JP2001048512A - Preparation of perpendicularly oriented carbon nanotube - Google Patents

Preparation of perpendicularly oriented carbon nanotube

Info

Publication number
JP2001048512A
JP2001048512A JP11221708A JP22170899A JP2001048512A JP 2001048512 A JP2001048512 A JP 2001048512A JP 11221708 A JP11221708 A JP 11221708A JP 22170899 A JP22170899 A JP 22170899A JP 2001048512 A JP2001048512 A JP 2001048512A
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
carbon
producing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11221708A
Other languages
Japanese (ja)
Inventor
Masaaki Hirakawa
正明 平川
Chiaki Tanaka
千晶 田中
Hirohiko Murakami
村上  裕彦
Hiroyuki Yamakawa
洋幸 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP11221708A priority Critical patent/JP2001048512A/en
Publication of JP2001048512A publication Critical patent/JP2001048512A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method by which carbon nanotubes can directly be prepared on a substrate, the average values of the diameter and length of the carbon nanotubes can be controlled and the carbon nanotubes can selectively prepared on the substrate or only in an optional site on the substrate and perpendicularly oriented relatively to the substrate. SOLUTION: A carbon feed gas such as methane, ethylene or acetylene and hydrogen gas are used as introduction gases and carbon nanotubes are oriented in the perpendicular direction relatively to the substrate surface and prepared on the substrate surface of Ni, Fe, Co or an alloy composed of at least two kinds of the metals thereof by a plasma chemical vapor deposition(CVD) method. A glass or an Si wafer having an optional pattern comprising a metal and formed thereon is used as the substrate to carry out the CVD method and the carbon nanotubes are selectively prepared only in the patterned part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブの作製方法に関するものである。特に、基板に対し
て垂直に配向したカーボンナノチューブの作製方法及び
基板上の任意の位置のみに、基板に対して垂直に配向し
たカーボンナノチューブを選択的に作製する方法に関す
るものである。
[0001] The present invention relates to a method for producing carbon nanotubes. In particular, the present invention relates to a method for producing carbon nanotubes oriented perpendicular to the substrate and a method for selectively producing carbon nanotubes oriented perpendicular to the substrate only at an arbitrary position on the substrate.

【0002】[0002]

【従来の技術】1991年にカーボンナノチューブが発
見されて以来、このカーボンナノチューブはアーク放電
法やレーザー蒸発法により作製されてきた。アーク放電
法は、炭素の蒸発にアーク放電を利用するもので、2本
のグラファイト電極を軽く接触させたり、1〜2mm程
度離した状態でアークを飛ばすことで煤を作製する方法
である。また、レーザー蒸発法は、電気炉の中に挿入し
た石英管の中央にグラファイトのターゲットを置き、1
200℃に加熱したアルゴンガスを石英管に流し、ガス
の流れの上流部からグラファイトにYAGレーザーを照
射して、グラファイトを蒸発させ、電気炉の出口付近の
石英管に煤を付着せしめる方法である。アーク放電法も
レーザー蒸発法も、作製した煤を精製することによって
カーボンナノチューブを得ている。
2. Description of the Related Art Since carbon nanotubes were discovered in 1991, the carbon nanotubes have been produced by an arc discharge method or a laser evaporation method. The arc discharge method uses an arc discharge for evaporating carbon, and is a method of producing soot by making two graphite electrodes lightly contact with each other or by blowing an arc at a distance of about 1 to 2 mm. In the laser evaporation method, a graphite target is placed at the center of a quartz tube inserted in an electric furnace, and
A method in which argon gas heated to 200 ° C. is passed through a quartz tube, and YAG laser is applied to graphite from the upstream of the gas flow to evaporate the graphite and cause soot to adhere to the quartz tube near the outlet of the electric furnace. . In both the arc discharge method and the laser evaporation method, carbon nanotubes are obtained by purifying the produced soot.

【0003】[0003]

【発明が解決しようとする課題】アーク放電法もレーザ
ー蒸発法も、作製した煤を精製しなくては目的とするカ
ーボンナノチューブを得ることができないという問題が
ある。しかも、精製したとしても、精製したカーボンナ
ノチューブは、長さ、太さがばらばらで、孤を描いてい
るものが大半であった。さらに、精製することにより、
重量が精製前の数%まで減少してしまい、歩留りが悪い
という問題もあった。
Both the arc discharge method and the laser evaporation method have a problem in that the desired carbon nanotubes cannot be obtained without purifying the produced soot. Moreover, even if it was purified, most of the purified carbon nanotubes were different in length and thickness, and drawn arcs. Furthermore, by purification,
There was also a problem that the weight was reduced to several percent before purification, and the yield was poor.

【0004】本発明は、この様な従来のカーボンナノチ
ューブ作製法の問題点を解決するためになされたもので
あり、基板上に所望のカーボンナノチューブを直接作製
することで、精製を行う手間を省くことを可能にし、ま
た、カーボンナノチューブの適切な成長条件を選ぶこと
で、得られるカーボンナノチューブの直径、及び長さの
平均値を制御することを可能にし、さらに、カーボンナ
ノチューブを、基板に対して垂直に配向して作製するこ
とや、基板上の任意の部位にのみ選択的に作製すること
を可能にする方法を提供することを課題とする。
The present invention has been made to solve such problems of the conventional method for producing carbon nanotubes, and eliminates the need for purification by directly producing desired carbon nanotubes on a substrate. It is also possible to control the average value of the diameter and length of the obtained carbon nanotube by selecting appropriate growth conditions of the carbon nanotube, It is an object of the present invention to provide a method which can be manufactured by being vertically oriented or selectively manufactured only at an arbitrary site on a substrate.

【0005】[0005]

【課題を解決するための手段】本発明のカーボンナノチ
ューブの作製方法は、プラズマCVD法により、基板表
面に、カーボンナノチューブを基板表面に対して垂直方
向に配向させて作製することからなる。
The method for producing carbon nanotubes of the present invention comprises producing carbon nanotubes on a substrate surface in a direction perpendicular to the substrate surface by a plasma CVD method.

【0006】本発明のカーボンナノチューブの作製方法
はまた、プラズマCVD法により、例えば、Ni、F
e、Co又はこれらの金属の少なくとも2種類からなる
合金の基板上で、あるいはガラスやSiウェハー等のカ
ーボンナノチューブを作製できない基板上の任意の部位
に前記金属からなる種々の任意のパターンを形成した基
板上で、メタン、エタン、エチレン、アセチレン又はそ
の混合物等のような炭化水素系ガスである炭素供給ガス
と水素ガスとを導入ガスとして用い、例えば、基板温度
500℃以上、成長圧力100Pa以上、基板への印加
電圧100V以上の条件下で、所定の時間カーボンナノ
チューブを成長させることにより、基板全表面にあるい
は該パターンの部分の表面のみに所望のカーボンナノチ
ューブを作製することからなる。基板温度500℃未満
では、カーボンナノチューブの成長が得られず、成長圧
力100Pa未満では、カーボンナノチューブの実用的
な成長速度が得られず、基板への印加電圧100V未満
では、良質のカーボンナノチューブの成長が得られな
い。
[0006] The method for producing carbon nanotubes of the present invention is also characterized in that, for example, Ni, F
Various arbitrary patterns made of the metal were formed on a substrate of e, Co, or an alloy composed of at least two of these metals, or on an arbitrary site on a substrate where a carbon nanotube such as a glass or a Si wafer could not be produced. On the substrate, methane, ethane, ethylene, a carbon-based gas such as a hydrocarbon-based gas such as acetylene or a mixture thereof and a hydrogen gas are used as introduction gases, for example, a substrate temperature of 500 ° C. or more, a growth pressure of 100 Pa or more, By growing the carbon nanotubes for a predetermined time under the condition of a voltage applied to the substrate of 100 V or more, the desired carbon nanotubes are formed on the entire surface of the substrate or only on the surface of the pattern portion. If the substrate temperature is lower than 500 ° C., the growth of carbon nanotubes cannot be obtained. If the growth pressure is lower than 100 Pa, a practical growth rate of carbon nanotubes cannot be obtained. Can not be obtained.

【0007】前記炭素供給ガスの割合は、全導入ガス基
準で10vol.%〜50vol.%であることが望ましい。1
0vol.%未満だと水素ガスのエッチング効果が強すぎ、
また50vol.%を超えると炭素供給ガス濃度が濃すぎ
て、マイクロ波導入部の石英の消耗が激しいという問題
がある。前記プラズマCVD法を行う前の予備処理とし
て、CVD装置内に水素ガスのみを導入し、カーボンナ
ノチューブの作製可能な基板の表面を水素エッチング処
理して、基板表面をクリーニングしかつ活性化すること
が、効率良くナノチューブを成長させるためには好まし
い。このクリーニングは、水素プラズマを発生させると
低温で処理可能となるが、高温度で水素ガス処理しても
よい。
It is desirable that the ratio of the carbon supply gas is 10 vol.% To 50 vol.% Based on the total introduced gas. 1
If less than 0 vol.%, The etching effect of hydrogen gas is too strong,
On the other hand, if it exceeds 50 vol.%, The concentration of the carbon supply gas is too high, and there is a problem that the consumption of quartz in the microwave introduction part is severe. As a preliminary process before performing the plasma CVD method, only a hydrogen gas is introduced into a CVD apparatus, and the surface of the substrate on which carbon nanotubes can be formed is subjected to a hydrogen etching process to clean and activate the substrate surface. This is preferable for efficiently growing nanotubes. This cleaning can be performed at a low temperature by generating hydrogen plasma, but may be performed at a high temperature with hydrogen gas.

【0008】基板上への任意パターンの形成方法は特に
制限されないが、例えば、スパッタ、メッキ、有機金属
化合物の塗布後焼成等の方法で行うことが好ましい。ま
た、このパターンの形状は特に制限されるわけではな
く、直線でも曲線でも、あるいは点線でも、その他の任
意の形状のものでよい。また、本発明で用いるプラズマ
CVD法は、好ましくは電界印加型プラズマCVD法で
ある。カーボンナノチューブ作製可能な基板としては、
鉄、ニッケル、コバルトなどの鉄系金属を含むものであ
れば使用可能であるが、例えば、SUS304、SUS
302、SUS316などのステンレス鋼、NiとFe
を含む合金であるアンバー、パーマロイ、インコネル
(Henry Wiggins 社の登録商標;インコネル−600基
板はニラコ社製の商品名)、インバー(インバー−42
基板はニラコ社製の商品名)、コバール(ウェスチング
・ハウス社開発;コバール基板はニラコ社製の商品名)
などからなる基板を使用することが好ましい、これらは
非常に安価である。
The method of forming an arbitrary pattern on the substrate is not particularly limited, but is preferably performed by, for example, a method such as sputtering, plating, or coating and baking after applying an organometallic compound. The shape of the pattern is not particularly limited, and may be a straight line, a curve, a dotted line, or any other shape. Further, the plasma CVD method used in the present invention is preferably an electric field application type plasma CVD method. As a substrate on which carbon nanotubes can be produced,
Any material containing an iron-based metal such as iron, nickel, and cobalt can be used. For example, SUS304, SUS
302, stainless steel such as SUS316, Ni and Fe
, Permalloy, Inconel (registered trademark of Henry Wiggins, Inc .; Inconel-600 substrate is a trade name of Nilaco Inc.), Invar (Invar-42
Substrate is Nilaco product name), Kovar (developed by Westinghouse; Kovar substrate is Nilaco product name)
It is preferable to use substrates made of such as these, which are very inexpensive.

【0009】上記したように、本発明では、カーボンナ
ノチューブを基板上に直接作製することで、精製を行う
手間を省くことが可能になる。さらに、カーボンナノチ
ューブを基板上に基板に対して垂直に配向して作製する
ことが可能であり、また、カーボンナノチューブを基板
上の任意の位置のみに選択的に作製することが可能であ
るため、カーボンナノチューブを電子材料、ナノテクノ
ロジー、電子放出源などの分野で応用する際に、利用し
易いという利点がある。
As described above, according to the present invention, the production of carbon nanotubes directly on a substrate makes it possible to save the labor for purification. Furthermore, since it is possible to produce carbon nanotubes on a substrate in a direction perpendicular to the substrate, and it is possible to selectively produce carbon nanotubes only at arbitrary positions on the substrate, When carbon nanotubes are applied in fields such as electronic materials, nanotechnology, and electron emission sources, they have the advantage of being easy to use.

【0010】また、得られるカーボンナノチューブ長さ
は、基板の種類と成長反応時間を任意に選ぶことによっ
て制御することができ、また、カーボンナノチューブの
径は、ガラスやSiウェハー上に成長させる場合には、
その厚みで制御することができる。
The length of the obtained carbon nanotube can be controlled by arbitrarily selecting the type of substrate and the growth reaction time, and the diameter of the carbon nanotube can be controlled when growing on a glass or Si wafer. Is
It can be controlled by its thickness.

【0011】[0011]

【実施例】次に、実施例により本発明を詳細に説明する
が、本発明はこれらの例によってなんら限定されるもの
ではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0012】以下の実施例でカーボンナノチューブの作
製に用いた電界印加型プラズマCVD装置の概略を図1
に示す。真空室1内には陰極2及びこれと対抗してカソ
ード電極3が配置され、陰極2上には基板4が載置され
る。真空室1には反応ガス源(炭素供給ガス、水素ガ
ス)5、排気用真空ポンプ6、マイクロ波プラズマ発生
装置7を接続し、また、電極3にDC電源8を接続する
ように構成されている。かかる構成をとることにより電
界印加型プラズマCVD法により基板の表面にカーボン
ナノチューブを堆積せしめることができる。このCVD
装置としては、例えば S.Yugo et al. Appl. Phys. Let
t.,58(1991)1038に記載されている。 実施例1 インコネル−600基板(ニラコ社製、商品名;縦10
mm×横10mm×厚み0.5mm)を、図1に示すプ
ラズマCVD装置の陰極2上に載置し、装置内を1Pa
にして、30分間放置した。その後、該CVD装置内に
水素ガスのみを導入し、マイクロ波投入電力500W、
基板温度750℃、基板印加電圧150V、圧力100
0Paの条件で、15分間水素エッチング処理を行い、
基板表面のクリーニングと活性化を行った。次いで、炭
素供給ガスとしてのメタンと水素ガスとを導入し、マイ
クロ波投入電力500W、基板温度750℃、基板印加
電圧250V、成長圧力4000Paの条件で、30分
間反応を行い、基板上にカーボンナノチューブを成長せ
しめた。その際の導入メタンの割合は、全導入ガス基準
で20vol.%であった。得られたカーボンナノチューブ
の形成状態を示す走査型電子顕微鏡像の写真(SEM写
真)である図2(A)(10°傾斜)及び図2(B)(側面
からみた写真)から明らかなように、カーボンナノチュ
ーブは全て基板に対して垂直に成長していることが確認
された。作製されたカーボンナノチューブは、直径約1
00nm、長さ15μmの多層ナノチューブであった。 実施例2 SUS304基板(縦10mm×横10mm×厚み0.
5mm)を、図1に示すプラズマCVD装置の陰極2上
に載置し、装置内を1Paにして、30分間放置した。
その後、該CVD装置内に水素ガスのみを導入し、マイ
クロ波投入電力500W、基板温度750℃、基板印加
電圧150V、成長圧力1000Paの条件で、15分
間水素エッチング処理を行い、基板表面のクリーニング
と活性化を行った。次いで、炭素供給ガスとしてのアセ
チレンと水素ガスとを導入し、マイクロ波投入電力50
0W、基板温度750℃、基板印加電圧250V、成長
圧力3000Paの条件で、30分間反応を行い、基板
上にカーボンナノチューブを成長せしめた。その際の導
入アセチレンの割合は、全導入ガス基準で30vol.%で
あった。得られたカーボンナノチューブの場合も、図2
に示すSEM写真の場合と同様にナノチューブが基板に
対して垂直に成長していることが確認された。作製され
たカーボンナノチューブは、直径約100nm、長さ1
5μmの多層ナノチューブであった。
FIG. 1 schematically shows an electric field application type plasma CVD apparatus used for producing carbon nanotubes in the following examples.
Shown in A cathode 2 and a cathode electrode 3 opposed thereto are arranged in a vacuum chamber 1, and a substrate 4 is mounted on the cathode 2. The vacuum chamber 1 is connected to a reaction gas source (carbon supply gas, hydrogen gas) 5, an evacuation vacuum pump 6, a microwave plasma generator 7, and a DC power supply 8 connected to the electrode 3. I have. With this configuration, carbon nanotubes can be deposited on the surface of the substrate by an electric field application type plasma CVD method. This CVD
As an apparatus, for example, S. Yugo et al. Appl. Phys. Let
t., 58 (1991) 1038. Example 1 Inconel-600 substrate (manufactured by Nilaco, trade name;
mm × width 10 mm × thickness 0.5 mm) was placed on the cathode 2 of the plasma CVD apparatus shown in FIG.
And left for 30 minutes. Thereafter, only hydrogen gas was introduced into the CVD apparatus, and the microwave input power was 500 W,
Substrate temperature 750 ° C, substrate applied voltage 150V, pressure 100
Under a condition of 0 Pa, a hydrogen etching process is performed for 15 minutes,
The substrate surface was cleaned and activated. Then, methane and hydrogen gas as a carbon supply gas were introduced, and a reaction was performed for 30 minutes under the conditions of a microwave input power of 500 W, a substrate temperature of 750 ° C., a substrate applied voltage of 250 V, and a growth pressure of 4000 Pa. Grew. The ratio of the introduced methane at that time was 20 vol.% Based on the total introduced gas. As is clear from FIGS. 2A (10 ° inclination) and FIG. 2B (side view), which are photographs (SEM photographs) of scanning electron microscope images showing the state of formation of the obtained carbon nanotubes. It was confirmed that all the carbon nanotubes were grown perpendicular to the substrate. The produced carbon nanotube has a diameter of about 1
It was a multi-walled nanotube having a thickness of 00 nm and a length of 15 μm. Example 2 SUS304 substrate (length 10 mm × width 10 mm × thickness 0.
5 mm) was placed on the cathode 2 of the plasma CVD apparatus shown in FIG. 1, the inside of the apparatus was set to 1 Pa, and left for 30 minutes.
Thereafter, only hydrogen gas was introduced into the CVD apparatus, and a hydrogen etching treatment was performed for 15 minutes under the conditions of a microwave input power of 500 W, a substrate temperature of 750 ° C., a substrate applied voltage of 150 V, and a growth pressure of 1000 Pa, to clean the substrate surface. Activation was performed. Next, acetylene and hydrogen gas as carbon supply gas were introduced, and microwave
The reaction was carried out for 30 minutes under the conditions of 0 W, the substrate temperature of 750 ° C., the voltage applied to the substrate of 250 V, and the growth pressure of 3000 Pa, to grow carbon nanotubes on the substrate. At that time, the ratio of the introduced acetylene was 30 vol.% Based on the total introduced gas. In the case of the obtained carbon nanotube, FIG.
It was confirmed that the nanotubes were grown perpendicular to the substrate as in the case of the SEM photograph shown in FIG. The produced carbon nanotube has a diameter of about 100 nm and a length of 1
It was a 5 μm multi-walled nanotube.

【0013】本実施例において、炭素供給ガスとして、
アセチレンとメタンとの混合ガスを用いた場合も、上記
と同様な結果が得られる。 実施例3 ガラス基板(縦10mm×横10mm×厚み0.5m
m)上の任意の位置に、Niからなるクロスライン(幅
30μm×長さ1.0mm)をスパッタ法により形成せ
しめた基板を用意した。このNiクロスライン付ガラス
基板を、実施例1と同じプラズマCVD装置の陰極2上
に載置し、装置内を1Paにして、30分間放置した。
その後、炭素供給ガスとしてのメタンと水素ガスとを導
入し、マイクロ波投入電力500W、基板温度750
℃、基板印加電圧250V、成長圧力3000Paの条
件で、30分間反応を行い、基板上にカーボンナノチュ
ーブを成長せしめた。その際の導入メタンの割合は、全
導入ガス基準で30vol.%であった。得られたカーボン
ナノチューブの形成状態を示すSEM写真(図3)から
明らかなように、カーボンナノチューブは、Niクロス
ライン部の上だけに選択的に、基板に対して垂直に配向
して成長しており、該クロスライン部以外の部分の上に
は作製されていないことが確認された。作製されたカー
ボンナノチューブは、直径約100nm、長さ15μm
の多層ナノチューブであった。
In this embodiment, as the carbon supply gas,
When a mixed gas of acetylene and methane is used, the same result as described above is obtained. Example 3 Glass substrate (length 10 mm × width 10 mm × thickness 0.5 m)
m) A substrate in which a cross line (width: 30 μm × length: 1.0 mm) made of Ni was formed at an arbitrary position on the substrate by a sputtering method. The glass substrate with the Ni cross line was placed on the cathode 2 of the same plasma CVD apparatus as in Example 1, the inside of the apparatus was set to 1 Pa, and left for 30 minutes.
Thereafter, methane as a carbon supply gas and hydrogen gas were introduced, and a microwave input power of 500 W and a substrate temperature of 750 were used.
The reaction was carried out for 30 minutes at a temperature of 250 ° C., a voltage applied to the substrate of 250 V, and a growth pressure of 3000 Pa, and carbon nanotubes were grown on the substrate. The ratio of the introduced methane at that time was 30 vol.% Based on the total introduced gas. As is clear from the SEM photograph (FIG. 3) showing the state of formation of the obtained carbon nanotubes, the carbon nanotubes were selectively grown only on the Ni cross-line portion and grown perpendicularly to the substrate. Thus, it was confirmed that no portion was formed on portions other than the cross line portion. The prepared carbon nanotube has a diameter of about 100 nm and a length of 15 μm.
Was a multi-walled nanotube.

【0014】[0014]

【発明の効果】本発明によれば、基板上に基板に対して
垂直に配向したカーボンナノチューブを直接作製するこ
とができ、また、かかるカーボンナノチューブを基板の
任意の部位のみに選択的に作製することもできるので、
このカーボンナノチューブを電子材料、ナノテクノロジ
ー、電子放出源などの分野で応用する際に、高性能化す
ることが容易になる。
According to the present invention, carbon nanotubes oriented perpendicular to the substrate can be directly produced on the substrate, and such carbon nanotubes can be selectively produced only at an arbitrary portion of the substrate. So you can
When this carbon nanotube is applied to fields such as electronic materials, nanotechnology, and electron emission sources, it becomes easy to improve the performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3で使用する電界印加型プラズマC
VD装置の概略を示す側面図。
FIG. 1 shows an electric field applied plasma C used in Examples 1 to 3.
The side view which shows the outline of a VD apparatus.

【図2】(A)実施例1で得られたカーボンナノチュー
ブの形成状態を上方からみたSEM写真(10°傾
斜)。(B)図1のカーボンナノチューブの形成状態を
側面から見たSM写真。
FIG. 2A is an SEM photograph (10 ° tilt) of the state of formation of the carbon nanotubes obtained in Example 1 as viewed from above. (B) An SM photograph of the formation state of the carbon nanotube of FIG. 1 viewed from the side.

【図3】実施例3で得られたNiクロスライン付ガラス
基板上に作製したカーボンナノチューブの形成状態を上
方からみたSEM写真。
FIG. 3 is an SEM photograph of the formation state of carbon nanotubes formed on the glass substrate with Ni cross lines obtained in Example 3 as viewed from above.

【符号の説明】[Explanation of symbols]

1 真空室 2 陰極 3 カソード電極 4 基板 5 反応ガス源 6 排気用真空
ポンプ 7 マイクロ波プラズマ発生装置 8 DC電源
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Cathode 3 Cathode electrode 4 Substrate 5 Reaction gas source 6 Vacuum pump for exhaustion 7 Microwave plasma generator 8 DC power supply

フロントページの続き (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 4G046 CA01 CB00 CB03 CC06 4K030 AA09 AA10 BA27 BB01 CA02 DA04 FA01 LA11 Continuing from the front page (72) Inventor Hirohiko Murakami 5-9-7 Tokodai, Tsukuba-shi, Ibaraki Pref. Japan Vacuum Engineering Co., Ltd. (72) Inventor Hiroyuki Yamakawa 5-9- Tokodai, Tsukuba-shi, Ibaraki 7 Japan Vacuum Technology Co., Ltd. Tsukuba Super Materials Research Laboratory F-term (reference) 4G046 CA01 CB00 CB03 CC06 4K030 AA09 AA10 BA27 BB01 CA02 DA04 FA01 LA11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 プラズマCVD法により、基板表面に、
カーボンナノチューブを基板表面に対して垂直方向に配
向させて作製することを特徴とするカーボンナノチュー
ブの作製方法。
1. The method according to claim 1, wherein the surface of the substrate is formed by a plasma CVD method.
A method for producing carbon nanotubes, comprising: orienting carbon nanotubes in a direction perpendicular to a substrate surface.
【請求項2】 前記基板が、Ni、Fe、Co又はこれ
らの金属の少なくとも2種類からなる合金の基板である
ことを特徴とする請求項1記載のカーボンナノチューブ
の作製方法。
2. The method according to claim 1, wherein the substrate is a substrate of Ni, Fe, Co, or an alloy composed of at least two of these metals.
【請求項3】 前記プラズマCVD法を行う際の導入ガ
スが、炭素供給ガスと水素ガスとからなることを特徴と
する請求項1又は請求項2記載のカーボンナノチューブ
の作製方法。
3. The method for producing carbon nanotubes according to claim 1, wherein the gas introduced during the plasma CVD method comprises a carbon supply gas and a hydrogen gas.
【請求項4】 前記カーボンナノチューブの作製の際の
炭素供給ガスの割合が、全導入ガス基準で10vol.%〜
50vol.%であることを特徴とする請求項3記載のカー
ボンナノチューブの作製方法。
4. A ratio of a carbon supply gas at the time of producing the carbon nanotube is 10 vol.
The method for producing carbon nanotubes according to claim 3, wherein the volume is 50 vol.%.
【請求項5】 前記炭素供給ガスがメタン、エチレン、
アセチレン又はその混合物であることを特徴とする請求
項3又は請求項4記載のカーボンナノチューブの作製方
法。
5. The method of claim 1, wherein the carbon feed gas is methane, ethylene,
The method for producing carbon nanotubes according to claim 3, wherein the method is acetylene or a mixture thereof.
【請求項6】 前記プラズマCVD法を行う前の予備処
理として、CVD装置内に水素ガスのみを導入し、基板
表面を水素エッチング処理して、基板表面をクリーニン
グしかつ活性化し、その後前記プラズマCVD法を行う
ことを特徴とする請求項1〜請求項5のいずれかに記載
のカーボンナノチューブの作製方法。
6. As a preliminary process before performing the plasma CVD method, only a hydrogen gas is introduced into a CVD apparatus, a substrate surface is subjected to a hydrogen etching process, and the substrate surface is cleaned and activated. The method for producing a carbon nanotube according to any one of claims 1 to 5, wherein the method is performed.
【請求項7】 前記基板として、カーボンナノチューブ
を作製できないガラス又はSiウェハーの上にNi、F
e、Co又はこれらの金属の少なくとも2種類からなる
合金で任意のパターンを形成したものを用い、前記プラ
ズマCVD法により、この任意のパターン形成基板表面
上の該任意のパターンの部分のみに、カーボンナノチュ
ーブを基板表面に対して垂直方向に配向させて選択的に
作製することを特徴とする請求項1、又は請求項3〜請
求項5のいずれかに記載のカーボンナノチューブの作製
方法。
7. Ni or F is formed on a glass or Si wafer on which carbon nanotubes cannot be formed as the substrate.
e, Co or an alloy having at least two types of these metals and having an arbitrary pattern formed thereon. By the plasma CVD method, only a portion of the arbitrary pattern on the surface of the arbitrary pattern forming substrate is carbon. The method for producing a carbon nanotube according to claim 1, wherein the nanotube is selectively produced by orienting the nanotube in a direction perpendicular to a substrate surface.
JP11221708A 1999-08-04 1999-08-04 Preparation of perpendicularly oriented carbon nanotube Pending JP2001048512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11221708A JP2001048512A (en) 1999-08-04 1999-08-04 Preparation of perpendicularly oriented carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11221708A JP2001048512A (en) 1999-08-04 1999-08-04 Preparation of perpendicularly oriented carbon nanotube

Publications (1)

Publication Number Publication Date
JP2001048512A true JP2001048512A (en) 2001-02-20

Family

ID=16771037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11221708A Pending JP2001048512A (en) 1999-08-04 1999-08-04 Preparation of perpendicularly oriented carbon nanotube

Country Status (1)

Country Link
JP (1) JP2001048512A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455663B1 (en) * 2002-04-30 2004-11-06 학교법인 포항공과대학교 Metal/nanomaterial heterostructure and method for the preparation thereof
JP2005255492A (en) * 2004-03-12 2005-09-22 Nano Giken Kk Apparatus and method of manufacturing carbon nano-structure
JP2005350342A (en) * 2004-05-10 2005-12-22 Ulvac Japan Ltd Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
JP2006052127A (en) * 2004-07-07 2006-02-23 Commiss Energ Atom Method of growing oriented carbon nanotube
US7026764B2 (en) 2002-03-26 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Plasma producing apparatus and doping apparatus
KR100582249B1 (en) * 2004-03-31 2006-05-23 엄환섭 Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
JP2007314391A (en) * 2006-05-29 2007-12-06 Ulvac Japan Ltd Substrate for growth of carbon nanotube and fabrication process for carbon nanotube using the same
JP2008074647A (en) * 2006-09-19 2008-04-03 National Institute Of Advanced Industrial & Technology Manufacturing process of carbon nanotube
US7394192B2 (en) 2005-05-13 2008-07-01 Noritake Co., Ltd. Electron-emitting source having carbon nanotubes
US7396409B2 (en) 2002-09-19 2008-07-08 Covalent Materials Corporation Acicular silicon crystal and process for producing the same
JP2008243900A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method thereof
JP2009084746A (en) * 2007-09-28 2009-04-23 Toshiba Corp Method for producing electrically conductive fiber material
US7582507B2 (en) 2002-08-02 2009-09-01 Nec Corporation Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
JP2009256204A (en) * 2008-04-18 2009-11-05 Qinghua Univ Method for making carbon nanotube
JP2011189292A (en) * 2010-03-15 2011-09-29 Toshiba Corp Method of treating catalyst for nanocarbon production and method of manufacturing nanocarbon
JP2011195446A (en) * 2011-06-16 2011-10-06 National Institute Of Advanced Industrial Science & Technology Carbon material with controlled isotopic ratio, and identification mark
JP2013177284A (en) * 2011-09-16 2013-09-09 Toyota Motor Corp Plasma cvd apparatus and substrate heating and holding base, and method for producing carbon nanotube
WO2014132724A1 (en) * 2013-02-27 2014-09-04 住友電気工業株式会社 Carbon nanostructure, method for producing carbon nanostructure, and production device for same
JP2017536351A (en) * 2014-10-28 2017-12-07 ブリガム・ヤング・ユニバーシティBrigham Young University Microbial resistant material and related apparatus, systems and methods
CN109926050A (en) * 2019-04-18 2019-06-25 陕西延长石油(集团)有限责任公司 A kind of preparation method of carbon nano tube metal coexisting material
US10517995B2 (en) 2016-11-01 2019-12-31 Brigham Young University Super-hydrophobic materials and associated devices, systems, and methods
CN113247881A (en) * 2021-05-17 2021-08-13 常州大学 Device and method for preparing nano carbon by methane plasma cracking

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026764B2 (en) 2002-03-26 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Plasma producing apparatus and doping apparatus
US7382098B2 (en) 2002-03-26 2008-06-03 Semiconductor Energy Laboratory Co., Ltd. Plasma producing apparatus and doping apparatus
KR100455663B1 (en) * 2002-04-30 2004-11-06 학교법인 포항공과대학교 Metal/nanomaterial heterostructure and method for the preparation thereof
US7582507B2 (en) 2002-08-02 2009-09-01 Nec Corporation Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
US7396409B2 (en) 2002-09-19 2008-07-08 Covalent Materials Corporation Acicular silicon crystal and process for producing the same
JP2005255492A (en) * 2004-03-12 2005-09-22 Nano Giken Kk Apparatus and method of manufacturing carbon nano-structure
KR100582249B1 (en) * 2004-03-31 2006-05-23 엄환섭 Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
JP2005350342A (en) * 2004-05-10 2005-12-22 Ulvac Japan Ltd Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
JP2006052127A (en) * 2004-07-07 2006-02-23 Commiss Energ Atom Method of growing oriented carbon nanotube
US7394192B2 (en) 2005-05-13 2008-07-01 Noritake Co., Ltd. Electron-emitting source having carbon nanotubes
JP2007314391A (en) * 2006-05-29 2007-12-06 Ulvac Japan Ltd Substrate for growth of carbon nanotube and fabrication process for carbon nanotube using the same
JP2008074647A (en) * 2006-09-19 2008-04-03 National Institute Of Advanced Industrial & Technology Manufacturing process of carbon nanotube
JP2008243900A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method thereof
JP2009084746A (en) * 2007-09-28 2009-04-23 Toshiba Corp Method for producing electrically conductive fiber material
JP2009256204A (en) * 2008-04-18 2009-11-05 Qinghua Univ Method for making carbon nanotube
JP2011189292A (en) * 2010-03-15 2011-09-29 Toshiba Corp Method of treating catalyst for nanocarbon production and method of manufacturing nanocarbon
JP2011195446A (en) * 2011-06-16 2011-10-06 National Institute Of Advanced Industrial Science & Technology Carbon material with controlled isotopic ratio, and identification mark
JP2013177284A (en) * 2011-09-16 2013-09-09 Toyota Motor Corp Plasma cvd apparatus and substrate heating and holding base, and method for producing carbon nanotube
WO2014132724A1 (en) * 2013-02-27 2014-09-04 住友電気工業株式会社 Carbon nanostructure, method for producing carbon nanostructure, and production device for same
JP2014162705A (en) * 2013-02-27 2014-09-08 Sumitomo Electric Ind Ltd Carbon nano-structure, production method and production apparatus of carbon nano-structure
US9493354B2 (en) 2013-02-27 2016-11-15 Sumitomo Electric Industries, Ltd. Carbon nanostructure, and method and apparatus for manufacturing carbon nanostructure
JP2017536351A (en) * 2014-10-28 2017-12-07 ブリガム・ヤング・ユニバーシティBrigham Young University Microbial resistant material and related apparatus, systems and methods
US10517995B2 (en) 2016-11-01 2019-12-31 Brigham Young University Super-hydrophobic materials and associated devices, systems, and methods
CN109926050A (en) * 2019-04-18 2019-06-25 陕西延长石油(集团)有限责任公司 A kind of preparation method of carbon nano tube metal coexisting material
CN113247881A (en) * 2021-05-17 2021-08-13 常州大学 Device and method for preparing nano carbon by methane plasma cracking

Similar Documents

Publication Publication Date Title
JP2001048512A (en) Preparation of perpendicularly oriented carbon nanotube
JP3017161B2 (en) Method for producing single-walled carbon nanotube
Meyyappan et al. Carbon nanotube growth by PECVD: a review
US7033650B2 (en) Method of producing a nanotube layer on a substrate
JP2737736B2 (en) Method for producing carbon single-walled nanotube
KR101190136B1 (en) A method for forming a carbon nanotube and a plasma cvd apparatus for carrying out the method
JP4963539B2 (en) Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method
Nozaki et al. Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
KR20030028296A (en) Plasma enhanced chemical vapor deposition apparatus and method of producing a cabon nanotube using the same
EP1414744A1 (en) Production of carbon nanotubes
US20040099208A1 (en) Method for forming carbon nanotubes
JP2002356316A (en) Apparatus and method for producing carbon structures
Rouhi et al. Three separated growth sequences of vertically-aligned carbon nanotubes on porous silicon: field emission applications
JP3463091B2 (en) Method for producing carbon nanotube
Yamamoto et al. Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma
JP5653822B2 (en) Method for producing carbon nanotube
JP3524542B2 (en) Manufacturing method of carbon nanotube
JP4881504B2 (en) Selective formation method of graphite nanofiber thin film by thermal CVD method
Yen et al. Synthesis of well-aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition
Show et al. Development of triode type RF plasma enhanced CVD equipment for low temperature growth of carbon nanotube
JP2003277030A (en) Arrangement film of carbon nanotube aggregate and method for manufacturing the same
Lee et al. Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering
JP2009067663A (en) Method of growing carbon nanotube on carbon fiber sheet and carbon nanotube emitter
Jeong et al. Simple methods for site-controlled carbon nanotube growth using radio-frequency plasma-enhanced chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807