JP2005089738A - Carbon nanotube dispersion solution and carbon nanotube dispersion material - Google Patents

Carbon nanotube dispersion solution and carbon nanotube dispersion material Download PDF

Info

Publication number
JP2005089738A
JP2005089738A JP2004232069A JP2004232069A JP2005089738A JP 2005089738 A JP2005089738 A JP 2005089738A JP 2004232069 A JP2004232069 A JP 2004232069A JP 2004232069 A JP2004232069 A JP 2004232069A JP 2005089738 A JP2005089738 A JP 2005089738A
Authority
JP
Japan
Prior art keywords
cnt
carbon nanotube
cnts
dispersion
conjugated polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232069A
Other languages
Japanese (ja)
Inventor
Jun Tsukamoto
遵 塚本
Junji Sanada
淳二 真多
Kazuki Shigeta
和樹 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004232069A priority Critical patent/JP2005089738A/en
Publication of JP2005089738A publication Critical patent/JP2005089738A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide carbon nanotubes (CNTs) excellent in dispersibility in a solvent, while maintaining high electrical conductivity and semiconductor characteristics of the CNTs, to prepare a CNT dispersion solution containing the CNTs, and to provide a CNT dispersion material obtained from the solution. <P>SOLUTION: The CNT dispersion solution contains the CNTs and a solvent, wherein a conjugated polymer adheres to at least a part of the CNTs, and the CNTs are dissolved in the solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、共役系重合体が付着したカーボンナノチューブが溶媒中に分散されてなる溶液、及び該溶液より得られるカーボンナノチューブ分散体に関する。   The present invention relates to a solution in which carbon nanotubes to which a conjugated polymer is attached are dispersed in a solvent, and a carbon nanotube dispersion obtained from the solution.

カーボンナノチューブ(以下、CNTと言う)はナノテクノロジーの有力な素材として、広範な分野で応用の可能性が検討されている。用途としてはトランジスターや顕微鏡用プローブなどのようにCNTの単線を使用する方法と、電子放出電極や燃料電池用電極、あるいはCNTを分散した導電性コンポジットなどのように多数のCNTをまとめてバルクとして使用する方法等がある。単線で使用する場合は、CNTを溶媒中で超音波を照射した後、電気泳動などで単一に分散しているCNTのみを取り出すなどの方法が用いられる。バルクで用いる場合にはCNTが溶剤やマトリックス材となる材質、例えば重合体の溶液などに良好に分散できることが必須であるが、一般にCNTは溶媒に分散しにくいという問題がある。このためCNT表面の改質、化学修飾などによって分散性を向上する方法が種々検討されている。   Carbon nanotubes (hereinafter referred to as CNT) are considered as potential materials for nanotechnology, and their application possibilities are being studied in a wide range of fields. Applications include the use of CNT single wires such as transistors and microscope probes, and a large number of CNTs in bulk, such as electron emission electrodes, fuel cell electrodes, or conductive composites with dispersed CNTs. There are methods to use. When using a single wire, after irradiating ultrasonic waves in a solvent with CNTs, a method of taking out only CNTs dispersed in a single manner by electrophoresis or the like is used. When used in bulk, it is essential that CNTs can be well dispersed in a material that serves as a solvent or a matrix material, such as a polymer solution. However, in general, CNTs are difficult to disperse in a solvent. For this reason, various methods for improving the dispersibility by modifying the CNT surface, chemical modification, and the like have been studied.

CNTの分散性を向上させる方法としては、CNTをドデシルスルホン酸ナトリウムなどの界面活性剤を含有する水溶液に入れる方法(例えば、特許文献1参照)があるが、CNT表面に非導電性の有機物が付着するとCNTの導電性や半導体特性が損なわれる。また、CNT表面をコイル状構造のポリマーであるポリ−m−フェニレンビニレン−co−ジオクトキシ−p−フェニレンビニレン(PmPV)で覆うことによってCNTの分散性を高める方法(例えば、特許文献2参照)が提案されているが、該ポリマーは共役系が不完全なため、CNTの導電性や半導体特性を低下する。CNTとの間で電荷の移動が容易な共役系重合体の溶液にCNTが分散しやすいことを利用して共役系重合体にCNTを分散させる方法も提案されている(例えば、特許文献3参照)が、共役系重合体中で電荷の移動の過程で導電性や半導体特性が低下する。   As a method for improving the dispersibility of CNTs, there is a method of putting CNTs in an aqueous solution containing a surfactant such as sodium dodecyl sulfonate (see, for example, Patent Document 1). If attached, the conductivity and semiconductor characteristics of the CNT are impaired. Further, there is a method for enhancing the dispersibility of CNT by covering the CNT surface with poly-m-phenylene vinylene-co-dioctoxy-p-phenylene vinylene (PmPV) which is a polymer having a coiled structure (for example, see Patent Document 2). Although proposed, the polymer has an incomplete conjugated system, which deteriorates the conductivity and semiconductor properties of the CNT. A method has also been proposed in which CNTs are dispersed in a conjugated polymer by utilizing the fact that CNTs are easily dispersed in a solution of a conjugated polymer that allows easy transfer of charge to and from CNTs (see, for example, Patent Document 3). ), However, the conductivity and semiconductor properties deteriorate in the process of charge transfer in the conjugated polymer.

さらには、CNTに官能基を付加させる等の方法により表面に化学修飾を施し分散性を付与した上で使用されたものがある(例えば、非特許文献1参照)が、CNTに化学修飾を施すとCNTを構成するπ共役系が破壊されやすく、CNT本来の特性が損なわれる。CNTを基板上に直接成長させる方法もある(例えば、非特許文献2)が、CNTの生成には700℃程度の熱処理が必要となる。
特開平6−228824号公報 特開2000−44216号公報 特開2003−96313号公報 Science誌 vol.282,p.95(1998) Applied Physics Letters誌vol.82,p.2145(2003)
Furthermore, there are those used after imparting dispersibility by chemically modifying the surface by a method such as adding a functional group to CNT (for example, see Non-Patent Document 1). And the π-conjugated system constituting CNT are easily broken, and the original characteristics of CNT are impaired. There is also a method of directly growing CNTs on a substrate (for example, Non-Patent Document 2), but heat treatment at about 700 ° C. is required for the production of CNTs.
JP-A-6-228824 JP 2000-44216 A JP 2003-96313 A Science magazine vol. 282, p. 95 (1998) Applied Physics Letters vol. 82, p. 2145 (2003)

従来の技術では、CNTの溶液に対する分散性向上をはかるため、CNTの表面を改質すると本来のCNTの特性、たとえば高導電性や半導体特性が損なわれるという問題が生じていた。そこで本発明は上記問題点を解決すべく、CNTの高導電性や半導体特性を維持しながら、溶剤への分散性に優れたCNT、そのCNTを有するCNT分散溶液、及び該溶液によって得られるCNT分散体を提供する。   In the conventional technique, in order to improve the dispersibility of the CNT in the solution, there has been a problem that the properties of the original CNT, for example, high conductivity and semiconductor properties are impaired when the surface of the CNT is modified. Therefore, in order to solve the above problems, the present invention maintains CNTs with high conductivity and semiconductor characteristics, and has excellent dispersibility in a solvent, a CNT dispersion solution containing the CNTs, and a CNT obtained by the solution. Provide a dispersion.

上記課題を達成するために、本発明は下記の構成からなる。
(1)カーボンナノチューブと溶媒を有するカーボンナノチューブ分散溶液であって、カーボンナノチューブの少なくとも一部に共役系重合体が付着し、カーボンナノチューブが溶媒中に分散しているカーボンナノチューブ分散溶液。
(2)カーボンナノチューブの少なくとも一部に共役系重合体を付着させる工程と、共役系重合体が付着したカーボンナノチューブを該共役系重合体が可溶な溶媒で洗浄する工程と、上記工程によって得られたカーボンナノチューブを溶媒に溶解させる工程とを有する(1)記載のカーボンナノチューブ分散溶液の製造方法。
(3)上記(1)のカーボンナノチューブ分散溶液を塗布することによって形成されるCNT分散体である。
In order to achieve the above object, the present invention comprises the following constitution.
(1) A carbon nanotube dispersion solution having carbon nanotubes and a solvent, wherein the conjugated polymer is attached to at least a part of the carbon nanotubes, and the carbon nanotubes are dispersed in the solvent.
(2) A step of attaching a conjugated polymer to at least a part of the carbon nanotubes, a step of washing the carbon nanotubes attached with the conjugated polymer with a solvent in which the conjugated polymer is soluble, and the above steps. And a step of dissolving the obtained carbon nanotubes in a solvent.
(3) A CNT dispersion formed by applying the carbon nanotube dispersion solution of (1) above.

本発明によれば、CNTを溶液に均一に分散させることができ、そこで得られたCNT分散溶液を用いることによって、CNT自身が本来有する高導電性と優れた半導体特性を持つ分散体を、高温を必要とせず室温で形成することができる。また、本発明によれば、CNT分散体の膜厚を均一に形成できることから、CNT分散体膜を電子放出源とした電子放出素子を得ることができ、またCNT分散体の膜厚を薄くすることで、透明導電体を得ることができる。   According to the present invention, CNT can be uniformly dispersed in a solution. By using the obtained CNT dispersion solution, a dispersion having high conductivity inherent in CNT itself and excellent semiconductor characteristics can be obtained at a high temperature. Can be formed at room temperature. Further, according to the present invention, since the film thickness of the CNT dispersion can be formed uniformly, an electron-emitting device using the CNT dispersion film as an electron emission source can be obtained, and the film thickness of the CNT dispersion can be reduced. Thus, a transparent conductor can be obtained.

本発明は、共役系重合体が少なくとも一部に付着したCNTを溶媒に分散することによって均一なCNT分散溶液ができること、さらには該溶液を基板上に塗布することによって均一なCNT分散体が得られるものである。なお、本発明では、分散という言葉を用いるが、これはCNTが溶媒中に溶解している現象も含むものである。   In the present invention, a uniform CNT dispersion solution can be obtained by dispersing CNT having a conjugated polymer adhering to at least a part thereof in a solvent, and further, a uniform CNT dispersion can be obtained by coating the solution on a substrate. It is what In the present invention, the term “dispersion” is used, which includes a phenomenon in which CNT is dissolved in a solvent.

以下、本発明について詳述する。本発明においてCNTに付着する重合体は、共役系重合体であることが必要で、さらに好ましくは直鎖状共役系重合体である。ここで直鎖状とは、重合体の骨格構造が安定状態(外力が加わっていない状態)において螺旋構造を取らず、まっすぐ延びているものを意味し、また、共役系重合体とは重合体の骨格の炭素−炭素の結合が1重結合と2重結合が交互に連なっている重合体を意味する。共役系重合体は共役系構造が伸びた構造からなるのでCNTと重合体とでの電荷の移動がスムーズであり、またCNTに付着した重合体以外の重合体が介在しないため、CNTの高い導電性や半導体特性を効率的に利用できるという特徴がある。本発明のCNT分散溶液においてCNTの濃度を変えることによって該溶液を塗布した基板の電導性や半導体特性を制御することができる。   Hereinafter, the present invention will be described in detail. In the present invention, the polymer attached to the CNTs needs to be a conjugated polymer, and more preferably a linear conjugated polymer. Here, the straight chain means that the skeleton structure of the polymer does not take a spiral structure in a stable state (a state in which no external force is applied) and extends straight, and the conjugated polymer is a polymer. The polymer in which the carbon-carbon bonds of the skeleton are alternately linked with single bonds and double bonds. Since the conjugated polymer has a structure in which the conjugated structure is extended, the charge transfer between the CNT and the polymer is smooth, and the polymer other than the polymer attached to the CNT does not intervene. Characteristics and efficient use of semiconductor characteristics. By changing the CNT concentration in the CNT dispersion solution of the present invention, the conductivity and semiconductor characteristics of the substrate coated with the solution can be controlled.

共役系重合体としては、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ−p−フェニレン系重合体、ポリ−p−フェニレンビニレン系重合体などが挙げられる。これらの共役系重合体が直鎖状であるためには、ポリチオフェン系重合体、ポリピロール系重合体はそれぞれチオフェン環、ピロール環の2、5位でモノマーユニットがつながる必要がある。また、ポリ−p−フェニレン系重合体、ポリ−p−フェニレンビニレン系重合体ではフェニレン基のパラ位で重合体の骨格がつながっている必要がある。上記重合体は単一のモノマーユニットが並んだものが好ましく用いられるが、異なるモノマーユニットをブロック共重合したもの、ランダム共重合したものも用いられる。また、グラフト重合したものも用いることができる。上記重合体の中でも本発明においては、ポリチオフェン系重合体が特に好ましく使用される。   Examples of the conjugated polymer include a polythiophene polymer, a polypyrrole polymer, a polyaniline polymer, a polyacetylene polymer, a poly-p-phenylene polymer, and a poly-p-phenylene vinylene polymer. In order for these conjugated polymers to be linear, the polythiophene polymer and the polypyrrole polymer need to be connected to monomer units at the 2nd and 5th positions of the thiophene ring and the pyrrole ring, respectively. Further, in the poly-p-phenylene polymer and the poly-p-phenylene vinylene polymer, the polymer skeleton needs to be connected at the para position of the phenylene group. As the polymer, those in which single monomer units are arranged are preferably used, but those obtained by block copolymerization or random copolymerization of different monomer units are also used. Further, graft-polymerized products can also be used. Among the above polymers, a polythiophene polymer is particularly preferably used in the present invention.

ポリチオフェン系重合体とはポリ−チオフェン構造の骨格を持つ重合体に側鎖が付いた構造を有するものである。具体例としては、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−ドデシルチオフェンなどのポリ−3−アルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェンなどのポリ−3−アルコキシチオフェン(アルコキシ基の炭素数はとくに制限はないが好ましくは1〜12)、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェンなどのポリ−3−アルコキシ−4−アルキルチオフェン(アルコキシ基およびアルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−チオヘキシルチオフェンやポリ−3−チオドデシルチオフェンなどのポリ−3−チオアルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)が挙げられ、1種もしくは2種以上を用いることができる。中でも、ポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンが好ましく、前者としては特にポリ−3−ヘキシルチオフェンが好ましい。好ましい分子量は重量平均分子量で800〜100000である。また、上記重合体は必ずしも高分子量である必要はなく、直鎖状共役系からなるオリゴマーであってもよい。   The polythiophene polymer has a structure in which a side chain is attached to a polymer having a poly-thiophene structure skeleton. Specific examples include poly-3-alkylthiophene (alkyl group) such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, poly-3-dodecylthiophene, and the like. The number of carbons in the group is not particularly limited, but preferably 1 to 12), poly-3-alkoxythiophene such as poly-3-methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene (carbon of alkoxy group) The number is not particularly limited, but preferably 1 to 12), poly-3-alkoxy-4-alkylthiophene (alkoxy) such as poly-3-methoxy-4-methylthiophene, poly-3-dodecyloxy-4-methylthiophene, etc. The carbon number of the group and the alkyl group is not particularly limited, but preferably 1 to 12) Examples include poly-3-thioalkylthiophene such as -3-thiohexylthiophene and poly-3-thiododecylthiophene (the carbon number of the alkyl group is not particularly limited, but preferably 1 to 12). The above can be used. Among these, poly-3-alkylthiophene and poly-3-alkoxythiophene are preferable, and poly-3-hexylthiophene is particularly preferable as the former. A preferred molecular weight is 800 to 100,000 in terms of weight average molecular weight. Further, the polymer need not necessarily have a high molecular weight, and may be an oligomer composed of a linear conjugated system.

CNTはアーク放電法、化学気相成長法(以下CVD法とする)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法によって得られたものであってもよい。また、CNTには1枚の炭素膜(グラッフェン・シート)が円筒状に巻かれた単層CNT(以下SWCNTと言う)と、2枚のグラッフェン・シートが同心円状に巻かれた2層CNT(以下DWCNTと言う)と、複数のグラッフェン・シートが同心円状に巻かれた多層CNT(以下MWCNTと言う)とがあり、本発明においてSWCNT、DWCNT、MWCNTをそれぞれ単体で、もしくは複数を同時に使用できる。特に、SWCNTとDWCNTは導電性および半導体特性において優れた性質を持つので好ましく用いることができるが、中でもSWCNTが特に好ましく用いられる。   CNTs are produced by arc discharge method, chemical vapor deposition method (hereinafter referred to as CVD method), laser ablation method, etc. The CNTs used in the present invention can be obtained by any method. Good. In addition, a single-walled CNT (hereinafter referred to as SWCNT) in which one carbon film (graphene sheet) is wound in a cylindrical shape, and a two-layer CNT in which two graphene sheets are wound in a concentric circle ( (Hereinafter referred to as DWCNT) and multi-layer CNTs (hereinafter referred to as MWCNT) in which a plurality of graphene sheets are concentrically wound. In the present invention, SWCNT, DWCNT, and MWCNT can be used alone or in combination. . In particular, SWCNT and DWCNT can be preferably used because they have excellent properties in terms of conductivity and semiconductor properties. Among them, SWCNT is particularly preferably used.

CNTを作製する際には、同時にフラーレンやグラファイト、非晶性炭素が副生産物として生成され、またニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存するので、これらの不純物を除去し精製することが好ましい。不純物の除去には、硝酸、硫酸などによる酸処理とともに超音波処理が有効であり、またフィルターによる分離を併用することは純度を向上させる上でさらに好ましい。本発明で用いられるCNTの直径は特に限定されないが、0.8nm以上100nm以下が好ましく、より好ましくは50nm以下、さらに好ましくは15nm以下である。   When producing CNTs, fullerene, graphite, and amorphous carbon are produced as by-products at the same time, and catalyst metals such as nickel, iron, cobalt, yttrium, etc. remain, so these impurities are removed and purified. It is preferable. In order to remove impurities, ultrasonic treatment is effective together with acid treatment with nitric acid, sulfuric acid or the like, and it is more preferable to use separation with a filter in combination for improving purity. Although the diameter of CNT used by this invention is not specifically limited, 0.8 nm or more and 100 nm or less are preferable, More preferably, it is 50 nm or less, More preferably, it is 15 nm or less.

また、本発明ではCNTは上記の精製後そのまま使用できるが、塗布膜が半導体として利用される場合には素子電極間の短絡を防ぐために、素子電極間の距離よりも短いCNTを使用することが望ましい。しかし、CNTは一般には紐状で生成されるので、短繊維状で使用するにはカットすることが望ましい。短繊維へのカットには、硝酸、硫酸などによる酸処理とともに超音波処理が有効であり、またフィルターによる分離を併用することは純度を向上させる上でもさらに好ましい。なお、カットしたCNTだけではなく、あらかじめ短繊維状に作製したCNTも本発明により好ましく使用される。このような短繊維状CNTは基板上に鉄、コバルトなどの触媒金属を形成し、その表面にCVD法により700〜900℃で炭素化合物を熱分解してCNTを気相成長させることによって基板表面に垂直方向に配向した形状で得られる。このようにして作製された短繊維状CNTは基板から剥ぎ取るなどの方法で取り出すことができる。また、短繊維状CNTはポーラスシリコンのようなポーラスな支持体や、アルミナの陽極酸化膜上に触媒金属を担持させ、その表面にCNTをCVD法にて成長させることもできる。触媒金属を分子内に含む鉄フタロシアニンのような分子を原料とし、アルゴン/水素のガス流中でCVDを行うことによって基板上にCNTを作製する方法でも配向した短繊維状のCNTを作製することもできる。さらには、SiC単結晶表面にエピタキシャル成長法によって配向した短繊維状CNTを得ることもできる。溶液の塗布より得られた分散体が半導体として利用される場合には、CNTの平均長さは電極間距離によるが、好ましくは2μm以下、より好ましくは0.5μm以下で使用される。   In the present invention, CNT can be used as it is after the above purification, but when the coating film is used as a semiconductor, in order to prevent a short circuit between the device electrodes, it is possible to use a CNT shorter than the distance between the device electrodes. desirable. However, since CNTs are generally produced in the form of strings, it is desirable to cut them for use in the form of short fibers. In order to cut into short fibers, ultrasonic treatment is effective together with acid treatment with nitric acid, sulfuric acid, etc., and it is more preferable to use separation with a filter in combination for improving purity. In addition, not only the cut CNT but also a CNT prepared in a short fiber shape in advance is preferably used according to the present invention. Such short fibrous CNTs form a catalytic metal such as iron or cobalt on a substrate, and thermally decompose carbon compounds at 700 to 900 ° C. by CVD on the surface thereof to vapor-phase grow the CNTs. It is obtained in a shape oriented in the vertical direction. The short fiber CNTs thus produced can be taken out by a method such as peeling off from the substrate. In addition, the short fibrous CNTs can be obtained by supporting a catalytic metal on a porous support such as porous silicon or an anodic oxide film of alumina and growing the CNTs on the surface by the CVD method. Using oriented molecules such as iron phthalocyanine containing a catalytic metal in the molecule as a raw material and producing CNTs on a substrate by performing CVD in an argon / hydrogen gas flow, producing oriented short fiber CNTs You can also. Furthermore, it is also possible to obtain short fiber CNTs oriented on the SiC single crystal surface by an epitaxial growth method. When the dispersion obtained by applying the solution is used as a semiconductor, the average length of CNT depends on the distance between the electrodes, but is preferably 2 μm or less, more preferably 0.5 μm or less.

本発明で用いられるCNTの直径は特に限定されないが、1nm以上、100nm以下、より好ましくは50nm以下が良好に使用される。   Although the diameter of CNT used by this invention is not specifically limited, 1 nm or more and 100 nm or less, More preferably, 50 nm or less is used favorably.

共役系重合体が付着したCNTを溶媒の中に分散させることによって、本発明のCNTの分散溶液を得ることができる。共役系重合体をCNTに付着させる方法としては、共役系重合体とCNTとの間に相互作用があるため、共役系重合体の溶液中にCNTを添加して分散させることによって、少なくともその一部に付着したCNTが溶液中に生成される。該溶液中で共役系重合体をCNTに効率的に付着させるには、CNTを溶媒中で予め超音波照射下で予備分散した後、共役系重合体を添加し分散させる方法、あるいはCNTと共役系高分子を溶媒に混合した後、超音波照射下で分散する方法、溶融した共役系重合体の中にCNTを添加して分散させる方法等がある。本発明においては、何れの方法でも良いが、中でもCNTを溶媒中で超音波で予備分散しておいた後に共役系重合体を添加する方法や、CNTと共役系高分子を溶媒に混合した後、超音波照射を行う方法が好ましい。ここで、超音波照射は超音波洗浄機、超音波破砕機などを用いて行うことができる。   By dispersing the CNTs to which the conjugated polymer is adhered in a solvent, the CNT dispersion solution of the present invention can be obtained. As a method of attaching the conjugated polymer to the CNT, since there is an interaction between the conjugated polymer and the CNT, at least one of them can be performed by adding and dispersing the CNT in the conjugated polymer solution. CNT adhering to the part is generated in the solution. In order to efficiently attach the conjugated polymer to the CNT in the solution, the CNT is preliminarily dispersed in a solvent under ultrasonic irradiation, and then the conjugated polymer is added and dispersed, or the CNT is conjugated with the CNT. There are a method in which a polymer is mixed with a solvent and then dispersed under ultrasonic irradiation, a method in which CNT is added and dispersed in a molten conjugated polymer, and the like. In the present invention, any method may be used, but in particular, a method of adding a conjugated polymer after preliminarily dispersing CNT in a solvent in a solvent, or after mixing CNT and a conjugated polymer in a solvent. A method of performing ultrasonic irradiation is preferred. Here, ultrasonic irradiation can be performed using an ultrasonic cleaner, an ultrasonic crusher, or the like.

共役系重合体がCNTの少なくとも一部に付着した状態とは、CNT表面の一部、あるいは全部を共役系重合体が被覆した状態を意味する。CNTを共役系重合体が被覆できるのはそれぞれの共役系構造に由来するπ電子雲が重なることによって相互作用が生じるためと推測される。CNTが共役系重合体で被覆されているか否かは、該CNTの反射色が元のCNTの色から共役系重合体の色に近づくことで判別できる。定量的には元素分析によって付着物の存在とCNTに対する付着物の重量比を同定することができる。また共役系重合体が少なくとも一部に付着した状態とは、CNTの重量を1.0とした時の共役系重合体の重量比率が少なくとも0.1である状態ということもできる。   The state in which the conjugated polymer is attached to at least a part of the CNT means a state in which a part or all of the CNT surface is covered with the conjugated polymer. The reason why the conjugated polymer can be coated with CNT is presumed to be that interaction occurs due to the overlap of π electron clouds derived from the respective conjugated structures. Whether or not CNT is coated with a conjugated polymer can be determined by the fact that the reflected color of the CNT approaches the color of the conjugated polymer from the original CNT color. Quantitatively, the presence of deposits and the weight ratio of deposits to CNTs can be identified by elemental analysis. The state in which the conjugated polymer is attached to at least a part can also be a state in which the weight ratio of the conjugated polymer is at least 0.1 when the weight of CNT is 1.0.

その後、フィルター(好ましくは0.1μm径)で上記CNTを濾過して捕集し、溶媒を用いて該CNTを十分に洗浄する。この洗浄工程によって、余剰の共役系重合体が除去されて共役系重合体の付着したCNTのみが得られる。CNTに付着した共役系高分子は該CNTの溶媒への親和性を高めるのに寄与するが、残存する重合体は付着したもののみに限られるため、本発明によるCNT分散体はCNT本来の導電性や半導体特性に近い特性(例えば電界効果型トランジスタに使用した場合には高いキャリア移動度)が得られる。なお、濾過・洗浄後、共役系重合体がCNTの表面に吸着していることは種々の分析法、例えば元素分析、表面分析装置で確認することができる。   Thereafter, the CNTs are filtered and collected with a filter (preferably with a diameter of 0.1 μm), and the CNTs are sufficiently washed with a solvent. By this washing step, excess conjugated polymer is removed, and only CNTs to which the conjugated polymer is attached are obtained. The conjugated polymer adhering to the CNT contributes to increasing the affinity of the CNT to the solvent, but the remaining polymer is limited to only the adhering polymer. And characteristics close to semiconductor characteristics and semiconductor characteristics (for example, high carrier mobility when used in a field effect transistor) can be obtained. In addition, after filtration and washing | cleaning, it can confirm with the various analysis methods, for example, an elemental analysis, a surface analysis apparatus, that the conjugated polymer adsorb | sucks to the surface of CNT.

次に、上記の方法で得られた共役系重合体の付着したCNTを溶媒中に分散させることによってCNT分散溶液が調製される。ここで溶媒中への分散手段としては撹拌、超音波照射分散、振動分散などの手段から必要に応じて方法を選ぶことができる。   Next, a CNT dispersion solution is prepared by dispersing CNTs attached with the conjugated polymer obtained by the above method in a solvent. Here, as a means for dispersing in the solvent, a method can be selected as necessary from means such as stirring, ultrasonic irradiation dispersion, vibration dispersion and the like.

CNT分散溶液の調製に使用される溶媒としては、特に有機溶媒が好ましく用いられ、メタノール、エタノール、ブタノール、トルエン、キシレン、o−クロロフェノール、アセトン、酢酸エチル、エチレングリコール、クロロホルム、クロロベンゼン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、γ−ブチロラクトンなどが挙げられるがこれらに限定されるものではなく、必要に応じて溶媒を選ぶことができる。   As the solvent used for the preparation of the CNT dispersion solution, an organic solvent is particularly preferably used. Methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, chloroform, chlorobenzene, dimethylformamide , Dimethyl sulfoxide, N-methylpyrrolidone, γ-butyrolactone and the like, but are not limited thereto, and a solvent can be selected as necessary.

溶媒中のCNT分散量は必要に応じて定められるが、溶媒1リットル中に10g以下、100μg以上が好ましく用いられる。   The amount of CNT dispersion in the solvent is determined as necessary, but 10 g or less and 100 μg or more are preferably used in 1 liter of the solvent.

このようにして得られたCNT分散溶液を基板上に塗布することによって、基板上に導電性や半導体性の機能を付与することができる。塗布方法としては、キャスト法、スピナーによる方法、ディップ法、バーコーター法、滴下法など一般的な方法が可能である。基板としてはガラスやシリコンウエハー、構造材などの無機物のみならず、フィルム、繊維、織物膜、板、紙などに塗布することができる。   By applying the CNT dispersion solution thus obtained on the substrate, it is possible to impart a conductive or semiconducting function on the substrate. As a coating method, general methods such as a casting method, a spinner method, a dipping method, a bar coater method, and a dropping method are possible. The substrate can be applied not only to inorganic substances such as glass, silicon wafers and structural materials, but also to films, fibers, fabric films, boards, papers and the like.

本発明で得られるCNT分散体を電界効果型トランジスタの半導体層として用いる場合には、絶縁層で覆われたゲート電極上に本発明のCNT分散溶液をスピナーを用いて塗布し、塗布膜中に残存する溶媒を蒸発させることによってCNT分散体の半導体層が形成される。このCNT分散体層の上にソース電極とドレイン電極とを対峙させて形成することによって、電界効果トランジスタ構造が作製される。   When the CNT dispersion obtained in the present invention is used as a semiconductor layer of a field effect transistor, the CNT dispersion solution of the present invention is applied onto a gate electrode covered with an insulating layer using a spinner, A semiconductor layer of the CNT dispersion is formed by evaporating the remaining solvent. A field effect transistor structure is fabricated by forming a source electrode and a drain electrode in opposition to each other on the CNT dispersion layer.

基板上に共役系重合体が付着したCNT分散体のパターンを形成する場合には、該CNTが溶媒に溶解しやすいことを利用して感光性レジストを用いてフォトリソグラフィー法によってパターンを形成することが可能である。   When forming a pattern of a CNT dispersion with a conjugated polymer attached on a substrate, the pattern is formed by a photolithography method using a photosensitive resist using the fact that the CNT is easily dissolved in a solvent. Is possible.

上記の方法によって作製されるCNT分散体の数密度は、溶媒中のCNT成分量と単位面積当たりの使用塗液量によって決まる。導電性を付与するには数密度が高いほど好ましいが、半導体特性を付与するには、CNTの数密度はパーコレーションによる伝導パスが形成される密度以下、すなわち1平方ミクロン当たり500以下、1.0以上であることが好ましい。本発明におけるCNTの分散状態を確認する方法としては種々の顕微鏡観察が用いられるが、CNTの数密度を調べるには原子間力顕微鏡が好ましく用いられる。   The number density of the CNT dispersion produced by the above method is determined by the amount of the CNT component in the solvent and the amount of coating liquid used per unit area. In order to impart conductivity, the higher the number density, the better. However, in order to impart semiconductor characteristics, the number density of CNTs is less than the density at which a conduction path is formed by percolation, that is, less than 500 per square micron, The above is preferable. Various microscopic observations are used as a method for confirming the dispersion state of CNTs in the present invention, and an atomic force microscope is preferably used for examining the number density of CNTs.

本発明のCNT分散体を半導体層として用いる場合にはその厚みはCNT数本以下の厚みになるので透明性が高く、透明な半導体層になる。例えばゲート電極、ソース電極、ドレイン電極の材料をITOまたはSbドープSnOまたは高導電性有機材料などの透明材料を用い、絶縁層もSiOや絶縁性ポリマーなどの透明材料を用いることで透明な半導体素子を形成することができる。 When the CNT dispersion of the present invention is used as a semiconductor layer, the thickness is several CNTs or less, so that the transparency is high and a transparent semiconductor layer is obtained. For example, a transparent material such as ITO or Sb-doped SnO 2 or a highly conductive organic material is used for the material of the gate electrode, source electrode, and drain electrode, and the insulating layer is also transparent by using a transparent material such as SiO 2 or an insulating polymer. A semiconductor element can be formed.

本発明で得られるCNT分散体を導電体として用いる場合には、基板等に塗布されたCNTが互いに接触する程度に高濃度に塗布すると良い。すなわちCNTの1平方ミクロン当たりの数密度が500より大きければ良い。CNT分散液の濃度が低い場合には、塗布膜厚を厚くしたり、塗布回数を増やすなどの方法によって導電体を得ることができ、またCNT分散液中のCNT濃度を高くして塗布することによっても導電体を得ることができる。   When the CNT dispersion obtained in the present invention is used as a conductor, the CNT dispersion applied to a substrate or the like is preferably applied at a high concentration so that the CNTs are in contact with each other. That is, it is sufficient that the number density per square micron of CNT is larger than 500. When the concentration of the CNT dispersion is low, the conductor can be obtained by increasing the coating thickness or increasing the number of coatings, and the CNT concentration in the CNT dispersion can be increased. The conductor can also be obtained.

上記のような導電体は膜厚が2nm以上あれば良く、特に膜厚が2nm〜200nmの場合には透明性が高く、透明導電体として用いることができる。この範囲の膜厚であれば可視光透過率が50%T以上となり、膜厚を2nm〜100nmにすることで可視光透過率は80%Tを超え良好な透明導電膜を得ることができる。該透明導電体は膜厚が厚いほど抵抗を小さくできるが、同時に光の透過率が小さくなるので、目的に応じて膜厚を調製すると良い。より低抵抗、高透過率の透明導電体を得るためには、1本の長さがより長いCNTを用いたり、より細いCNT用いたり、CNT分散時に用いる撹拌や超音波照射などの条件をより強力にする方法などが好ましく用いられる。   The conductor as described above only needs to have a film thickness of 2 nm or more. In particular, when the film thickness is 2 nm to 200 nm, the conductor has high transparency and can be used as a transparent conductor. If the film thickness is within this range, the visible light transmittance is 50% T or more. By setting the film thickness to 2 nm to 100 nm, the visible light transmittance exceeds 80% T, and a good transparent conductive film can be obtained. Although the resistance of the transparent conductor can be reduced as the film thickness increases, the light transmittance decreases at the same time. Therefore, the film thickness is preferably adjusted according to the purpose. In order to obtain a transparent conductor having a lower resistance and a higher transmittance, it is necessary to use CNTs with a longer length, use thinner CNTs, or use conditions such as stirring and ultrasonic irradiation used for CNT dispersion. A method of strengthening is preferably used.

CNT分散液から導電体を得る他の方法として、ある支持体の上に一度CNT分散体膜を形成し、得られた分散体膜を他の支持体に写して形成する方法も用いることができる。例えば、CNT分散液を、フィルター上に捕集して堆積したCNTを別の基板上に写して形成する方法や、あるいは、フィルム上に塗布して得られたCNT分散体膜を別の基板に写して形成する方法などがある。この場合、CNT分散体膜の付着したフィルターやフィルムを、別の基板にCNT分散体膜が付着するように接触させることでCNT分散体膜を写すことができる。この際フィルターやフィルムはCNT分散体膜の剥離性の良好なものが好ましく用いられ、PET(ポリエチレンテレフタレート)、ナイロン、PP(ポリプロピレン)、PTFE(ポリテトラフロオロエチレン)製のものが、より好ましく用いられる。さらにフィルターやフィルムの背面から圧力を加えたり、少量の溶媒を湿潤させることで良好に膜を写して形成することができる。   As another method of obtaining a conductor from a CNT dispersion, a method of forming a CNT dispersion film once on a certain support and copying the obtained dispersion film on another support can also be used. . For example, a method of forming a CNT dispersion liquid by collecting and depositing CNTs deposited on a filter on another substrate, or a CNT dispersion film obtained by coating on a film on another substrate There are methods such as copying and forming. In this case, the CNT dispersion film can be copied by bringing the filter or film to which the CNT dispersion film is attached into contact with another substrate so that the CNT dispersion film is attached. In this case, a filter or film having a good CNT dispersion film peelability is preferably used, and those made of PET (polyethylene terephthalate), nylon, PP (polypropylene), and PTFE (polytetrafluoroethylene) are more preferable. Used. Furthermore, a film can be well copied and formed by applying pressure from the back of the filter or film or moistening a small amount of solvent.

このように膜を写して形成する方法においては、予め必要なパターンを支持体に施しておくことでパターン形成をすることができる。例えばフィルター上にCNT分散体膜を形成する場合にはフィルターの上面にパターンの型を抜いたフィルムなどを重ねておくことで、所望のパターンを得ることができ、フィルム上にCNT分散体膜を形成する場合には、別の支持体との間にパターンの型を抜いたフィルムを挟んだり、あるいはCNT分散液との親和性の異なる材料を用いてパターン形成しておくなどして、所望のパターンを得ることができる。   In such a method of forming a film by copying, the pattern can be formed by applying a necessary pattern to the support in advance. For example, when a CNT dispersion film is formed on a filter, a desired pattern can be obtained by stacking a pattern-extracted film on the upper surface of the filter, and the CNT dispersion film is formed on the film. In the case of forming, a desired pattern may be obtained by sandwiching a film from which a pattern is removed with another support, or by forming a pattern using a material having a different affinity with the CNT dispersion liquid. A pattern can be obtained.

本発明においてはCNT分散液が非常に均一に分散しているのでフィルター上に捕集したCNTや、フィルム上に塗布したCNTは、面内均一性が高く、これらを転写することで高品質のCNT分散体膜を得ることができる。   In the present invention, since the CNT dispersion liquid is very uniformly dispersed, the CNT collected on the filter and the CNT coated on the film have high in-plane uniformity, and high quality can be obtained by transferring them. A CNT dispersion film can be obtained.

本発明を用いて得られる導電体は面内の均一性が高く、例えば電子放出素子の電子放出源として好ましく用いることができる。面内均一性を高くできることで面内いずれの箇所においても均一に電界を印加することができ、例えばフィールドエミッションディスプレイにおいては輝度ムラを抑制することができ、高品位な画像を得ることができる。   The conductor obtained by using the present invention has high in-plane uniformity, and can be preferably used, for example, as an electron emission source of an electron emission element. Since the in-plane uniformity can be increased, an electric field can be applied uniformly at any location in the plane. For example, in a field emission display, luminance unevenness can be suppressed, and a high-quality image can be obtained.

本発明で得られたCNT分散体の各CNTには共役系高分子が付着しており、一方、共役系高分子は一般にπ電子が移動しやすい構造となっているので、CNT間の電荷移動が妨げられず電荷がスムーズに移動できる。もちろん、必要に応じて共役系高分子を剥離してCNTのみの分散構造体とすることも可能である。この方法としては、例えば共役系高分子の熱分解温度とCNTの熱分解温度の間の温度でCNT分散体を熱処理することによって共役系高分子を除去する方法などが挙げられる。   Conjugated polymers are attached to each CNT of the CNT dispersion obtained in the present invention. On the other hand, conjugated polymers generally have a structure in which π electrons easily move. The charge can move smoothly without being disturbed. Of course, if necessary, the conjugated polymer can be peeled off to form a dispersion structure only of CNTs. Examples of this method include a method of removing the conjugated polymer by heat-treating the CNT dispersion at a temperature between the thermal decomposition temperature of the conjugated polymer and the thermal decomposition temperature of the CNT.

以下、本発明を実施例に基づきさらに具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

実施例1
CNT(単層カーボンナノチューブ:サイエンスラボラトリーズ社製、純度95%)を6mgと、共役系重合体のポリ−3−ヘキシルチオフェン(アルドリッチ社製、分子量:Mw20000)を6mgと、クロロホルム30mLを50mLのサンプル管に入れ、超音波破砕機(東京理化器械(株)製VCX−502、出力250W、直接照射)を用いて20分間超音波照射してCNTの分散を行った。得られたCNT分散液をポリテトラフルオロエチレン製の0.1μm孔フィルター(東洋アドバンテック(株)製)で濾別した後、クロロホルムで洗浄することによって余分な重合体を除去し表面にポリ−3−ヘキシルチオフェンが付着したCNTを得た。ポリ−3−ヘキシルチオフェンのCNTの付着量は元素分析法によって測定した。この時のポリ−3−ヘキシルチオフェンの付着量の重量比率はCNT1.0に対し0.89であった。
Example 1
CNT (single-walled carbon nanotube: Science Laboratories, purity 95%) 6 mg, conjugated polymer poly-3-hexylthiophene (Aldrich, molecular weight: Mw 20000) 6 mg, chloroform 30 mL 50 mL sample The CNTs were dispersed by ultrasonic irradiation for 20 minutes using an ultrasonic crusher (VCX-502 manufactured by Tokyo Rika Kikai Co., Ltd., output 250 W, direct irradiation). The obtained CNT dispersion was filtered with a 0.1 μm pore filter (manufactured by Toyo Advantech Co., Ltd.) made of polytetrafluoroethylene, and then washed with chloroform to remove excess polymer and poly-3 on the surface. -CNTs with attached hexylthiophene were obtained. The amount of CNT adhered to poly-3-hexylthiophene was measured by elemental analysis. The weight ratio of the attached amount of poly-3-hexylthiophene at this time was 0.89 with respect to CNT 1.0.

次いで、該CNTにクロロホルム150mLを加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W、間接照射)を用いて1時間超音波分散することによって、共役系重合体が付着したCNTが均一に分散したCNT分散クロロホルム溶液(CNT濃度0.04g/L)が得られた。   Next, 150 mL of chloroform is added to the CNT, and the conjugated polymer is adhered by ultrasonically dispersing for 1 hour using an ultrasonic cleaner (US-2 manufactured by Iuchi Seieido Co., Ltd., output 120 W, indirect irradiation). A CNT-dispersed chloroform solution (CNT concentration 0.04 g / L) in which the produced CNTs were uniformly dispersed was obtained.

実施例2
実施例1で得られた分散溶液0.05mLを、シリコンウエハー上にある周縁部を粘着テープでマスクした5mm角の部分に滴下し、風乾した。粘着テープを除去し、塗布されたCNTをAFMを用いて観察した(図1参照)。表面にポリ−3−ヘキシルチオフェンが付着したCNTが良好に分散した状態で基板に付着しており、そのCNTの数密度は約3個/μmであった。
Example 2
0.05 mL of the dispersion solution obtained in Example 1 was dropped onto a 5 mm square portion in which the peripheral portion on the silicon wafer was masked with an adhesive tape, and air-dried. The adhesive tape was removed, and the applied CNTs were observed using AFM (see FIG. 1). The CNTs with poly-3-hexylthiophene attached to the surface adhered to the substrate in a well dispersed state, and the number density of the CNTs was about 3 / μm 2 .

実施例3
CNTの分散を、超音波破砕機の代わりに超音波洗浄機を用いて2時間分散した以外は実施例1と同じ操作を行った。シリコン基板上に塗布されたCNTをAFMで観察したところ、表面にポリ−3−ヘキシルチオフェンが付着したCNTが良好に分散した状態で基板に付着していた。
Example 3
The same operation as in Example 1 was performed except that the dispersion of CNT was dispersed for 2 hours using an ultrasonic cleaner instead of the ultrasonic crusher. When the CNT coated on the silicon substrate was observed with an AFM, the CNT with poly-3-hexylthiophene adhered to the surface was adhered to the substrate in a well dispersed state.

実施例4
実施例1のポリ−3−ヘキシルチオフェンの代わりにポリ−3−ブチルチオフェンを用いた以外は、実施例1と同様にCNTの分散溶液を調整した結果、CNTが均一に分散した分散溶液が得られた。
Example 4
Except that poly-3-butylthiophene was used instead of poly-3-hexylthiophene in Example 1, a CNT dispersion solution was prepared in the same manner as in Example 1 to obtain a dispersion solution in which CNTs were uniformly dispersed. It was.

比較例1
実施例1の超音波破砕機によるCNTの分散時に、ポリ−3−ヘキシルチオフェンを用いなかった以外は実施例1と同じ操作を行った。0.1μm孔フィルターでろ別したCNTをクロロホルム中に入れ、超音波洗浄機で分散を試みたが、CNTは分散せず、沈殿した。
Comparative Example 1
The same operation as in Example 1 was performed except that poly-3-hexylthiophene was not used during the dispersion of CNTs by the ultrasonic crusher of Example 1. CNT filtered with a 0.1 μm pore filter was placed in chloroform and dispersion was attempted with an ultrasonic cleaner, but CNT did not disperse but precipitated.

実施例5
図2の模式断面図に示すような電界効果型トランジスタ(FET)を作製した。
基板としてSiO膜(膜厚300nm)(40)付きのアンチモンドープシリコンウエハー(抵抗率0.02Ωcm以下)(50)を用いた。ここで、シリコンウエハーは基板であると同時に、ゲート電極(60)であり、熱酸化膜は絶縁層となる。次にフォトリソグラフィー技術および真空蒸着法を用いて櫛型状のソース電極(30)およびドレイン電極(20)を形成した。ここで両電極の電極材には金を用いた。また、両櫛形電極の幅(チャネル幅)は50cm、電極の間隔(チャネル長)は20μm、電極の高さは40nmとした。これらをFET基板と称する。またここで用いたフォトリソグラフィー技術および真空蒸着法は一般的に用いられている条件等で行った。
Example 5
A field effect transistor (FET) as shown in the schematic cross-sectional view of FIG. 2 was produced.
As a substrate, an antimony-doped silicon wafer (resistivity 0.02 Ωcm or less) (50) with a SiO 2 film (film thickness 300 nm) (40) was used. Here, the silicon wafer is a substrate and at the same time the gate electrode (60), and the thermal oxide film is an insulating layer. Next, a comb-shaped source electrode (30) and a drain electrode (20) were formed using a photolithography technique and a vacuum deposition method. Here, gold was used for the electrode material of both electrodes. The width of both comb electrodes (channel width) was 50 cm, the distance between the electrodes (channel length) was 20 μm, and the height of the electrodes was 40 nm. These are called FET substrates. The photolithography technique and the vacuum deposition method used here were performed under generally used conditions.

次に、半導体層(10)として用いる有機高分子半導体で被覆された単層CNT(以下、SWCNTと言う)の塗液を以下の方法で調整した。   Next, a coating solution of single-walled CNT (hereinafter referred to as SWCNT) coated with an organic polymer semiconductor used as the semiconductor layer (10) was prepared by the following method.

SWCNT0.3mgを、有機高分子半導体であるポリ−3−ヘキシルチオフェン(以下P3HTと略す)(アルドリッチ社製)0.3mgを溶解した30mLのクロロホルムの中に加え、氷冷しながら超音波ホモジナイザー(SONICS社製VCX−500)を用いて出力250Wで30分間超音波攪拌してSWCNT分散液を得た。得られたSWCNT分散液に、P3HT30mgを加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W)を用いて30分間超音波攪拌することによりSWCNTをP3HTで被覆した。   Add 0.3 mg of SWCNT to 30 mL of chloroform in which 0.3 mg of poly-3-hexylthiophene (hereinafter abbreviated as P3HT) (Aldrich), which is an organic polymer semiconductor, is dissolved, and an ultrasonic homogenizer ( SONICS VCX-500) was used for ultrasonic stirring at an output of 250 W for 30 minutes to obtain a SWCNT dispersion. To the obtained SWCNT dispersion, 30 mg of P3HT was added, and the SWCNT was coated with P3HT by ultrasonic stirring for 30 minutes using an ultrasonic cleaner (US-2 manufactured by Iuchi Seieido Co., Ltd., output 120 W).

次いで余剰のP3HTを除去すべく、該分散液を公称0.1μm孔径のPTFE製オムニポアメンブレン(アドバンテック(株)製)を用い、P3HTコートSWCNTの濾別を行った。フィルター上に堆積したP3HTでコートされたSWCNTをクロロホルム30mLで2度洗浄した後、P3HTでコートされたSWCNTをフィルターごと30mLのクロロホルムの中に入れ、超音波洗浄機を用いて超音波照射することによって再びP3HTでコートされたSWCNTを分散し、これを塗液とした。   Subsequently, in order to remove excess P3HT, the dispersion was subjected to filtration of P3HT-coated SWCNTs using a PTFE omnipore membrane (Advantech Co., Ltd.) having a nominal pore size of 0.1 μm. After SWCNT coated with P3HT deposited on the filter is washed twice with 30 mL of chloroform, the SWCNT coated with P3HT is put into 30 mL of chloroform together with the filter, and ultrasonically irradiated using an ultrasonic cleaner. Then, SWCNT coated with P3HT was dispersed again to obtain a coating solution.

該塗液を前述の基板上に滴下しスピンコート法(ミカサ製スピンコーター1H−D3、回転速度1000rpm)により膜厚5nmの薄膜を形成した。該基板に引き出し電極用の銀線を取りつけた後、70℃の真空乾燥機中に30分間静置し、FET素子を形成した。この素子のゲート電極に電圧を印加しながらドレイン・ソース間の電圧電流特性を測定した。この時の移動度は0.17cm/V・secであった。 The coating solution was dropped on the above-mentioned substrate, and a thin film having a thickness of 5 nm was formed by a spin coating method (Mikasa spin coater 1H-D3, rotation speed 1000 rpm). After attaching a silver wire for the lead electrode to the substrate, it was left to stand in a vacuum dryer at 70 ° C. for 30 minutes to form an FET element. The voltage-current characteristics between the drain and the source were measured while applying a voltage to the gate electrode of this element. The mobility at this time was 0.17 cm 2 / V · sec.

比較例2
SWCNT0.2mgを、有機高分子半導体であるP3HT0.2mgを溶解した10mLのクロロホルムの中に加え、氷冷しながら超音波ホモジナイザー(SONICS社製VCX−500)を用いて出力250Wで30分間超音波攪拌してSWCNT分散液を得た。
Comparative Example 2
Add SWCNT 0.2mg into 10mL chloroform dissolved organic polymer semiconductor P3HT 0.2mg, and use ultrasonic homogenizer (SONX VCX-500) for 30 minutes while cooling with ice. Stirring to obtain a SWCNT dispersion.

得られたSWCNT分散液に、P3HT50mgを加え、超音波洗浄機(井内盛栄堂製US−2、出力120W)を用いて30分間超音波攪拌することによりSWCNTが分散したP3HT溶液を得た。この溶液を実施例5と同様のFET基板上に滴下しスピンコート法(回転速度1000rpm)により膜厚40nmの薄膜を形成した。該基板に引き出し電極用の銀線を取りつけた後、70℃の真空乾燥機中に30分間静置し、FET素子を形成した。この素子のゲート電極に電圧を印加しながらドレイン・ソース間の電圧電流特性を測定した。この時の移動度は2.54×10−3cm/V・secであった。 50 mg of P3HT was added to the obtained SWCNT dispersion, and a P3HT solution in which SWCNTs were dispersed was obtained by ultrasonically stirring for 30 minutes using an ultrasonic washer (US-2 manufactured by Iuchi Seieido, output 120 W). This solution was dropped on the same FET substrate as in Example 5, and a thin film having a thickness of 40 nm was formed by spin coating (rotation speed: 1000 rpm). After attaching a silver wire for the lead electrode to the substrate, it was left to stand in a vacuum dryer at 70 ° C. for 30 minutes to form an FET element. The voltage-current characteristics between the drain and the source were measured while applying a voltage to the gate electrode of this element. The mobility at this time was 2.54 × 10 −3 cm 2 / V · sec.

実施例6
実施例1と同様の方法を用いて、CNT表面にポリ−3−ヘキシルチオフェンが付着したCNTを調製したが、超音波洗浄機を用いてCNTを分散するときに加えるクロロホルムの量を150mLから6mLに減らし、CNT濃度1g/Lの共役系重合体が付着したCNTの均一分散液を得た。
Example 6
A CNT with poly-3-hexylthiophene attached to the CNT surface was prepared using the same method as in Example 1, but the amount of chloroform added when dispersing the CNT using an ultrasonic cleaner was changed from 150 mL to 6 mL. To obtain a uniform dispersion of CNTs to which a conjugated polymer having a CNT concentration of 1 g / L was adhered.

次いで得られたCNT分散液0.3mLを、3cm角のガラス基板上に滴下し、基板の端に設けた厚み50μmの粘着テープをスペーサーとしてブレードキャストした。溶媒が揮発した後、CNT分散体膜が得られた。得られたCNT分散体膜を、紫外可視分光光度計((株)島津製作所製、MultiSpec-1500)を用いて透過率を測定したところ、500nmの波長で80%Tであった。次にCNT分散体膜上に銀ペースト(藤倉化成(株)製、ドータイトD−500(商品名)を用いて、幅1cm、間隔1cmの対抗電極を作製し、電極間の抵抗から表面抵抗値を求めたところ、800Ω/□であった。   Next, 0.3 mL of the obtained CNT dispersion was dropped onto a 3 cm square glass substrate, and blade casted using an adhesive tape with a thickness of 50 μm provided at the edge of the substrate as a spacer. After the solvent was volatilized, a CNT dispersion film was obtained. When the transmittance of the obtained CNT dispersion film was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, MultiSpec-1500), it was 80% T at a wavelength of 500 nm. Next, using a silver paste (made by Fujikura Kasei Co., Ltd., Dotite D-500 (trade name) on the CNT dispersion film, a counter electrode having a width of 1 cm and an interval of 1 cm was prepared. Was found to be 800Ω / □.

比較例3
比較例1で調製したCNTをCNT濃度1g/Lになるようにクロロホルム量を調整し、マグネチックスターラーで撹拌しながら液をスポイト中に0.3mL秤取った。該液0.3mLを、3cm角のガラス基板上に滴下し、基板の端に設けた厚み50μmの粘着テープをスペーサーとしてブレードキャストした。溶媒が揮発した後、CNT膜面を目視観察したところ、CNTは凝集しており、黒色の斑点が多数観察された。
Comparative Example 3
The amount of chloroform was adjusted so that the CNT prepared in Comparative Example 1 had a CNT concentration of 1 g / L, and 0.3 mL of the liquid was weighed into a dropper while stirring with a magnetic stirrer. 0.3 mL of the liquid was dropped onto a 3 cm square glass substrate, and blade casted using an adhesive tape having a thickness of 50 μm provided at the edge of the substrate as a spacer. When the CNT film surface was visually observed after the solvent was volatilized, the CNTs were agglomerated and many black spots were observed.

実施例7
実施例1と同様の方法を用いて、CNT表面にポリ−3−ヘキシルチオフェンが付着したCNTを調製したが、超音波洗浄機を用いてCNTを分散するときに加えるクロロホルムの量を150mLから60mLに減らし、CNT濃度0.1g/Lの共役系重合体が付着したCNTの均一分散液を得た。
Example 7
A CNT with poly-3-hexylthiophene attached to the CNT surface was prepared using the same method as in Example 1, but the amount of chloroform added when dispersing the CNT using an ultrasonic cleaner was changed from 150 mL to 60 mL. To obtain a uniform CNT dispersion with a conjugated polymer having a CNT concentration of 0.1 g / L.

次いで、得られたCNT分散液0.1mLを直径20mmの銀電極上に滴下して溶媒を乾燥し、さらに滴下と乾燥を5回くりかえして、CNT分散体膜を得た。なお、銀電極はガラス基板上に銀ペーストを塗布・焼成して形成したものであり、銀電極の周囲には高さ100μm、線幅50μmの円形のスペーサー用隔壁をガラスペーストを塗布・焼成して予め形成しておいた。次いでCNT分散体膜付き銀電極基板と、もう1枚の銀電極付きガラス基板とを、封着ペーストを用い530℃で焼成することによって貼り合わせ、脱気孔から真空排気して内圧を1×10−5Paにすることで、電子放出素子評価用基板Aを得た。 Next, 0.1 mL of the obtained CNT dispersion liquid was dropped on a silver electrode having a diameter of 20 mm, the solvent was dried, and dropping and drying were repeated 5 times to obtain a CNT dispersion film. The silver electrode is formed by applying and baking a silver paste on a glass substrate. A circular partition wall for a spacer having a height of 100 μm and a line width of 50 μm is applied and fired around the silver electrode. Previously formed. Next, the silver electrode substrate with a CNT dispersion film and another glass substrate with a silver electrode were bonded together by baking at 530 ° C. using a sealing paste, and the internal pressure was reduced to 1 × 10 by evacuating from the deaeration holes. The substrate A for electron-emitting device evaluation was obtained by setting it to -5 Pa.

電子放出素子評価用基板Aの対向電極間に電圧を印加し、電流値を測定した。徐々に電圧を上げていったところ、エミッション電流が観察され、ターンオン電界は3.8V/μmであった。   A voltage was applied between the counter electrodes of the electron-emitting device evaluation substrate A, and the current value was measured. As the voltage was gradually increased, an emission current was observed, and the turn-on electric field was 3.8 V / μm.

実施例8
実施例7で作製したCNT分散体膜付きの銀電極基板に、ITO電極上に厚み10μmの蛍光体層を設けた基板を、封着ペーストを用いて貼り合わせ、脱気孔から真空排気して内部圧を1×10−5Paにすることで、電子放出素子評価用基板Bを得た。なお蛍光体粉末は化成オプトニクス(株)製CRT用グリーン蛍光体P22を用いた。電子放出素子評価用基板Bの対向電極間に電圧を500V印加したところ、CNTからの電界放出によって蛍光体がほぼ均一に発光した。
Example 8
The silver electrode substrate with the CNT dispersion film produced in Example 7 was bonded to a substrate having a phosphor layer having a thickness of 10 μm on the ITO electrode using a sealing paste, and the inside was evacuated from the deaeration holes. The substrate B for electron-emitting device evaluation was obtained by setting the pressure to 1 × 10 −5 Pa. The phosphor powder used was CRT green phosphor P22 manufactured by Kasei Optonix. When a voltage of 500 V was applied between the counter electrodes of the electron emission element evaluation substrate B, the phosphors emitted light almost uniformly by field emission from the CNTs.

実施例9
実施例7と同様の方法を用いて、CNT表面にポリ−3−ヘキシルチオフェンが付着したCNTを調製し、CNT濃度0.1g/Lの共役系重合体が付着したCNTの均一分散液を得た。次いで、得られたCNT分散液1mLを、直径13mmのポリテトラフルオロエチレン製の0.1μm孔フィルターを用いて濾別捕集し、フィルター上にCNT分散体膜を得た。CNT分散体膜の堆積したフィルターをCNT面が挟まれるようにして直径20mmの銀電極上に載せ、PETフィルムを介してフィルターに押圧をかけた。次いでフィルターを剥がしたところ銀電極上にCNT分散体膜が形成された。得られたCNT分散体膜の厚みをレーザー顕微鏡((株)キーエンス製VF−7510)を用いて測定したところ0.9〜1μmであり、非常に均一な膜厚であった。こうして作製したCNT分散体膜付きの銀電極基板に、ITO電極上に厚み10μmの蛍光体層を設けた基板を、封着ペーストを用いて貼り合わせ、脱気孔から真空排気して内圧を1×10−5Paにすることで、電子放出素子評価用基板Cを得た。電子放出素子評価用基板Cの対向電極間に電圧を500V印加したところ、CNTからの電界放出によって蛍光体がほぼ均一に発光した。
Example 9
Using the same method as in Example 7, CNTs with poly-3-hexylthiophene attached to the CNT surface were prepared, and a uniform dispersion of CNTs with a conjugated polymer with a CNT concentration of 0.1 g / L was obtained. It was. Subsequently, 1 mL of the obtained CNT dispersion was collected by filtration using a 0.1 μm pore filter made of polytetrafluoroethylene having a diameter of 13 mm, and a CNT dispersion film was obtained on the filter. The filter on which the CNT dispersion film was deposited was placed on a silver electrode having a diameter of 20 mm so that the CNT surface was sandwiched, and the filter was pressed through a PET film. Next, when the filter was removed, a CNT dispersion film was formed on the silver electrode. When the thickness of the obtained CNT dispersion film was measured using a laser microscope (VF-7510 manufactured by Keyence Corporation), it was 0.9 to 1 μm, which was a very uniform film thickness. A silver electrode substrate with a CNT dispersion film produced in this way was bonded to a substrate having a phosphor layer with a thickness of 10 μm on an ITO electrode using a sealing paste, and the internal pressure was reduced to 1 × by evacuating from the deaeration holes. The substrate C for electron-emitting device evaluation was obtained by setting it as 10 <-5> Pa. When a voltage of 500 V was applied between the counter electrodes of the electron-emitting device evaluation substrate C, the phosphors emitted light almost uniformly by field emission from the CNTs.

比較例4
比較例1で調製したCNTをCNT濃度0.1g/Lになるようにクロロホルム量を調整し、CNT含有溶液を作製した。この溶液をマグネチックスターラーで撹拌しながらスポイト中に1mL秤取った。採取した溶液1mLを、直径13mmのポリテトラフルオロエチレン製の0.1μm孔フィルターを用いて濾別捕集し、フィルター上にCNT膜を得た。該CNT分散体膜の堆積したフィルターをCNT面が挟まれるようにして直径20mmの銀電極上に載せ、PETフィルムを介してフィルターに押圧をかけた。次いでフィルターを剥がしたところ銀電極上にCNT膜が形成された。CNT膜の厚みをレーザー顕微鏡を用いて測定したところ0.5〜1.5μmであり、膜厚ムラが非常に大きかった。こうして作製したCNT膜付きの銀電極基板に、ITO電極上に厚み10μmの蛍光体層を設けた基板を、封着ペーストを用いて貼り合わせ、脱気孔から真空排気して内圧を1×10−5Paにすることで、電子放出素子評価用基板Dを得た。電子放出素子評価用基板Dの対向電極間に電圧を500V印加したところ、CNTからの電界放出によって蛍光体の一部が点状に発光したが、均一に発光しなかった。
Comparative Example 4
The amount of chloroform was adjusted so that the CNT prepared in Comparative Example 1 had a CNT concentration of 0.1 g / L to prepare a CNT-containing solution. 1 mL of this solution was weighed into a dropper while stirring with a magnetic stirrer. 1 mL of the collected solution was collected by filtration using a 0.1 μm pore filter made of polytetrafluoroethylene having a diameter of 13 mm, and a CNT film was obtained on the filter. The filter on which the CNT dispersion film was deposited was placed on a silver electrode having a diameter of 20 mm so that the CNT surface was sandwiched, and the filter was pressed through a PET film. Next, when the filter was peeled off, a CNT film was formed on the silver electrode. When the thickness of the CNT film was measured using a laser microscope, it was 0.5 to 1.5 μm, and the film thickness unevenness was very large. A silver electrode substrate with a CNT film prepared in this manner was bonded to a substrate having a 10 μm thick phosphor layer on an ITO electrode using a sealing paste, and the internal pressure was reduced to 1 × 10 by evacuating from the deaeration holes. By setting the pressure to 5 Pa, an electron-emitting device evaluation substrate D was obtained. When a voltage of 500 V was applied between the counter electrodes of the substrate for electron-emitting device evaluation D, a part of the phosphor emitted point-like light by field emission from the CNT, but it did not emit uniformly.

用途としてはトランジスターや顕微鏡用プローブなどのようにCNTの単線を使用する方法と、電子放出電極や燃料電池用電極、あるいはCNTを分散した導電性コンポジットなどのように多数のCNTをまとめてバルクとして使用する方法等がある。   Applications include the use of CNT single wires such as transistors and microscope probes, and a large number of CNTs in bulk, such as electron emission electrodes, fuel cell electrodes, or conductive composites with dispersed CNTs. There are methods to use.

実施例2における原子間力顕微鏡写真Atomic force micrograph in Example 2 電界効果型トランジスタの模式断面図Schematic cross section of a field effect transistor

符号の説明Explanation of symbols

10 半導体層
20 ドレイン電極
30 ソース電極
40 SiO
50 シリコンウエハー
60 ゲート電極(シリコンウエハー)
10 Semiconductor layer 20 Drain electrode 30 Source electrode 40 SiO 2 film 50 Silicon wafer 60 Gate electrode (silicon wafer)

Claims (12)

カーボンナノチューブと溶媒を有するカーボンナノチューブ分散溶液であって、カーボンナノチューブの少なくとも一部に共役系重合体が付着し、カーボンナノチューブが溶媒中に分散しているカーボンナノチューブ分散溶液。 A carbon nanotube dispersion solution comprising a carbon nanotube and a solvent, wherein the conjugated polymer is attached to at least a part of the carbon nanotube, and the carbon nanotube is dispersed in the solvent. 共役系重合体が直鎖状共役系重合体である請求項1記載のカーボンナノチューブ分散溶液。 The carbon nanotube dispersion solution according to claim 1, wherein the conjugated polymer is a linear conjugated polymer. 直鎖状共役系重合体がポリチオフェン系重合体である請求項2記載のカーボンナノチューブ分散溶液。 The carbon nanotube dispersion solution according to claim 2, wherein the linear conjugated polymer is a polythiophene polymer. ポリチオフェン系重合体がポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェン、ポリ−3−チオアルキルチオフェンの少なくとも1種である請求項3記載のカーボンナノチューブ分散溶液。 The carbon nanotube dispersion solution according to claim 3, wherein the polythiophene polymer is at least one of poly-3-alkylthiophene, poly-3-alkoxythiophene, and poly-3-thioalkylthiophene. ポリ−3−アルキルチオフェンがポリ−3−ヘキシルチオフェンである請求項4記載のカーボンナノチューブ分散溶液。 The carbon nanotube dispersion solution according to claim 4, wherein the poly-3-alkylthiophene is poly-3-hexylthiophene. カーボンナノチューブが単層カーボンナノチューブである請求項1記載のカーボンナノチューブ分散溶液。 The carbon nanotube dispersion solution according to claim 1, wherein the carbon nanotube is a single-walled carbon nanotube. 請求項1の溶液を基板上に塗布することによって得られるカーボンナノチューブ分散体。 The carbon nanotube dispersion obtained by apply | coating the solution of Claim 1 on a board | substrate. 請求項7のカーボンナノチューブ分散体からなる電子素子。 An electronic device comprising the carbon nanotube dispersion according to claim 7. 請求項8の分散体を半導体層として用いた電界効果型トランジスタ。 A field effect transistor using the dispersion according to claim 8 as a semiconductor layer. カーボンナノチューブの少なくとも一部に共役系重合体を付着させる工程と、共役系重合体が付着したカーボンナノチューブを該共役系重合体が可溶な溶媒で洗浄する工程と、上記工程によって得られたカーボンナノチューブを溶媒に溶解させる工程とを有する請求項1記載のカーボンナノチューブ分散溶液の製造方法。 A step of attaching a conjugated polymer to at least a part of the carbon nanotubes, a step of washing the carbon nanotubes to which the conjugated polymer is attached with a solvent in which the conjugated polymer is soluble, and the carbon obtained by the above steps The method for producing a carbon nanotube dispersion solution according to claim 1, further comprising dissolving the nanotubes in a solvent. 請求項7の分散体から得られる電子放出源を用いた電子放出素子。 An electron-emitting device using an electron-emitting source obtained from the dispersion according to claim 7. 請求項7の分散体から得られる導電性薄膜を用いた透明導電体。 A transparent conductor using a conductive thin film obtained from the dispersion according to claim 7.
JP2004232069A 2003-08-12 2004-08-09 Carbon nanotube dispersion solution and carbon nanotube dispersion material Pending JP2005089738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232069A JP2005089738A (en) 2003-08-12 2004-08-09 Carbon nanotube dispersion solution and carbon nanotube dispersion material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003291959 2003-08-12
JP2004232069A JP2005089738A (en) 2003-08-12 2004-08-09 Carbon nanotube dispersion solution and carbon nanotube dispersion material

Publications (1)

Publication Number Publication Date
JP2005089738A true JP2005089738A (en) 2005-04-07

Family

ID=34466839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232069A Pending JP2005089738A (en) 2003-08-12 2004-08-09 Carbon nanotube dispersion solution and carbon nanotube dispersion material

Country Status (1)

Country Link
JP (1) JP2005089738A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093144A1 (en) * 2005-03-01 2006-09-08 Bussan Nanotech Research Institute Inc. Polymer composite
JP2006278226A (en) * 2005-03-30 2006-10-12 Nikkiso Co Ltd Cathode of field emission type light
JP2006292495A (en) * 2005-04-08 2006-10-26 Toray Ind Inc Carbon nanotube composition, biosensor and manufacturing method of them
JP2006327878A (en) * 2005-05-26 2006-12-07 Mitsubishi Materials Corp Carbon nanofiber dispersion, its dispersant, and composition
WO2006132254A1 (en) * 2005-06-07 2006-12-14 Kuraray Co., Ltd. Carbon nanotube dispersion liquid and transparent conductive film using same
WO2007004652A1 (en) * 2005-07-05 2007-01-11 National University Corporation NARA Institute of Science and Technology Method for producing carbon nanotube dispersion liquid
JP2007076998A (en) * 2005-08-19 2007-03-29 Toray Ind Inc Carbon nanotube dispersion liquid and method for producing the same
JP2007152540A (en) * 2005-12-02 2007-06-21 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Manufacturing method of carbon nanotube element
KR100773551B1 (en) 2006-04-14 2007-11-07 삼성전자주식회사 Carbon Nanotube dispersion solution and method for preparing the same
WO2008058589A2 (en) 2006-11-14 2008-05-22 Byk-Chemie Gmbh Dispersion method
JP2008130552A (en) * 2006-11-22 2008-06-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Manufacturing method of positive electrode element
JP2008238162A (en) * 2007-02-27 2008-10-09 Samsung Electronics Co Ltd Dispersant for carbon nanotube and carbon nanotube composition comprising the same
JP2008288189A (en) * 2007-05-18 2008-11-27 Korea Electrotechnology Research Inst Method of forming transparent conductive film containing carbon nanotube and binder, and transparent conductive film formed thereby
JP2009138032A (en) * 2007-12-03 2009-06-25 Mitsubishi Rayon Co Ltd Manufacturing method of matrix resin containing carbon nano tube
KR100913700B1 (en) 2007-06-12 2009-08-24 삼성전자주식회사 Carbon nano-tubeCNT thin film comprising an amine compound, and a manufacturing method thereof
US7704480B2 (en) 2005-12-16 2010-04-27 Tsinghua University Method for making carbon nanotube yarn
EP2287936A1 (en) * 2008-05-12 2011-02-23 Toray Industries, Inc. Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
WO2011060839A1 (en) 2009-11-18 2011-05-26 Bada Ag Method for producing composite materials based on polymers and carbon nanotubes (cnts), and composite materials produced in this manner and the use thereof
JP2011126727A (en) * 2009-12-16 2011-06-30 Toray Ind Inc Carbon nanotube composite, carbon nanotube composite dispersion, carbon nanotube composite-dispersed film and field effect transistor
WO2012029234A1 (en) * 2010-09-03 2012-03-08 国立大学法人名古屋大学 Field effect transistor using carbon nanotubes, and method for producing said field effect transistor
US8246874B2 (en) 2005-12-02 2012-08-21 Tsinghua University Method for making carbon nanotube-based device
WO2012133314A1 (en) 2011-03-28 2012-10-04 富士フイルム株式会社 Conductive composition, conductive film using conducive composition, and method for manufacturing conductive film
JP5150630B2 (en) * 2007-07-10 2013-02-20 独立行政法人科学技術振興機構 Method for producing transparent conductive thin film
US8709539B2 (en) 2009-02-17 2014-04-29 Meijo University Process and apparatus for producing composite material that includes carbon nanotubes
US20140209840A1 (en) * 2013-01-28 2014-07-31 Xerox Corporation Thixotropic composition
WO2015045417A1 (en) * 2013-09-30 2015-04-02 日本ゼオン株式会社 Method of producing carbon nanotube dispersion
US9165701B2 (en) 2013-01-18 2015-10-20 Samsung Electronics Co., Ltd. Resistance heating element and heating member and fusing device employing the same
US9181090B2 (en) 2008-02-08 2015-11-10 Meijo Nano Carbon Co., Ltd. Carbon nanotube dispersion and utilization of same
US9217130B2 (en) 2007-12-14 2015-12-22 Meijo Nano Carbon Co., Ltd. Cell culture vessel and method of production thereof
WO2016027020A1 (en) * 2014-08-21 2016-02-25 Universite Joseph Fourier Method for manufacturing a conductive film from an electrochemical bioreactor
JP2017112319A (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Production method of dispersion composition, and production method of thermoelectric conversion layer
JP2019137797A (en) * 2018-02-13 2019-08-22 大研化学工業株式会社 Thermosetting conductive adhesive and manufacturing method therefor
WO2020066741A1 (en) * 2018-09-25 2020-04-02 東レ株式会社 Carbon nanotube composite body, dispersion liquid using same, semiconductor element, method for producing semiconductor element, and wireless communication device and product tag each using semiconductor element

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093144A1 (en) * 2005-03-01 2006-09-08 Bussan Nanotech Research Institute Inc. Polymer composite
JP2006241248A (en) * 2005-03-01 2006-09-14 Bussan Nanotech Research Institute Inc Polymer complex
JP2006278226A (en) * 2005-03-30 2006-10-12 Nikkiso Co Ltd Cathode of field emission type light
JP2006292495A (en) * 2005-04-08 2006-10-26 Toray Ind Inc Carbon nanotube composition, biosensor and manufacturing method of them
JP4742650B2 (en) * 2005-04-08 2011-08-10 東レ株式会社 Carbon nanotube composition, biosensor, and production method thereof
JP2006327878A (en) * 2005-05-26 2006-12-07 Mitsubishi Materials Corp Carbon nanofiber dispersion, its dispersant, and composition
JPWO2006132254A1 (en) * 2005-06-07 2009-01-08 株式会社クラレ Carbon nanotube dispersion and transparent conductive film using the same
WO2006132254A1 (en) * 2005-06-07 2006-12-14 Kuraray Co., Ltd. Carbon nanotube dispersion liquid and transparent conductive film using same
WO2007004652A1 (en) * 2005-07-05 2007-01-11 National University Corporation NARA Institute of Science and Technology Method for producing carbon nanotube dispersion liquid
JP5109129B2 (en) * 2005-07-05 2012-12-26 国立大学法人 奈良先端科学技術大学院大学 Method for producing carbon nanotube dispersion
JP2007076998A (en) * 2005-08-19 2007-03-29 Toray Ind Inc Carbon nanotube dispersion liquid and method for producing the same
JP2007152540A (en) * 2005-12-02 2007-06-21 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Manufacturing method of carbon nanotube element
US8246874B2 (en) 2005-12-02 2012-08-21 Tsinghua University Method for making carbon nanotube-based device
US7704480B2 (en) 2005-12-16 2010-04-27 Tsinghua University Method for making carbon nanotube yarn
KR100773551B1 (en) 2006-04-14 2007-11-07 삼성전자주식회사 Carbon Nanotube dispersion solution and method for preparing the same
US8257677B2 (en) 2006-11-14 2012-09-04 Michael Berkei Dispersion method
WO2008058589A3 (en) * 2006-11-14 2008-08-14 Byk Chemie Gmbh Dispersion method
DE102006055106B4 (en) * 2006-11-14 2009-10-01 Byk-Chemie Gmbh dispersing
EP2508472A3 (en) * 2006-11-14 2015-12-30 Byk-Chemie GmbH Dispersion method and dispersions produced in this way and use of same
WO2008058589A2 (en) 2006-11-14 2008-05-22 Byk-Chemie Gmbh Dispersion method
JP2008130552A (en) * 2006-11-22 2008-06-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Manufacturing method of positive electrode element
JP2008238162A (en) * 2007-02-27 2008-10-09 Samsung Electronics Co Ltd Dispersant for carbon nanotube and carbon nanotube composition comprising the same
JP2008288189A (en) * 2007-05-18 2008-11-27 Korea Electrotechnology Research Inst Method of forming transparent conductive film containing carbon nanotube and binder, and transparent conductive film formed thereby
KR100913700B1 (en) 2007-06-12 2009-08-24 삼성전자주식회사 Carbon nano-tubeCNT thin film comprising an amine compound, and a manufacturing method thereof
JP5150630B2 (en) * 2007-07-10 2013-02-20 独立行政法人科学技術振興機構 Method for producing transparent conductive thin film
JP2009138032A (en) * 2007-12-03 2009-06-25 Mitsubishi Rayon Co Ltd Manufacturing method of matrix resin containing carbon nano tube
US9217130B2 (en) 2007-12-14 2015-12-22 Meijo Nano Carbon Co., Ltd. Cell culture vessel and method of production thereof
US9181090B2 (en) 2008-02-08 2015-11-10 Meijo Nano Carbon Co., Ltd. Carbon nanotube dispersion and utilization of same
EP2287936A4 (en) * 2008-05-12 2011-06-01 Toray Industries Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
US8530889B2 (en) 2008-05-12 2013-09-10 Toray Industries, Inc. Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
EP2287936A1 (en) * 2008-05-12 2011-02-23 Toray Industries, Inc. Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
US8709539B2 (en) 2009-02-17 2014-04-29 Meijo University Process and apparatus for producing composite material that includes carbon nanotubes
WO2011060839A1 (en) 2009-11-18 2011-05-26 Bada Ag Method for producing composite materials based on polymers and carbon nanotubes (cnts), and composite materials produced in this manner and the use thereof
JP2011126727A (en) * 2009-12-16 2011-06-30 Toray Ind Inc Carbon nanotube composite, carbon nanotube composite dispersion, carbon nanotube composite-dispersed film and field effect transistor
WO2012029234A1 (en) * 2010-09-03 2012-03-08 国立大学法人名古屋大学 Field effect transistor using carbon nanotubes, and method for producing said field effect transistor
US9356217B2 (en) 2011-03-28 2016-05-31 Fujifilm Corporation Electrically conductive composition, an electrically conductive film using the composition and a method of producing the same
WO2012133314A1 (en) 2011-03-28 2012-10-04 富士フイルム株式会社 Conductive composition, conductive film using conducive composition, and method for manufacturing conductive film
US9165701B2 (en) 2013-01-18 2015-10-20 Samsung Electronics Co., Ltd. Resistance heating element and heating member and fusing device employing the same
US20140209840A1 (en) * 2013-01-28 2014-07-31 Xerox Corporation Thixotropic composition
US9525135B2 (en) * 2013-01-28 2016-12-20 Xerox Corporation Thixotropic composition
WO2015045417A1 (en) * 2013-09-30 2015-04-02 日本ゼオン株式会社 Method of producing carbon nanotube dispersion
WO2016027020A1 (en) * 2014-08-21 2016-02-25 Universite Joseph Fourier Method for manufacturing a conductive film from an electrochemical bioreactor
FR3024982A1 (en) * 2014-08-21 2016-02-26 Univ Joseph Fourier METHOD FOR MANUFACTURING A CONDUCTIVE FILM OF AN ELECTROCHEMICAL BIOREACTOR
JP2017112319A (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Production method of dispersion composition, and production method of thermoelectric conversion layer
JP2019137797A (en) * 2018-02-13 2019-08-22 大研化学工業株式会社 Thermosetting conductive adhesive and manufacturing method therefor
WO2020066741A1 (en) * 2018-09-25 2020-04-02 東レ株式会社 Carbon nanotube composite body, dispersion liquid using same, semiconductor element, method for producing semiconductor element, and wireless communication device and product tag each using semiconductor element
JP6683296B1 (en) * 2018-09-25 2020-04-15 東レ株式会社 Carbon nanotube composite, dispersion using the same, semiconductor element and method for manufacturing the same, and wireless communication device and product tag using the semiconductor element

Similar Documents

Publication Publication Date Title
JP2005089738A (en) Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP4435751B2 (en) Organic thin film transistor and manufacturing method thereof
US8513804B2 (en) Nanotube-based electrodes
Zhu et al. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes
JP4379002B2 (en) Carbon nanotube device manufacturing method and carbon nanotube transfer body
JP5076319B2 (en) Carbon nanotube dispersion
US20060057290A1 (en) Patterning carbon nanotube coatings by selective chemical modification
JP2010506824A (en) Transparent conductive single-walled carbon nanotube film
JP5333221B2 (en) Carbon nanotube structure and thin film transistor
KR102027362B1 (en) Semiconductor composition
JP2007534588A (en) Temporary viscosity and stability modifier for carbon nanotube compositions
JP5177695B2 (en) Switching element and manufacturing method thereof
JP2004266272A (en) Field effect transistor and liquid crystal display apparatus employing the same
JP2011504280A (en) Transparent conductive film with improved conductivity and method for producing the same
JP2001189466A (en) Manufacturing method of switching element, switching element and switching element array
Zhao et al. High efficiency CNT-Si heterojunction solar cells by dry gas doping
JP2006312673A (en) Carbon nanotube-dispersed paste, and carbon nanotube-dispersed composite
JP2014529353A (en) Method for functionalizing metal nanowires and method for producing electrodes
JP2004002621A (en) Carbon nanotube-containing paste, carbon nanotube-dispersed composite, and method for producing carbon nanotube-dispersed composite
KR20120085206A (en) Electronic device
WO2010053171A1 (en) Switching element and method for manufacturing same
JP2003292801A (en) Polymer composite
Zhang et al. Temperature and voltage dependent current–voltage behavior of single-walled carbon nanotube transparent conducting films
JP2010056484A (en) Organic transistor, and method of manufacturing organic transistor
JP4211289B2 (en) Photovoltaic element