JP2004002621A - Carbon nanotube-containing paste, carbon nanotube-dispersed composite, and method for producing carbon nanotube-dispersed composite - Google Patents

Carbon nanotube-containing paste, carbon nanotube-dispersed composite, and method for producing carbon nanotube-dispersed composite Download PDF

Info

Publication number
JP2004002621A
JP2004002621A JP2002257617A JP2002257617A JP2004002621A JP 2004002621 A JP2004002621 A JP 2004002621A JP 2002257617 A JP2002257617 A JP 2002257617A JP 2002257617 A JP2002257617 A JP 2002257617A JP 2004002621 A JP2004002621 A JP 2004002621A
Authority
JP
Japan
Prior art keywords
cnt
carbon nanotube
dispersed
conjugated polymer
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002257617A
Other languages
Japanese (ja)
Other versions
JP4273726B2 (en
JP2004002621A5 (en
Inventor
Junji Sanada
真多 淳二
Jun Tsukamoto
塚本 遵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002257617A priority Critical patent/JP4273726B2/en
Publication of JP2004002621A publication Critical patent/JP2004002621A/en
Publication of JP2004002621A5 publication Critical patent/JP2004002621A5/ja
Application granted granted Critical
Publication of JP4273726B2 publication Critical patent/JP4273726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the method for dispersing carbon nanotubes in a matrix resin and to provide a composite material or a paste for preparing a composite material which, as a conductive resin material, supersedes conventional additives and addition methods. <P>SOLUTION: The paste or the carbon nanotube-dispersed composite comprises a matrix resin and carbon nanotubes covered with a conjugated diene polymer and dispersed in the matrix resin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マトリックス樹脂と、共役系重合体で覆われたカーボンナノチューブを含むカーボンナノチューブ含有ペーストであり、またマトリックス樹脂中に共役系重合体で覆われたCNTが分散されているCNT分散コンポジットである。
【0002】
【従来の技術】
カーボンナノチューブ(以下、CNTと言う)はナノテクノロジーの有力な素材として、広範な分野で応用の可能性が検討されている。用途としてはトランジスターや顕微鏡用プローブなどのようにCNTの単線を使用する方法と、電子放出電極や燃料電池用電極、あるいはCNTを分散した導電性コンポジットなどのように多数のCNTをまとめてバルクとして使用する方法とに分けられる。単線を使用する場合は、CNTを溶媒中で超音波を照射した後、電気泳動などで単一に分散しているCNTのみを取り出すなどの方法を用いている。バルクで用いる導電性コンポジットではマトリックス材となる重合体中などに良好に分散できることが必須であるが、一般にCNTは分散しにくいという問題があり、通常のコンポジットではCNTの分散が不完全なまま用いられている。このためCNT表面の改質、化学修飾などによって分散性を向上する方法が種々検討されている。
【0003】
しかし、CNTの表面を改質すると、本来のCNTの特性、たとえば高導電性が損なわれるという問題がある。CNTを分散させる方法としては、CNTをドデシルスルホン酸ナトリウムなどの界面活性剤を含有する水溶液に入れる方法(例えば特許文献1参照)があるが、CNT表面に非導電性の有機物が付着するので導電性が損なわれるという問題がある。また、CNT表面にコイル状構造を持つポリマー付着させる方法として、ポリ−m−フェニレンビニレン−co−ジオクトキシ−p−フェニレンビニレンを含む溶媒中にCNTを加え、沈殿するCNT複合材を分離・精製するという方法(例えば特許文献2参照)が提案されているが、該ポリマーは共役系が不完全なため、CNTの導電性を損ねると言う問題があった。
【0004】
一方、単層CNTに官能基を付加させる等の方法により化学修飾を施し分散性を付与した上で使用されたものがある(例えば非特許文献1参照)が、CNTに化学修飾を施すとCNTを構成するπ共役系が破壊されやすく、CNT本来の特性が損なわれるという問題点があった。
【0005】
【特許文献1】
特開平6−228824号公報(第5〜6頁)
【0006】
【特許文献2】
特開2000−44216号公報(第4〜5頁)
【0007】
【非特許文献1】
「Science」誌,vol.282,1998(1998年10月2日発行),p95
【0008】
【発明が解決しようとする課題】
上記に記載されたこれら方法で言う分散とは、数mmオーダーのCNTの塊を数μmの塊にサイズダウンさせる程度のものであり、CNT単線のサイズ(直径0.8〜100nm)への分散には到底達していないものであった。後者特許公報ではCNT1本にポリマーが付着している様子を示しているが、一度ある程度にまで分散した後に凝集が起こり沈殿物としてCNTを捕集するというものであり、長期的にCNTを分散させた状態で保存できるものではなかった。
【0009】
そこで本発明は上記問題点を解決すべく、CNTの分散性に優れるCNT含有ペーストおよびCNT分散コンポジットを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を達成するために、本発明は下記の構成からなる。
(1)マトリックス樹脂中に共役系重合体で覆われたカーボンナノチューブが分散されているペースト。
(2)マトリックス樹脂中に共役系重合体で覆われたカーボンナノチューブが分散されているカーボンナノチューブ分散コンポジット。
(3)共役系重合体とカーボンナノチューブと溶媒とからなるカーボンナノチューブ分散液から、共役系重合体の付着したカーボンナノチューブを分別し、該カーボンナノチューブをマトリックス樹脂中に分散させる上記(1)のペーストの製造方法。
(4)共役系重合体とカーボンナノチューブと溶媒とからなるカーボンナノチューブ分散液から、共役系重合体の付着したカーボンナノチューブを分別し、該カーボンナノチューブをマトリックス樹脂中に分散させる上記(2)のカーボンナノチューブ分散コンポジットの製造方法。
【0011】
【発明の実施の形態】
本発明者らはCNTの導電性を損ねずに分散させる材料を鋭意検討した結果、共役系重合体を分散剤として用いることによって、共役系重合体がCNT表面を覆いCNTが樹脂中に均一に分散し、樹脂に添加されたCNTが本来の機能である導電性を発揮することができることを見出した。ここで言う樹脂の形態としては、樹脂基板、樹脂フィルム、樹脂皮膜などが挙げられる。さらに、本発明において使用される共役系重合体は、共役系構造が発達しており導電性や半導体特性を利用するには有利であるという特長がある。本発明のCNT分散体では、CNTの濃度によって電導度を制御することができ、かつ熱や湿度に対する安定性も優れるという特長がある。
【0012】
以下、本発明について詳述する。本発明においてCNTに付着している重合体は、共役系重合体であることが必要で、さらに好ましくは直鎖状共役系重合体である。ここで直鎖状とは、重合体の骨格構造が安定状態(外力が加わっていない状態)において螺旋構造を取らず、まっすぐ延びているものを意味し、また、共役系重合体とは重合体の骨格の炭素−炭素の結合が1重結合と2重結合が交互に連なっている重合体を意味する。
【0013】
このような共役系重合体としては、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ−p−フェニレン系重合体、ポリ−p−フェニレンビニレン系重合体などが挙げられる。主鎖構造が螺旋状の重合体でもある程度の分散効果は得られるが、さらに好ましくは、共役系重合体の主鎖構造が直鎖状に連なったものが良い。ポリチオフェン系重合体、ポリピロール系重合体はそれぞれチオフェン環、ピロール環の2、5位でモノマーユニットがつながったもの、また、ポリフェニレン系重合体ではフェニレン基がp位で連なっているポリ−p−フェニレン系重合体、ポリフェニレンビニレン系重合体ではフェニレン基とビニレン基がp位で連なっているポリ−p−フェニレンビニレン系重合体であることが好ましい。上記重合体の中でも本発明においては、ポリチオフェン系重合体が特に好ましく使用される。
【0014】
ポリチオフェン系重合体とはポリ−p−チオフェン構造の骨格を持つ重合体に側鎖が付いた構造を有するものである。具体例としては、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−ドデシルチオフェンなどのポリ−3−アルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェンなどのポリ−3−アルコキシチオフェン(アルコキシ基の炭素数はとくに制限はないが好ましくは1〜12)、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェンなどのポリ−3−アルコキシ−4−アルキルチオフェン(アルコキシ基およびアルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−チオヘキシルチオフェンやポリ−3−チオドデシルチオフェンなどのポリ−3−チオアルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)が挙げられ、1種もしくは2種以上を用いることができる。中でも、ポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンが好ましく、前者としては特にポリ−3−ヘキシルチオフェンが好ましい。好ましい分子量は重量平均分子量で800〜100000である。また、上記重合体は必ずしも高分子量である必要はなく、直鎖状共役系からなるオリゴマーであってもよい。
【0015】
CNTはアーク放電法、化学気相成長法(以下CVD法とする)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法によって得られたものであってもよい。また、CNTには1枚の炭素膜(グラッフェン・シート)が円筒状に巻かれた単層CNT(以下SWCNTと言う)と、2枚のグラッフェン・シートが同心円状に巻かれた2層CNT(以下DWCNTと言う)と、複数のグラッフェン・シートが同心円状に巻かれた多層CNT(以下MWCNTと言う)とがあり、本発明においてSWCNT、DWCNT、MWCNTをそれぞれ単体で、もしくは複数を同時に使用できる。特に、SWCNTとDWCNTと直径が15nm以下のMWCNTは導電性および半導体特性において優れた性質を持つので好ましく用いることができるが、中でも特にSWCNTまたはDWCNTを用いることが好ましい。
【0016】
上記の方法でSWCNT、DWCNTやMWCNTを作製する際には、同時にフラーレンやグラファイト、非晶性炭素が副生産物として生成され、またニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存するので、これらの不純物を除去し精製する必要がある。不純物の除去には、硝酸、硫酸などによる酸処理とともに超音波処理が有効であり、またフィルターによる分離を併用することは純度を向上させる上でさらに好ましい。本発明で用いられるCNTの直径は特に限定されないが、0.8nm以上100nm以下が好ましく、より好ましくは50nm以下、さらに好ましくは15nm以下である。
【0017】
共役系重合体の付着したCNTをマトリックス樹脂の中に分散させることで、本発明のCNTとマトリックス樹脂との間に共役系重合体の層を有するCNT分散ペーストまたはCNT分散コンポジットを得ることができる。
【0018】
本発明のCNT分散ペーストまたはCNT分散コンポジットで用いられるマトリックス樹脂には、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニール、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、6−ナイロン、6,6−ナイロンなどの熱可塑性樹脂、エポキシ系やメラミン系、ポリアセタール系、フェノール系、ポリイミド系などの熱硬化性樹脂、分子内に不飽和結合やジアゾ化合物を含む感光性樹脂などが好ましく用いられるが、本発明のCNT分散ペーストまたはCNT分散コンポジットに用いる樹脂はこれらに限定されるものではない。上記に挙げた以外の樹脂においても導電性の無い材料であれば本発明のCNT分散ペーストまたはCNT分散コンポジットにすることで導電性を付与することができ、好ましく用いることができる。
【0019】
ここで、共役系重合体の付着したCNTの作製方法として、(1)共役系重合体の中にCNTを添加し分散させ共役系重合体/CNTの混合物をそのまま用いる方法と、(2)共役系重合体/CNTの混合物を0.1μm径程度のフィルターでCNTをろ別し余剰の共役系重合体を除去してから用いる方法とがある。なお、後者(2)のろ別する方法を用いた場合においても、共役系重合体はCNTとの相互作用が強いためCNTの表面に付着していることが種々の元素分析、表面分析装置で確認することができる。さらに、共役系重合体/CNTの混合物の作製方法として、(3)溶融した共役系重合体の中にCNTを添加して混合させる方法と、(4)共役系重合体を溶媒中に溶解させこの中にCNTを添加して混合させる方法と、(5)CNTを溶媒中で予め超音波などで予備分散しておいた所に共役系重合体を添加し混合させる方法、(6)溶媒中に共役系重合体とCNTを入れ、この混合系に超音波を照射して混合させる方法とがある。本発明では何れの方法を単独で用いるか、あるいは何れの方法を組み合わせても良い。中でも(6)の溶媒中に共役系重合体とCNTを入れ、この混合系に超音波を照射して混合させる方法に加えて(2)の0.1μm径のフィルターでCNTをろ別する方法を組み合わせることが好ましい。
【0020】
次に、マトリックス樹脂中に共役系重合体の付着したCNTを分散させる手順と手段について述べる。手順としては、(7)溶媒中に共役系重合体の付着したCNTを再分散させ、そこへマトリックス樹脂を溶解させる方法と、(8)マトリックス樹脂溶液の中に共役系重合体の付着したCNTを添加し分散させる方法と、(9)液状のマトリックス樹脂に対しては直接添加し分散させる方法などがある。次に分散の手段としては、撹拌、超音波処理、振動分散、混練などが必要であり、CNT含有ペーストの濃度や粘度に応じて手段を選択する必要がある。例えば撹拌による混合では、フラスコや蓋付きの容器を回転させたり、スクリュー型やブラシ型の撹拌羽根が高速に回転する装置を用いることができる。超音波処理装置では、超音波洗浄機の槽の中にマトリックス樹脂とCNTの入った容器を設置したり、あるいは超音波振動子を該容器の中に入れて処理するなどの方法がある。混練装置では、セラミックスの微粒子を用いたビーズミル装置やボールミル装置、三本ローラーなどを用いることができる。本発明のCNT分散コンポジットにおいては撹拌混合をした後、超音波処理を施すことが好ましいが、本方法に限定されるものではない。
【0021】
ここで、マトリックス樹脂を溶解させるのに用いる溶媒としては、メタノール、エタノール、ブタノール、トルエン、キシレン、o−クロロフェノール、アセトン、酢酸エチル、エチレングリコール、クロロホルム、クロロベンゼン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、γ−ブチロラクトンなどが挙げられるがこれらに限定されるものではなく、必要に応じて溶媒を選ぶことができる。
【0022】
このようにして得られたCNT含有ペーストは、溶剤を留去したり、硬化させることによってCNT分散コンポジットを形成することができ、フィルム、塗膜、板、構造材、光学樹脂、複合材などへ応用することができる。その分散状態を確認する方法として該コンポジットを厚み1mm以下、好ましくは100μm以下のフィルムまたは塗膜状に加工して光学顕微鏡で観察したり、表面をある一定厚みでエッチング処理した後に電子顕微鏡や原子間力顕微鏡で観察するすることができる。すなわちCNTの分散状態が良好な場合にはCNTが非常に小さな点あるいは線で観察されるが、分散不良の場合にはCNTが直径10μm以上の凝集体として観察され、数mm四方の観察視野の中でも凝集体の存在箇所の分布に偏りが見られる場合がある。図1に本発明のCNT分散コンポジットの塗膜の光学顕微鏡写真を示したが、CNTが良好に分散されている様子を観察することができる。
【0023】
本発明のCNT分散コンポジット中のCNTは、何ら損傷を受けていないので導電性などの本来の特性を維持したまま使用することができる特徴がある。SWCNTに官能基を付加させる等の方法により化学修飾を施し分散性を付与した上で使用されたものは、CNTに化学修飾を施すとCNTを構成するπ共役系が破壊されやすく、CNT本来の特性が損なわれるという問題点があった。本発明ではこのような化学修飾を特に施さなくてもCNTの分散が可能である。従って損傷を受けない分だけマトリックス樹脂中へのCNTの添加量を増やす必要が無く、最適な添加量で最適なCNTの特性を引き出すことができる。
【0024】
本発明のCNT分散コンポジットに含まれるCNTの重量比率は、通常はマトリックス樹脂に対して0.001〜5重量%であることが好ましい。この範囲にあることでマトリックス樹脂の特性を生かしつつ、かつCNTによる特性の向上を図ることができる。また光学特性を考慮し着色性を配慮しなけらばならない場合は、0.001〜0.5重量%であることが好ましい。この範囲にあることでCNTは目視で確認することは難しく、膜・フィルムなどの透過率をあまり下げることがない。また、逆にCNTがほぼバルクの状態で共役系重合体が分散剤兼結着剤として用いることも可能であり、マトリックス樹脂と共役系重合体の重量比率は特に限定されるものではない。5重量%より多い場合にはコンポジットが黒に着色されるのでコンポジット透明性を必要とする場合や他の色に着色したい場合には5重量%以下の添加量にする必要がある。さらに好ましくは0.01〜1重量%であり、この範囲にあることで、コンポジットへの着色が少なく、且つ導電性などの電気特性に優れたコンポジットを得ることができる。
【0025】
なお本発明において、CNT分散コンポジットの分散性を間接的に評価する指標として導電性がある。導電性は抵抗率として以下のようにして求められる。また、CNT含有ペーストは溶剤を留去したり硬化させた後にCNT含有コンポジットとして評価することができる。すなわち、先ずガラス基板に金属層または導電層(白金、金、銀、アルミ、クロム、ITOなど)をスパッタリングで一方の電極を形成した後、この金属表面上にCNT分散コンポジットをブレードコーターやスピナーなどを用いて塗布する。次に、この塗布膜表面に金属薄膜をスパッタリングすることによってもう一方の電極を形成する。CNT分散コンポジットを挟む上記二つの電極間に電圧(V)を印加してその時の電流(I)を求め、V−I特性から抵抗率を測定する(2端子法)。また、櫛形状の電極2組が対向して形成されたガラス基板上にCNT分散コンポジットを塗布して、2組の電極間に電圧を印加して、そのときの電流から抵抗率を求める方法も使用される。なお、CNT分散コンポジット膜の抵抗率が高い場合にはガードリング付きの3端子法で、また抵抗率が低い場合には4つの電極を用いた4端子法から抵抗率を求めることができる。
【0026】
本発明においてCNT分散コンポジットの表面に溜まる電荷の度合いをオネストメーターを用いて測定することができる。すなわち本装置では、厚みが約100μmで40mm四方の試料をディスク上に固定し、ディスクを回転させながら試料にコロナ放電により10kVの電圧を印加し、同時に試料表面の電位を測定するものである(JIS L1094−1980参照)。本装置の評価で、試料表面の帯電量が5V以下のものが導電性を有する樹脂として好ましく用いられる。
【0027】
【実施例】
以下、本発明を実施例に基づきさらに具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。
【0028】
実施例1
まず、100mLのフラスコの中にCNT(単層カーボンナノチューブ:サイエンスラボラトリーズ社製、純度95%)を0.1g入れ、クロロホルム50mLを加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W、2.6L)を用いて1時間分散した。次に、共役系重合体としてポリ−3−ヘキシルチオフェン(アルドリッチ社製、分子量:Mw20000)を0.1g加えてさらに超音波洗浄機で10時間分散した。得られたCNT分散液をPTFE製の0.1μm孔フィルター(東洋アドバンテック(株)製)でろ別し、表面に共役系重合体が付着したCNTを得た。次いで、クロロホルム300mL中にポリメチルメタクリレート(以下、PMMAと言う)(住友化学工業(株)製“スミペックス”、分子量:Mw500000)100gが溶解した500mLのフラスコに、先のろ別したCNTを加えさらに超音波洗浄機中で分散処理を施すことで、CNT含有PMMAペーストを得た。該ペーストの粘度をB型粘度計(ブルックフィールド社製、モデルDVII+、スピンドルNo.14、回転数3rpm)で測定したところ3000mPa・sであった。次いで得られたペースト1mLを周縁部に厚み100μmの粘着テープを貼った50mm角のガラス基板に滴下し、ブレードコーター(英RK Print−Coat Instruments社製)を30mm/secの速さで移動させることにより均一な塗膜面を形成し、そして基板ごと50℃のオーブンに5分間入れ、最後に真空乾燥機で2時間溶媒を除去することで厚み30μmの塗膜を作製し、基板から剥がしてCNT0.1%含有PMMA膜を得た。該膜の500倍の光学顕微鏡で観察したところCNTが良好に分散されていることを確認できた。写真を図1に示した。また該膜の透過率を紫外可視分光光度計(日立製作所製U−3210)で測定したところ500nmで95.0%Tであり、目視でほとんど透明であった。
【0029】
実施例2
実施例1に記載したCNT0.1%含有PMMA膜を用いて、膜表面に溜まる電荷の度合いをオネストメーターで測定したところ3Vであり、合成樹脂としては非常に小さい値を示した。次に実施例1に記載のPMMAとCNTとの均一な分散液を電極間隔10μm、電極厚み1μm、対向電極数が20個の櫛形電極上にブレードコーターで塗布し、両電極間の抵抗を測定し、該抵抗値に電極断面のの総面積を掛けて厚みで割ったものを抵抗率として算出したところ、1.0×10Ωcmであり、合成樹脂としては非常に小さな値を示した。
【0030】
実施例3
始めに添加したCNTを0.01g(実施例1、2の10分の1の量)にした以外は実施例1、2と全く同じ操作を行った。得られた膜の特性を調べたところ、CNTは良好に分散されており、透過率が96.0%、膜表面の電位が3V、体積抵抗率は5.0×10Ωcmであった。
【0031】
実施例4
始めに添加したCNTを1g(実施例1.2の10倍の量)にした以外は実施例1、2と全く同じ操作を行った。得られた膜の特性を調べたところ、CNTは良好に分散されており、透過率が86.0%、膜表面の電位が2V、体積抵抗率は5.0×10Ωcmであった。
【0032】
実施例5
マトリックス樹脂をポリスチレン(和光純薬(株)製、分子量Mw=約300000)を用いた以外は実施例1、2と全く同じ操作を行った。得られた膜の特性を調べたところ、CNTは約10μmの塊が僅かに見られたがほぼ良好に分散されており、透過率が92.0%、膜表面の電位が3V、体積抵抗率は5.0×10Ωcmであった。
【0033】
実施例6
マトリックス樹脂をポリカーボネート(帝人化成(株)製“パンライト”AD−5503H)を用いた以外は実施例1、2と全く同じ操作を行った。得られた膜の特性を調べたところ、CNTは約10μmの塊が僅かに見られたがほぼ良好に分散されており、透過率が91.0%、膜表面の電位が3.5V、体積抵抗率は1.0×10Ωcmであった。
【0034】
実施例7
実施例1に記載の表面に共役系重合体が付着したCNT0.1gと、ペレット状のPMMA100gを500mLのフラスコに入れ、150℃で撹拌しながら溶融分散した。次いでこの溶融PMMA約2mLをステンレス板上に拡げて冷却し、厚み30μmの塗膜を作製し、基板から剥がしてCNT0.1%含有PMMA膜を得た。得られた膜の特性を調べたところ、CNTは良好に分散されており、透過率が95.0%T、膜表面の電位が3V、体積抵抗率は、1.0×10Ωcmであった。
【0035】
実施例8
実施例1で作製したペーストをトルエンで10倍に希釈して、PMMA濃度が2.5重量%のCNT含有ペーストを調製し、E型粘度計(東京計器製、ビスコニックED、回転数1rpm)で測定したところ50mPa・sであった。次いで該ペーストを50mm角のガラス基板上に1mL滴下し、スピンコーター(1000rpmで20秒)で塗布し、基板ごと50℃のオーブンに5分間入れ、真空乾燥機で2時間乾燥させることで、厚み1μmのCNT0.1%含有PMMA膜を得た。該膜を500倍の光学顕微鏡で観察したところCNTが良好に分散されていた。膜表面に溜まる電荷の測定は、ITO付きのガラス基板上にペーストをスピンコート塗布して厚み1μmの塗膜で計測したところ1.5Vであり、抵抗率の測定を実施例1と同様に行ったところ1.0×10Ωcmであり、合成樹脂としては非常に小さな値を示した。
【0036】
実施例9
初めに用いるCNTを1g(実施例1の10倍)にし、あとで添加したPMMAを4g(実施例1の25分の1)にした以外は実施例1と全く同じ操作を行った。得られた膜の特性を調べたところ、CNTは良好に分散されており、膜表面に溜まるの電荷が0.5V、体積抵抗率は1.0×10Ωcmであり合成樹脂としては非常に小さな値を示した。
【0037】
実施例10
CNTを再分散させる溶剤にDMF(N、N−ジメチルホルムアミド)を用い、乾燥条件を80℃60分にした以外は実施例1と全く同様の操作を行ったところ、厚み30μmの塗膜を得、CNTは良好に分散されていた。膜表面に溜まる電荷は3Vで、抵抗率は1.0×10Ωcmであり合成樹脂としては非常に小さな値を示した。
【0038】
比較例1
共役系重合体の代わりにドデシルスルホン酸ナトリウムを用い、始めの溶媒をクロロホルムの代わりに水/エタノール1対1の溶媒を用いた以外は実施例1、2と全く同様の操作を行った。しかし、CNTを再分散しようとしてもCNTは塊のまま良好に分散せず、分散不良のままペーストを調製し、膜の特性を調べたところ、膜中にもmmオーダーの局所的なCNTの塊が存在した。膜の透過率が95.0%、膜表面の電位が15V、体積抵抗率は1.0×10Ωcmであり、共役系重合体を用いたときよりも抵抗が10倍も上がった。
【0039】
比較例2
共役系重合体であるポリ−3−ヘキシルチオフェンの代わりにポリ−m−フェニレンビニレン−co−ジオクトキシ−p−フェニレンビニレン(公知の方法:synthetic metals,vol.109,2478(1999)を参考に合成)を用いた以外は実施例1、2と全く同様の操作を行った。得られた膜の特性を調べたところ、CNTは10数μmオーダーの局所的な塊が存在したがほぼ均一に分散しており、透過率が99.0%、膜表面の電位が10V、体積抵抗率は1.0×10Ωcmであり、ポリ−3−ヘキシルチオフェンを用いたときよりも抵抗が10倍も上がった。
【0040】
【発明の効果】
本発明のカーボンナノチューブ含有ペーストまたはカーボンナノチューブ分散コンポジットは、カーボンナノチューブとマトリックス樹脂との間に共役系重合体の層を有することで、カーボンナノチューブの分散性を極めて高くすることができ、かつ、自身の導電性も高く、カーボンナノチューブに損傷を与えないので、少ないカーボンナノチューブ添加量でマトリックス樹脂に高い導電性などのCNT特有の性質を付与することができる。
【図面の簡単な説明】
【図1】実施例における光学顕微鏡写真
[0001]
BACKGROUND OF THE INVENTION
The present invention is a carbon nanotube-containing paste containing a matrix resin and carbon nanotubes covered with a conjugated polymer, and a CNT-dispersed composite in which CNTs covered with a conjugated polymer are dispersed in a matrix resin. is there.
[0002]
[Prior art]
Carbon nanotubes (hereinafter referred to as CNT) are considered as potential materials for nanotechnology, and their applicability in a wide range of fields has been studied. Applications include the use of a single CNT wire such as a transistor or a probe for a microscope, and the bulk of many CNTs such as an electron emission electrode, a fuel cell electrode, or a conductive composite in which CNTs are dispersed. It is divided into the method used. In the case of using a single wire, after irradiating CNTs with ultrasonic waves in a solvent, a method of taking out only CNTs dispersed in a single manner by electrophoresis or the like is used. For conductive composites used in bulk, it is essential to be able to disperse well in the polymer used as a matrix material, but generally there is a problem that CNTs are difficult to disperse, and normal composites are used with incomplete CNT dispersion. It has been. For this reason, various methods for improving dispersibility by modifying the CNT surface, chemical modification, and the like have been studied.
[0003]
However, when the surface of the CNT is modified, there is a problem that the original characteristics of the CNT, for example, high conductivity is impaired. As a method of dispersing CNT, there is a method of putting CNT in an aqueous solution containing a surfactant such as sodium dodecyl sulfonate (see, for example, Patent Document 1). However, since non-conductive organic substances adhere to the CNT surface, the CNT is conductive. There is a problem that the sex is impaired. In addition, as a method for attaching a polymer having a coiled structure to the CNT surface, CNT is added to a solvent containing poly-m-phenylene vinylene-co-dioctoxy-p-phenylene vinylene, and the precipitated CNT composite is separated and purified. However, since the polymer has an incomplete conjugated system, there is a problem that the conductivity of the CNT is impaired.
[0004]
On the other hand, there are those that are used after imparting dispersibility by chemically modifying the single-walled CNT by a method such as adding a functional group (for example, see Non-Patent Document 1). There is a problem that the π-conjugated system constituting the CNT is easily broken and the original properties of CNT are impaired.
[0005]
[Patent Document 1]
JP-A-6-228824 (pages 5-6)
[0006]
[Patent Document 2]
JP 2000-44216 A (pages 4 to 5)
[0007]
[Non-Patent Document 1]
“Science”, vol. 282, 1998 (October 2, 1998), p95
[0008]
[Problems to be solved by the invention]
The dispersion referred to in these methods described above is such that the size of a CNT lump on the order of several millimeters is reduced to a size of several μm, and the dispersion to the size of a CNT single wire (diameter 0.8 to 100 nm) It was something that was never reached. The latter patent publication shows that the polymer is attached to one CNT, but once dispersed to a certain extent, aggregation occurs and CNT is collected as a precipitate. It was not something that could be stored in a state.
[0009]
Accordingly, an object of the present invention is to provide a CNT-containing paste and a CNT-dispersed composite excellent in CNT dispersibility in order to solve the above-described problems.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises the following constitution.
(1) A paste in which carbon nanotubes covered with a conjugated polymer are dispersed in a matrix resin.
(2) A carbon nanotube-dispersed composite in which carbon nanotubes covered with a conjugated polymer are dispersed in a matrix resin.
(3) The paste according to (1) above, wherein the carbon nanotube to which the conjugated polymer is adhered is separated from the carbon nanotube dispersion liquid comprising the conjugated polymer, the carbon nanotube, and the solvent, and the carbon nanotube is dispersed in the matrix resin. Manufacturing method.
(4) The carbon according to (2) above, wherein the carbon nanotube to which the conjugated polymer is adhered is separated from the carbon nanotube dispersion liquid comprising the conjugated polymer, the carbon nanotube, and the solvent, and the carbon nanotube is dispersed in the matrix resin. A method for producing a nanotube-dispersed composite.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies on materials that can be dispersed without impairing the conductivity of the CNTs, the present inventors have used the conjugated polymer as a dispersant, so that the conjugated polymer covers the CNT surface and the CNT is uniformly in the resin. It has been found that the CNTs dispersed and added to the resin can exhibit conductivity, which is the original function. Examples of the resin form mentioned here include a resin substrate, a resin film, and a resin film. Furthermore, the conjugated polymer used in the present invention has the advantage that a conjugated structure has been developed and it is advantageous for utilizing conductivity and semiconductor characteristics. The CNT dispersion of the present invention is characterized in that the conductivity can be controlled by the concentration of CNTs and the stability against heat and humidity is excellent.
[0012]
Hereinafter, the present invention will be described in detail. In the present invention, the polymer adhering to the CNT needs to be a conjugated polymer, and more preferably a linear conjugated polymer. Here, the straight chain means that the skeleton structure of the polymer does not take a spiral structure in a stable state (a state in which no external force is applied) and extends straight, and the conjugated polymer is a polymer. The polymer in which the carbon-carbon bonds of the skeleton are alternately linked with single bonds and double bonds.
[0013]
Examples of such conjugated polymers include polythiophene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, poly-p-phenylene polymers, poly-p-phenylene vinylene polymers. Can be mentioned. Even if the main chain structure is a spiral polymer, a certain degree of dispersion effect can be obtained. However, it is more preferable that the main chain structure of the conjugated polymer is a linear chain. The polythiophene polymer and polypyrrole polymer are those in which the monomer units are connected at the 2nd and 5th positions of the thiophene ring and pyrrole ring, respectively. In the polyphenylene polymer, poly-p-phenylene in which the phenylene group is connected at the p position. In the case of a polymer or polyphenylene vinylene polymer, a poly-p-phenylene vinylene polymer in which a phenylene group and a vinylene group are connected at the p-position is preferable. Among the above polymers, a polythiophene polymer is particularly preferably used in the present invention.
[0014]
The polythiophene polymer has a structure in which a side chain is attached to a polymer having a poly-p-thiophene skeleton. Specific examples include poly-3-alkylthiophene (alkyl group) such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, poly-3-dodecylthiophene, and the like. The number of carbons in the group is not particularly limited, but preferably 1 to 12), poly-3-alkoxythiophene such as poly-3-methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene (carbon of alkoxy group) The number is not particularly limited, but preferably 1 to 12), poly-3-alkoxy-4-alkylthiophene (alkoxy) such as poly-3-methoxy-4-methylthiophene, poly-3-dodecyloxy-4-methylthiophene, etc. The carbon number of the group and the alkyl group is not particularly limited, but preferably 1 to 12), Examples include poly-3-thioalkylthiophene such as -3-thiohexylthiophene and poly-3-thiododecylthiophene (the carbon number of the alkyl group is not particularly limited, but preferably 1 to 12). The above can be used. Among these, poly-3-alkylthiophene and poly-3-alkoxythiophene are preferable, and poly-3-hexylthiophene is particularly preferable as the former. A preferred molecular weight is 800 to 100,000 in terms of weight average molecular weight. Further, the polymer need not necessarily have a high molecular weight, and may be an oligomer composed of a linear conjugated system.
[0015]
CNTs are produced by arc discharge method, chemical vapor deposition method (hereinafter referred to as CVD method), laser ablation method, etc. The CNTs used in the present invention can be obtained by any method. Good. In addition, a single-walled CNT (hereinafter referred to as SWCNT) in which a single carbon film (graphene sheet) is wound in a cylindrical shape, and a double-layered CNT in which two graphene sheets are wound in a concentric circle ( (Hereinafter referred to as DWCNT) and multi-layer CNTs (hereinafter referred to as MWCNT) in which a plurality of graphene sheets are concentrically wound. In the present invention, SWCNT, DWCNT, and MWCNT can be used alone or in combination. . In particular, SWCNT and DWCNT, and MWCNT having a diameter of 15 nm or less can be preferably used because they have excellent properties in terms of conductivity and semiconductor properties. Among them, SWCNT or DWCNT is particularly preferable.
[0016]
When producing SWCNT, DWCNT, and MWCNT by the above method, fullerene, graphite, and amorphous carbon are produced as by-products at the same time, and catalyst metals such as nickel, iron, cobalt, yttrium remain, These impurities need to be removed and purified. In order to remove impurities, ultrasonic treatment is effective together with acid treatment with nitric acid, sulfuric acid or the like, and it is more preferable to use separation with a filter in combination for improving purity. Although the diameter of CNT used by this invention is not specifically limited, 0.8 nm or more and 100 nm or less are preferable, More preferably, it is 50 nm or less, More preferably, it is 15 nm or less.
[0017]
By dispersing the CNT with the conjugated polymer adhered in the matrix resin, a CNT dispersed paste or CNT dispersed composite having a conjugated polymer layer between the CNT of the present invention and the matrix resin can be obtained. .
[0018]
The matrix resin used in the CNT dispersion paste or CNT dispersion composite of the present invention includes polyethylene, polypropylene, polystyrene, polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and 6-nylon. Preferred are thermoplastic resins such as 6,6-nylon, thermosetting resins such as epoxy-based, melamine-based, polyacetal-based, phenol-based, and polyimide-based materials, and photosensitive resins containing unsaturated bonds or diazo compounds in the molecule. Although used, the resin used for the CNT dispersion paste or CNT dispersion composite of the present invention is not limited to these. Even if the resin other than those listed above is a material having no conductivity, conductivity can be imparted by using the CNT-dispersed paste or CNT-dispersed composite of the present invention, which can be preferably used.
[0019]
Here, as a method for producing a CNT having a conjugated polymer attached thereto, (1) a method in which CNT is added to and dispersed in a conjugated polymer and a mixture of conjugated polymer / CNT is used as it is, and (2) a conjugate. There is a method in which a CNT-based polymer / CNT mixture is used after filtering out CNTs with a filter having a diameter of about 0.1 μm to remove excess conjugated polymer. Even when the latter method (2) is used, the conjugated polymer has a strong interaction with CNT, so that it is attached to the surface of CNT by various elemental analysis and surface analysis devices. Can be confirmed. Furthermore, as a method for preparing a conjugated polymer / CNT mixture, (3) a method in which CNT is added to a molten conjugated polymer and mixed, and (4) a conjugated polymer is dissolved in a solvent. (5) A method in which CNT is added and mixed, and (5) a method in which a conjugated polymer is added and mixed in a place where CNT is preliminarily dispersed in a solvent in advance by ultrasonic waves. There is a method in which a conjugated polymer and CNT are put into the mixture, and this mixed system is irradiated with ultrasonic waves and mixed. In the present invention, any method may be used alone, or any method may be combined. Above all, in addition to the method of putting a conjugated polymer and CNT in the solvent of (6) and irradiating this mixed system with ultrasonic waves, the method of filtering CNT with a 0.1 μm diameter filter of (2) Are preferably combined.
[0020]
Next, a procedure and means for dispersing CNTs with a conjugated polymer in a matrix resin will be described. As a procedure, (7) a method in which CNT having a conjugated polymer adhered in a solvent is redispersed and a matrix resin is dissolved therein; and (8) CNT having a conjugated polymer adhered in a matrix resin solution. There are a method of adding and dispersing (9) and a method of adding and dispersing directly to a liquid matrix resin. Next, as means for dispersion, stirring, ultrasonic treatment, vibration dispersion, kneading, and the like are necessary, and it is necessary to select means according to the concentration and viscosity of the CNT-containing paste. For example, in mixing by stirring, a flask or a container with a lid can be rotated, or a device in which a screw type or brush type stirring blade rotates at high speed can be used. In the ultrasonic processing apparatus, there are a method in which a container containing a matrix resin and CNTs is installed in a tank of an ultrasonic cleaning machine, or an ultrasonic vibrator is put in the container for processing. In the kneading apparatus, a bead mill apparatus, ball mill apparatus, three-roller or the like using ceramic fine particles can be used. In the CNT-dispersed composite of the present invention, it is preferable to perform ultrasonic treatment after stirring and mixing, but is not limited to this method.
[0021]
Here, as a solvent used for dissolving the matrix resin, methanol, ethanol, butanol, toluene, xylene, o-chlorophenol, acetone, ethyl acetate, ethylene glycol, chloroform, chlorobenzene, dimethylformamide, dimethyl sulfoxide, N- Examples include, but are not limited to, methylpyrrolidone and γ-butyrolactone, and a solvent can be selected as necessary.
[0022]
The CNT-containing paste thus obtained can form a CNT-dispersed composite by distilling off the solvent or curing it to a film, coating film, plate, structural material, optical resin, composite material, etc. Can be applied. As a method for confirming the dispersion state, the composite is processed into a film or coating film having a thickness of 1 mm or less, preferably 100 μm or less and observed with an optical microscope, or after etching the surface with a certain thickness, an electron microscope or an atom is used. It can be observed with an atomic force microscope. That is, when the CNT dispersion state is good, the CNTs are observed with very small dots or lines, but when the dispersion is poor, the CNTs are observed as aggregates having a diameter of 10 μm or more, and the observation field is several mm square. In particular, there may be a bias in the distribution of the presence of aggregates. FIG. 1 shows an optical micrograph of the coating film of the CNT-dispersed composite of the present invention. It can be observed that CNTs are well dispersed.
[0023]
Since the CNT in the CNT-dispersed composite of the present invention is not damaged at all, it has a feature that it can be used while maintaining its original characteristics such as conductivity. When SWCNT is chemically modified by a method such as adding a functional group to impart dispersibility, the π-conjugated system constituting the CNT is easily destroyed when the CNT is chemically modified. There was a problem that characteristics were impaired. In the present invention, CNTs can be dispersed without such chemical modification. Therefore, it is not necessary to increase the amount of CNT added to the matrix resin as much as it is not damaged, and optimal CNT characteristics can be derived with the optimum amount of addition.
[0024]
The weight ratio of CNT contained in the CNT-dispersed composite of the present invention is usually preferably 0.001 to 5% by weight with respect to the matrix resin. By being in this range, it is possible to improve the characteristics of the CNT while taking advantage of the characteristics of the matrix resin. Moreover, when it is necessary to consider coloring property in consideration of optical characteristics, the content is preferably 0.001 to 0.5% by weight. By being in this range, it is difficult to visually confirm the CNT, and the transmittance of the film / film is not lowered so much. Conversely, the conjugated polymer can be used as a dispersant / binder with the CNTs in a substantially bulk state, and the weight ratio of the matrix resin to the conjugated polymer is not particularly limited. If the amount is more than 5% by weight, the composite is colored black. Therefore, if the transparency of the composite is required or if it is desired to color other colors, it is necessary to add 5% by weight or less. More preferably, the content is 0.01 to 1% by weight. By being in this range, it is possible to obtain a composite that is less colored and has excellent electrical properties such as conductivity.
[0025]
In the present invention, there is conductivity as an index for indirectly evaluating the dispersibility of the CNT-dispersed composite. Conductivity is calculated | required as follows as a resistivity. The CNT-containing paste can be evaluated as a CNT-containing composite after the solvent is distilled off or cured. That is, after forming one electrode by sputtering a metal layer or conductive layer (platinum, gold, silver, aluminum, chromium, ITO, etc.) on a glass substrate, a CNT-dispersed composite is formed on this metal surface by a blade coater, spinner, etc. Apply using. Next, the other electrode is formed by sputtering a metal thin film on the surface of the coating film. A voltage (V) is applied between the two electrodes sandwiching the CNT-dispersed composite to determine the current (I) at that time, and the resistivity is measured from the VI characteristic (two-terminal method). There is also a method in which a CNT-dispersed composite is applied on a glass substrate formed by facing two sets of comb-shaped electrodes, a voltage is applied between the two sets of electrodes, and the resistivity is obtained from the current at that time. used. Note that the resistivity can be obtained by a three-terminal method with a guard ring when the resistivity of the CNT-dispersed composite film is high, or by a four-terminal method using four electrodes when the resistivity is low.
[0026]
In the present invention, the degree of charge accumulated on the surface of the CNT-dispersed composite can be measured using an Honest meter. That is, in this apparatus, a 40 mm square sample having a thickness of about 100 μm is fixed on a disk, a voltage of 10 kV is applied to the sample by corona discharge while rotating the disk, and the potential of the sample surface is measured simultaneously ( See JIS L1094-1980). In the evaluation of this apparatus, those having a charge amount of 5 V or less on the sample surface are preferably used as the conductive resin.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
[0028]
Example 1
First, 0.1 g of CNT (single-walled carbon nanotube: manufactured by Science Laboratories, Inc., purity of 95%) is added to a 100 mL flask, and 50 mL of chloroform is added, and an ultrasonic cleaning machine (US-2 manufactured by Iuchi Seieido Co., Ltd.). , Output 120W, 2.6L) for 1 hour. Next, 0.1 g of poly-3-hexylthiophene (manufactured by Aldrich, molecular weight: Mw 20000) was added as a conjugated polymer and further dispersed with an ultrasonic cleaner for 10 hours. The obtained CNT dispersion was filtered with a PTFE 0.1 μm pore filter (manufactured by Toyo Advantech Co., Ltd.) to obtain CNT having a conjugated polymer attached to the surface. Next, the CNTs previously filtered off were added to a 500 mL flask in which 100 g of polymethylmethacrylate (hereinafter referred to as PMMA) (“SUMIPEX” manufactured by Sumitomo Chemical Co., Ltd., molecular weight: Mw 500,000) in 300 mL of chloroform was dissolved. A CNT-containing PMMA paste was obtained by performing a dispersion treatment in an ultrasonic cleaner. The viscosity of the paste was measured with a B-type viscometer (Brookfield, model DVII +, spindle No. 14, rotation speed 3 rpm) and found to be 3000 mPa · s. Next, 1 mL of the obtained paste is dropped onto a 50 mm square glass substrate with a 100 μm-thick adhesive tape on the periphery, and the blade coater (manufactured by RK Print-Coat Instruments, UK) is moved at a speed of 30 mm / sec. To form a uniform coating surface, put the whole substrate in an oven at 50 ° C. for 5 minutes, and finally remove the solvent for 2 hours with a vacuum dryer to prepare a coating film with a thickness of 30 μm. A PMMA film containing 1% was obtained. Observation with a 500 times optical microscope of the film confirmed that CNTs were well dispersed. A photograph is shown in FIG. Further, the transmittance of the film was measured with an ultraviolet-visible spectrophotometer (U-3210, manufactured by Hitachi, Ltd.). As a result, it was 95.0% T at 500 nm and was almost transparent visually.
[0029]
Example 2
Using the 0.1% CNT-containing PMMA film described in Example 1, the degree of charge accumulated on the surface of the film was measured with an Honest meter, which was 3 V, which was a very small value as a synthetic resin. Next, a uniform dispersion of PMMA and CNT described in Example 1 was applied on a comb-shaped electrode having an electrode interval of 10 μm, an electrode thickness of 1 μm, and the number of counter electrodes of 20 with a blade coater, and the resistance between both electrodes was measured. Then, the resistance value was calculated by multiplying the resistance value by the total area of the electrode cross section and dividing by the thickness. 2 It was Ωcm and showed a very small value as a synthetic resin.
[0030]
Example 3
Exactly the same operation as in Examples 1 and 2 was performed, except that the amount of CNT added at the beginning was 0.01 g (1/10 of that in Examples 1 and 2). When the characteristics of the obtained film were examined, CNTs were well dispersed, the transmittance was 96.0%, the film surface potential was 3 V, and the volume resistivity was 5.0 × 10. 2 It was Ωcm.
[0031]
Example 4
Exactly the same operation as in Examples 1 and 2 was performed, except that the amount of CNT added first was 1 g (10 times the amount of Example 1.2). When the characteristics of the obtained film were examined, CNT was well dispersed, the transmittance was 86.0%, the film surface potential was 2 V, and the volume resistivity was 5.0 × 10. 1 It was Ωcm.
[0032]
Example 5
The same operation as in Examples 1 and 2 was performed except that polystyrene (made by Wako Pure Chemical Industries, Ltd., molecular weight Mw = about 300,000) was used as the matrix resin. When the characteristics of the obtained film were examined, the CNT had a small lump of about 10 μm but was almost well dispersed, the transmittance was 92.0%, the membrane surface potential was 3 V, and the volume resistivity. Is 5.0 × 10 2 It was Ωcm.
[0033]
Example 6
Exactly the same operation as in Examples 1 and 2 was performed except that polycarbonate (“Panlite” AD-5503H manufactured by Teijin Chemicals Ltd.) was used as the matrix resin. When the characteristics of the obtained film were examined, the CNT had a small lump of about 10 μm but was almost well dispersed, the transmittance was 91.0%, the potential on the film surface was 3.5 V, the volume Resistivity is 1.0 × 10 3 It was Ωcm.
[0034]
Example 7
0.1 g of CNT having a conjugated polymer adhering to the surface described in Example 1 and 100 g of pellet-like PMMA were placed in a 500 mL flask and melt-dispersed at 150 ° C. with stirring. Next, about 2 mL of this molten PMMA was spread on a stainless steel plate and cooled to prepare a coating film having a thickness of 30 μm, and peeled off from the substrate to obtain a PMMA film containing 0.1% CNT. When the characteristics of the obtained film were examined, CNT was well dispersed, the transmittance was 95.0% T, the film surface potential was 3 V, and the volume resistivity was 1.0 × 10. 2 It was Ωcm.
[0035]
Example 8
The paste prepared in Example 1 was diluted 10-fold with toluene to prepare a CNT-containing paste having a PMMA concentration of 2.5 wt%, and an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd., Visconic ED, rotation speed 1 rpm) It was 50 mPa · s when measured. Next, 1 mL of the paste is dropped onto a 50 mm square glass substrate, applied with a spin coater (20 seconds at 1000 rpm), put in the oven at 50 ° C. for 5 minutes, and dried with a vacuum dryer for 2 hours. A 1 μm CNT 0.1% -containing PMMA film was obtained. When the film was observed with an optical microscope of 500 times, CNTs were well dispersed. The electric charge accumulated on the film surface was 1.5 V when the paste was spin-coated on a glass substrate with ITO and measured with a 1 μm-thick coating film, and the resistivity was measured in the same manner as in Example 1. 1.0 × 10 2 It was Ωcm and showed a very small value as a synthetic resin.
[0036]
Example 9
Exactly the same operation as in Example 1 was performed except that 1 g of CNT used at the beginning was changed to 1 g (10 times that of Example 1) and PMMA added later was changed to 4 g (1/25 of Example 1). When the characteristics of the obtained film were examined, the CNTs were well dispersed, the charge accumulated on the film surface was 0.5 V, and the volume resistivity was 1.0 × 10. 0 It was Ωcm and showed a very small value as a synthetic resin.
[0037]
Example 10
When DMF (N, N-dimethylformamide) was used as a solvent for redispersing CNTs and the drying conditions were changed to 80 ° C. for 60 minutes, the same operation as in Example 1 was carried out to obtain a coating film having a thickness of 30 μm. CNT were well dispersed. The charge accumulated on the film surface is 3V, and the resistivity is 1.0 × 10 2 It was Ωcm and showed a very small value as a synthetic resin.
[0038]
Comparative Example 1
The same operation as in Examples 1 and 2 was carried out except that sodium dodecyl sulfonate was used in place of the conjugated polymer, and that the first solvent was a water / ethanol 1: 1 solvent instead of chloroform. However, even when trying to redisperse CNTs, the CNTs did not disperse well as a lump, and a paste was prepared with poor dispersion, and the characteristics of the film were examined. Existed. The membrane permeability is 95.0%, the membrane surface potential is 15V, and the volume resistivity is 1.0 × 10 8 Ωcm, which is 10 times more resistant than when a conjugated polymer is used. 6 Doubled.
[0039]
Comparative Example 2
Poly-m-phenylene vinylene-co-dioctoxy-p-phenylene vinylene (known method: synthetic metals, vol. 109, 2478 (1999)) instead of poly-3-hexylthiophene, which is a conjugated polymer. The same operation as in Examples 1 and 2 was carried out except that When the characteristics of the obtained film were examined, CNT had a local lump on the order of several tens of μm, but was almost uniformly dispersed, the transmittance was 99.0%, the film surface potential was 10 V, and the volume. Resistivity is 1.0 × 10 7 Ωcm, which is 10 times more resistant than when poly-3-hexylthiophene is used. 5 Doubled.
[0040]
【The invention's effect】
The carbon nanotube-containing paste or the carbon nanotube-dispersed composite of the present invention has a conjugated polymer layer between the carbon nanotube and the matrix resin, so that the dispersibility of the carbon nanotube can be extremely increased, and Since the carbon nanotube has high conductivity and does not damage the carbon nanotube, the matrix resin can be imparted with CNT-specific properties such as high conductivity with a small amount of carbon nanotube addition.
[Brief description of the drawings]
FIG. 1 is an optical micrograph in an example.

Claims (13)

マトリックス樹脂中に共役系重合体で覆われたカーボンナノチューブが分散されているペースト。A paste in which carbon nanotubes covered with a conjugated polymer are dispersed in a matrix resin. マトリックス樹脂中に共役系重合体で覆われたカーボンナノチューブが分散されているカーボンナノチューブ分散コンポジット。A carbon nanotube-dispersed composite in which carbon nanotubes covered with a conjugated polymer are dispersed in a matrix resin. 共役系重合体とカーボンナノチューブと溶媒とからなるカーボンナノチューブ分散液から、共役系重合体の付着したカーボンナノチューブを分別し、該カーボンナノチューブをマトリックス樹脂中に分散させる請求項1記載のペーストの製造方法。The method for producing a paste according to claim 1, wherein the carbon nanotubes to which the conjugated polymer is adhered are separated from a carbon nanotube dispersion liquid comprising a conjugated polymer, carbon nanotubes, and a solvent, and the carbon nanotubes are dispersed in a matrix resin. . 共役系重合体とカーボンナノチューブと溶媒とからなるカーボンナノチューブ分散液から、共役系重合体の付着したカーボンナノチューブを分別し、該カーボンナノチューブをマトリックス樹脂中に分散させる請求項2記載のカーボンナノチューブ分散コンポジットの製造方法。The carbon nanotube-dispersed composite according to claim 2, wherein the carbon nanotubes to which the conjugated polymer is adhered are separated from the carbon nanotube dispersion liquid comprising the conjugated polymer, the carbon nanotubes, and the solvent, and the carbon nanotubes are dispersed in the matrix resin. Manufacturing method. 共役系重合体が直鎖状共役系重合体である請求項1または2記載のペーストまたはカーボンナノチューブ分散コンポジット。The paste or carbon nanotube-dispersed composite according to claim 1 or 2, wherein the conjugated polymer is a linear conjugated polymer. 共役系重合体が直鎖状共役系重合体である請求項3または4記載のペーストまたはカーボンナノチューブ分散コンポジットの製造方法。The method for producing a paste or carbon nanotube-dispersed composite according to claim 3 or 4, wherein the conjugated polymer is a linear conjugated polymer. 直鎖状共役系重合体がポリチオフェン系重合体である請求項5記載のペーストまたはカーボンナノチューブ分散コンポジット。The paste or carbon nanotube-dispersed composite according to claim 5, wherein the linear conjugated polymer is a polythiophene polymer. 直鎖状共役系重合体がポリチオフェン系重合体である請求項6記載のペーストまたはカーボンナノチューブ分散コンポジットの製造方法。The method for producing a paste or carbon nanotube-dispersed composite according to claim 6, wherein the linear conjugated polymer is a polythiophene polymer. ポリチオフェン系重合体がポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェン、ポリ−3−チオアルキルチオフェンの少なくとも1種である請求項7記載のペーストまたはカーボンナノチューブ分散コンポジット。The paste or carbon nanotube-dispersed composite according to claim 7, wherein the polythiophene polymer is at least one of poly-3-alkylthiophene, poly-3-alkoxythiophene, and poly-3-thioalkylthiophene. ポリチオフェン系重合体がポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェン、ポリ−3−チオアルキルチオフェンの少なくとも1種である請求項8記載のペーストまたはカーボンナノチューブ分散コンポジットの製造方法。The method for producing a paste or carbon nanotube-dispersed composite according to claim 8, wherein the polythiophene polymer is at least one of poly-3-alkylthiophene, poly-3-alkoxythiophene, and poly-3-thioalkylthiophene. カーボンナノチューブが単層カーボンナノチューブである請求項1または2記載のペーストまたはカーボンナノチューブ分散コンポジット。The paste or carbon nanotube-dispersed composite according to claim 1 or 2, wherein the carbon nanotube is a single-walled carbon nanotube. マトリックス樹脂がポリメチルメタクリレートである請求項1または2記載のペーストまたはカーボンナノチューブ分散コンポジット。The paste or carbon nanotube-dispersed composite according to claim 1 or 2, wherein the matrix resin is polymethyl methacrylate. マトリックス樹脂がポリメチルメタクリレートである請求項3または4記載のペーストまたはカーボンナノチューブ分散コンポジットの製造方法。The method for producing a paste or carbon nanotube-dispersed composite according to claim 3 or 4, wherein the matrix resin is polymethyl methacrylate.
JP2002257617A 2002-03-26 2002-09-03 Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite Expired - Fee Related JP4273726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257617A JP4273726B2 (en) 2002-03-26 2002-09-03 Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002084709 2002-03-26
JP2002257617A JP4273726B2 (en) 2002-03-26 2002-09-03 Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite

Publications (3)

Publication Number Publication Date
JP2004002621A true JP2004002621A (en) 2004-01-08
JP2004002621A5 JP2004002621A5 (en) 2005-10-27
JP4273726B2 JP4273726B2 (en) 2009-06-03

Family

ID=30445956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257617A Expired - Fee Related JP4273726B2 (en) 2002-03-26 2002-09-03 Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite

Country Status (1)

Country Link
JP (1) JP4273726B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039893A1 (en) * 2002-11-01 2004-05-13 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes, composite having coating thereof and process for producing them
JP2005097499A (en) * 2002-11-01 2005-04-14 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, composite having coated film composed thereof, and method for producing the same
WO2005070825A1 (en) * 2004-01-21 2005-08-04 Sanc Salaam Coproration Secondary matrix composite containing carbon nanotube
JP2005249776A (en) * 2004-02-02 2005-09-15 Toray Ind Inc Base material for optical measurement
JP2005272555A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Method for producing carbon nanotube reinforced composite
JP2006092927A (en) * 2004-09-24 2006-04-06 Sony Corp Micro electron source device, manufacturing method therefor, and flat display device
EP1728822A1 (en) * 2005-05-30 2006-12-06 Nanocyl S.A. Nanocomposite and process for producing the same
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007146038A (en) * 2005-11-29 2007-06-14 Teijin Ltd Resin composition and method for producing the same
JP2007268414A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Dehydration method of organic sludge
JP2007530741A (en) * 2004-03-23 2007-11-01 シエラシン コーポレイション COATING MATERIAL CONTAINING NANOTUBE, METHOD FOR APPLICATION THEREOF, AND TRANSPARENT MATERIAL COMBINING THEM
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2007533797A (en) * 2004-04-13 2007-11-22 ザイベックス コーポレーション Method for synthesizing modular poly (phenylene ethylenin) and method for fine-tuning its electronic properties to functionalize nanomaterials
KR100815028B1 (en) 2005-10-05 2008-03-18 삼성전자주식회사 Dispersant for carbon nanotube and composition comprising the same
JP2008156478A (en) * 2006-12-25 2008-07-10 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, production method thereof, and coating film, cured film, composite, resin molding and master batch obtained therefrom,
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
WO2010147101A1 (en) * 2009-06-16 2010-12-23 株式会社ナノストラクチャー研究所 Carbon nanotube-rich resin composition and method for producing same
JP2012126853A (en) * 2010-12-16 2012-07-05 Nano Structure Research Institute Co Ltd Rubber particulate highly blended carbon nanotubes, and method for producing the same
US8778116B2 (en) 2007-12-07 2014-07-15 Meijyo Nano Carbon Co., Ltd. Method for producing carbon nanotube-containing conductor
EP2955193A1 (en) * 2009-09-03 2015-12-16 Fulcrum S.P. Materials Ltd Multi-site modified sp1 polypeptides and uses thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097499A (en) * 2002-11-01 2005-04-14 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, composite having coated film composed thereof, and method for producing the same
WO2004039893A1 (en) * 2002-11-01 2004-05-13 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes, composite having coating thereof and process for producing them
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
WO2005070825A1 (en) * 2004-01-21 2005-08-04 Sanc Salaam Coproration Secondary matrix composite containing carbon nanotube
JP2005249776A (en) * 2004-02-02 2005-09-15 Toray Ind Inc Base material for optical measurement
JP4734943B2 (en) * 2004-02-02 2011-07-27 東レ株式会社 Optical measurement substrate
JP2007530741A (en) * 2004-03-23 2007-11-01 シエラシン コーポレイション COATING MATERIAL CONTAINING NANOTUBE, METHOD FOR APPLICATION THEREOF, AND TRANSPARENT MATERIAL COMBINING THEM
JP2005272555A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Method for producing carbon nanotube reinforced composite
JP4515798B2 (en) * 2004-03-24 2010-08-04 本田技研工業株式会社 Method for producing carbon nanotube reinforced composite material
JP2007533797A (en) * 2004-04-13 2007-11-22 ザイベックス コーポレーション Method for synthesizing modular poly (phenylene ethylenin) and method for fine-tuning its electronic properties to functionalize nanomaterials
JP2006092927A (en) * 2004-09-24 2006-04-06 Sony Corp Micro electron source device, manufacturing method therefor, and flat display device
EP1728822A1 (en) * 2005-05-30 2006-12-06 Nanocyl S.A. Nanocomposite and process for producing the same
KR100815028B1 (en) 2005-10-05 2008-03-18 삼성전자주식회사 Dispersant for carbon nanotube and composition comprising the same
JP2007146038A (en) * 2005-11-29 2007-06-14 Teijin Ltd Resin composition and method for producing the same
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007268414A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Dehydration method of organic sludge
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2008156478A (en) * 2006-12-25 2008-07-10 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, production method thereof, and coating film, cured film, composite, resin molding and master batch obtained therefrom,
WO2008146400A1 (en) * 2007-05-25 2008-12-04 Teijin Limited Resin composition
US8778116B2 (en) 2007-12-07 2014-07-15 Meijyo Nano Carbon Co., Ltd. Method for producing carbon nanotube-containing conductor
WO2010147101A1 (en) * 2009-06-16 2010-12-23 株式会社ナノストラクチャー研究所 Carbon nanotube-rich resin composition and method for producing same
CN102803391A (en) * 2009-06-16 2012-11-28 株式会社纳米结构研究所 Carbon nanotube-rich resin composition and method for producing same
KR101412216B1 (en) 2009-06-16 2014-06-25 나노 스트럭쳐 리서치 인스티튜트 컴퍼니 리미티드 Carbon nanotube-rich resin composition and method for producing same
JP2011001410A (en) * 2009-06-16 2011-01-06 Nano Structure Research Institute Co Ltd Carbon nanotube-rich resin granular material and method for producing the same
EP2955193A1 (en) * 2009-09-03 2015-12-16 Fulcrum S.P. Materials Ltd Multi-site modified sp1 polypeptides and uses thereof
US9982181B2 (en) 2009-09-03 2018-05-29 Sp Nano Ltd. Multi-site modified SP1 polypeptides and uses thereof
JP2012126853A (en) * 2010-12-16 2012-07-05 Nano Structure Research Institute Co Ltd Rubber particulate highly blended carbon nanotubes, and method for producing the same

Also Published As

Publication number Publication date
JP4273726B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4273726B2 (en) Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite
Tang et al. Preparation, alignment, and optical properties of soluble poly (phenylacetylene)-wrapped carbon nanotubes
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
Saran et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates
Yang et al. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication
JP2005089738A (en) Carbon nanotube dispersion solution and carbon nanotube dispersion material
JP5364582B2 (en) Carbon nanotube composition and transparent conductive film
KR101307303B1 (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
WO2004106223A1 (en) Carbon nanotube device, process for producing the same and carbon nanotube transcriptional body
Fujigaya et al. Soluble carbon nanotubes and nanotube-polymer composites
TW201437301A (en) Transparent carbon nanotube polymer compound conductive ink and its preparation method
JP2006312673A (en) Carbon nanotube-dispersed paste, and carbon nanotube-dispersed composite
JP2007076998A (en) Carbon nanotube dispersion liquid and method for producing the same
JP2006248888A (en) Method of manufacturing carbon nanotube
WO2004058899A1 (en) Liquid mixture, structure, and method for forming structure
US7435310B2 (en) Method for surface imprinted films with carbon nanotubes
WO2009064133A2 (en) Conductivity enhanced transparent conductive film and fabrication method thereof
WO2018225863A1 (en) Carbon nanotube composite membrane and carbon nanotube dispersion
Wanekaya et al. Fabrication and Properties of Conducting Polypyrrole/SWNT‐PABS Composite Films and Nanotubes
JP2009298625A (en) Method for producing carbon nanotube film and carbon nanotube film
Wang et al. Carbon nanotube-based thin films: synthesis and properties
JP2007237580A (en) Surface protective film, method for producing the film, and laminate comprising the film
JP2003292801A (en) Polymer composite
US7119028B1 (en) Surface imprinted films with carbon nanotubes
JP2004002156A (en) Working method of carbon nanotube

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R151 Written notification of patent or utility model registration

Ref document number: 4273726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees