JP2005001968A - Production method for porous carbon - Google Patents

Production method for porous carbon Download PDF

Info

Publication number
JP2005001968A
JP2005001968A JP2003169948A JP2003169948A JP2005001968A JP 2005001968 A JP2005001968 A JP 2005001968A JP 2003169948 A JP2003169948 A JP 2003169948A JP 2003169948 A JP2003169948 A JP 2003169948A JP 2005001968 A JP2005001968 A JP 2005001968A
Authority
JP
Japan
Prior art keywords
porous carbon
raw material
raw coke
raw
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003169948A
Other languages
Japanese (ja)
Inventor
Yoichi Kawano
陽一 川野
Kazuhiko Mizuuchi
和彦 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2003169948A priority Critical patent/JP2005001968A/en
Publication of JP2005001968A publication Critical patent/JP2005001968A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To produce a carbon material which is used for a polarizable electrode of an electric double layer capacitor exhibiting high electrostatic capacity and is produced at a low cost from coal-derived raw coke as a raw material. <P>SOLUTION: In producing raw coke from at least one raw material selected from among a coal-derived heavy oil, tar pitch, and a petroleum-derived heavy oil in a delayed coker, at least one element selected from among alkali metals (K, Na, Li)/alkaline earth metals (Ca, Mg, Zn)/transition metals (Fe, Ni, Co) is added to the raw material oil. Thus produced raw coke, containing an activating component dispersed therein, is subjected to an activation treatment with an oxidative gas containing at least one component selected from among water vapor, carbon dioxide, and oxygen as the effective component or the raw coke is subjected to an alkali activation treatment; thus, a porous carbon material is produced. An electric double layer capacitor having an electrode formed from the porous carbon is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、比表面積が大きく、電気二重層キャパシタに用いたときの充填密度が高く、重量あたりの容量が高い多孔質炭素微粉と、これを使用した電気二重層キャパシタに関する。
【0002】
【従来の技術】
電気二重層とは、固体と液体など二つの異なる層が接触すると、その境界面にプラスとマイナスの電荷が存在する状態をいう。この原理を利用し電気を貯蔵したものが、電気二重層キャパシタである。通常使われる電池に比べ、急速充電が可能なこと、化学反応を伴わないので繰り返し充放電による劣化が少ないこと、メンテナンスフリー等非常に優れた特性を示す素子である。
【0003】
電気二重層キャパシタの用途はコンピュータ用のメモリーバックアップに利用されつつあるし、自動車などのパワー用途分野でもハイブリッドカーへの応用展開が活発化している。また、電気二重層キャパシタに活性炭等の多孔質炭素材料を使用することは知られている(例えば特許文献1参照)。
【0004】
電気二重層キャパシタでは非常に優れた特性を持つがエネルギー密度が低いことが電池との違いである。電気二重層キャパシタでは界面に形成される電気二重層は静電容量Cで示される。静電容量を改善するためにいろいろな検討がなされてきた。電気二重層は固体と液体の界面で発生するために固体の表面積を増やし界面を増やすことが試みられてきた。また、電気二重層キャパシタに使用される静電容量を増加させるために充填密度を向上させる方法も試みられてきた。
【0005】
充填密度を向上させるために近年生コークス製造時に発生するメソフェースを取出したメソカーボンマイクロビーズを使用する方法が報告されている(例えば特許文献2、特許文献3参照)。これは、メソフェースがコーキング時に合体してバルクメソフェースになる前に抽出で取出したものであり、球形の生コークスである。このメソカーボンマイクロビーズを賦活処理して表面積を増加させることで、重量あたりの静電容量を向上させると共に、球形による形状のために体積あたりの静電容量を発現させるものである。しかし、メソカーボンマイクロビーズは製造設備に多大のコストがかかりすぎるなどの問題があった。
【0006】
【特許文献1】
特開2001−319837号公報
【特許文献2】
特開2001−302225号公報
【特許文献3】
特開2001−302226号公報
【特許文献4】
特開2001−118753号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、ディレードコーキング法を適用することで、比較的安価に、且つ工業的に大量に製造することが可能な静電容量の高い電気二重層キャパシタを与える多孔質炭素の製造方法を提供することである。また、他の目的は静電容量の高い電気二重層キャパシタを提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、前記の課題を解決するため鋭意研究を行った結果、コールタールピッチあるいは石油系重油等の重質油を原料にピッチコークスを製造するディレードコーキング法において、この重質油原料にアルカリ金属(K,Na,Li)、アルカリ土類金属(Ca,Mg)、遷移金属(Fe,Ni,Co)から選択される少なくとも1種の金属元素を賦活剤として添加した生コークスを原料することで、安価に静電容量の高い電気二重層キャパシタを製造可能であることを見出し、本発明に到った。
作用機構は不確定であるが、金属元素添加の場合、表記金属元素は炭素促進作用が知られている。このため炭素中の黒鉛化度の不均一化が進み、酸化ガスによる炭素自体のエッチング耐性がミクロレベルで変わると考えられること、及び金属によるガス化触媒作用の両機構が併発していると推定している。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する
本発明ではピッチ、瀝青物、重油等と称される石炭系又は石油系の重質油を原料に用いるディレードコーカーを使用する。原料の重質油は、公知の範囲で選定すれば差し支えない。原料油には一般にキノリン不溶分(QI)が含まれ、QIを1wt%程度以下にすると異方性の生コークスが得られ、数%以上であると等方性の生コークスが得られるが、異方性の生コークスが電極用炭素材料として優れる傾向が認められる。しかし、等方性の生コークスであっても電極用炭素材料として優れるものが得られるので、30wt%程度までのQIの存在は差支えない。
【0010】
ディレードコーカーの運転条件は公知の範囲で差し支えなく、通常、400〜600℃程度、5〜50時間程度の条件でディレードコーキングが行われる。ディレードコーキング条件は、好ましくは450〜550℃程度、15〜25時間程度であり、得られる生コークスの揮発分は通常5〜15%程度になる。
【0011】
賦活剤は、原料油のフィード部に定量ポンプ等で原料油に対して添加することができる。原料油に安定供給できれば供給方法は限定されない。
改質剤は、アルカリ金属(K,Na,Li)、アルカリ土類金属(Ca,Mg)、8族遷移金属(Fe,Ni,Co)を有機又は無機塩、有機錯体等の形態で単独又は溶剤分散して供給することができる。
添加量は、金属元素含有量として原料油に対し、0.05以上10wt%の範囲が好ましい。
【0012】
添加剤として黒鉛微紛を添加する場合は、黒鉛を微粉砕後、重質油に事前に分散してから添加することができる。使用する黒鉛は電気伝導性に優れた黒鉛材料であれば、原料は制限されない。粉砕粒子径は、電気二重層キャパシタに必要な粒子径にあわせて粉砕するのが良い。平均粒子径は20μ以下、更に好ましくは10μ以下が好ましい。
【0013】
ディレードコーキングで得られた生コークスは、必要なら更に熱処理を行い、次いで賦活処理を行う。賦活にあたっては、反応が均等に進行する程度に粉砕するが良い。処理を効果的に行うために平均粒径が2mm以下とすることがよく、粉砕は公知の方法で差し支えない。
尚、ディレードコーキング温度が低い場合は、生コークスの揮発分が高くなり、高温で行う賦活処理時に融着現象が起こり、粉体のまま取出すことができなくなる場合がある。このような場合には、表面を酸化して融着現象を抑えることが可能である。酸化は酸化性のガスや液体であれば特に限定するものではなく、コストの面から見れば気体であれば空気、液体であれば硫酸が望ましい。
【0014】
賦活工程については、酸化性ガス賦活は、空気、酸素、二酸化炭素、水蒸気などのガスの存在下で加熱を行う公知の方法を採用できる。不活性ガスで希釈しても良い。また、上記2つの賦活処理を組合せてもよいし、処理条件が合致すれば同時に行ってもよいし、順次行ってもよい。これらの賦活処理の組合せは、生コークスの構造や性状及び目的とされる比表面積や細孔分布とから、考慮し決定すればよい。賦活温度は、限定されないが、通常800−900℃が好ましい。賦活処理時間は、賦活処理温度によって変化するが、通常0.1〜10hr、好ましくは0.5〜5hr程度である。
【0015】
生コークス粉末を賦活処理して得た多孔質炭素は、冷却、必要なら酸洗浄、水洗、粉砕等がされた後、キャパシタ用多孔質炭素材料として使用することができる。キャパシタとしては、多孔質炭素材料を使用した電極、電解液及びセパレータを構成要素として含む公知の電気二重層キャパシタがある。このようなキャパシタは、前記特許文献1〜3やその他(例えば特許文献4参照)に詳細に記載されているのでこれが参照される。多孔質炭素材料を使用した電極は例えば、前記多孔質炭素材料に、導電材としてのアセチレンブラック、結合材としてのポリテトラフルオロエチレン(PTFE)及び溶媒を混合してペースト状にし、これを圧縮成形し、加熱乾燥して所定の電極形状にすることにより得ることができる。分極性電極は、例えば、前記電極の片面にアルミニウム等の金属を溶射又は圧接して導電性集電材層を設けたり、前記ペースト状物をアルミニウム等の金属箔に塗布し、加熱乾燥することにより得ることができる。
【0016】
【実施例】
以下の実施例によって本発明を更に具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。また、%はwt%である。
【0017】
実施例1
キノリン不溶分(QI)を0.1%以下にコントロールした石炭系重質油を原料とした石炭系重質油に対し、KOHは、予め原料油に分散させておき、1wt%添加し、ディレードコーカーで500℃で24hrコーキングして等方性生コークスを得た。元素分析の結果、生コークス中のK元素含有量は1.8wt%であった。この生コークスを、粉砕機で粉砕後、分級し、平均粒径1mm(0.1−2mm)の生コークス粒を得た。このものを100g取り、小型ロータリキルン内で、水蒸気雰囲気下、900℃3時間反応させた。その後、これを冷却、水洗、乾燥して多孔質炭素材料を得た。得られた炭素材料の表面積測定結果と静電容量の測定結果を表1に示す。
【0018】
実施例2
キノリン不溶分(QI)を0.1%以下にコントロールした石炭系重質油を原料とした石炭系重質油に対し、塩化鉄を予め原料油に分散したものを1wt%添加し、ディレードコーカーで500℃で24hrコーキングして等方性生コークスを得た。この生コークス中のFe元素含有量は2.1%であった。この生コークスを、粉砕機で粉砕後、分級し、平均粒径1mm(0.1−2mm)の生コークス粒を得た。このものを100g取り、小型ロータリキルン内で、水蒸気10g/分の割合で供給し900℃3時間反応させた。その後、これを冷却、水洗、乾燥して多孔質炭素材料を得た。得られた炭素材料の表面積測定結果と静電容量の測定結果を表1に示す。
【0019】
比較例
原料油中に賦活剤を添加しない以外は実施例1と同じ方法で調整した炭素材料の表面積測定結果と静電容量の測定結果を表1に示す。
【0020】
BET表面積の測定には、ユアサアイオニクス社製AUTOSORB 1−C装置を用いた。
【0021】
静電容量の測定は、実施例及び比較例で得られた多孔質炭素材料を30μに粉砕した微紛とカーボンブラック(ケッチェンブラック)、PTFEを8:1:1になるように配合して混連/シート化し、電極を調製した。電極二枚を重ね合わせてキャパシタを作成し、充放電特性から電気容量を求めた。作成したキャパシタの放電電流は2.4mAとした。電解液はEtNBFのプロピレンカーボネート溶液を用い、放電容量Cは、TOYO SYSTEM製TOSCAT−3000K装置を用い、次の式の放電勾配より求めた。
C=I×(T2−T1)/(V1−V2)
V1:充電電圧の80%となる値
V2:充電電圧の40%となる値
T1:V1における時間
T2:V2における時間
I:放電電量
【0022】
【表1】

Figure 2005001968
【0023】
含有元素の分析は、通常の原子吸光法によった。
【0024】
【発明の効果】
本発明の方法によれば、ピッチコークスを原料として安価で高静電容量を発現する電気二重層キャパシタ用分極性電極材料の製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous carbon fine powder having a large specific surface area, a high packing density when used in an electric double layer capacitor, and a high capacity per weight, and an electric double layer capacitor using the same.
[0002]
[Prior art]
The electric double layer is a state in which positive and negative charges are present at the interface when two different layers such as a solid and a liquid come into contact with each other. An electric double layer capacitor stores electricity using this principle. Compared to a battery that is normally used, it is an element that exhibits extremely excellent characteristics such as being capable of rapid charging, being free from deterioration due to repeated charge / discharge because it does not involve a chemical reaction, and being maintenance-free.
[0003]
Applications of electric double layer capacitors are being used for computer memory backup, and application development to hybrid cars is also active in the field of power applications such as automobiles. In addition, it is known to use a porous carbon material such as activated carbon for the electric double layer capacitor (see, for example, Patent Document 1).
[0004]
An electric double layer capacitor has very good characteristics, but its energy density is low, which is a difference from a battery. In the electric double layer capacitor, the electric double layer formed at the interface is indicated by a capacitance C. Various studies have been made to improve the capacitance. Since the electric double layer is generated at the interface between the solid and the liquid, attempts have been made to increase the surface area of the solid and increase the interface. Attempts have also been made to improve the packing density in order to increase the capacitance used in the electric double layer capacitor.
[0005]
In order to improve the packing density, a method of using mesocarbon microbeads obtained by removing mesophase generated at the time of producing raw coke has been reported (see, for example, Patent Document 2 and Patent Document 3). This is a spherical raw coke which is extracted by extraction before the mesophase is combined at the time of coking and becomes a bulk mesoface. By increasing the surface area by activating the mesocarbon microbeads, the capacitance per weight is improved and the capacitance per volume is expressed due to the spherical shape. However, mesocarbon microbeads have problems such as excessive production costs.
[0006]
[Patent Document 1]
JP 2001-319837 A [Patent Document 2]
JP 2001-302225 A [Patent Document 3]
JP 2001-302226 A [Patent Document 4]
Japanese Patent Laid-Open No. 2001-118753
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing porous carbon that provides an electric double layer capacitor having a high capacitance that can be produced in large quantities industrially at a relatively low cost by applying a delayed coking method. Is to provide. Another object is to provide an electric double layer capacitor having a high capacitance.
[0008]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors have found that this heavy oil feedstock is used in a delayed coking process in which pitch coke is produced from a heavy oil such as coal tar pitch or petroleum heavy oil. Raw coke obtained by adding at least one metal element selected from alkali metals (K, Na, Li), alkaline earth metals (Ca, Mg), and transition metals (Fe, Ni, Co) as an activator As a result, it was found that an electric double layer capacitor having a high capacitance can be manufactured at low cost, and the present invention has been achieved.
Although the mechanism of action is uncertain, in the case of addition of a metal element, the notation metal element is known to promote carbon. For this reason, the degree of graphitization in carbon is becoming more and more uniform, and it is assumed that the etching resistance of carbon itself due to oxidizing gas is considered to change at the micro level, and that both mechanisms of gasification catalysis by metals occur simultaneously. is doing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in the present invention for explaining the present invention in detail, a delayed coker that uses coal-based or petroleum-based heavy oil called pitch, bitumen, heavy oil or the like as a raw material is used. The raw heavy oil may be selected within a known range. The feedstock oil generally contains quinoline insoluble matter (QI), and when the QI is about 1 wt% or less, anisotropic raw coke is obtained, and when it is several% or more, isotropic raw coke is obtained. An anisotropic raw coke tends to be excellent as a carbon material for electrodes. However, even if it is isotropic raw coke, what is excellent as a carbon material for electrodes can be obtained, so the presence of QI up to about 30 wt% can be allowed.
[0010]
The operating conditions of the delayed coker may be within a known range, and the delayed coking is usually performed under conditions of about 400 to 600 ° C. and about 5 to 50 hours. The delayed coking conditions are preferably about 450 to 550 ° C. and about 15 to 25 hours, and the volatile content of the obtained raw coke is usually about 5 to 15%.
[0011]
An activator can be added with respect to raw material oil with the metering pump etc. to the feed part of raw material oil. The supply method is not limited as long as it can be stably supplied to the raw material oil.
The modifier is alkali metal (K, Na, Li), alkaline earth metal (Ca, Mg), group 8 transition metal (Fe, Ni, Co) alone or in the form of an organic or inorganic salt, organic complex or the like. The solvent can be dispersed and supplied.
The addition amount is preferably in the range of 0.05 to 10 wt% with respect to the raw material oil as the metal element content.
[0012]
When adding graphite fine powder as an additive, graphite can be added after being finely pulverized and then dispersed in heavy oil in advance. The raw material is not limited as long as the graphite used is a graphite material excellent in electrical conductivity. The pulverized particle size is preferably pulverized according to the particle size required for the electric double layer capacitor. The average particle diameter is preferably 20 μm or less, more preferably 10 μm or less.
[0013]
The raw coke obtained by delayed coking is further heat-treated if necessary, and then activated. In activation, it is good to grind | pulverize so that reaction may advance uniformly. In order to effectively perform the treatment, the average particle size is preferably 2 mm or less, and the pulverization may be performed by a known method.
When the delayed coking temperature is low, the volatile content of the raw coke becomes high, and a fusing phenomenon may occur during the activation process performed at a high temperature, making it impossible to take out the powder as it is. In such a case, it is possible to suppress the fusion phenomenon by oxidizing the surface. The oxidation is not particularly limited as long as it is an oxidizing gas or liquid. From the viewpoint of cost, air is preferable if it is gas, and sulfuric acid is preferable if it is liquid.
[0014]
About an activation process, the oxidizing gas activation can employ | adopt the well-known method of heating in presence of gas, such as air, oxygen, a carbon dioxide, and water vapor | steam. It may be diluted with an inert gas. Further, the above two activation processes may be combined, or may be performed simultaneously if the processing conditions are met, or may be performed sequentially. The combination of these activation treatments may be determined in consideration of the structure and properties of raw coke and the intended specific surface area and pore distribution. The activation temperature is not limited, but is usually preferably 800-900 ° C. The activation treatment time varies depending on the activation treatment temperature, but is usually about 0.1 to 10 hr, preferably about 0.5 to 5 hr.
[0015]
The porous carbon obtained by activating the raw coke powder can be used as a porous carbon material for capacitors after cooling, if necessary, acid washing, water washing, pulverization and the like. As the capacitor, there is a known electric double layer capacitor including an electrode using a porous carbon material, an electrolytic solution, and a separator as constituent elements. Such a capacitor is described in detail in the above-mentioned Patent Documents 1 to 3 and others (for example, see Patent Document 4), so that this is referred to. An electrode using a porous carbon material is, for example, a paste formed by mixing acetylene black as a conductive material, polytetrafluoroethylene (PTFE) as a binder, and a solvent into the porous carbon material, and then compressing it. It can be obtained by heating and drying into a predetermined electrode shape. For example, the polarizable electrode is formed by spraying or pressing a metal such as aluminum on one surface of the electrode to provide a conductive current collector layer, or applying the paste-like material to a metal foil such as aluminum and drying by heating. Obtainable.
[0016]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples. Moreover,% is wt%.
[0017]
Example 1
For coal-based heavy oil made from coal-based heavy oil whose quinoline insoluble content (QI) is controlled to 0.1% or less, KOH is dispersed in the raw material oil in advance, and 1 wt% is added. Isotropic raw coke was obtained by coking in a coker at 500 ° C. for 24 hours. As a result of elemental analysis, the content of K element in raw coke was 1.8 wt%. The raw coke was pulverized by a pulverizer and classified to obtain raw coke particles having an average particle diameter of 1 mm (0.1-2 mm). 100 g of this was taken and reacted in a small rotary kiln at 900 ° C. for 3 hours in a steam atmosphere. Then, this was cooled, washed with water, and dried to obtain a porous carbon material. Table 1 shows the surface area measurement results and capacitance measurement results of the obtained carbon material.
[0018]
Example 2
1% by weight of ferrous chloride dispersed in the raw material oil is added to the heavy oil based on the quinoline heavy oil whose quinoline insoluble content (QI) is controlled to 0.1% or less. Isotropic coke was obtained at 500 ° C. for 24 hours. The content of Fe element in this raw coke was 2.1%. The raw coke was pulverized by a pulverizer and classified to obtain raw coke particles having an average particle diameter of 1 mm (0.1-2 mm). 100 g of this product was taken and fed at a rate of 10 g / min of water vapor in a small rotary kiln and reacted at 900 ° C. for 3 hours. Then, this was cooled, washed with water, and dried to obtain a porous carbon material. Table 1 shows the surface area measurement results and capacitance measurement results of the obtained carbon material.
[0019]
Table 1 shows the measurement results of the surface area and the capacitance of the carbon material prepared in the same manner as in Example 1 except that the activator was not added to the comparative example raw material oil.
[0020]
For the measurement of the BET surface area, an AUTOSORB 1-C apparatus manufactured by Yuasa Ionics was used.
[0021]
The capacitance is measured by mixing fine powder obtained by pulverizing the porous carbon material obtained in Examples and Comparative Examples to 30μ, carbon black (Ketjen Black), and PTFE so as to be 8: 1: 1. The electrode was prepared by mixing / sheeting. A capacitor was created by superimposing two electrodes, and the electric capacity was determined from the charge / discharge characteristics. The discharge current of the prepared capacitor was 2.4 mA. The electrolyte solution used was a propylene carbonate solution of Et 4 NBF 4 , and the discharge capacity C was determined from the discharge gradient of the following formula using a TOSCAT-3000K device manufactured by TOYO SYSTEM.
C = I * (T2-T1) / (V1-V2)
V1: Value that is 80% of the charging voltage V2: Value that is 40% of the charging voltage T1: Time at V1 T2: Time at V2 I: Discharge amount
[Table 1]
Figure 2005001968
[0023]
The analysis of the contained elements was performed by a normal atomic absorption method.
[0024]
【The invention's effect】
According to the method of the present invention, it is possible to produce a polarizable electrode material for an electric double layer capacitor that is inexpensive and expresses a high capacitance using pitch coke as a raw material.

Claims (6)

ディレードコーカーの原料油中に賦活剤を添加し、賦活成分が分散した生コークスを原料とすることを特徴とする多孔質炭素の製造方法。A method for producing porous carbon, characterized in that an activator is added to a raw material oil of a delayed coker and raw coke in which an activation component is dispersed is used as a raw material. 賦活剤が、アルカリ金属(K,Na,Li)、アルカリ土類金属(Ca,Mg,Zn)、遷移金属(Fe,Ni,Co)から選択される少なくとも1種の金属元素又は金属化合物であることを特徴とする請求項1記載の多孔質炭素の製造方法。The activator is at least one metal element or metal compound selected from alkali metals (K, Na, Li), alkaline earth metals (Ca, Mg, Zn), and transition metals (Fe, Ni, Co). The method for producing porous carbon according to claim 1, wherein: 原料油が石炭系重質油または石油系重質油から選択される少なくとも一種を原料とすることを特徴とする請求項1または2に記載の製造方法。The production method according to claim 1 or 2, wherein the raw material oil is at least one selected from coal-based heavy oil or petroleum-based heavy oil. 金属元素含有量が、原料油に対し0.1〜20wt%であることを特徴とする請求項1〜3のいずれかに記載の多孔質炭素の製造方法。The method for producing porous carbon according to any one of claims 1 to 3, wherein the metal element content is 0.1 to 20 wt% with respect to the raw material oil. 生コークスを水蒸気、二酸化炭素および酸素から選択される少なくとも一種を有効成分とする酸化性ガスで賦活処理することを特徴とする請求項1〜4のいずれかに記載の多孔質炭素の製造方法。The method for producing porous carbon according to any one of claims 1 to 4, wherein the raw coke is activated with an oxidizing gas containing at least one selected from water vapor, carbon dioxide and oxygen as an active ingredient. 請求項1〜5のいずれかに記載の製造方法によって得られた多孔質炭素を電極としたことを特徴とする電気二重層キャパシタ。6. An electric double layer capacitor characterized in that porous carbon obtained by the production method according to claim 1 is used as an electrode.
JP2003169948A 2003-06-13 2003-06-13 Production method for porous carbon Withdrawn JP2005001968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169948A JP2005001968A (en) 2003-06-13 2003-06-13 Production method for porous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169948A JP2005001968A (en) 2003-06-13 2003-06-13 Production method for porous carbon

Publications (1)

Publication Number Publication Date
JP2005001968A true JP2005001968A (en) 2005-01-06

Family

ID=34094932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169948A Withdrawn JP2005001968A (en) 2003-06-13 2003-06-13 Production method for porous carbon

Country Status (1)

Country Link
JP (1) JP2005001968A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269961A (en) * 2005-03-25 2006-10-05 Japan Energy Corp Carbonaceous substance for electrode material
CN101973542A (en) * 2010-11-26 2011-02-16 深圳市今朝时代新能源技术有限公司 Preparation method of porous carbon material for supercapacitor
JP2018006271A (en) * 2016-07-07 2018-01-11 新日鉄住金化学株式会社 Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
CN109205622A (en) * 2018-09-20 2019-01-15 中国科学院广州能源研究所 A kind of preparation method of the derivative porous carbon materials of biomass coke tar
WO2019244904A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
WO2019244903A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
WO2019244905A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269961A (en) * 2005-03-25 2006-10-05 Japan Energy Corp Carbonaceous substance for electrode material
JP4624830B2 (en) * 2005-03-25 2011-02-02 Jx日鉱日石エネルギー株式会社 Carbonaceous materials for electrode materials
CN101973542A (en) * 2010-11-26 2011-02-16 深圳市今朝时代新能源技术有限公司 Preparation method of porous carbon material for supercapacitor
CN101973542B (en) * 2010-11-26 2013-06-12 深圳市今朝时代新能源技术有限公司 Preparation method of porous carbon material for supercapacitor
JP2018006271A (en) * 2016-07-07 2018-01-11 新日鉄住金化学株式会社 Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP7009049B2 (en) 2016-07-07 2022-02-10 日鉄ケミカル&マテリアル株式会社 Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
WO2019244905A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
WO2019244903A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
WO2019244904A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
JP6683969B1 (en) * 2018-06-19 2020-04-22 株式会社アドール Activated carbon
JP6683968B1 (en) * 2018-06-19 2020-04-22 株式会社アドール Activated carbon
JPWO2019244905A1 (en) * 2018-06-19 2020-06-25 株式会社アドール Activated carbon
JP2020110801A (en) * 2018-06-19 2020-07-27 株式会社アドール Activated carbon
JP2020111505A (en) * 2018-06-19 2020-07-27 株式会社アドール Activated carbon
US11873235B2 (en) 2018-06-19 2024-01-16 Ad'all Co., Ltd. Activated carbon
JP7428347B2 (en) 2018-06-19 2024-02-06 株式会社アドール activated carbon
CN109205622A (en) * 2018-09-20 2019-01-15 中国科学院广州能源研究所 A kind of preparation method of the derivative porous carbon materials of biomass coke tar

Similar Documents

Publication Publication Date Title
Li et al. Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte
Jin et al. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution
US9053871B2 (en) High surface area and low structure carbon blacks for energy storage applications
Wu et al. Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors
JP4618929B2 (en) Activated carbon for electric double layer capacitors
CN110582464B (en) Modified activated carbon and method for producing same
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JP2011176043A (en) Activated carbon for electric double layer capacitor
JP4576374B2 (en) Activated carbon, its production method and its use
JP4117056B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP2005001968A (en) Production method for porous carbon
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP6705899B2 (en) Non-aqueous alkali metal ion capacitor
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
Madhusree et al. High-performance hybrid supercapacitor-immobilized Wells–Dawson polyoxometalates on activated carbon electrodes
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP2001319837A (en) Activated carbon for electric double-layer capacitor
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2003171105A (en) Method for manufacturing porous carbon fine powder and electrical double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP2005001967A (en) Production method for fine spherical carbon powder, and electric double layer capacitor
JP2009260112A (en) Producing method of positive-electrode active material for electrochemical capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905