JP2000138141A - Manufacture of carbon porous body for electric double layer capacitor polarizable electrode - Google Patents

Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Info

Publication number
JP2000138141A
JP2000138141A JP10310139A JP31013998A JP2000138141A JP 2000138141 A JP2000138141 A JP 2000138141A JP 10310139 A JP10310139 A JP 10310139A JP 31013998 A JP31013998 A JP 31013998A JP 2000138141 A JP2000138141 A JP 2000138141A
Authority
JP
Japan
Prior art keywords
carbon
electric double
activated carbon
double layer
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10310139A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiode
哲夫 塩出
Hiromi Okamoto
寛巳 岡本
Hidetoshi Morotomi
秀俊 諸富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adchemco Corp
Original Assignee
Adchemco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adchemco Corp filed Critical Adchemco Corp
Priority to JP10310139A priority Critical patent/JP2000138141A/en
Publication of JP2000138141A publication Critical patent/JP2000138141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a carbon porous body capable of forming a polarizable electrode having a high bulk density, a high capacitance per unit volume, and a low electrical resistance. SOLUTION: A method of manufacturing a carbon porous body comprises the steps of: subjecting a coconut shell, a phenol resin or a pitch as a material to a dry distillation and carbonization process in an inert atmosphere, and thereafter activating the resultant material to thereby obtain an activated carbon; and heat-treating the activated carbon in an inert atmosphere containing hydrocarbon or in a hydrocarbon flow to thereby precipitate pyrolytic carbon on the finely porous surface of the activated carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素多孔質体の製
造方法に関し、更に詳しくは電気二重層キャパシタ分極
性電極として高い電気容量を示す炭素多孔体を提供する
ことを目的としている。
The present invention relates to a method for producing a porous carbon material, and more particularly, to provide a porous carbon material having a high electric capacity as an electric double layer capacitor polarizable electrode.

【0002】[0002]

【従来の技術】1970年代後半から、電子機器の小型
化と、これらの機器へのマイクロコンピューターの導
入、半導体メモリーの採用等が進められ、それらマイク
ロコンピューターやメモリのバックアップ電源として、
電気二重層キャパシタが広く使用されている。この電気
二重層キャパシタは、活性炭電極と電解液との界面電気
二重層に蓄積される電荷を利用した大容量コンデンサで
ある。
2. Description of the Related Art Since the late 1970s, electronic devices have been downsized, microcomputers have been introduced into these devices, and semiconductor memories have been adopted.
Electric double layer capacitors are widely used. This electric double layer capacitor is a large-capacity capacitor utilizing electric charges accumulated in an electric double layer at the interface between the activated carbon electrode and the electrolyte.

【0003】更に近年、電気二重層キャパシタについて
大容量及び低抵抗化の技術が開発されたことで、数十k
Wの大電力が秒オーダーで充放電可能になってきた。こ
れにより、電気二重層キャパシタは、電気自動車の補助
電源やハイブリッド自動車のエネルギー回生用電源、電
力貯蔵等、様々な応用が期待されている。
In recent years, the development of large capacity and low resistance technologies for electric double layer capacitors has led to
High power of W can be charged and discharged in the order of seconds. As a result, the electric double layer capacitor is expected to have various applications such as an auxiliary power supply for electric vehicles, a power supply for energy regeneration of hybrid vehicles, and power storage.

【0004】電気二重層キャパシタは、電気二重層が平
板コンデンサのように電荷を蓄積するという性質を利用
している。動作原理は、簡易的にヘルムホルツのモデル
で説明することができ、その電気容量(C)は、以下の
ような式で表される。
[0004] The electric double layer capacitor utilizes the property that the electric double layer accumulates electric charges like a flat plate capacitor. The operating principle can be simply described by a Helmholtz model, and its electric capacity (C) is represented by the following equation.

【数1】 (ε:電解液の誘電率、δ:電気二重層の厚さ、S:電
極界面の表面積)
(Equation 1) (Ε: dielectric constant of electrolyte, δ: thickness of electric double layer, S: surface area of electrode interface)

【0005】この式から、比表面積が大きく、高導電性
で電気化学的に安定な活性炭を分極性電極として用いる
と、小型で大容量のコンデンサ「電気二重層キャパシ
タ」を得ることができることが判る。従来これら活性炭
は、やしがら、フェノール樹脂、石油系或いは石炭系の
ピッチを原料として、それを乾留及び炭化した後、水蒸
気或いは二酸化炭素等のガスで賦活したり、薬液賦活を
することによって製造されてきた。これら活性炭の現状
では、3,000m2/g程度の比表面積の大きな活性
炭を用いると、180F/g程度の容量を示す分極性電
極となる。
From this equation, it can be seen that when activated carbon having a large specific surface area, high conductivity and electrochemical stability is used as a polarizable electrode, a small-sized and large-capacity capacitor "electric double layer capacitor" can be obtained. . Conventionally, these activated carbons are produced by using carbon black, phenolic resin, petroleum-based or coal-based pitch as a raw material, carbonizing and carbonizing it, and then activating with a gas such as steam or carbon dioxide, or activating a chemical solution. It has been. In the present situation of these activated carbons, the use of activated carbon having a large specific surface area of about 3,000 m 2 / g results in a polarizable electrode having a capacity of about 180 F / g.

【0006】[0006]

【発明が解決しようとする課題】しかし、比表面積が
3,000m2/g程度の活性炭では、嵩密度が0.3
g/cm3と小さく、体積当たりの容量が50F/cm3
程度となり、装置の小型化の点で問題となる。従って、
小型で大容量の電気二重層キャパシタを製造するために
は、嵩密度の大きく且つ高い電気容量の炭素多孔体が望
まれる。
However, activated carbon having a specific surface area of about 3,000 m 2 / g has a bulk density of 0.3
g / cm 3 and capacity per volume is 50F / cm 3
This is a problem in miniaturization of the device. Therefore,
In order to manufacture a small-sized and large-capacity electric double layer capacitor, a carbon porous body having a large bulk density and a high electric capacity is desired.

【0007】上記活性炭の表面をミクロに観察すると、
グラファイト層面が表面に直角に配列している部分と平
行に配列している部分とに分けられる。前者の方が後者
よりも二重層容量の発現が10倍以上大きくなること
が、J.RandinらによってJ.Electroan.Chem.,36,p257(19
72)に示されている。しかし、活性炭を製造する際の賦
活は、これらミクロ的には直角に配列している部分で優
先的に起こり、細孔内壁のミクロ構造は、平行に配列し
た組織が多くなってしまう。そのため、かなり比表面積
を大きくしないと大容量の電気容量を得られない。
When the surface of the activated carbon is observed microscopically,
The graphite layer surface is divided into a portion arranged at right angles to the surface and a portion arranged in parallel. According to J. Randin et al., J. Electroan. Chem., 36, p257 (19)
72). However, activation during the production of activated carbon occurs preferentially in these microscopically arranged portions at right angles, and the microstructure of the inner wall of the pores has many microstructures arranged in parallel. Therefore, a large electric capacity cannot be obtained unless the specific surface area is considerably increased.

【0008】本発明者は、鋭意検討の結果、これらミク
ロ構造のエッジコントロールを熱分解炭素を、活性炭の
細孔表面に析出させることによって行なうことを検討し
た。熱分解炭素を電気二重層キャパシタに適用した例と
しては、特開平2−66917号公報や、特開平8−1
19614号公報等に記載されているが、これらは何れ
も電気伝導性を良くするために、カーボンブラックを使
用した例であり、上記のような活性炭のエッジコントロ
ールを行ったものではない。従って本発明の目的は、嵩
密度が高く、体積当たりの静電容量の大きい分極性電極
を形成し得る電気二重層キャパシタ分極性電極用炭素多
孔体(以下単に炭素多孔体という)を提供することを目
的とする。
As a result of intensive studies, the present inventor has studied to control the edge of these microstructures by depositing pyrolytic carbon on the pore surfaces of activated carbon. Examples of applying pyrolytic carbon to an electric double layer capacitor include JP-A-2-66917 and JP-A-8-1.
Although these are described in, for example, Japanese Patent No. 19614, these are examples in which carbon black is used in order to improve electric conductivity, and the edge control of activated carbon as described above is not performed. Accordingly, an object of the present invention is to provide a carbon porous body for an electric double layer capacitor polarizable electrode (hereinafter simply referred to as a carbon porous body) capable of forming a polarizable electrode having a high bulk density and a large capacitance per volume. With the goal.

【0009】[0009]

【課題を解決するための手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、やしがら、フェ
ノール樹脂又はピッチを原料として、不活性雰囲気で乾
留及び炭化し、その後賦活して活性炭を得る工程;次い
で上記の活性炭を、炭化水素を含む不活性雰囲気中又は
炭化水素気流中で熱処理を行い、活性炭の細孔表面に熱
分解炭素を析出させる工程を有することを特徴とする炭
素多孔体の製造方法、該方法で得られる炭素多孔体、及
び該炭素多孔体を電極の構成要素としている電気二重層
キャパシタを提供する。
The above object is achieved by the present invention described below. That is, the present invention provides a step of dry-distilling and carbonizing in an inert atmosphere using coconut, phenolic resin or pitch as a raw material, and thereafter activating the activated carbon to obtain activated carbon; Alternatively, a method for producing a carbon porous body, comprising performing a heat treatment in a hydrocarbon stream to precipitate pyrolytic carbon on the pore surface of activated carbon, a carbon porous body obtained by the method, and the carbon porous body. Provided is an electric double layer capacitor having a body as a component of an electrode.

【0010】[0010]

【発明の実施の形態】次に好ましい実施の形態を挙げて
本発明を更に詳細に説明する。本発明の炭素多孔体は、
やしがら、フェノール樹脂或いはピッチを原料として、
不活性雰囲気中で乾留及び炭化し、その後、賦活するこ
とによって得られた活性炭を原料とする。乾留及び炭化
は、通常500〜1,200℃程度で行われる。賦活
は、水蒸気又は二酸化炭素等による気相賦活法、或いは
溶融水酸化カリウム等による薬液賦活法等の如く一般的
な方法でよい。賦活処理に至るまでの活性炭の形状につ
いては、数mm程度のペレットでも、平均粒径数十μm
の粉体状でもよい。このように賦活した活性炭の比表面
積は500〜3,000m2/g程度が好ましい。
Next, the present invention will be described in more detail with reference to preferred embodiments. The carbon porous body of the present invention,
Using palm, phenolic resin or pitch as a raw material,
Activated carbon obtained by dry distillation and carbonization in an inert atmosphere and then activating is used as a raw material. Dry distillation and carbonization are usually performed at about 500 to 1,200 ° C. The activation may be performed by a general method such as a vapor phase activation method using water vapor or carbon dioxide, or a chemical liquid activation method using molten potassium hydroxide or the like. Regarding the shape of the activated carbon up to the activation treatment, even for pellets of about several mm,
In powder form. The activated carbon activated in this manner preferably has a specific surface area of about 500 to 3,000 m 2 / g.

【0011】次に賦活された活性炭は、エチレン又はト
ルエン等の炭化水素を含む窒素又はアルゴン等の不活性
雰囲気中又はエチレン又はトルエン等の炭化水素気流中
で熱処理されることにより、活性炭の細孔表面に熱分解
炭素を析出させ、本発明の炭素多孔体が得られる。この
熱処理は、固定層、流動層、移動層又はロータリーキル
ン等の反応器で行われ、反応温度は600〜1,000
℃程度で行われる。
The activated carbon thus activated is heat-treated in an inert atmosphere such as nitrogen or argon containing a hydrocarbon such as ethylene or toluene, or in a stream of a hydrocarbon such as ethylene or toluene to thereby form pores of the activated carbon. By depositing pyrolytic carbon on the surface, the carbon porous body of the present invention is obtained. This heat treatment is performed in a reactor such as a fixed bed, a fluidized bed, a moving bed or a rotary kiln, and the reaction temperature is 600 to 1,000.
It is performed at about ° C.

【0012】熱処理の際の炭化水素の導入方法は、炭化
水素を不活性ガスで希釈して導入してもよく、そのまま
希釈せずに反応器内に導入してもよい。この際、反応条
件としては、反応温度と導入した炭化水素の滞留時間が
重要となり、これらの条件を選択すれば、下記のような
好適な物性を有する本発明の炭素多孔体を得ることがで
きる。
The hydrocarbon may be introduced during the heat treatment by diluting the hydrocarbon with an inert gas, or may be introduced into the reactor without dilution. At this time, as the reaction conditions, the reaction temperature and the residence time of the introduced hydrocarbons are important, and if these conditions are selected, the carbon porous body of the present invention having the following suitable physical properties can be obtained. .

【0013】即ち、本発明で得られる炭素多孔体は、そ
の比表面積が100〜3,000m2/gであり、又、
アルゴンレーザーを用いたラマン分光法における1,3
60cm-1バンドの1,580cm-1バンドに対する強
度比(R値;R=I1,360/I1,580)及び
1,580cm-1バンドの半値幅(G値)が、炭化水素
気流中での熱処理前の活性炭と比較して、R値がより小
さく、G値がより大きくなっている。ラマンの値がこの
ような値を示す本発明の炭素多孔体は、グラファイト層
面が表面に直角に配列している部分の割合が高く、電気
容量が大きくなる。このような炭素多孔体は、電気二重
層キャパシタ分極性電極用として使用するのに適してい
る。
That is, the porous carbon material obtained by the present invention has a specific surface area of 100 to 3,000 m 2 / g.
1,3 in Raman spectroscopy using argon laser
Intensity ratio 1,580Cm -1 band of 60cm -1 band (R value; R = I1,360 / I1,580) and half-width of 1,580Cm -1 band (G value), the hydrocarbon stream Compared to the activated carbon before the heat treatment, the R value is smaller and the G value is larger. In the carbon porous body of the present invention in which the Raman value shows such a value, the proportion of the portion where the graphite layer surface is arranged at right angles to the surface is high, and the electric capacity is large. Such a porous carbon material is suitable for use as an electric double layer capacitor polarizable electrode.

【0014】本発明において特に好ましい炭素多孔体
は、上記R値が、炭化水素気流中での熱処理前の活性炭
と比較して、5〜20%程度小さく、且つG値が5〜2
0%程度大きくなっているものである。又、本発明の炭
素多孔体の嵩密度は0.3〜0.6g/cm3であり、
体積当たりの静電容量は70〜90F/cm3程度であ
るので、この炭素多孔体を用いて作製する電気二重層キ
ャパシタは、従来の活性炭を用いた場合に比べて、いっ
そうの小型化及び大容量の充放電が実現される。
Particularly preferred in the present invention is a porous carbon material having the above-mentioned R value that is about 5 to 20% smaller than that of activated carbon before heat treatment in a hydrocarbon stream, and has a G value of 5 to 2%.
It is about 0% larger. Further, the bulk density of the carbon porous body of the present invention is 0.3 to 0.6 g / cm 3 ,
Since the capacitance per volume is about 70 to 90 F / cm 3 , the electric double layer capacitor manufactured by using the porous carbon material has a smaller size and a larger size than the case using the conventional activated carbon. Charge / discharge of the capacity is realized.

【0015】以上のようにして得られた本発明の炭素多
孔体は、通常の方法に従って電気二重層キャパシタ分極
性電極に加工して、この電極を用いて電気二重層キャパ
シタとすることができる。従来の電気二重層キャパシタ
の形態には、様々なタイプがあり、例えば、分極性電極
一対がセパレーターを介して対向して配置され、ケー
ス、封口板及びガスケットリングにより封口がハウジン
グされたコイン型;粉末活性炭、バインダ及び溶剤を混
合したスラリーを塗工したアルミニウム箔一対を捲回
し、これを円筒状アルミニウムケースにハウジングした
構造を有する円筒型;フェノール樹脂等の樹脂に粉末活
性炭を混合し、成形及び炭化した炭素成形体を分極性電
極とするバイポーラ構造を採用した角型等のタイプがあ
る。
The carbon porous body of the present invention obtained as described above can be processed into an electric double layer capacitor polarizable electrode according to a usual method, and an electric double layer capacitor can be formed using this electrode. There are various types of conventional electric double layer capacitors, for example, a coin type in which a pair of polarizable electrodes are arranged to face each other with a separator interposed therebetween, and a housing is sealed by a case, a sealing plate and a gasket ring; A cylindrical type having a structure in which a pair of aluminum foils coated with a slurry in which powdered activated carbon, a binder and a solvent are mixed, and wound around a cylindrical aluminum case; mixing powdered activated carbon with a resin such as a phenolic resin; There are square and other types employing a bipolar structure using a carbonized carbon body as a polarizable electrode.

【0016】又、電解液についても様々である。例え
ば、30〜50重量%の硫酸水溶液を使用する水溶液
系;プロピレンカーボネート等の有機溶媒に、4級アン
モニウム塩等の電解質を溶解した有機系等が挙げられ
る。前記本発明の炭素多孔体を使用して、これら様々な
形式の電気二重層キャパシタの分極性電極を形成する
と、より小型で且つ電気容量の大きな電気二重層キャパ
シタを製造することができる。
Further, there are various kinds of electrolytes. For example, an aqueous system using a 30 to 50% by weight aqueous sulfuric acid solution; an organic system in which an electrolyte such as a quaternary ammonium salt is dissolved in an organic solvent such as propylene carbonate; When the polarizable electrodes of these various types of electric double layer capacitors are formed using the carbon porous body of the present invention, it is possible to manufacture a smaller electric double layer capacitor having a larger electric capacity.

【0017】[0017]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 やしがらを原料として、常法に従って乾留、炭化及び賦
活を行い、比表面積1,100m2/gの活性炭を得
た。この活性炭を微粉砕機で平均粒径20μm程度の微
粉状にした。この微粉体の2g程度を石英管に装入し、
電気炉にセットした。この石英管を窒素で置換した後、
窒素を流しながら、石英管温度を900℃に設定した。
石英管温度が900℃になったのを確認して、3容量%
のトルエンを含んだ窒素を、ガス滞留時間が0.02分
間となるように石英管に導入して熱処理を行い、熱分解
炭素を活性炭の細孔表面上に析出させた。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 Using carbon fiber as a raw material, dry distillation, carbonization and activation were carried out according to a conventional method to obtain activated carbon having a specific surface area of 1,100 m 2 / g. This activated carbon was pulverized with a pulverizer into a fine powder having an average particle size of about 20 μm. About 2 g of this fine powder is charged into a quartz tube,
It was set in an electric furnace. After replacing this quartz tube with nitrogen,
The temperature of the quartz tube was set to 900 ° C. while flowing nitrogen.
After confirming that the temperature of the quartz tube reached 900 ° C, 3% by volume
Of nitrogen containing toluene was introduced into a quartz tube so that the gas residence time was 0.02 minutes, and heat treatment was performed to deposit pyrolytic carbon on the pore surfaces of activated carbon.

【0018】導入を開始してから1時間経過後、トルエ
ンを含んだ窒素の導入を止め、窒素のみに切り替え、石
英管を冷却した。その後、石英管より試料を取り出し、
キャパシタ電極としての電気容量を測定した。又、熱処
理前の活性炭をラマン分光で測定したところ、R値が
3.50であり、G値が100であった。それに対し
て、処理後の炭素多孔体の表面をラマン分光で測定した
ところ、R値が3.30であり、G値が115であっ
た。
After one hour from the start of the introduction, the introduction of nitrogen containing toluene was stopped, and only the nitrogen was replaced, and the quartz tube was cooled. After that, remove the sample from the quartz tube,
The capacitance as a capacitor electrode was measured. When the activated carbon before the heat treatment was measured by Raman spectroscopy, the R value was 3.50 and the G value was 100. In contrast, when the surface of the treated carbon porous body was measured by Raman spectroscopy, the R value was 3.30 and the G value was 115.

【0019】実施例2 エアーブローイングで、等方性化した軟化点290℃の
石炭ピッチを原料として、この原料を微粉砕機で平均粒
径25μm程度の微粉状とした。この微粉を常法に従っ
て乾留、炭化及び賦活を行い、比表面積1,500m2
/gの活性炭を得た。この活性炭を実施例1と同様にト
ルエンを含んだ窒素気流中で熱処理を30分間行い、熱
分解炭素を活性炭の細孔表面上に析出させた。
Example 2 Coal pitch having a softening point of 290 ° C., which has been made isotropic by air blowing, was used as a raw material, and this raw material was pulverized into a fine powder having an average particle size of about 25 μm using a pulverizer. This fine powder is subjected to dry distillation, carbonization and activation according to a conventional method, and has a specific surface area of 1,500 m 2.
/ G of activated carbon. This activated carbon was heat-treated for 30 minutes in a nitrogen stream containing toluene in the same manner as in Example 1 to deposit pyrolytic carbon on the pore surfaces of the activated carbon.

【0020】その後、試料を取り出し、キャパシタ電極
としての電気容量を測定した。又、熱処理前の活性炭を
ラマン分光で測定したところ、R値が3.30であり、
G値が97であった。それに対して、処理後の本発明の
炭素多孔体の表面をラマン分光で測定したところ、R値
が3.23であり、G値が103であった。
Thereafter, the sample was taken out, and the capacitance as a capacitor electrode was measured. When the activated carbon before the heat treatment was measured by Raman spectroscopy, the R value was 3.30,
The G value was 97. On the other hand, when the surface of the carbon porous body of the present invention after the treatment was measured by Raman spectroscopy, the R value was 3.23 and the G value was 103.

【0021】比較例1 やしがらを原料として、常法に従って乾留、炭化及び賦
活を行い、比表面積1,100m2/gの活性炭を得
た。この活性炭を微粉砕機で平均粒径20μm程度の微
粉状とした。この微粉体を使用して電気容量を測定し
た。この活性炭をラマン分光で測定したところ、R値が
3.50であり、G値が100であった。
COMPARATIVE EXAMPLE 1 Using potato as a raw material, dry distillation, carbonization and activation were performed according to a conventional method to obtain activated carbon having a specific surface area of 1,100 m 2 / g. This activated carbon was pulverized with a pulverizer into a fine powder having an average particle size of about 20 μm. The electric capacity was measured using this fine powder. When this activated carbon was measured by Raman spectroscopy, the R value was 3.50 and the G value was 100.

【0022】比較例2 エアーブローイングで、等方性化した軟化点290℃の
石炭ピッチを原料として、この原料を微粉砕機で平均粒
径25μm程度の微粉状とした。この微粉を常法に従っ
て乾留、炭化及び賦活を行い、比表面積1,500m2
/gの活性炭を得た。この活性炭の2g程度を石英管に
装入し、電気炉にセットした。この石英管を窒素で置換
した後、窒素を流しながら石英管温度を700℃に設定
した。石英管温度が700℃になったのを確認して、3
容量%のトルエンを含んだ窒素を、ガス滞留時間として
4分間となるように石英管に導入して熱処理を行い、熱
分解炭素を活性炭の細孔表面上に析出させた。
Comparative Example 2 Coal pitch having a softening point of 290 ° C., which had been made isotropic by air blowing, was used as a raw material, and this raw material was pulverized with a pulverizer into a fine powder having an average particle size of about 25 μm. This fine powder is subjected to dry distillation, carbonization and activation according to a conventional method, and has a specific surface area of 1,500 m 2.
/ G of activated carbon. About 2 g of this activated carbon was charged into a quartz tube and set in an electric furnace. After replacing the quartz tube with nitrogen, the temperature of the quartz tube was set to 700 ° C. while flowing nitrogen. After confirming that the temperature of the quartz tube was 700 ° C, 3
Nitrogen containing a volume% of toluene was introduced into a quartz tube so as to have a gas residence time of 4 minutes, and heat treatment was performed to deposit pyrolytic carbon on the pore surfaces of the activated carbon.

【0023】導入を開始してから1時間経過後、トルエ
ンを含んだ窒素の導入を止め、窒素のみに切り替え石英
管を冷却した。その後、石英管より試料を取り出し、キ
ャパシタ電極としての電気容量を測定した。又、熱処理
前の活性炭をラマン分光で測定したところ、R値が3.
30であり、G値が97であった。それに対して処理後
の炭素多孔体の表面をラマン分光で測定したところ、R
値が4.30であり、G値が90となった。尚、分極性
電極の測定は以下のような方法によった。
One hour after the start of the introduction, the introduction of nitrogen containing toluene was stopped, and the quartz tube was cooled by switching to nitrogen only. Thereafter, the sample was taken out from the quartz tube, and the capacitance as a capacitor electrode was measured. When the activated carbon before the heat treatment was measured by Raman spectroscopy, the R value was 3.
It was 30 and the G value was 97. On the other hand, when the surface of the treated carbon porous body was measured by Raman spectroscopy, R
The value was 4.30 and the G value was 90. In addition, the measurement of the polarizable electrode was performed by the following method.

【0024】<測定方法>実施例及び比較例の炭素多孔
体90重量部と10重量部のバインダ(ポリテトラフル
オロエチレン:33重量%、アセチレンブラック:66
重量%、界面活性剤:1重量%)とをよく混練し、厚み
0.55mmのシートとした。このシートから直径7m
mのディスク状の電極体を2枚打ち抜いた。この電極体
を150℃で5時間真空乾燥した後、アルゴン雰囲気の
グローブボックス中に搬入し、PC(プロピレンカーボ
ネート)中に完全に浸漬した状態で減圧することによ
り、電極中に電解液を含浸させた。その後、ガラス繊維
濾紙のセパレータを電極体、SUS製メッシュの集電体
及びポリプロピレンの板で挟み込んでセルを作成した。
<Measurement method> 90 parts by weight and 10 parts by weight of a binder (polytetrafluoroethylene: 33% by weight, acetylene black: 66) in the examples and comparative examples
% By weight and a surfactant: 1% by weight) to form a sheet having a thickness of 0.55 mm. 7m in diameter from this sheet
Two m-shaped disk-shaped electrode bodies were punched out. After vacuum drying this electrode body at 150 ° C. for 5 hours, it is carried into a glove box in an argon atmosphere, and is immersed completely in PC (propylene carbonate). Was. Thereafter, the cell was formed by sandwiching the separator of the glass fiber filter paper between the electrode body, the SUS mesh current collector, and the polypropylene plate.

【0025】このセルを、電解液を満たしたビーカーに
装入して密閉した。電解液は(C254PbF4を溶解
したPCを脱水処理して使用した。このビーカーセルに
エージング処理として2.8Vの直流電圧を1時間印加
した後、0.2mAの定電流にて充放電試験を行った。
充電終始電圧を2.8Vとし、2.8Vから1Vまでを
直線と仮定し、その電圧−時間勾配よりセルの放電容量
を推算した。結果は表1のとおりである。
The cell was charged into a beaker filled with an electrolyte and sealed. As the electrolyte, a PC in which (C 2 H 5 ) 4 PbF 4 was dissolved was used after dehydration treatment. After applying a DC voltage of 2.8 V for 1 hour to the beaker cell as an aging treatment, a charge / discharge test was performed at a constant current of 0.2 mA.
Assuming that the charging start and end voltage is 2.8 V, a straight line is assumed from 2.8 V to 1 V, and the discharge capacity of the cell was estimated from the voltage-time gradient. The results are as shown in Table 1.

【0026】[0026]

【表1】表1:測定結果 [Table 1] Table 1: Measurement results

【0027】[0027]

【発明の効果】本発明によれば、嵩密度が高く、体積当
たりの静電容量の大きな炭素多孔体を提供することがで
きる。又、この炭素多孔体を使用することによって、電
気容量が増大した電気二重層キャパシタを提供すること
ができる。
According to the present invention, a porous carbon material having a high bulk density and a large capacitance per volume can be provided. Also, by using this carbon porous body, an electric double layer capacitor having an increased electric capacity can be provided.

フロントページの続き (72)発明者 諸富 秀俊 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 Fターム(参考) 4G046 HA01 HA03 HA07 HB05 HC12 HC14 HC16 Continued on the front page (72) Inventor Hidetoshi Morotomi 4-Chome Kita-Kita Kita 1-3-chome, Chiyoda-ku, Tokyo F-term (reference) 4G046 HA01 HA03 HA07 HB05 HC12 HC14 HC16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 やしがら、フェノール樹脂又はピッチを
原料として、不活性雰囲気中で乾留及び炭化し、その後
賦活して活性炭を得る工程;次いで、上記の活性炭を、
炭化水素を含む不活性雰囲気中又は炭化水素気流中で熱
処理を行い、活性炭の細孔表面に熱分解炭素を析出させ
る工程を有することを特徴とする電気二重層キャパシタ
分極性電極用炭素多孔体の製造方法。
1. A step of dry-distilling and carbonizing in an inert atmosphere using coconut, phenolic resin or pitch as a raw material and then activating to obtain activated carbon;
Heat treatment in an inert atmosphere containing hydrocarbons or in a hydrocarbon stream, and a step of depositing pyrolytic carbon on the pore surfaces of the activated carbon. Production method.
【請求項2】 不活性雰囲気が、窒素又はアルゴン雰囲
気である請求項1に記載の電気二重層キャパシタ分極性
電極用炭素多孔体の製造方法。
2. The method for producing a porous carbon material for an electric double layer capacitor polarizable electrode according to claim 1, wherein the inert atmosphere is a nitrogen or argon atmosphere.
【請求項3】 炭化水素が、エチレン又はトルエン又は
ナフタレン等の多環芳香族である請求項1に記載の電気
二重層キャパシタ分極性電極用炭素多孔体の製造方法。
3. The method according to claim 1, wherein the hydrocarbon is a polycyclic aromatic such as ethylene, toluene or naphthalene.
【請求項4】 請求項1〜3の何れか1項に記載の方法
で得られたことを特徴とする電気二重層キャパシタ分極
性電極用炭素多孔体。
4. A carbon porous body for an electric double layer capacitor polarizable electrode, obtained by the method according to claim 1. Description:
【請求項5】 比表面積が、100〜3,000m2
gである請求項4に記載の電気二重層キャパシタ分極性
電極用炭素多孔体。
5. A specific surface area of 100 to 3,000 m 2 /
5. The porous carbon material for an electric double layer capacitor polarizable electrode according to claim 4, wherein g is g.
【請求項6】 アルゴンレーザーを用いたラマン分光法
における1,360cm-1バンドの1,580cm-1
ンドに対する強度比(R値;R=I1,360/I1,
580)及び1,580cm-1バンドの半値幅(G値)
が、炭化水素気流中での熱処理前の活性炭と比較して、
R値がより小さく、G値がより大きくなっている請求項
4又は5に記載の電気二重層キャパシタ分極性電極用炭
素多孔体。
6. The intensity ratio 1,580Cm -1 band 1,360Cm -1 band in the Raman spectroscopy using an argon laser (R value; R = I1,360 / I1,
580) and 1,580 cm -1 band half width (G value)
However, compared to activated carbon before heat treatment in a hydrocarbon stream,
The carbon porous body for an electric double layer capacitor polarizable electrode according to claim 4 or 5, wherein the R value is smaller and the G value is larger.
【請求項7】 請求項4〜6の何れか1項に記載の炭素
多孔体を電極の構成要素としていることを特徴とする電
気二重層キャパシタ。
7. An electric double-layer capacitor comprising the carbon porous body according to claim 4 as a constituent element of an electrode.
JP10310139A 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode Pending JP2000138141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10310139A JP2000138141A (en) 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10310139A JP2000138141A (en) 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Publications (1)

Publication Number Publication Date
JP2000138141A true JP2000138141A (en) 2000-05-16

Family

ID=18001644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10310139A Pending JP2000138141A (en) 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Country Status (1)

Country Link
JP (1) JP2000138141A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2003092235A (en) * 2001-07-10 2003-03-28 Kuraray Co Ltd Activated carbon and method for manufacturing the same, and polarizable electrode for electric double- layer capacitor
JP2006100477A (en) * 2004-09-29 2006-04-13 Toyo Aluminium Kk Electric double layer capacitor electrode member, its manufacturing method and electric double layer capacitor using same
JP2006100478A (en) * 2004-09-29 2006-04-13 Toyo Aluminium Kk Solid electrolytic capacitor electrode member, its manufacturing method and solid electrolytic capacitor using solid electrolytic capacitor electrode member
KR100686908B1 (en) 2003-06-30 2007-02-27 티디케이가부시기가이샤 A making method of electrode for electrochemical capacitor, and electrochemical capacitor
WO2017199686A1 (en) * 2016-05-18 2017-11-23 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
WO2018155647A1 (en) * 2017-02-27 2018-08-30 株式会社クラレ Carbonaceous material, carbonaceous material-containing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2003092235A (en) * 2001-07-10 2003-03-28 Kuraray Co Ltd Activated carbon and method for manufacturing the same, and polarizable electrode for electric double- layer capacitor
KR100686908B1 (en) 2003-06-30 2007-02-27 티디케이가부시기가이샤 A making method of electrode for electrochemical capacitor, and electrochemical capacitor
JP2006100477A (en) * 2004-09-29 2006-04-13 Toyo Aluminium Kk Electric double layer capacitor electrode member, its manufacturing method and electric double layer capacitor using same
JP2006100478A (en) * 2004-09-29 2006-04-13 Toyo Aluminium Kk Solid electrolytic capacitor electrode member, its manufacturing method and solid electrolytic capacitor using solid electrolytic capacitor electrode member
JP2017212433A (en) * 2016-05-18 2017-11-30 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
JP7007810B2 (en) 2016-05-18 2022-01-25 株式会社クラレ A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
US11551877B2 (en) 2016-05-18 2023-01-10 Kuraray Co., Ltd. Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
CN109074968A (en) * 2016-05-18 2018-12-21 株式会社可乐丽 Carbonaceous material and electric double layer capacitor pole material, electric double layer capacitor pole and double layer capacitor containing the carbonaceous material
KR20190008859A (en) * 2016-05-18 2019-01-25 주식회사 쿠라레 An electrode material for an electric double layer capacitor containing a carbonaceous material and a carbonaceous material, an electrode for an electric double layer capacitor, and an electric double layer capacitor
KR102421215B1 (en) * 2016-05-18 2022-07-14 주식회사 쿠라레 Carbonaceous material and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbonaceous material
TWI760334B (en) * 2016-05-18 2022-04-11 日商可樂麗股份有限公司 Carbonaceous material, method for producing the same, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor containing the carbonaceous material
WO2017199686A1 (en) * 2016-05-18 2017-11-23 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
EP3460816A4 (en) * 2016-05-18 2020-01-22 Kuraray Co., Ltd. Carbonaceous material, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor that contain carbonaceous material
JP2022019781A (en) * 2016-05-18 2022-01-27 株式会社クラレ Carbonaceous material, and electrode material for electric double layer capacitor containing carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor
JPWO2018155647A1 (en) * 2017-02-27 2019-12-19 株式会社クラレ Carbonaceous material, electrode material for electric double layer capacitor containing the carbonaceous material, electrode for electric double layer capacitor, and electric double layer capacitor
TWI751290B (en) * 2017-02-27 2022-01-01 日商可樂麗股份有限公司 Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbon material
US10984963B2 (en) 2017-02-27 2021-04-20 Kurarayco., Ltd. Carbonaceous material, carbonaceous material-containing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
JP7033118B2 (en) 2017-02-27 2022-03-09 株式会社クラレ A carbonaceous material, and an electrode material for an electric double layer capacitor, an electrode for an electric double layer capacitor, and an electric double layer capacitor containing the carbonaceous material.
KR20190124709A (en) * 2017-02-27 2019-11-05 주식회사 쿠라레 Carbonaceous materials and electrode materials for electric double layer capacitors containing the carbonaceous materials, electrodes for electric double layer capacitors and electric double layer capacitors
CN110300728A (en) * 2017-02-27 2019-10-01 株式会社可乐丽 Carbonaceous material and electric double layer capacitor pole material, electric double layer capacitor pole and double layer capacitor containing the carbonaceous material
CN110300728B (en) * 2017-02-27 2022-12-20 株式会社可乐丽 Carbonaceous material and electrode material for electric double layer capacitor containing the carbonaceous material
WO2018155647A1 (en) * 2017-02-27 2018-08-30 株式会社クラレ Carbonaceous material, carbonaceous material-containing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
KR102500399B1 (en) * 2017-02-27 2023-02-15 주식회사 쿠라레 Carbonaceous material, and electrode material for electric double layer capacitor containing the carbonaceous material, electrode for electric double layer capacitor and electric double layer capacitor

Similar Documents

Publication Publication Date Title
US9053871B2 (en) High surface area and low structure carbon blacks for energy storage applications
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP4618929B2 (en) Activated carbon for electric double layer capacitors
US8842417B2 (en) High voltage electro-chemical double layer capacitor
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
WO2004043859A2 (en) Active carbon, production method thereof and polarizable electrode
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JP2010070393A (en) Carbon material for electric double layer capacitor and method for producing the same
JP2006513969A (en) Method for changing pore characteristics of porous carbon and porous carbon material produced by the method
JP2007305625A (en) Pseudo-capacitance capacitor
JP4117056B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JP4576374B2 (en) Activated carbon, its production method and its use
Li et al. Micropore‐Rich Yolk‐Shell N‐doped Carbon Spheres: An Ideal Electrode Material for High‐Energy Capacitive Energy Storage
JP4081125B2 (en) Positive electrode for electric double layer capacitor and electric double layer capacitor
JP2007243042A (en) Electric double-layer capacitor and positive electrode for the same
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP4762424B2 (en) Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon
JP2001274044A (en) Capacitor using nonaqueous electrolyte
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP4941952B2 (en) Activated carbon, its production method and its use
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP4916632B2 (en) Vapor grown carbon fiber and its use
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JPH07249551A (en) Method of manufacturing electrode for electric double layer capacitor
JP4066506B2 (en) A method for producing a carbonaceous material.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218