JP2007152540A - Manufacturing method of carbon nanotube element - Google Patents

Manufacturing method of carbon nanotube element Download PDF

Info

Publication number
JP2007152540A
JP2007152540A JP2006111143A JP2006111143A JP2007152540A JP 2007152540 A JP2007152540 A JP 2007152540A JP 2006111143 A JP2006111143 A JP 2006111143A JP 2006111143 A JP2006111143 A JP 2006111143A JP 2007152540 A JP2007152540 A JP 2007152540A
Authority
JP
Japan
Prior art keywords
carbon nanotube
manufacturing
yarn
carbon
nanotube element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006111143A
Other languages
Japanese (ja)
Inventor
開利 ▲キョウ▼
Kaili Jiang
守善 ▲ハン▼
Feng-Yan Fan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Qinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Qinghua University
Publication of JP2007152540A publication Critical patent/JP2007152540A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a carbon nanotube element. <P>SOLUTION: The manufacturing method of the carbon nanotube element includes the step of preparing a carbon nanotube yarn, the step of conducting surface treatment by making the carbon nanotube yarn infiltrate in a volatile organic solvent, the step of forming a preform for the carbon nanotube element by processing the carbon nanotube yarn into a predetermined shape using a processing device, and the step of forming the carbon nanotube element by heating the preform for the carbon nanotube element up to a predetermined temperature to fix it in a predetermined shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カーボンナノチューブ素子の製造方法に関する。   The present invention relates to a method for manufacturing a carbon nanotube element.

カーボンナノチューブ(Carbon Nanotube, CNT)は新型のカーボン材料であり、日本の研究員Iijimaによって1991年に発見された後、大面積のカーボンナノチューブのマトリックスの合成やカーボンナノチューブが一定方向への成長についての研究が進んでいる。非特許文献1を参照して、整列したカーボンナノチューブのマトリックスからカーボンナノチューブの束を引き出すと、複数のカーボンナノチューブの束の端から端まで接続されて連続的なカーボンナノチューブ糸(Carbon Nanotube Yarn)が形成される。   Carbon Nanotube (CNT) is a new type of carbon material, discovered in 1991 by Japanese researcher Iijima, and then researches on synthesis of large-area carbon nanotube matrix and growth of carbon nanotube in a certain direction. Is progressing. Referring to Non-Patent Document 1, when a bundle of carbon nanotubes is pulled out from an aligned matrix of carbon nanotubes, a continuous carbon nanotube yarn (Carbon Nanotube Yarn) is connected to the ends of a plurality of carbon nanotube bundles. It is formed.

カーボンナノチューブは良好な光学性能、電気性能、機械性能を有するので、フィールドエミッタの電子源や照明装置などに広く利用されることが注目されている。前記カーボンナノチューブ糸をフィールドエミッタディスプレイの陰極の支持部に設置することにより、前記カーボンナノチューブ糸をエミッタの電子源として利用することができる。前記複数のカーボンナノチューブ糸を配列して形成する偏光シートは紫外線の環境で利用される。前記カーボンナノチューブ糸を白熱ランプのフィラメントとして利用する場合、電気消費が低くなる。   Since carbon nanotubes have good optical performance, electrical performance, and mechanical performance, they are attracting attention for being widely used in field emitter electron sources, lighting devices, and the like. The carbon nanotube yarn can be used as an electron source of the emitter by installing the carbon nanotube yarn on the support portion of the cathode of the field emitter display. The polarizing sheet formed by arranging the plurality of carbon nanotube yarns is used in an ultraviolet environment. When the carbon nanotube yarn is used as a filament for an incandescent lamp, electricity consumption is reduced.

しかし、異なる応用領域に対応して、異なる形状のカーボンナノチューブ糸が要求されるので、前記方法によっては前記要求を満足することができないという課題がある。
中国特許出願公開第02134760.3号明細書 「Spinning Continuous CNT Yarns」、Nature、▲ハン▼守善、2002年、第419巻、第801頁
However, since carbon nanotube yarns having different shapes are required corresponding to different application areas, there is a problem that the above-mentioned requirements cannot be satisfied depending on the method.
Chinese Patent Application No. 02134760.3 “Spinning Continuous CNT Yarns”, Nature, Han, Morizen, 2002, 419, 801

前記課題を解決するために、本発明は所定の形状によってカーボンナノチューブ素子を製造する方法を提供する。   In order to solve the above problems, the present invention provides a method of manufacturing a carbon nanotube device with a predetermined shape.

本発明に係るカーボンナノチューブ素子の製造方法は、カーボンナノチューブ糸を準備する段階と、前記カーボンナノチューブ糸を揮発性有機溶剤に浸入して表面処理を行う段階と、加工装置を利用して前記カーボンナノチューブ糸を所定の形状によって加工して、カーボンナノチューブ素子の予備成形物(preform)を形成する段階と、前記カーボンナノチューブ素子の予備成形物を所定の温度まで加熱して所定の形状に固定させて、カーボンナノチューブ素子を形成する段階と、を含む。ここで、予備成形物とは、カーボンナノチューブ素子を作成する間の、カーボンナノチューブの半製品(semi-product)である。   The method of manufacturing a carbon nanotube element according to the present invention includes a step of preparing a carbon nanotube yarn, a step of infiltrating the carbon nanotube yarn into a volatile organic solvent to perform a surface treatment, and a carbon nanotube using a processing apparatus. Processing the yarn into a predetermined shape to form a preform of the carbon nanotube element, and heating the carbon nanotube element preform to a predetermined temperature to fix it in a predetermined shape; Forming a carbon nanotube device. Here, the preform is a semi-product of carbon nanotubes during the production of the carbon nanotube element.

従来技術と比べて、本発明に係るカーボンナノチューブ素子の製造方法により、加工装置を利用して、カーボンナノチューブ糸を所定の形状によって直接形成することができる。   Compared with the prior art, the carbon nanotube yarn can be directly formed in a predetermined shape by using the processing apparatus by the carbon nanotube element manufacturing method according to the present invention.

以下、図面を参照して本発明の実施例について詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
本実施例に係るカーボンナノチューブ素子の製造方法は、次の段階を含む。
Example 1
The method for manufacturing a carbon nanotube device according to this example includes the following steps.

第一段階で、連続的なカーボンナノチューブ糸10を提供する。   In the first stage, a continuous carbon nanotube yarn 10 is provided.

まず、化学気相堆積法(CVD)で、整列したカーボンナノチューブのマトリックスを成長させる。特許文献1を参照して、本実施例に係る化学気相堆積法で前記のカーボンナノチューブのマトリックスを成長する工程は次の段階を含む。(a)段階で、基材を提供する。該基材は、例えば、p型又はn型のシリコン基材である。(b)段階で、前記基材に触媒を堆積して触媒層を形成する。前記触媒層は、例えば、Fe、Co、Ni又はその合金からなる。(c)段階で、前記触媒層が形成された基材を、例えば保護ガスの雰囲気で300℃〜400℃程度に10時間加工して焼鈍しをする。(d)段階で、前記(c)段階で形成された基材を500℃〜700℃程度まで加熱して、炭素ガス及び保護ガスを導入して、5〜30分間に反応させ、カーボンナノチューブのマトリックスを前記基材に成長させる。ここで、前記炭素ガスの導入速度を制御することにより、前記触媒層の温度と環境温度との差を50℃以上に保持する。前記炭素ガスと前記保護ガスとの導入速度の比率を制御して、前記炭素ガスの分圧は20%以下になるようにする。前記炭素ガスは、例えば、アセチレン、エタンなどの炭化水素であり、アセチレンであることが好ましい。前記保護ガスは、不活性ガス又は窒素である。前記製造方法によって得られたカーボンナノチューブのマトリックスは緊密的に形成され、各カーボンナノチューブの間にファンデルワールス(Van Der Waals)力が強く形成され、各カーボンナノチューブの直径がほぼ同様である。   First, an aligned carbon nanotube matrix is grown by chemical vapor deposition (CVD). Referring to Patent Document 1, the process of growing the carbon nanotube matrix by the chemical vapor deposition method according to the present embodiment includes the following steps. In step (a), a substrate is provided. The substrate is, for example, a p-type or n-type silicon substrate. In step (b), a catalyst is deposited on the substrate to form a catalyst layer. The catalyst layer is made of, for example, Fe, Co, Ni, or an alloy thereof. In step (c), the base material on which the catalyst layer has been formed is processed and annealed, for example, in a protective gas atmosphere at about 300 ° C. to 400 ° C. for 10 hours. In step (d), the base material formed in step (c) is heated to about 500 ° C. to 700 ° C., carbon gas and protective gas are introduced, and reacted for 5 to 30 minutes. A matrix is grown on the substrate. Here, the difference between the temperature of the catalyst layer and the environmental temperature is maintained at 50 ° C. or higher by controlling the introduction rate of the carbon gas. By controlling the ratio of the introduction rate of the carbon gas and the protective gas, the partial pressure of the carbon gas is set to 20% or less. The carbon gas is, for example, a hydrocarbon such as acetylene or ethane, and is preferably acetylene. The protective gas is an inert gas or nitrogen. The matrix of carbon nanotubes obtained by the manufacturing method is formed tightly, van der Waals force is strongly formed between the carbon nanotubes, and the diameters of the carbon nanotubes are almost the same.

次に、前記カーボンナノチューブのマトリックスからカーボンナノチューブ糸10を引出す。即ち、ピンセットなどの工具を利用して前記カーボンナノチューブのマトリックスの一部を取って直線方向に沿って引き出す。各カーボンナノチューブが前記ファンデルワールス力で相互に連接されて連続的なカーボンナノチューブ糸10が形成される。   Next, the carbon nanotube thread | yarn 10 is pulled out from the matrix of the said carbon nanotube. That is, using a tool such as tweezers, a part of the matrix of carbon nanotubes is taken out and pulled out along a linear direction. The carbon nanotubes are connected to each other by the van der Waals force to form a continuous carbon nanotube yarn 10.

第二段階で、前記カーボンナノチューブ糸10を揮発性有機溶剤に浸入して表面処理を行う。前記カーボンナノチューブ糸10は表面積が大きい複数のカーボンナノチューブからなるので、粘着性が大きくなる。前記揮発性有機溶剤の表面張力が大きいので、前記カーボンナノチューブ糸10の表面積及び直径は小さくなり、その粘着性が除去され、良好な機械強度及び強靭性が具備される。詳しくは、まず、前記カーボンナノチューブ糸10を完全に前記揮発性有機溶剤に浸入する。次に、前記カーボンナノチューブ糸10を前記揮発性有機溶剤から取り出し、スプールのような工具に巻き付ける。前記揮発性有機溶剤はエタノール、メタノール、アセトン、ジクロロエタン(Di−chloro Ethane)、クロロホルムなどのいずれか一種である。   In the second stage, the carbon nanotube yarn 10 is immersed in a volatile organic solvent to perform surface treatment. Since the carbon nanotube thread 10 is composed of a plurality of carbon nanotubes having a large surface area, the adhesiveness is increased. Since the surface tension of the volatile organic solvent is large, the surface area and the diameter of the carbon nanotube yarn 10 are reduced, the adhesiveness thereof is removed, and good mechanical strength and toughness are provided. Specifically, first, the carbon nanotube yarn 10 is completely immersed in the volatile organic solvent. Next, the carbon nanotube yarn 10 is taken out from the volatile organic solvent and wound around a tool such as a spool. The volatile organic solvent is any one of ethanol, methanol, acetone, dichloroethane, and chloroform.

第三段階で、加工装置を利用して前記カーボンナノチューブ糸10を所定の形状によって加工して、カーボンナノチューブ素子の予備成形物を形成する。例えば、図1を参照すると、カーボンナノチューブのバネを製造する場合、前記表面処理が行って形成されたカーボンナノチューブ糸10を円柱形状のサファイア(Sapphire)体20に巻き、所定の螺旋の形状によって形成される。   In a third step, the carbon nanotube yarn 10 is processed into a predetermined shape using a processing apparatus to form a carbon nanotube element preform. For example, referring to FIG. 1, when a carbon nanotube spring is manufactured, a carbon nanotube thread 10 formed by the surface treatment is wound around a cylindrical sapphire body 20 and formed into a predetermined spiral shape. Is done.

第四段階で、前記カーボンナノチューブ糸10を前記所定の形状に保持するために、前記カーボンナノチューブ素子の予備成形物を所定の温度まで加熱する。前記所定の温度は600℃〜2000℃に設定され、1600℃〜1700℃であることが好ましい。前記加熱処理により、ファンデルワールス力で連続的なカーボンナノチューブ糸の両端が緊密に連接され、前記連続的なカーボンナノチューブ糸10の形状が保持できる。また、前記加熱処理の方法は、電流加熱方法及び高温加熱方法がある。   In a fourth step, the carbon nanotube element preform is heated to a predetermined temperature to hold the carbon nanotube yarns 10 in the predetermined shape. The predetermined temperature is set to 600 ° C. to 2000 ° C., and preferably 1600 ° C. to 1700 ° C. By the heat treatment, both ends of the continuous carbon nanotube yarn are closely connected by van der Waals force, and the shape of the continuous carbon nanotube yarn 10 can be maintained. The heat treatment method includes a current heating method and a high temperature heating method.

なお、電流加熱方法は、所定の時間に前記カーボンナノチューブ糸10へ所定の加熱電流を導入することである。前記加熱電流の強度は前記カーボンナノチューブ糸10の直径によって、前記カーボンナノチューブ糸10を所定の温度まで加熱する程度に設定される。しかし、電流加熱方法によれば、前記加熱処理の時間は4時間以下にされればよく、4時間より長くなれば、前記カーボンナノチューブ糸10の炭素の損失が生じる課題がある。   The current heating method is to introduce a predetermined heating current to the carbon nanotube yarn 10 at a predetermined time. The intensity of the heating current is set according to the diameter of the carbon nanotube yarn 10 so that the carbon nanotube yarn 10 is heated to a predetermined temperature. However, according to the current heating method, the heat treatment time may be 4 hours or less, and if it is longer than 4 hours, there is a problem that carbon loss of the carbon nanotube yarn 10 occurs.

なお、高温加熱方法によれば、前記カーボンナノチューブ糸10を加熱容器(例えば、黒鉛の容器)に置いて所定の温度で所定の時間に加熱する。前記加熱時間は加熱温度に関係する。例えば、2000℃の高温で、0.5〜1時間に加熱すればよい。前記電流加熱方法と比べて、高温過熱方法は黒鉛の容器を利用する場合、加熱時間が長くなっても、黒鉛が有する炭素でカーボンナノチューブ糸10の炭素の損失を防止するので、前記加熱時間に対して制限しないという優れた点がある。   According to the high temperature heating method, the carbon nanotube yarn 10 is placed in a heating container (for example, a graphite container) and heated at a predetermined temperature for a predetermined time. The heating time is related to the heating temperature. For example, it may be heated at a high temperature of 2000 ° C. for 0.5 to 1 hour. Compared with the current heating method, when the high temperature superheating method uses a graphite container, the carbon of the carbon nanotube yarn 10 is prevented from being lost by the carbon contained in the graphite even if the heating time is long. On the other hand, there is an excellent point that it is not restricted.

また、前記二種の加熱方法を結合して利用することもできる。この場合、高温の条件で前記カーボンナノチューブ糸10へ電流を導入するように前記カーボンナノチューブ糸10を加熱する。   Further, the two heating methods can be combined for use. In this case, the carbon nanotube yarn 10 is heated so as to introduce a current into the carbon nanotube yarn 10 under a high temperature condition.

本実施例においては、電流加熱方法を利用する。前記サファイア体20に設置された前記カーボンナノチューブ糸10へ電流を導入して1600℃の高温で3〜4時間保持する。その後、前記カーボンナノチューブ糸10を前記サファイア体20から分離させて、カーボンナノチューブのバネが形成される。前記カーボンナノチューブのバネは弾性を有するので、質量が微小なものを測定することができる。   In this embodiment, a current heating method is used. A current is introduced into the carbon nanotube yarns 10 installed on the sapphire body 20 and held at a high temperature of 1600 ° C. for 3 to 4 hours. Thereafter, the carbon nanotube thread 10 is separated from the sapphire body 20 to form a carbon nanotube spring. Since the spring of the carbon nanotube has elasticity, it is possible to measure one having a small mass.

(実施例2)
本実施例において、サファイア体20’がプリズム形状に形成される点は実施例1と異なる。実施例1と同様に、前記サファイア体20’に設置された前記カーボンナノチューブ糸10’へ電流を導入して1600℃の高温で3〜4時間保持する。その後、前記カーボンナノチューブ糸10’を前記サファイア体20’から分離させて、V字型のカーボンナノチューブ素子が形成される。前記カーボンナノチューブ素子は、電子運動量移行分光装置(Electronic Momentum Spectrometry、EMS)の熱電子放出源として利用される。
(Example 2)
The present embodiment is different from the first embodiment in that the sapphire body 20 ′ is formed in a prism shape. In the same manner as in Example 1, a current is introduced into the carbon nanotube yarn 10 ′ installed on the sapphire body 20 ′ and held at a high temperature of 1600 ° C. for 3 to 4 hours. Thereafter, the carbon nanotube yarn 10 ′ is separated from the sapphire body 20 ′ to form a V-shaped carbon nanotube element. The carbon nanotube element is used as a thermal electron emission source of an electron momentum transfer spectrometer (EMS).

従来技術と比べて、本発明に係るカーボンナノチューブ素子の製造方法によれば、加工装置を利用して、カーボンナノチューブ糸を所定の形状によって形成するので、所定の形状を有するカーボンナノチューブ素子を直接製造することができる。   Compared with the prior art, according to the method of manufacturing a carbon nanotube element according to the present invention, the carbon nanotube yarn is formed in a predetermined shape by using a processing apparatus, so that a carbon nanotube element having a predetermined shape is directly manufactured. can do.

本発明の実施例1に係る、加工装置を利用してカーボンナノチューブをバネの形状に加工する図である。It is a figure which processes a carbon nanotube into the shape of a spring using a processing device concerning Example 1 of the present invention. 本発明の実施例2に係る、加工装置を利用してカーボンナノチューブをV字形に加工する図である。It is a figure which processes a carbon nanotube into V shape using a processing device concerning Example 2 of the present invention.

符号の説明Explanation of symbols

10、10’ カーボンナノチューブ糸
20、20’ サファイア体

10, 10 'carbon nanotube yarn 20, 20' sapphire body

Claims (6)

カーボンナノチューブ糸を準備する段階と、
前記カーボンナノチューブ糸を揮発性有機溶剤に浸入して表面処理を行う段階と、
加工装置を利用して前記カーボンナノチューブ糸を所定の形状によって加工して、カーボンナノチューブ素子の予備成形物を形成する段階と、
前記カーボンナノチューブ素子の予備成形物を所定の温度まで加熱して所定の形状に固定させて、カーボンナノチューブ素子を形成する段階と、を含むことを特徴とするカーボンナノチューブ素子の製造方法。
Preparing a carbon nanotube yarn; and
Performing a surface treatment by infiltrating the carbon nanotube yarn into a volatile organic solvent;
Processing the carbon nanotube yarns into a predetermined shape using a processing apparatus to form a preformed carbon nanotube element;
Heating the carbon nanotube element preform to a predetermined temperature and fixing it to a predetermined shape to form a carbon nanotube element.
前記カーボンナノチューブ糸の製造方法は、カーボンナノチューブのマトリックスを製造する段階と、工具を利用して前記カーボンナノチューブのマトリックスからカーボンナノチューブ糸を引き出す段階と、を含むことを特徴とする、請求項1に記載のカーボンナノチューブ素子の製造方法。   2. The method of claim 1, wherein the carbon nanotube yarn manufacturing method includes a step of manufacturing a carbon nanotube matrix, and a step of pulling out the carbon nanotube yarn from the carbon nanotube matrix using a tool. The manufacturing method of the carbon nanotube element of description. 前記カーボンナノチューブ素子の予備成形物を加熱する方法は、カーボンナノチューブのマトリックスを黒鉛容器で加熱処理を行う段階を含むことを特徴とする、請求項1に記載のカーボンナノチューブ素子の製造方法。   The method of manufacturing a carbon nanotube device according to claim 1, wherein the method of heating the carbon nanotube device preform includes a step of heat-treating a matrix of carbon nanotubes in a graphite container. 前記カーボンナノチューブ素子の予備成形物を加熱する他の方法は、前記カーボンナノチューブ糸に電流を導入する段階を含むことを特徴とする、請求項1に記載のカーボンナノチューブ素子の製造方法。   The method of claim 1, wherein another method of heating the carbon nanotube element preform includes introducing an electric current into the carbon nanotube yarn. 前記所定の温度は600℃〜2000℃に設定されることを特徴とする、請求項1〜4のいずれか一項に記載のカーボンナノチューブ素子の製造方法。   The said predetermined temperature is set to 600 to 2000 degreeC, The manufacturing method of the carbon nanotube element as described in any one of Claims 1-4 characterized by the above-mentioned. 前記所定の温度は1600℃〜1700℃に設定されることを特徴とする、請求項1〜4のいずれか一項に記載のカーボンナノチューブ素子の製造方法。   The said predetermined temperature is set to 1600 degreeC-1700 degreeC, The manufacturing method of the carbon nanotube element as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2006111143A 2005-12-02 2006-04-13 Manufacturing method of carbon nanotube element Pending JP2007152540A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94142457A TWI272245B (en) 2005-12-02 2005-12-02 A method for making carbon nanotube device

Publications (1)

Publication Number Publication Date
JP2007152540A true JP2007152540A (en) 2007-06-21

Family

ID=38237523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111143A Pending JP2007152540A (en) 2005-12-02 2006-04-13 Manufacturing method of carbon nanotube element

Country Status (2)

Country Link
JP (1) JP2007152540A (en)
TW (1) TWI272245B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988893B2 (en) * 2008-09-18 2011-08-02 Tsinghua University Method for fabricating carbon nanotube yarn
JP2012153540A (en) * 2011-01-21 2012-08-16 Denso Corp Carbon nanotube aggregate, and method for manufacturing the same
KR20170107023A (en) * 2015-02-27 2017-09-22 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber
JP2018090457A (en) * 2016-12-05 2018-06-14 住友電気工業株式会社 Carbon structure, and production method of carbon structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409337B (en) 2007-10-10 2011-07-27 清华大学 Lithium ion battery cathode, preparation method thereof and lithium ion battery applying the same
CN101388447B (en) 2007-09-14 2011-08-24 清华大学 Negative pole for lithium ionic cell and preparing method thereof
TWI414100B (en) * 2007-09-28 2013-11-01 Hon Hai Prec Ind Co Ltd Cathode of lithium-ion battery and method for making same
CN101420021B (en) 2007-10-26 2011-07-27 清华大学 Positive pole of lithium ion cell and preparation method thereof
CN101635362B (en) 2008-07-25 2012-03-28 清华大学 Membrane electrode and fuel cell adopting same
TWI455396B (en) * 2007-12-26 2014-10-01 Hon Hai Prec Ind Co Ltd Membrane electrode assembly of fuel cell and method of making the same
CN101499549B (en) 2008-02-01 2012-08-29 清华大学 Filter
TWI420812B (en) * 2008-03-07 2013-12-21 Hon Hai Prec Ind Co Ltd Filter
CN101567230B (en) 2008-04-25 2012-06-20 清华大学 Preparation method of transparent conductive thin film
TWI382965B (en) * 2008-05-09 2013-01-21 Hon Hai Prec Ind Co Ltd Method of making transparent conducting film
CN101752568B (en) 2008-12-17 2012-06-20 清华大学 Membrane electrode and biological fuel cell thereof
US9077042B2 (en) 2008-07-25 2015-07-07 Tsinghua University Membrane electrode assembly and biofuel cell using the same
CN101752567B (en) 2008-12-17 2012-09-19 清华大学 Membrane electrode and fuel cell thereof
CN102372251B (en) 2010-08-23 2014-03-26 清华大学 Carbon nanotube structure and preparation method thereof
TWI405712B (en) * 2010-08-27 2013-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making same
CN102013376B (en) 2010-11-29 2013-02-13 清华大学 Field emission unit and field emission pixel tube

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266666A (en) * 1985-05-21 1986-11-26 株式会社豊田中央研究所 Fiber for composite material and its production
JPS62141171A (en) * 1985-12-17 1987-06-24 東レ株式会社 Method for strength enhancing treatment of carbon fiber
JPS63264918A (en) * 1988-04-08 1988-11-01 Toho Rayon Co Ltd Production of carbon fiber
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
JP2003520178A (en) * 2000-01-19 2003-07-02 ミッドウエスト リサーチ インスティチュート Single-walled carbon nanotubes for hydrogen storage or superbundle formation
JP2004102217A (en) * 2002-09-10 2004-04-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Polarizing element and its manufacturing method
JP2004111345A (en) * 2002-09-16 2004-04-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Lamp filament and its manufacturing method
JP2004107196A (en) * 2002-09-16 2004-04-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Carbon nanotube rope and its producing method
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
JP2004217456A (en) * 2003-01-14 2004-08-05 Nippon Telegr & Teleph Corp <Ntt> Method of forming carbon nano-thread
JP2004256382A (en) * 2003-02-25 2004-09-16 Korea Advanced Inst Of Sci Technol Ceramic-based nanocomposite powder strengthened by carbon nanotube and its producing method
JP2004277907A (en) * 2003-03-14 2004-10-07 Toray Ind Inc Carbon fiber and method for producing the same
JP2004532937A (en) * 2000-11-03 2004-10-28 ハネウェル・インターナショナル・インコーポレーテッド Spinning, processing, and utilizing carbon nanotube filaments, ribbons, and yarns
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP2005154950A (en) * 2003-11-26 2005-06-16 Teijin Ltd Fiber formed product composed of single-wall carbon nanotube
JP2005524000A (en) * 2002-04-23 2005-08-11 ナンテロ,インク. Method of using preformed nanotubes to produce carbon nanotube films, layers, fabrics, ribbons, devices and products

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266666A (en) * 1985-05-21 1986-11-26 株式会社豊田中央研究所 Fiber for composite material and its production
JPS62141171A (en) * 1985-12-17 1987-06-24 東レ株式会社 Method for strength enhancing treatment of carbon fiber
JPS63264918A (en) * 1988-04-08 1988-11-01 Toho Rayon Co Ltd Production of carbon fiber
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
JP2003520178A (en) * 2000-01-19 2003-07-02 ミッドウエスト リサーチ インスティチュート Single-walled carbon nanotubes for hydrogen storage or superbundle formation
JP2004532937A (en) * 2000-11-03 2004-10-28 ハネウェル・インターナショナル・インコーポレーテッド Spinning, processing, and utilizing carbon nanotube filaments, ribbons, and yarns
JP2005524000A (en) * 2002-04-23 2005-08-11 ナンテロ,インク. Method of using preformed nanotubes to produce carbon nanotube films, layers, fabrics, ribbons, devices and products
JP2004102217A (en) * 2002-09-10 2004-04-02 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Polarizing element and its manufacturing method
JP2004111345A (en) * 2002-09-16 2004-04-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Lamp filament and its manufacturing method
JP2004107196A (en) * 2002-09-16 2004-04-08 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Carbon nanotube rope and its producing method
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
JP2004217456A (en) * 2003-01-14 2004-08-05 Nippon Telegr & Teleph Corp <Ntt> Method of forming carbon nano-thread
JP2004256382A (en) * 2003-02-25 2004-09-16 Korea Advanced Inst Of Sci Technol Ceramic-based nanocomposite powder strengthened by carbon nanotube and its producing method
JP2004277907A (en) * 2003-03-14 2004-10-07 Toray Ind Inc Carbon fiber and method for producing the same
JP2005089738A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP2005154950A (en) * 2003-11-26 2005-06-16 Teijin Ltd Fiber formed product composed of single-wall carbon nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAILI JIANG, ET.AL.: "Spinning continuous carbon nanotube yarns", NATURE, vol. 419, JPN6009055094, 24 October 2002 (2002-10-24), pages 801, XP002298429, ISSN: 0001447359, DOI: 10.1038/419801a *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988893B2 (en) * 2008-09-18 2011-08-02 Tsinghua University Method for fabricating carbon nanotube yarn
JP2012153540A (en) * 2011-01-21 2012-08-16 Denso Corp Carbon nanotube aggregate, and method for manufacturing the same
KR20170107023A (en) * 2015-02-27 2017-09-22 히다치 조센 가부시키가이샤 Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber
JP2018090457A (en) * 2016-12-05 2018-06-14 住友電気工業株式会社 Carbon structure, and production method of carbon structure

Also Published As

Publication number Publication date
TW200722368A (en) 2007-06-16
TWI272245B (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP2007152540A (en) Manufacturing method of carbon nanotube element
US11312102B2 (en) Carbon nanotube structure
US8246874B2 (en) Method for making carbon nanotube-based device
JP4486060B2 (en) Method for producing carbon nanotube muscle
US9215759B2 (en) Method for heating object using sheet-shaped heat and light source
US7785669B2 (en) Method for making high-density carbon nanotube array
US7641885B2 (en) Method for making a carbon nanotube film
US6957993B2 (en) Method of manufacturing a light filament from carbon nanotubes
JP4436821B2 (en) Single-wall carbon nanotube array growth apparatus and single-wall carbon nanotube array growth method
JP2009231286A (en) Manufacturing method of field emission type electron source
US7988515B2 (en) Method for manufacturing field emission electron source having carbon nanotubes
US9017637B2 (en) Method for making carbon nanotube structure
US8323607B2 (en) Carbon nanotube structure
US20090115306A1 (en) Field emission electron source having carbon nanotubes and method for manufacturing the same
US20090239072A1 (en) Carbon nanotube needle and method for making the same
US20120045643A1 (en) Carbon nanotube wire structure and method for making the same
JP2010281025A (en) Method for producing carbon nanotube linear structure
JP4960398B2 (en) Field emission electron source
JP2009164124A (en) Thermion emission element
JP2009155127A (en) Carbon nanotube and method for manufacturing the carbon nanotube
KR20140036171A (en) Catalyst free synthesis of vertically aligned cnts on sinw arrays
TW201125814A (en) Method for making carbon nanotube structure
US8545792B2 (en) Method for making carbon nanotube structure
US8727827B2 (en) Method for making field emission electron source
US9171689B2 (en) Method for making carbon nanotube field emitter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027