resin film;
    A plurality of second fine wires bonded and fixed to the second electrode on the other surface of the photovoltaic element by a second adhesive layer;
    The second resin having the plurality of second fine wirings sandwiched between the other surface of the photovoltaic element and bonded to the other surface of the photovoltaic element via the second adhesive layer With film,
    A second protective layer;
    A second sealing layer filled between the second protective layer and the second resin film;
    With
    The said 1st contact bonding layer is a photovoltaic module comprised by the resin material containing either of the following (A) and (B).
    (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the copolymer (B) a copolymer containing ethylene and glycidyl (meth) acrylate
  2.  前記共重合体は、アイオノマーである請求項1に記載の光発電モジュール。 The photovoltaic module according to claim 1, wherein the copolymer is an ionomer.
  3.  JIS-K7105に準じて測定した前記第1接着層の350nmの波長における光線透過率が、70%以上である請求項1又は2に記載の光発電モジュール。 The photovoltaic module according to claim 1 or 2, wherein the light transmittance at a wavelength of 350 nm of the first adhesive layer measured in accordance with JIS-K7105 is 70% or more.
  4.  前記複数の第1微細配線は、互いに平行に配置された複数のワイヤであり、
     前記ワイヤの外径をDとすると、
     前記第1接着層の層厚Tは、D/6±D/12の範囲に設定されている請求項1乃至3の何れか一項に記載の光発電モジュール。
    The plurality of first fine wirings are a plurality of wires arranged in parallel to each other,
    If the outer diameter of the wire is D,
    4. The photovoltaic module according to claim 1, wherein a thickness T of the first adhesive layer is set in a range of D / 6 ± D / 12. 5.
  5.  前記第2保護層は透光性であり、
     前記第2接着層は、以下の(A)および(B)のいずれかを含む樹脂材料により構成されている請求項1乃至4の何れか一項に記載の光発電モジュール。
    (A)エチレンと不飽和カルボン酸を含む共重合体、または前記共重合体のアイオノマー
    (B)エチレンと(メタ)アクリル酸グリシジルを含む共重合体
    The second protective layer is translucent;
    The photovoltaic module according to any one of claims 1 to 4, wherein the second adhesive layer is made of a resin material including any of the following (A) and (B).
    (A) a copolymer containing ethylene and an unsaturated carboxylic acid, or an ionomer of the copolymer (B) a copolymer containing ethylene and glycidyl (meth) acrylate
PCT/JP2016/053464 2015-02-06 2016-02-05 Photovoltaic module WO2016125882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022074A JP2018056145A (en) 2015-02-06 2015-02-06 Photovoltaic module
JP2015-022074 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125882A1 true WO2016125882A1 (en) 2016-08-11

Family

ID=56564220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053464 WO2016125882A1 (en) 2015-02-06 2016-02-05 Photovoltaic module

Country Status (3)

Country Link
JP (1) JP2018056145A (en)
TW (1) TW201640686A (en)
WO (1) WO2016125882A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031574A1 (en) * 2018-08-10 2020-02-13 株式会社カネカ Solar cell module
JP2021034659A (en) * 2019-08-28 2021-03-01 パナソニック株式会社 Solar cell module
CN114300549A (en) * 2021-12-29 2022-04-08 明冠新材料股份有限公司 Single-glass photovoltaic cell, preparation method and photovoltaic module
WO2023126150A1 (en) * 2021-12-29 2023-07-06 Rec Solar Pte. Ltd. Solar cell assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186114A (en) * 1998-10-16 2000-07-04 Du Pont Mitsui Polychem Co Ltd Sealing compound for solar cell and solar cell module
JP2000243990A (en) * 1999-02-18 2000-09-08 Dainippon Printing Co Ltd Solar-cell cover film and manufacture thereof, and solar-cell module using same
JP2005536894A (en) * 2002-08-29 2005-12-02 デイ4 エネルギー インコーポレイテッド Photovoltaic battery electrode, photovoltaic battery and photovoltaic module
JP2012138467A (en) * 2010-12-27 2012-07-19 Dainippon Printing Co Ltd Solar battery sealing material, and solar battery module using the same
JP2012209462A (en) * 2011-03-30 2012-10-25 Lintec Corp Protective sheet for solar cell, manufacturing method thereof, and solar cell module
JP2014015544A (en) * 2012-07-10 2014-01-30 Bridgestone Corp Ethylene-vinyl acetate copolymer sheet, and intermediate film for laminated glass, laminated glass, sealing film for solar cell, and solar cell using the ethylene-vinyl acetate copolymer sheet
JP2014103301A (en) * 2012-11-21 2014-06-05 Choshu Industry Co Ltd Photovoltaic generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186114A (en) * 1998-10-16 2000-07-04 Du Pont Mitsui Polychem Co Ltd Sealing compound for solar cell and solar cell module
JP2000243990A (en) * 1999-02-18 2000-09-08 Dainippon Printing Co Ltd Solar-cell cover film and manufacture thereof, and solar-cell module using same
JP2005536894A (en) * 2002-08-29 2005-12-02 デイ4 エネルギー インコーポレイテッド Photovoltaic battery electrode, photovoltaic battery and photovoltaic module
JP2012138467A (en) * 2010-12-27 2012-07-19 Dainippon Printing Co Ltd Solar battery sealing material, and solar battery module using the same
JP2012209462A (en) * 2011-03-30 2012-10-25 Lintec Corp Protective sheet for solar cell, manufacturing method thereof, and solar cell module
JP2014015544A (en) * 2012-07-10 2014-01-30 Bridgestone Corp Ethylene-vinyl acetate copolymer sheet, and intermediate film for laminated glass, laminated glass, sealing film for solar cell, and solar cell using the ethylene-vinyl acetate copolymer sheet
JP2014103301A (en) * 2012-11-21 2014-06-05 Choshu Industry Co Ltd Photovoltaic generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031574A1 (en) * 2018-08-10 2020-02-13 株式会社カネカ Solar cell module
JP2021034659A (en) * 2019-08-28 2021-03-01 パナソニック株式会社 Solar cell module
EP3787037A1 (en) * 2019-08-28 2021-03-03 Panasonic Corporation Solar cell module
CN112447872A (en) * 2019-08-28 2021-03-05 松下电器产业株式会社 Solar cell module
CN114300549A (en) * 2021-12-29 2022-04-08 明冠新材料股份有限公司 Single-glass photovoltaic cell, preparation method and photovoltaic module
WO2023126150A1 (en) * 2021-12-29 2023-07-06 Rec Solar Pte. Ltd. Solar cell assembly
CN114300549B (en) * 2021-12-29 2023-09-08 明冠新材料股份有限公司 Single-glass photovoltaic cell, preparation method and photovoltaic module

Also Published As

Publication number Publication date
JP2018056145A (en) 2018-04-05
TW201640686A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6946518B2 (en) Wiring sheet, structure and photovoltaic module
JP5639930B2 (en) SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME
US20140360560A1 (en) Solar cell module having excellent appearance and method for manufacturing same
TWI479006B (en) Solar battery seal and flexible solar module
JP2012216805A (en) Solar cell module filler sheet
JP2009094320A (en) Filler sheet for rear face of solar cell module
US9923110B2 (en) Solar battery module and method of manufacture thereof
WO2016125882A1 (en) Photovoltaic module
US8933524B2 (en) Sealing material for solar cell, protective sheet for solar cell, and process for production of solar cell module
CA2809757A1 (en) Solar cell sealing material and solar cell module produced by using same
WO2017057217A1 (en) Multilayer sheet for solar cell sealing material, method for manufacturing multilayer sheet for solar cell sealing material, and solar cell module
EP3357987B1 (en) Insulating multilayer sheet and solar cell module
JP6520257B2 (en) Sealant sheet for solar cell module, and solar cell module
JP2010093120A (en) Back filler layer for solar cell module, and solar cell module using the same
JP2012099803A (en) Solar cell sealing sheet, production method therefor, and method of manufacturing flexible solar cell module
WO2014049778A1 (en) Filler sheet for solar cell modules, solar cell sealing sheet, and method for manufacturing solar cell module
JP2014187172A (en) Encapsulant sheet for solar battery module, and solar battery module
JP2016174124A (en) Sealing material sheet for solar cell module, and solar cell module
JP2013065619A (en) Solar cell sealing sheet and flexible solar cell module
JP2013199030A (en) Solar cell protection sheet and flexible solar cell module
JP2014236155A (en) Solar battery module with hot-melt adhesive
JP2017162873A (en) Sealant for solar battery modules and solar battery module
TW201420592A (en) Filler sheet for solar cell modules and method for manufacturing solar cell module
JP2017123364A (en) Sealant for solar battery module, and solar battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP