JP2005029414A - Method of manufacturing carbon nanotube - Google Patents

Method of manufacturing carbon nanotube Download PDF

Info

Publication number
JP2005029414A
JP2005029414A JP2003195325A JP2003195325A JP2005029414A JP 2005029414 A JP2005029414 A JP 2005029414A JP 2003195325 A JP2003195325 A JP 2003195325A JP 2003195325 A JP2003195325 A JP 2003195325A JP 2005029414 A JP2005029414 A JP 2005029414A
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
carbon
temperature
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003195325A
Other languages
Japanese (ja)
Other versions
JP3866692B2 (en
Inventor
Hiroyuki Kurachi
宏行 倉知
Sashiro Kamimura
佐四郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2003195325A priority Critical patent/JP3866692B2/en
Priority to US10/886,979 priority patent/US20050013762A1/en
Publication of JP2005029414A publication Critical patent/JP2005029414A/en
Application granted granted Critical
Publication of JP3866692B2 publication Critical patent/JP3866692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • D01F9/1275Acetylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1278Carbon monoxide

Abstract

<P>PROBLEM TO BE SOLVED: To deposit a layer comprising a plurality of very fine carbon nanotubes on a substrate in a uniform state by the CVD method. <P>SOLUTION: The substrate 101 is heated to 900°C by a heater 105 in a reaction furnace 104 and a plurality of the carbon nanotubes 102 are grown on the surface of the substrate 101 by the CVD method and successively the temperature of the substrate 101 is lowered to 650°C to grow the carbon nanotube 103 more longer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学的気相成長法により鉄などを含む基板の表面に直径の小さな複数のカーボンナノチューブを形成するカーボンナノチューブの製造方法に関する。
【0002】
【従来の技術】
カーボンナノチューブは、完全にグラファイト化した直径4〜50nm程度で長さ1〜10μm程度の筒状をなしている。このカーボンナノチューブは、グラファイトの単層(グラフェン)が円筒状に閉じた形状と、複数のグラフェンが入れ子構造的に積層し、それぞれのグラフェンが円筒状に閉じた同軸多層構造となっている形状とがある。これら円筒状のグラフェンの中心部分は、空洞となっている。また、先端部は、閉じているものものや、折れるなどのことにより開放しているものもある。
【0003】
このような独特の形状を持つカーボンナノチューブは、特有の電子物性を利用して新規な電子材料やナノテクノロジーへの応用が考えられている。例えば、電子放出のエミッタとして用いることが可能である。固体表面に強い電場をかけると、固体内に電子を閉じこめている表面のポテンシャル障壁が低くなりまた薄くなる。この結果、閉じこめられていた電子が、トンネル効果により固体の外部に放出されるようになる。これらの現象が、電界放出といわれている。
【0004】
この電界放出を観測するためには、10 V/cmもの強い電界を固体表面にかけなければならないが、これを実現するための一手法として先端を鋭く尖らせた金属針を用いるようにしている。このような針を用いて電界をかければ、尖った先端に電界が集中し、必要とされる高電界が得られる。
前述したカーボンナノチューブは、先端の曲率半径がnmオーダと非常に鋭利であり、しかも化学的に安定で機械的にも強靱であるなど、電界放出のエミッタ材料として適した物理的性質を有している。
【0005】
上述したような特徴を有するカーボンナノチューブを、例えば、FED(Field Emission Display)などの電子放出源に用いる場合、カーボンナノチューブを大きな面積の基板上に形成することが要求される。
カーボンナノチューブの製造方法としては、ヘリウムガス中で2本の炭素電極を1〜2mm程度離した状態で直流アーク放電を起こすことで行う電気放電法や、レーザ蒸着法などがある。
【0006】
ところが、これらの製造方法では、カーボンナノチューブの直径や長さを調整しにくく、また、目的とするカーボンナノチューブの収率があまり高くできないという問題があった。また、カーボンナノチューブ以外の多量の非晶質状態の炭素生成物が同時に生成されるため、精製工程を必要とするなど、製造に手間がかかるという問題がある。
【0007】
これらを解消するため、基板の上に触媒金属の層を用意し、基板を加熱した状態で触媒金属の層上にカーボンソースガスを供給し、触媒金属の層よりカーボンナノチューブを大量に成長させる方法が提案されている(特許文献1参照)。この熱化学気相成長(CVD)法によるカーボンナノチューブの製造は、触媒金属の主対や成長させる時間、また、基板の種類などにより、形成されるカーボンナノチューブの長さや直径を制御可能としている。
【0008】
【特許文献1】
特開2001−048512号公報
【0009】
【発明が解決しようとする課題】
ところで、カーボンナノチューブを電子放出源として用いる場合、より細いカーボンナノチューブを用いることで、より低い電圧で電子を放出させることができる。例えば、FEDの電子放出源としてカーボンナノチューブを用いる場合、より細いものを用いることで、低電圧駆動が可能となり、消費電力の省力化の点で好ましい。
【0010】
CVD法でカーボンナノチューブを形成する場合、複数のカーボンナノチューブを基板の上に近設させて形成させることが可能となる。また、例えば、基板の温度を800〜1000℃と高温の条件とすることで、直径10nm程度の細いカーボンナノチューブが形成できる。しかしながら、高温でカーボンナノチューブを成長させると、まず、単位時間当たりのカーボンナノチューブの成長速度が遅く、所望の長さのカーボンナノチューブを得るためには、多くの時間が必要となる。
【0011】
また、高温でカーボンナノチューブを成長させると、基板の上に形成される複数のカーボンナノチューブからなる層の一部が剥がれたり、ひび割れができるなどのことにより、層の表面に凹凸を生じ、カーボンナノチューブの層を均一に形成することが困難であった。このように、基板上に形成されたカーボンナノチューブからなる層に高さの違いが生じると、最も高い(長い)カーボンナノチューブに局所的な電界集中が起こり、電界放出が局所的に起こる。また、局所的な電界放出は、カーボンナノチューブの破壊を引き起こし、場合によっては、連鎖的に多くのカーボンナノチューブが破壊される。電子放出源となるカーボンナノチューブの破壊が発生すると、安定した電界放出が得られない。
【0012】
本発明は、以上のような問題点を解消するためになされたものであり、CVD法により、より細い複数のカーボンナノチューブからなる層を、均一な状態で基板の上に形成できるようにすることを目的とする。
【0013】
【課題を解決するための手段】
本発明に係るカーボンナノチューブの製造方法は、カーボンソースガスが導入された反応炉中に、少なくとも表面が鉄,ニッケル,コバルト,クロムのいずれかを含む金属材料からなる基板を配置してこの基板を第1の温度に加熱し、基板の表面に化学的気相成長法により複数のカーボンナノチューブを成長させ、引き続いて、基板の温度を第1の温度より低い第2の温度に加熱して、複数のカーボンナノチューブをより長く成長させるようにしたものである。
この製造方法によれば、初期の段階で、短く成長した10nm程度の細い径のカーボンナノチューブが、温度を下げた後、より早い成長速度で長く成長し、均一なカーボンナノチューブからなる層が形成される。。
【0014】
上記カーボンナノチューブの製造方法において、カーボンソースガスは、一酸化炭素,アセチレン,エチレン,エタン,プロピレン,プロパン,またはメタンガスのいずれかであればよい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図を参照して説明する。
図1は、本発明の実施の形態におけるカーボンナノチューブの製造方法例を示す工程図である。まず、図1(a)に示すように、426合金などのステンレス鋼からなる基板101を用意する。次いで、図1(b)に示すように、例えば石英管などから構成された反応炉104の内部に、基板101を載置し、反応炉104の一方よりカーボンソースガスと水素ガス(キャリアガス)を流した状態で、ヒータ105により基板101を加熱する。図1(b),(c)は、反応炉104の断面を模式的に示している。
【0016】
この化学的気相成長工程において、カーボンソースガスとして一酸化炭素ガスを用い、流量は、500sccm程度とすればよい。また、キャリアガスの流量は、1000sccmとすればよい。なお、カーボンソースガスとして、アセチレン,エチレン,エタン,プロピレン,プロパン,またはメタンガスなどのC〜Cの炭化水素ガスを用いることも可能である。また、上述では基板101は、ステンレス鋼から構成するものとしたが、これに限るものではなく、カーボンナノチューブを形成しようとする基板の表面が、化学的気相成長法によりカーボンナノチューブが成長する金属を含む材料で構成されていればよい。この金属は、例えば鉄,ニッケル,コバルト,クロムのいずれか、もしくはこれらの合金である。
【0017】
ここで、本実施の形態では、基板101の加熱温度を、まず、800〜900℃程度の高温とし、気相成長を10分間行う。このことにより、図1(b)に示すように、直径10nm程度の複数のカーボンナノチューブ102が、基板101の表面に成長する。カーボンナノチューブ102は、長さが約1μm程度に成長する。基板101の表面には、例えば林立した状態で、複数のカーボンナノチューブ102が形成される。
以上の化学的気相成長工程を行った後、引き続いてヒータ105による加熱温度を低下させ、基板101の加熱温度を650℃程度の低温とし、気相成長を20分間行う。
【0018】
このことにより、基板101の表面に成長していたカーボンナノチューブ102がより長く成長し、図1(c)に示すように、複数のカーボンナノチューブ103が、長さが13μm程度に均一性良く形成され、均一な厚さのカーボンナノチューブの層が基板101の上に形成された状態が得られる。このカーボンナノチューブの層は、例えば、繊維状に形成された複数のカーボンナノチューブが絡み合い、綿状を程するようになっている。なお、高温の処理は、750〜1000℃の範囲で行えば良く、低温の処理は、500〜750℃の範囲で行えばよい。
【0019】
【発明の効果】
以上説明したように、本発明では、基板を第1の温度に加熱して、基板の表面に化学的気相成長法により複数のカーボンナノチューブを成長させ、引き続いて、基板の温度を第1の温度より低い第2の温度に加熱して、複数のカーボンナノチューブを第より長く成長させるようにした。この結果、本願発明によれば、初期の段階で、短く成長した10nm程度の細い径のカーボンナノチューブが、温度を下げた後、より早い成長速度で長く成長するので、従来よりより細い複数のカーボンナノチューブからなる層を、均一な状態で基板の上に形成できるようになるという優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるカーボンナノチューブの製造方法を説明する工程図である。
【符号の説明】
101…基板、102,103…カーボンナノチューブ、104…反応炉、105…ヒータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon nanotubes, in which a plurality of carbon nanotubes having a small diameter are formed on the surface of a substrate containing iron or the like by chemical vapor deposition.
[0002]
[Prior art]
The carbon nanotube has a completely graphitized cylindrical shape with a diameter of about 4 to 50 nm and a length of about 1 to 10 μm. The carbon nanotube has a shape in which a single layer of graphite (graphene) is closed in a cylindrical shape, and a shape in which a plurality of graphenes are stacked in a nested structure, and each graphene has a cylindrical multilayer structure closed in a cylindrical shape. There is. The central part of these cylindrical graphenes is a cavity. In addition, there is a tip portion that is closed or a tip portion that is opened by being broken.
[0003]
Carbon nanotubes having such a unique shape are considered to be applied to new electronic materials and nanotechnology by utilizing their unique electronic properties. For example, it can be used as an emitter for electron emission. When a strong electric field is applied to the surface of the solid, the potential barrier of the surface confining the electrons in the solid becomes lower and thinner. As a result, the confined electrons are emitted to the outside of the solid by the tunnel effect. These phenomena are called field emission.
[0004]
In order to observe this field emission, a strong electric field of 10 7 V / cm must be applied to the solid surface. As one method for realizing this, a metal needle having a sharp tip is used. . If an electric field is applied using such a needle, the electric field concentrates at a sharp tip, and the required high electric field is obtained.
The above-mentioned carbon nanotube has physical properties suitable as a field emission emitter material, such as a sharp edge radius of curvature of the order of nm, chemically stable and mechanically tough. Yes.
[0005]
When the carbon nanotube having the above-described characteristics is used for an electron emission source such as FED (Field Emission Display), it is required to form the carbon nanotube on a substrate having a large area.
As a method for producing carbon nanotubes, there are an electric discharge method performed by causing a DC arc discharge in a state where two carbon electrodes are separated by about 1 to 2 mm in helium gas, a laser deposition method, and the like.
[0006]
However, these production methods have problems in that it is difficult to adjust the diameter and length of the carbon nanotubes, and the yield of the target carbon nanotubes cannot be increased so much. In addition, since a large amount of an amorphous carbon product other than carbon nanotubes is produced at the same time, there is a problem in that it takes a lot of time for production, such as requiring a purification step.
[0007]
In order to solve these problems, a catalyst metal layer is prepared on a substrate, a carbon source gas is supplied onto the catalyst metal layer while the substrate is heated, and a large amount of carbon nanotubes are grown from the catalyst metal layer. Has been proposed (see Patent Document 1). In the production of carbon nanotubes by this thermal chemical vapor deposition (CVD) method, the length and diameter of the formed carbon nanotubes can be controlled by the main pair of catalytic metals, the growth time, the type of substrate, and the like.
[0008]
[Patent Document 1]
JP 2001-048512 A
[Problems to be solved by the invention]
By the way, when carbon nanotubes are used as an electron emission source, electrons can be emitted at a lower voltage by using thinner carbon nanotubes. For example, when carbon nanotubes are used as the electron emission source of the FED, use of thinner ones is preferable in terms of saving power consumption because low voltage driving is possible.
[0010]
When carbon nanotubes are formed by the CVD method, a plurality of carbon nanotubes can be formed close to the substrate. Further, for example, by setting the substrate temperature as high as 800 to 1000 ° C., thin carbon nanotubes having a diameter of about 10 nm can be formed. However, when carbon nanotubes are grown at a high temperature, first, the growth rate of carbon nanotubes per unit time is slow, and much time is required to obtain carbon nanotubes having a desired length.
[0011]
In addition, when carbon nanotubes are grown at a high temperature, a part of the layer composed of a plurality of carbon nanotubes formed on the substrate may be peeled off or cracked, resulting in irregularities on the surface of the layer, and carbon nanotubes It was difficult to form a uniform layer. As described above, when a difference in height occurs in the carbon nanotube layer formed on the substrate, local electric field concentration occurs in the highest (longest) carbon nanotube, and field emission occurs locally. In addition, local field emission causes destruction of carbon nanotubes, and in some cases, many carbon nanotubes are destroyed in a chain. When the carbon nanotube serving as the electron emission source is broken, stable field emission cannot be obtained.
[0012]
The present invention has been made to solve the above-described problems, and enables a thin layer of carbon nanotubes to be formed on a substrate in a uniform state by a CVD method. With the goal.
[0013]
[Means for Solving the Problems]
In the method for producing carbon nanotubes according to the present invention, a substrate made of a metal material containing at least one of iron, nickel, cobalt, and chromium is disposed in a reaction furnace into which a carbon source gas is introduced. Heating to a first temperature, growing a plurality of carbon nanotubes on the surface of the substrate by chemical vapor deposition, and subsequently heating the substrate temperature to a second temperature lower than the first temperature; The carbon nanotubes are made to grow longer.
According to this manufacturing method, carbon nanotubes with a small diameter of about 10 nm grown short at an early stage grow long at a faster growth rate after the temperature is lowered, and a layer composed of uniform carbon nanotubes is formed. The .
[0014]
In the carbon nanotube production method, the carbon source gas may be any of carbon monoxide, acetylene, ethylene, ethane, propylene, propane, or methane gas.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram showing an example of a carbon nanotube production method according to an embodiment of the present invention. First, as shown in FIG. 1A, a substrate 101 made of stainless steel such as 426 alloy is prepared. Next, as shown in FIG. 1B, for example, a substrate 101 is placed inside a reaction furnace 104 constituted by a quartz tube or the like, and a carbon source gas and hydrogen gas (carrier gas) are provided from one of the reaction furnaces 104. The substrate 101 is heated by the heater 105 in a state in which the current flows. 1B and 1C schematically show a cross section of the reaction furnace 104.
[0016]
In this chemical vapor deposition process, carbon monoxide gas may be used as the carbon source gas, and the flow rate may be about 500 sccm. Further, the flow rate of the carrier gas may be 1000 sccm. As the carbon source gas, acetylene, ethylene, ethane, propylene, it is also possible to use C 1 -C 3 hydrocarbon gases such as propane or methane gas. In the above description, the substrate 101 is made of stainless steel. However, the present invention is not limited to this, and the surface of the substrate on which the carbon nanotubes are to be formed is a metal on which carbon nanotubes grow by chemical vapor deposition. What is necessary is just to be comprised with the material containing. This metal is, for example, iron, nickel, cobalt, chromium, or an alloy thereof.
[0017]
Here, in this embodiment, the heating temperature of the substrate 101 is first set to a high temperature of about 800 to 900 ° C., and vapor phase growth is performed for 10 minutes. As a result, as shown in FIG. 1B, a plurality of carbon nanotubes 102 having a diameter of about 10 nm grow on the surface of the substrate 101. The carbon nanotube 102 grows to a length of about 1 μm. On the surface of the substrate 101, for example, a plurality of carbon nanotubes 102 are formed in a forested state.
After performing the above chemical vapor deposition process, the heating temperature by the heater 105 is subsequently lowered, the heating temperature of the substrate 101 is lowered to about 650 ° C., and the vapor phase growth is performed for 20 minutes.
[0018]
As a result, the carbon nanotubes 102 grown on the surface of the substrate 101 grow longer, and as shown in FIG. 1C, a plurality of carbon nanotubes 103 are formed with a uniform length of about 13 μm. Thus, a state in which a carbon nanotube layer having a uniform thickness is formed on the substrate 101 is obtained. The carbon nanotube layer is formed, for example, so that a plurality of carbon nanotubes formed in a fiber shape are entangled to form a cotton shape. In addition, what is necessary is just to perform a high temperature process in the range of 750-1000 degreeC, and may perform a low temperature process in the range of 500-750 degreeC.
[0019]
【The invention's effect】
As described above, in the present invention, the substrate is heated to the first temperature to grow a plurality of carbon nanotubes on the surface of the substrate by chemical vapor deposition, and subsequently the temperature of the substrate is set to the first temperature. A plurality of carbon nanotubes were grown longer than the first by heating to a second temperature lower than the temperature. As a result, according to the present invention, carbon nanotubes with a small diameter of about 10 nm that have grown short in the initial stage grow longer at a faster growth rate after lowering the temperature. An excellent effect is obtained in that a layer made of nanotubes can be formed on a substrate in a uniform state.
[Brief description of the drawings]
FIG. 1 is a process diagram for explaining a carbon nanotube production method according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Substrate, 102, 103 ... Carbon nanotube, 104 ... Reactor, 105 ... Heater.

Claims (2)

カーボンソースガスが導入された反応炉中に、少なくとも表面が鉄,ニッケル,コバルト,クロムのいずれかを含む金属材料からなる基板を配置してこの基板を第1の温度に加熱し、前記基板の表面に化学的気相成長法により複数のカーボンナノチューブを成長させる第1の工程と、
引き続いて、前記基板の温度を前記第1の温度より低い第2の温度に加熱して、複数の前記カーボンナノチューブをより長く成長させる第2の工程と
を少なくとも備えたことを特徴とするカーボンナノチューブの製造方法。
A substrate made of a metal material including at least one of iron, nickel, cobalt, and chromium is disposed in a reaction furnace into which a carbon source gas is introduced, and the substrate is heated to a first temperature, and the substrate is heated. A first step of growing a plurality of carbon nanotubes on the surface by chemical vapor deposition;
And a second step of growing the plurality of carbon nanotubes longer by heating the temperature of the substrate to a second temperature lower than the first temperature. Manufacturing method.
請求項1記載のカーボンナノチューブの製造方法において、前記カーボンソースガスは、一酸化炭素,アセチレン,エチレン,エタン,プロピレン,プロパン,またはメタンガスのいずれかである
ことを特徴とするカーボンナノチューブの製造方法。
2. The method for producing carbon nanotubes according to claim 1, wherein the carbon source gas is any one of carbon monoxide, acetylene, ethylene, ethane, propylene, propane, and methane gas.
JP2003195325A 2003-07-10 2003-07-10 Method for producing carbon nanotube Expired - Fee Related JP3866692B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003195325A JP3866692B2 (en) 2003-07-10 2003-07-10 Method for producing carbon nanotube
US10/886,979 US20050013762A1 (en) 2003-07-10 2004-07-07 Carbon nanotube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195325A JP3866692B2 (en) 2003-07-10 2003-07-10 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2005029414A true JP2005029414A (en) 2005-02-03
JP3866692B2 JP3866692B2 (en) 2007-01-10

Family

ID=34055719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195325A Expired - Fee Related JP3866692B2 (en) 2003-07-10 2003-07-10 Method for producing carbon nanotube

Country Status (2)

Country Link
US (1) US20050013762A1 (en)
JP (1) JP3866692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308355A (en) * 2007-06-13 2008-12-25 Denso Corp Method for manufacturing carbon nanotube
US10378104B2 (en) 2013-11-13 2019-08-13 Tokyo Electron Limited Process for producing carbon nanotubes and method for forming wiring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137382B2 (en) * 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US20060293709A1 (en) * 2005-06-24 2006-12-28 Bojarski Raymond A Tissue repair device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308355A (en) * 2007-06-13 2008-12-25 Denso Corp Method for manufacturing carbon nanotube
JP4692520B2 (en) * 2007-06-13 2011-06-01 株式会社デンソー Carbon nanotube manufacturing method
US10378104B2 (en) 2013-11-13 2019-08-13 Tokyo Electron Limited Process for producing carbon nanotubes and method for forming wiring

Also Published As

Publication number Publication date
US20050013762A1 (en) 2005-01-20
JP3866692B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
KR101110409B1 (en) Method of manufacturing carbon nanostructure
KR100745735B1 (en) Method for growing carbon nanotubes and manufacturing method of field emission device therewith
KR100745734B1 (en) Method for growing carbon nanotubes and manufacturing method of field emission device therewith
JP3819382B2 (en) Carbon nanotube matrix and growth method thereof
JP3484441B2 (en) Method for producing carbon nanotube
JP4436821B2 (en) Single-wall carbon nanotube array growth apparatus and single-wall carbon nanotube array growth method
JP2006216482A (en) Manufacturing method of carbon nanotube cathode, and carbon nanotube cathode
EP1478595B1 (en) Method and apparatus for the production of carbon nanostructures
JP4834957B2 (en) Catalyst structure and carbon nanotube production method using the same
JP2001048512A (en) Preparation of perpendicularly oriented carbon nanotube
US7394192B2 (en) Electron-emitting source having carbon nanotubes
EP2262726B1 (en) System and method for low-power nanotube growth using direct resistive heating
JP3866692B2 (en) Method for producing carbon nanotube
JP2004083293A (en) Method for manufacturing carbon nanotube using fullerene
JP3836753B2 (en) Method for producing carbon nanotube cathode
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP3872775B2 (en) Method for producing carbon nanotube
JP2004075422A (en) Method for manufacturing carbon nanotube on off substrate
KR100335383B1 (en) Method of fabricating carbon nanotube
JP2006128064A (en) Method of manufacturing carbon nanotube using catalyst, method of manufacturing field emission electron source, field emission electron source and field emission display
JP5429876B2 (en) Method for producing carbon nanotube
JP2004332044A (en) Method and device for producing carbon based substance
JP2006021957A (en) Manufacturing method of carbon nanotube
TWI286534B (en) A method for controlling the growth density of carbon nanotubes
KR100503123B1 (en) Method for the formation of open structure carbon nanotubes field emitter by plasma chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees