JP4576374B2 - Activated carbon, its production method and its use - Google Patents

Activated carbon, its production method and its use Download PDF

Info

Publication number
JP4576374B2
JP4576374B2 JP2006339685A JP2006339685A JP4576374B2 JP 4576374 B2 JP4576374 B2 JP 4576374B2 JP 2006339685 A JP2006339685 A JP 2006339685A JP 2006339685 A JP2006339685 A JP 2006339685A JP 4576374 B2 JP4576374 B2 JP 4576374B2
Authority
JP
Japan
Prior art keywords
peak
area
activated carbon
range
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006339685A
Other languages
Japanese (ja)
Other versions
JP2007186411A (en
Inventor
洋一 南波
敬 茂利
晋 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006339685A priority Critical patent/JP4576374B2/en
Publication of JP2007186411A publication Critical patent/JP2007186411A/en
Application granted granted Critical
Publication of JP4576374B2 publication Critical patent/JP4576374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon the deterioration of whose capacitance is lowered at particularly low temperature (in the vicinity of -30&deg;C) and which has excellent low-temperature characteristics and to provide an electric double layer capacitor. <P>SOLUTION: The activated carbon has peak (a) within the range of 2.1-2.4 nm pore size, peak (b) within the range of 1.7-2.1 nm pore size, peak (c) within the range of 1.4-1.7 nm pore size and peak (d) within the range of 1.1-1.4 nm pore size in a pore volume distribution. When area (a) of a portion surrounded by a curved line of peak (a) and the pore size axis within the range of 2.1-2.4 nm pore size is calculated, area (b), area (c) and area (d) are calculated in the same manner as area (a) is calculated and area (a) is defined as 1, area (d), area (c) and area (b) are 3.7-4.8, 1.6-2.3 and 1.6-2.1, respectively. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は電気二重層キャパシタ(電気二重層コンデンサともいう)として有用な活性炭及びその製造方法、並びに分極性電極に関する。特に低温での充放電特性及び内部抵抗特性に優れた電気二重層キャパシタなどに代表される活性炭の用途に関する。   The present invention relates to activated carbon useful as an electric double layer capacitor (also referred to as an electric double layer capacitor), a method for producing the same, and a polarizable electrode. In particular, the present invention relates to the use of activated carbon typified by an electric double layer capacitor having excellent charge / discharge characteristics and internal resistance characteristics at low temperatures.

電気二重層キャパシタは、急速充放電が可能で、過充放電に強く、化学反応を伴わないために長寿命、広い温度範囲で使用可能であり、また重金属を含まないために環境に優しいなどのバッテリーにはない特性を有している。電気二重層キャパシタは従来よりメモリーバックアップ電源等に使用されている。さらに近年では、大容量化開発が急激に進み、高性能エネルギーデバイスへの用途開発が進められ、太陽電池や燃料電池と組み合わせた電力貯蔵システム、ハイブリットカーのエンジンアシスト等への活用も検討されている。   Electric double layer capacitors are capable of rapid charge and discharge, are resistant to overcharge and discharge, have no chemical reaction, have a long life, can be used in a wide temperature range, and do not contain heavy metals. It has characteristics not found in batteries. Electric double layer capacitors have been used for memory backup power supplies. Furthermore, in recent years, the development of large capacity has progressed rapidly, the development of applications for high-performance energy devices has been promoted, and the use for power storage systems combined with solar cells and fuel cells, engine assistance for hybrid cars, etc. has been considered. Yes.

電気二重層キャパシタは、活性炭等から作られた一対の正極と負極の分極性電極を、電解質イオンを含む溶液中でセパレータを介して対向させた構造からなっている。電極に直流電圧を印加すると正(+)側に分極した電極には溶液中の陰イオンが、負(−)側に分極した電極には溶液中の陽イオンが引き寄せられ、これにより電極と溶液との界面に形成された電気二重層を電気エネルギーとして利用するものである。   The electric double layer capacitor has a structure in which a pair of positive and negative polarizable electrodes made of activated carbon or the like are opposed to each other through a separator in a solution containing electrolyte ions. When a DC voltage is applied to the electrode, the anion in the solution is attracted to the electrode polarized to the positive (+) side, and the cation in the solution is attracted to the electrode polarized to the negative (−) side. The electric double layer formed at the interface is used as electric energy.

したがって、より多くの電気二重層を形成すべく、比表面積の大きい活性炭の使用が検討されてきたが、このような活性炭は質量あたりの電気容量(F/g)に優る反面、電極密度の低下を招く為に体積あたりの電気容量(F/cm)がそれほど大きくならないという欠点を有していた。 Therefore, in order to form more electric double layers, the use of activated carbon having a large specific surface area has been studied, but such activated carbon is superior to the electric capacity per mass (F / g), but the electrode density is lowered. Therefore, the electric capacity per volume (F / cm 3 ) is not so large.

一方、アルカリ賦活によって製造した、層間距離が0.365nm〜0.385nmである黒鉛類似の微結晶を有する活性炭を、分極性電極の原料とすることが提案されている(特許文献1、2、3)。この活性炭を分極性電極の原料とした電気二重層キャパシタは、体積あたりの静電容量(F/cm)が大きいという点で優れた原料であるといえる。 On the other hand, it has been proposed to use activated carbon having graphite-like microcrystals produced by alkali activation and having an interlayer distance of 0.365 nm to 0.385 nm as raw materials for polarizable electrodes (Patent Documents 1, 2, 3). An electric double layer capacitor using activated carbon as a raw material for a polarizable electrode can be said to be an excellent raw material in that the capacitance per volume (F / cm 3 ) is large.

水酸化カリウム(KOH)によるアルカリ賦活で炭素化物に細孔を形成し活性炭を製造する方法では、活性炭の細孔径の制御が難しいとされており、大小入り交じった細孔が形成されてしまい、電気二重層キャパシタの電解質溶液の電解質イオンが低温下で動作するために最適な大きさの細孔を制御して形成することは困難である。   In the method of producing activated carbon by forming pores in the carbonized product by alkali activation with potassium hydroxide (KOH), it is considered difficult to control the pore diameter of the activated carbon, and pores mixed in large and small are formed, It is difficult to control and form pores having an optimal size for the electrolyte ions of the electrolytic solution of the electric double layer capacitor to operate at a low temperature.

一方、低軟化点ピッチと金属化合物を混合してなる低軟化点焼成原料を水蒸気賦活処理することで、メソ細孔分布(口径2〜50nm)に制御した活性炭ポア比率及びその製造方法が提案されている(特許文献4、5)。   On the other hand, the activated carbon pore ratio controlled to the mesopore distribution (bore diameter 2 to 50 nm) by the steam activation treatment of the low softening point firing raw material obtained by mixing the low softening point pitch and the metal compound, and the manufacturing method thereof are proposed. (Patent Documents 4 and 5).

特開平11−317333号公報JP 11-317333 A 特開2000−68164号公報JP 2000-68164 A 特開2000−68165号公報JP 2000-68165 A 特許第319563号明細書Japanese Patent No. 319563 特開2004−182511号公報JP 2004-182511 A

電気二重層キャパシタは、その使用温度が25℃付近の室温を前提としたものであり、室温では比較的高容量を発現するものの、−30℃付近の低温では、充放電容量が著しく低下し内部抵抗が増加する。その主原因は、低温での電解液の粘度上昇により活性炭の細孔内での電解質イオンの易動度が低下するからである。
これまで、低温での電解質イオンの易動度を向上させる手段として、活性炭の細孔容積(cm/g)を大きくすることが行われてきた。しかしながら、活性炭の細孔容積(cm/g)だけを大きくして低温での内部抵抗を低くさせると、活性炭電極の密度が下がってしまうため、結局は体積当たりの容量(F/cm)が低くなってしまう。
したがって、本発明は、特に低い温度(−30℃付近下)での充放電特性及び内部抵抗特性に優れた活性炭及び電気二重層キャパシタを提供することを目的とする。
The electric double layer capacitor is premised on a room temperature of about 25 ° C., and exhibits a relatively high capacity at room temperature. Resistance increases. The main reason is that the mobility of the electrolyte ions in the pores of the activated carbon decreases due to the increase in the viscosity of the electrolyte solution at a low temperature.
Until now, increasing the pore volume (cm 3 / g) of activated carbon has been performed as means for improving the mobility of electrolyte ions at low temperatures. However, if only the pore volume (cm 3 / g) of the activated carbon is increased to reduce the internal resistance at low temperatures, the density of the activated carbon electrode will decrease, and eventually the capacity per volume (F / cm 3 ). Will be lower.
Accordingly, an object of the present invention is to provide an activated carbon and an electric double layer capacitor that are excellent in charge / discharge characteristics and internal resistance characteristics particularly at a low temperature (under about −30 ° C.).

本発明者らは、上記の目的を達成するために鋭意検討した結果、窒素吸着法によって求めたBJH法による細孔容積分布において、細孔径が1.1〜1.4nm、1.4〜1.7nm、1.7〜2.1nm、及び2.1〜2.4nmの範囲にそれぞれ該細孔容積のピークd、c、b及びaを有する活性炭、若しくは細孔径が0.4〜0.8nm、0.8〜1.1nm、1.1〜1.4nm、1.4〜1.7nm、1.7〜2.1nm、及び2.1〜2.4nmの範囲にそれぞれ該細孔容積のピークf、e、d、c、b及びaを有し、且つそれぞれのピーク曲線と細孔径範囲と細孔径軸とで囲まれた面積の比率が特定の範囲内にある活性炭が低温度下(−30℃付近下)での充放電特性及び内部抵抗特性に優れた電気二重層キャパシタ用分極性電極材料となることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の構成からなる。
As a result of intensive studies to achieve the above object, the present inventors have found that the pore volume distribution by the BJH method determined by the nitrogen adsorption method is 1.1 to 1.4 nm, 1.4 to 1 Activated carbon having the pore volume peaks d, c, b and a in the range of 1.7 nm, 1.7 to 2.1 nm and 2.1 to 2.4 nm, respectively, or the pore diameter is 0.4 to 0. The pore volume in the range of 8 nm, 0.8-1.1 nm, 1.1-1.4 nm, 1.4-1.7 nm, 1.7-2.1 nm, and 2.1-2.4 nm, respectively. Activated carbon having the peak f, e, d, c, b, and a and the ratio of the area surrounded by the respective peak curve, pore diameter range, and pore diameter axis within a specific range is low temperature. Polarity for electric double layer capacitors with excellent charge / discharge characteristics and internal resistance characteristics (under -30 ° C) It found that the electrode material, and have completed the present invention.
That is, the present invention has the following configuration.

[1] 細孔分布において、細孔直径1.0〜1.5nmの範囲に細孔容積の最大値を示すピークDがあり、そのピークDの値が0.012〜0.050cm/gの範囲にあり且つ全細孔容積値の2〜32%の大きさである活性炭。
[2] BET比表面積が1100〜2200m/gである前記[1]に記載の活性炭。
[3] ピークDが細孔直径1.2〜1.4nmの範囲にある前記[1]又は[2]に記載の活性炭。
[4] 細孔直径1.5〜1.7nmの範囲にピークCがある、前記[1]〜[3]のいずれかに記載の活性炭。
[5] 細孔直径1.7〜2.0nmの範囲にピークBがある、前記[1]〜[4]のいずれかに記載の活性炭。
[6] 細孔直径2.0〜2.5nmの範囲にピークAがある、前記[1]〜[5]のいずれかに記載の活性炭。
[1] In the pore distribution, there is a peak D indicating the maximum value of the pore volume in the pore diameter range of 1.0 to 1.5 nm, and the value of the peak D is 0.012 to 0.050 cm 3 / g. Activated carbon having a size of 2 to 32% of the total pore volume value.
[2] The activated carbon according to [1], wherein the BET specific surface area is 1100 to 2200 m 2 / g.
[3] The activated carbon according to [1] or [2], wherein the peak D is in the range of a pore diameter of 1.2 to 1.4 nm.
[4] The activated carbon according to any one of [1] to [3], wherein a peak C is present in a pore diameter range of 1.5 to 1.7 nm.
[5] The activated carbon according to any one of [1] to [4], wherein there is a peak B in a pore diameter range of 1.7 to 2.0 nm.
[6] The activated carbon according to any one of [1] to [5], wherein a peak A is present in a pore diameter range of 2.0 to 2.5 nm.

[7] 周期律表第4周期第3族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを用いて得られた活性炭であって、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、且つ、ピークa、ピークb、ピークc及びピークdそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c及び面積d)が、面積aを1としたときに、面積dが3.7〜4.8、面積cが1.6〜2.3、及び面積bが1.6〜2.1の範囲にある活性炭。
[8] 周期律表第4周期第3族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを用いて得られた活性炭であって、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、細孔径0.8〜1.1nmの範囲にピークeを有し、細孔径0.4〜0.8nmの範囲にピークfを有し、且つピークa、ピークb、ピークc、ピークd、ピークe及びピークfそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c、面積d、面積e及び面積f)が、面積aを1としたときに、面積fが2.2〜2.5、面積eが2.3〜2.5、面積dが4.6〜4.8、面積cが2.1〜2.3、及び面積bが1.9〜2.1の範囲にある活性炭。
[7] An activated carbon obtained by using a compound Z containing any element of Group 4 to Group 11 of Period 4 of the periodic table or Group 4 element of Period 5 of the periodic table, and nitrogen adsorption of 77.4K In the pore volume distribution determined by the BJH method from the isotherm, it has a peak a in the pore diameter range of 2.1 to 2.4 nm, a peak b in the pore diameter range of 1.7 to 2.1 nm, It has a peak c in the pore diameter range of 1.4 to 1.7 nm, a peak d in the pore diameter range of 1.1 to 1.4 nm, and each of peak a, peak b, peak c and peak d When the area (area a, area b, area c, and area d) of the portion surrounded by the peak curve, each pore diameter range and the pore diameter axis is defined as 1, the area d is 3.7. Activated carbon having a range of ˜4.8, an area c of 1.6 to 2.3, and an area b of 1.6 to 2.1.
[8] Activated carbon obtained by using a compound Z containing any element of Group 4 to Group 11 of Period 4 of the periodic table or Group 4 element of Period 5 of the periodic table, and nitrogen adsorption of 77.4K In the pore volume distribution determined by the BJH method from the isotherm, it has a peak a in the pore diameter range of 2.1 to 2.4 nm, a peak b in the pore diameter range of 1.7 to 2.1 nm, It has a peak c in the pore diameter range of 1.4 to 1.7 nm, a peak d in the pore diameter range of 1.1 to 1.4 nm, and a peak e in the pore diameter range of 0.8 to 1.1 nm. Each having a peak f in a pore diameter range of 0.4 to 0.8 nm, and a peak curve of each of peak a, peak b, peak c, peak d, peak e and peak f and each pore diameter range The area (area a, area b, area c, area d, area e, and area f) of the portion surrounded by the pore diameter axis is When the area a is 1, the area f is 2.2 to 2.5, the area e is 2.3 to 2.5, the area d is 4.6 to 4.8, and the area c is 2.1 to 2.3 and activated carbon having an area b in the range of 1.9 to 2.1.

[9] 元素濃度で7000ppm以上の周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zの存在下に、ピッチを炭化処理して真密度1.44〜1.52g/cm3の易黒鉛化性炭素化物を得、アルカリ金属化合物の存在下に、前記易黒鉛化性炭素化物を賦活処理し、次いで、この賦活された混合物を洗浄することを含む活性炭の製造方法。
[10] ピッチを炭化処理して真密度1.44〜1.52g/cm3の易黒鉛化性炭素化物を得、該炭素化物に元素濃度で7000ppm以上の周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを混合して混合物を得、アルカリ金属化合物の存在下に、前記混合物を賦活処理し、次いで、この賦活された混合物を洗浄することを含む活性炭の製造方法。
[11] ピッチの軟化点が100℃以下である前記[9]又は[10]に記載の活性炭の製造方法。
[12] ピッチが石炭系ピッチ若しくは石油系ピッチ又はこれらの有機溶媒可溶分である前記[9]又は[10]に記載の活性炭の製造方法。
[9] in the presence of the compound Z comprising any element or 5th period fourth group element of the fourth period Group 3 to Group 11 periodic table of more than 7000ppm in element concentration, and carbonizing the pitch A graphitizable carbonized product having a true density of 1.44 to 1.52 g / cm 3 is obtained, and the graphitizable carbonized product is activated in the presence of an alkali metal compound, and then the activated mixture is obtained. The manufacturing method of activated carbon including washing | cleaning.
[10] the pitch carbonization to obtain a graphitizable carbon product of true density 1.44~1.52g / cm 3, fourth period group 3 or more of the Periodic Table 7000ppm elemental concentrations to the carbon hydrides ~ A compound Z containing any element of Group 11 or Group 5 element of 5th period was mixed to obtain a mixture, and the mixture was activated in the presence of an alkali metal compound, and then this activated A method for producing activated carbon, comprising washing the mixture.
[11] The method for producing activated carbon according to [9] or [10], wherein the pitch softening point is 100 ° C. or lower.
[12] The method for producing activated carbon according to [9] or [10], wherein the pitch is coal-based pitch or petroleum-based pitch or an organic solvent-soluble component thereof.

[13] 化合物Zが、チタン、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウムからなる群から選ばれる少なくとも1 種の金属元素を含む化合物である前記[9]〜[12]のいずれかに記載の活性炭の製造方法。
[14] 化合物Zが、金属単体、酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫化物、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも1種の化合物である前記[9]〜[13]のいずれかに記載の活性炭の製造方法。
[15] 賦活処理時の最高温度が700℃〜760℃の範囲にある[9]〜[14]のいずかに記載の活性炭の製造方法。
[16] 賦活処理時の最高温度での保持時間を30分間以内にする[9]〜[15]のいずれかに記載の活性炭の製造方法。
[17] 賦活処理時の最高温度から、590℃までに冷却するときの降温速度を60℃/hr以上にする、前記[9]〜[16]のいずれかに記載の活性炭の製造方法。
[18] アルカリ金属化合物が、アルカリ金属水酸化物である前記[9]〜[17]のいずれかに記載の活性炭の製造方法。
[19] アルカリ金属化合物が、カリウム、ナトリウム及びセシウムからなる群から選ばれる少なくとも1種の金属元素を含む化合物である前記[9]〜[18]のいずれかに記載の活性炭の製造方法。
[13] The compound Z is titanium, manganese, iron, cobalt, nickel, copper, any of the compounds containing at least one metal element selected from the group consisting of zirconium [9] - [12] The manufacturing method of activated carbon as described.
[14] Compound Z is at least one selected from the group consisting of simple metals, oxides, hydroxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates and nitrates. The method for producing activated carbon according to any one of [9] to [13], which is a seed compound.
[15] The method for producing activated carbon according to any one of [9] to [14], wherein the maximum temperature during the activation treatment is in the range of 700 ° C to 760 ° C.
[16] The method for producing activated carbon according to any one of [9] to [15], wherein the holding time at the maximum temperature during the activation treatment is within 30 minutes.
[17] The method for producing activated carbon according to any one of the above [9] to [16], wherein a cooling rate when cooling from the maximum temperature during the activation treatment to 590 ° C. is 60 ° C./hr or more.
[18] The method for producing activated carbon according to any one of [9] to [17], wherein the alkali metal compound is an alkali metal hydroxide.
[19] The method for producing activated carbon according to any one of [9] to [18], wherein the alkali metal compound is a compound containing at least one metal element selected from the group consisting of potassium, sodium, and cesium.

[20] 前記[1]〜[8]のいずれか1つに記載の活性炭とカーボンブラックと結合剤とを含有する分極性電極。
[21] 前記[1]〜[8]のいずれか1つに記載の活性炭と気相法炭素繊維とカーボンブラックと結合剤とを含有する分極性電極。
[22] 活性炭に対する気相法炭素繊維の混合量が0.1〜20質量%である前記[21]に記載の分極性電極。
[23] 気相法炭素繊維が内部に中空構造を有し、その比表面積が10〜50m/g、平均繊維径50〜500nm、アスペクト比5〜1000である前記[21]または[22]に記載の分極性電極。
[24]結合剤が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、アクリレート系ゴムまたはブタジエン系ゴムである前記[20]〜[23]のいずれかに記載の分極性電極。
[20] A polarizable electrode comprising the activated carbon according to any one of [1] to [8], carbon black, and a binder.
[21] A polarizable electrode comprising the activated carbon according to any one of [1] to [8], vapor grown carbon fiber, carbon black, and a binder.
[22] The polarizable electrode according to [21], wherein the amount of vapor grown carbon fiber mixed with activated carbon is 0.1 to 20% by mass.
[23] The above [21] or [22], wherein the vapor-grown carbon fiber has a hollow structure therein, a specific surface area of 10 to 50 m 2 / g, an average fiber diameter of 50 to 500 nm, and an aspect ratio of 5 to 1000. A polarizable electrode according to 1.
[24] The polarizable electrode according to any one of [20] to [23], wherein the binder is polytetrafluoroethylene, polyvinylidene fluoride, acrylate rubber, or butadiene rubber.

[25] 前記[20]〜[24]のいずれかに記載の分極性電極を用いた電気二重層キャパシタ。
[26] 4級アンモニウム塩、4級イミダゾリウム塩、4級ピリジニウム塩、及び4級ホスホニウム塩からなる群から選ばれる少なくとも1種を含む電解質塩を有機溶媒に添加した電解液を用い、電解質イオンの陽イオン径が3〜15Å、陰イオン径が5〜10Åである前記[25]に記載の電気二重層キャパシタ。
[25] An electric double layer capacitor using the polarizable electrode according to any one of [20] to [24].
[26] Using an electrolytic solution in which an electrolyte salt containing at least one selected from the group consisting of a quaternary ammonium salt, a quaternary imidazolium salt, a quaternary pyridinium salt, and a quaternary phosphonium salt is added to an organic solvent, an electrolyte ion The electric double layer capacitor according to [25], wherein the cation diameter is 3 to 15 mm and the anion diameter is 5 to 10 mm.

[27] 前記[1]〜[8]のいずれかに記載の活性炭を含有するスラリー。
[28] 前記[1]〜[8]のいずれかに記載の活性炭を含有するペースト。
[29] 前記[1]〜[8]のいずれかに記載の活性炭が表面に塗布された電極シート。
[30] 前記[25]または[26]に記載の電気二重層キャパシタを含む電源システム。
[31] 前記[30]に記載の電源システムを使用した自動車。
[32] 前記[30]に記載の電源システムを使用した鉄道。
[33] 前記[30]に記載の電源システムを使用した船舶。
[34] 前記[30]に記載の電源システムを使用した航空機。
[35] 前記[30]に記載の電源システムを使用した携帯電話。
[36] 前記[30]に記載の電源システムを使用した事務機器。
[37] 前記[30]に記載の電源システムを使用した太陽電池発電システム。
[38] 前記[30]に記載の電源システムを使用した風力発電システム。
[39] 前記[30]に記載の電源システムを使用した通信機器。
[40] 前記[30]に記載の電源システムを使用した電子タグ。
[27] A slurry containing the activated carbon according to any one of [1] to [8].
[28] A paste containing the activated carbon according to any one of [1] to [8].
[29] An electrode sheet on which the activated carbon according to any one of [1] to [8] is applied.
[30] A power supply system including the electric double layer capacitor according to [25] or [26].
[31] An automobile using the power supply system according to [30].
[32] A railway using the power supply system according to [30].
[33] A ship using the power supply system according to [30].
[34] An aircraft using the power supply system according to [30].
[35] A mobile phone using the power supply system according to [30].
[36] Office equipment using the power supply system according to [30].
[37] A solar cell power generation system using the power supply system according to [30].
[38] A wind power generation system using the power supply system according to [30].
[39] A communication device using the power supply system according to [30].
[40] An electronic tag using the power supply system according to [30].

(1)活性炭
本発明の活性炭は、窒素吸着法に基づいてBJH法により求めた該細孔分布において、細孔直径1.0〜1.5nmの範囲に、好ましくは細孔直径1.2〜1.4nmの範囲に細孔容積の最大値を示すピークDがある。
(1) Activated carbon The activated carbon of the present invention has a pore diameter of 1.0 to 1.5 nm, preferably 1.2 to 1.2 nm in the pore distribution determined by the BJH method based on the nitrogen adsorption method. There is a peak D indicating the maximum value of the pore volume in the range of 1.4 nm.

活性炭の細孔分布は、窒素吸着等温線に基づいてBJH法によって算出される。具体的には、活性炭を77.4K(窒素の沸点)に冷却した状態で窒素ガスを導入し容量法により窒素ガスの吸着量V〔cc/g〕を測定する。吸着平衡状態にあるときの窒素ガスの圧力(吸着平衡圧)P〔mmHg〕と窒素ガスの飽和蒸気圧P〔mmHg〕との比(相対圧力:P/P)を横軸に、吸着量を縦軸にとってプロットすることにより、窒素吸着等温線を得る。この窒素吸着等温線に基づいて、BJH(Barrett−Joyner−Halenda)法で、細孔分布解析を行った。BJH法自体は公知の方法であり、例えば、J.Amer.Chem.Soc.73.373.(1951)に開示された方法に従って行うことができる。
この細孔分布解析によって、図2または図3に示すような、横軸に細孔直径を、縦軸に細孔容積をとった細孔分布を表す図が得られる。なお、図2または図3は本発明の実施例の細孔分布を示す図である。
The pore distribution of the activated carbon is calculated by the BJH method based on the nitrogen adsorption isotherm. Specifically, nitrogen gas is introduced in a state where the activated carbon is cooled to 77.4 K (the boiling point of nitrogen), and the adsorption amount V [cc / g] of the nitrogen gas is measured by a volumetric method. The ratio of the nitrogen gas pressure (adsorption equilibrium pressure) P [mmHg] and the saturated vapor pressure P 0 [mmHg] of nitrogen gas (relative pressure: P / P 0 ) in the adsorption equilibrium state is plotted on the horizontal axis. A nitrogen adsorption isotherm is obtained by plotting the quantity on the vertical axis. Based on this nitrogen adsorption isotherm, pore distribution analysis was performed by the BJH (Barrett-Joyner-Halenda) method. The BJH method itself is a known method. Amer. Chem. Soc. 73.373. (1951).
By this pore distribution analysis, as shown in FIG. 2 or FIG. 3, a diagram showing the pore distribution with the pore diameter on the horizontal axis and the pore volume on the vertical axis can be obtained. FIG. 2 or FIG. 3 is a diagram showing the pore distribution of the example of the present invention.

本発明の活性炭は、前記ピークDの値が0.012〜0.050cm/gの範囲に、好ましくは0.020〜0.035cm/gの範囲にあり且つ全細孔容積値の2〜32%の大きさである。ピークDの値が0.012cm/gよりも小さいと、低温で電解液粘度が上昇したとき細孔内での電解質イオンの移動度が低下し、その結果、低温での充放電特性及び内部抵抗特性が低下しやすい。また、ピークDの値が0.050cm/gよりも大きいと、活性炭の電極密度が小さくなるため体積当たりの容量(F/cm)が低くなりやすい。 The activated carbon of the present invention has a peak D value of 0.012 to 0.050 cm 3 / g, preferably 0.020 to 0.035 cm 3 / g and a total pore volume value of 2 The size is ~ 32%. When the value of the peak D is smaller than 0.012 cm 3 / g, the mobility of electrolyte ions in the pores decreases when the electrolyte viscosity increases at low temperature. As a result, charge / discharge characteristics at low temperature and internal Resistance characteristics are likely to deteriorate. If the value of peak D is larger than 0.050 cm 3 / g, the capacity per volume for the electrode density of the activated carbon is reduced (F / cm 3) is likely to be low.

本発明の好ましい活性炭は、細孔直径1.5〜1.7nmの範囲にあるピークC、細孔直径1.7〜2.0nmの範囲にあるピークB、細孔直径2.0〜2.5nmの範囲にあるピークAのいずれかを一つ以上有する。   The preferred activated carbon of the present invention has a peak C in the pore diameter range of 1.5 to 1.7 nm, a peak B in the pore diameter range of 1.7 to 2.0 nm, and a pore diameter of 2.0 to 2. One or more of peaks A in the range of 5 nm are included.

本発明の活性炭は、77.4Kの窒素吸着等温線に基づきBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、且つ、ピークa、ピークb、ピークc及びピークdそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c及び面積d)が、面積aを1としたときに、面積dが3.7〜4.8、面積cが1.6〜2.3、及び面積bが1.6〜2.1の範囲にある。   The activated carbon of the present invention has a peak a in a pore diameter range of 2.1 to 2.4 nm in a pore volume distribution determined by the BJH method based on a nitrogen adsorption isotherm of 77.4 K, and a pore diameter of 1.7. Having a peak b in the range of ~ 2.1 nm, a peak c in the range of pore diameter 1.4-1.7 nm, a peak d in the range of pore diameter 1.1-1.4 nm, and , Peak a, peak b, peak c, and peak d, the area (area a, area b, area c, and area d) of the portion surrounded by the respective peak curves, each pore diameter range, and the pore diameter axis is expressed as area a. Where d is 3.7 to 4.8, area c is 1.6 to 2.3, and area b is 1.6 to 2.1.

また、本発明の活性炭は、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、細孔径0.8〜1.1nmの範囲にピークeを有し、細孔径0.4〜0.8nmの範囲にピークfを有し、且つピークa、ピークb、ピークc、ピークd、ピークe及びピークfそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c、面積d、面積e及び面積f)が、面積aを1としたときに、面積fが2.2〜2.5、面積eが2.3〜2.5、面積dが4.6〜4.8、面積cが2.1〜2.3、及び面積bが1.9〜2.1の範囲にある。   Further, the activated carbon of the present invention has a peak a in the pore diameter range of 2.1 to 2.4 nm in the pore volume distribution determined by the BJH method from the nitrogen adsorption isotherm of 77.4K, and the pore diameter of 1. It has a peak b in the range of 7 to 2.1 nm, a peak c in the range of pore diameter 1.4 to 1.7 nm, a peak d in the range of pore diameter 1.1 to 1.4 nm, It has a peak e in the pore diameter range of 0.8 to 1.1 nm, a peak f in the pore diameter range of 0.4 to 0.8 nm, and peak a, peak b, peak c, peak d, peak The area (area a, area b, area c, area d, area e, and area f) of the portion surrounded by the peak curve of each of e and peak f, each pore diameter range and the pore diameter axis is 1 The area f is 2.2 to 2.5, the area e is 2.3 to 2.5, the area d is 4.6 to 4.8, Product c is 2.1-2.3, and the area b is in the range of 1.9 to 2.1.

本発明の活性炭は、窒素吸着法によって求めたBET比表面積が好ましくは1100〜2200m/g、より好ましくは1500〜2200m/g、特に好ましくは1800〜2100m/gである。活性炭のBET比表面積が1100m/g未満だと全細孔容積が小さいため、低温時の電解質イオンの移動度が低下し、低温での充放電特性が低くなりやすい。一方、2200m/gを超えると電極密度が下がり、電気二重層キャパシタとして求められる体積あたりの静電容量(F/cm)が低下しやすい。 Activated carbon of the present invention is preferably a BET specific surface area determined by a nitrogen adsorption method 1100~2200m 2 / g, more preferably 1500~2200m 2 / g, particularly preferably 1800~2100m 2 / g. If the BET specific surface area of the activated carbon is less than 1100 m 2 / g, the total pore volume is small, so the mobility of electrolyte ions at low temperatures is lowered, and the charge / discharge characteristics at low temperatures are likely to be low. On the other hand, if it exceeds 2200 m 2 / g, the electrode density is lowered, and the capacitance per volume (F / cm 3 ) required as an electric double layer capacitor tends to decrease.

本発明の活性炭のタップ密度(タップ回数50回)は0.35〜0.70g/cmが好ましく、粉体抵抗は1.0MPaで0.4Ωcm以下が好ましい。タップ密度はタップ密度計(蔵持科学器械製作所製)により測定することができる。 The tap density (50 taps) of the activated carbon of the present invention is preferably 0.35 to 0.70 g / cm 3 , and the powder resistance is preferably 1.0 MPa and 0.4 Ωcm or less. The tap density can be measured with a tap density meter (manufactured by Kuramochi Scientific Instruments).

(2)活性炭の製造方法
本発明の活性炭の製造方法は、特に制限されないが、好適な製造方法として、
(A)元素濃度で7000ppm以上の周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zの存在下に、ピッチを炭素化処理して真密度1.44〜1.52g/cm3の易黒鉛化性炭素化物を得、アルカリ金属化合物の存在下に、前記易黒鉛化性炭素化物を賦活処理し、次いで、この賦活された混合物を洗浄することを含む活性炭の製造方法と、
(B)ピッチを炭素化処理して真密度1.44〜1.52g/cm3の易黒鉛化性炭素化物を得、該炭素化物に元素濃度で7000ppm以上の周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを混合して混合物を得、アルカリ金属化合物の存在下に、前記混合物を賦活処理し、次いで、この賦活された混合物を洗浄することを含む活性炭の製造方法とを挙げることができる。
(2) Manufacturing method of activated carbon Although the manufacturing method of the activated carbon of this invention is not restrict | limited in particular, As a suitable manufacturing method,
In the presence of the compound Z comprising any element or 5th period fourth group element of the fourth period Group 3 to Group 11 periodic table or 7000ppm in (A) element concentration, the pitch treated carbonized To obtain an easily graphitizable carbonized material having a true density of 1.44 to 1.52 g / cm 3 , subjecting the graphitizable carbonized material to an activation treatment in the presence of an alkali metal compound, and then the activated mixture. A method for producing activated carbon including washing,
(B) The pitch is carbonized to obtain an easily graphitizable carbonized material having a true density of 1.44 to 1.52 g / cm 3 , and the carbonized material has an element concentration of 7000 ppm or more in the periodic table 4th period 3rd A compound Z containing any element of Group 11 to Group 11 or Group 5 element of the 5th period is mixed to obtain a mixture, and the mixture is activated in the presence of an alkali metal compound. And a method for producing activated carbon including washing the mixture.

活性炭の電気特性は、活性炭の比表面積、細孔分布、結晶構造といった構造特性に大きく左右される。このような活性炭の構造特性は、原料の構造、炭素化条件、賦活条件で決定される。そこで、電極材料として有用な活性炭を得るためには、原料の構造、炭素化条件、賦活条件を最適化する必要がある。   The electrical characteristics of activated carbon are greatly influenced by structural characteristics such as specific surface area, pore distribution, and crystal structure of activated carbon. Such structural characteristics of activated carbon are determined by the structure of raw materials, carbonization conditions, and activation conditions. Therefore, in order to obtain activated carbon useful as an electrode material, it is necessary to optimize the raw material structure, carbonization conditions, and activation conditions.

本発明の活性炭の製造方法に用いられるピッチは、低軟化点ピッチであることが好ましい。ピッチには、石油系ピッチ、石炭系ピッチ、及びそれらの有機溶媒可溶分などがある。本発明においては石油系ピッチ及び石炭系ピッチの有機溶媒可溶分が特に好ましく用いられる。
このような成分は難黒鉛化性炭素材料と比較して、側鎖が少なく、芳香族化合物の比率が高く、様々な分子構造の多環芳香族化合物が混在しているため、これを原料とした活性炭は、多環芳香族化合物に由来して、種々の複雑な微結晶構造等を形成し、それによって優れた電気特性を発現するものと考えられる。
本発明に用いられるピッチは、軟化点が、好ましくは100℃以下、さらに好ましくは60℃〜90℃のものである。
The pitch used in the method for producing activated carbon of the present invention is preferably a low softening point pitch. The pitch includes petroleum-based pitch, coal-based pitch, and their organic solvent-soluble components. In the present invention, organic solvent-soluble components of petroleum pitch and coal pitch are particularly preferably used.
Such a component has fewer side chains than the non-graphitizable carbon material, has a high ratio of aromatic compounds, and contains polycyclic aromatic compounds of various molecular structures. It is considered that the activated carbon is derived from a polycyclic aromatic compound and forms various complicated microcrystalline structures and the like, thereby exhibiting excellent electrical characteristics.
The pitch used in the present invention has a softening point of preferably 100 ° C. or lower, more preferably 60 ° C. to 90 ° C.

本発明では、上記の炭素化の前段階または後段階において周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを金属元素濃度として7000ppm以上混合する。
化合物Zは、金属単体、無機化合物及び有機化合物のいずれも使用することができる。無機化合物としては、酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、りん酸塩、炭酸塩、硫化物、硫酸塩及び硝酸塩を例示することができる。有機化合物としては、アセチルアセトンやシクロペンタジエン等との有機金属錯体が挙げられる。
In the present invention, a compound Z comprising any element or 5th period fourth group element of the fourth period Group 3 to Group 11 periodic table in a pre-stage or post-stage of the carbonization of the metal element concentration Mix more than 7000ppm.
As the compound Z, any of a simple metal, an inorganic compound, and an organic compound can be used. Examples of inorganic compounds include oxides, hydroxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates and nitrates. Examples of the organic compound include organometallic complexes with acetylacetone and cyclopentadiene.

化合物Zとしては、チタン、マンガン、鉄、コバルト、ニッケル、銅、及びジルコニウムからなる群から選ばれる少なくとも1 種の元素を含む化合物が好ましい。具体的には、酸化チタン、酸化鉄、酸化ニッケル、酸化ジルコニウムが挙げられる。これらの化合物Zは単独で使用してもよいし2種以上を併用してもよい。
The compound Z, titanium, manganese, iron, cobalt, nickel, copper, compounds comprising at least one element and selected from the group consisting of zirconium is preferred. Specifically, oxidation of titanium, iron oxide, nickel oxide, zirconium oxide, and the like. These compounds Z may be used alone or in combination of two or more.

ピッチまたはそれを炭化熱処理してなる易黒鉛化性炭素化物に、前記化合物Zを混合する方法は、均一に混合できれば特に限定されず、例えば、常温でピッチ粉末またはそれを炭化熱処理してなる易黒鉛化性炭素化物粉末に化合物Zの粉末を固体−固体で添加し撹拌機で混合することができる。混合に用いる装置としては、V形混合機、ヘンシュエルミキサー、ナウターミキサーなど均一に混合できるものであれば特に限定されない。   The method of mixing the compound Z with pitch or an easily graphitizable carbonized product obtained by carbonizing and heat treating it is not particularly limited as long as it can be uniformly mixed. The powder of compound Z can be added to the graphitizable carbonized powder as a solid-solid and mixed with a stirrer. The apparatus used for mixing is not particularly limited as long as it can be uniformly mixed, such as a V-shaped mixer, a Henschel mixer, and a Nauter mixer.

ピッチを熱処理することで炭素化し、易黒鉛化性炭素化物を得ることができる。炭化熱処理は400℃以上600℃未満の第一熱処理及び600℃以上700℃未満の第二熱処理を行うことが好ましい、熱処理により熱分解反応が起こり、ガス・軽質留分が脱離し、残渣は重縮合が起こって最終的には固化する。この炭素化工程における第一熱処理で、炭素原子間のミクロな結合状態がほぼ決定される。また、この炭素化工程で決定された炭素結晶子の構造は最終生成物である活性炭の構造の基礎を決定づける。   The pitch is carbonized by heat treatment to obtain an easily graphitizable carbonized product. The carbonization heat treatment is preferably performed at 400 ° C. or more and less than 600 ° C. and second heat treatment at 600 ° C. or more and less than 700 ° C. The heat treatment causes a thermal decomposition reaction, gas and light fractions are desorbed, and the residue is heavy. Condensation occurs and eventually solidifies. In the first heat treatment in this carbonization step, the micro bond state between the carbon atoms is almost determined. Further, the structure of the carbon crystallite determined in this carbonization step determines the basis of the structure of the activated carbon that is the final product.

第一熱処理の加熱温度が400℃未満では熱分解反応が不十分であり炭素化が進行し難くなる。また、熱処理温度が600℃以上になると第二熱処理の加熱温度と同じとなり、段階的な加熱効果が得られ難くなる。
第一熱処理では、昇温速度は3〜10℃/hrが好ましく、4〜6℃/hrがより好ましい。最高温度での保持時間は5〜20hrが好ましく、8〜12hrがより好ましい。
If the heating temperature of the first heat treatment is less than 400 ° C., the thermal decomposition reaction is insufficient and carbonization is difficult to proceed. On the other hand, when the heat treatment temperature is 600 ° C. or higher, it becomes the same as the heating temperature of the second heat treatment, and it becomes difficult to obtain a stepwise heating effect.
In the first heat treatment, the rate of temperature rise is preferably 3 to 10 ° C./hr, and more preferably 4 to 6 ° C./hr. The holding time at the maximum temperature is preferably 5 to 20 hr, more preferably 8 to 12 hr.

第二熱処理の加熱温度が600℃未満では第一熱処理の加熱温度と同じとなり第二熱処理による加熱効果が得られ難くなる。また、熱処理温度が700℃以上になると黒鉛類似の微結晶性構造部分が過剰に形成されてしまいアルカリ賦活が難しい傾向になる。
第二熱処理では、昇温速度は10〜100℃/hrが好ましく、40〜80℃/hrがより好ましい。最高温度での保持時間は1〜20hrが好ましく、1〜12hrがより好ましい。
If the heating temperature of the second heat treatment is less than 600 ° C., it becomes the same as the heating temperature of the first heat treatment, and it becomes difficult to obtain the heating effect by the second heat treatment. On the other hand, when the heat treatment temperature is 700 ° C. or higher, the microcrystalline structure portion similar to graphite is excessively formed, and alkali activation tends to be difficult.
In the second heat treatment, the rate of temperature rise is preferably 10 to 100 ° C./hr, and more preferably 40 to 80 ° C./hr. The holding time at the maximum temperature is preferably 1 to 20 hours, more preferably 1 to 12 hours.

これらの炭素化工程はアルカリ金属の蒸気中で実施することも有効である。アルカリ金属は、炭素化工程において触媒的な働きをする。すなわち、ピッチ中の芳香族間の架橋結合が促進され、炭化反応が進行する。   It is also effective to carry out these carbonization steps in an alkali metal vapor. The alkali metal acts as a catalyst in the carbonization process. That is, the cross-linking between aromatics in the pitch is promoted and the carbonization reaction proceeds.

ピッチの炭素化によって得られた易黒鉛化性炭素化物は、液相置換法による真密度が1.44〜1.52g/cmであることが好ましい。真密度が1.44g/cmより小さいとアルカリ賦活後に活性炭表面に官能基が多く残るため、キャパシタ材料として用いた場合に耐久性及び信頼性が低くなるおそれがある。一方、真密度が1.52g/cmより大きいとアルカリ賦活反応が行われにくく、高い電気容量を有する活性炭が得られないことがある。 The graphitizable carbonized product obtained by carbonization of pitch preferably has a true density of 1.44 to 1.52 g / cm 3 by a liquid phase substitution method. When the true density is less than 1.44 g / cm 3, many functional groups remain on the activated carbon surface after alkali activation, and thus durability and reliability may be lowered when used as a capacitor material. On the other hand, when the true density is larger than 1.52 g / cm 3 , the alkali activation reaction is hardly performed, and activated carbon having a high electric capacity may not be obtained.

黒鉛類似の微結晶性構造部分が形成されている易黒鉛化性炭素化物では、アルカリ賦活反応時にKOHが還元されて生じた金属カリウムが炭素層間をこじ開けることによりできた層間の隙間が多く形成される。このためキャパシタ電圧印加時に3.35〜4.0Åの該炭素の層間の隙間を電解液イオン(溶媒和イオン半径3.7Å)がインターカレートして層間を押し広げる形で細孔内に吸着するため、高い電気容量を発揮できるものと推測される。一方、黒鉛類似の微結晶性構造部分が形成されていない易黒鉛化性炭素化物では、アルカリ賦活反応時の水や二酸化炭素ガスによる炭素の消費により形成される細孔が多くなり、金属カリウムによる炭素層間の隙間は少なくなり、高い電気容量を発揮できるものは少なくなる。   In a graphitizable carbonized product in which a microcrystalline structure part similar to graphite is formed, there are many gaps between the layers formed by the metal potassium generated by reducing KOH during the alkali activation reaction. The Therefore, when the capacitor voltage is applied, the electrolyte ions (solvated ion radius 3.7 半径) intercalate the gaps between the carbon layers of 3.35 to 4.0Å, and are adsorbed in the pores. Therefore, it is estimated that a high electric capacity can be exhibited. On the other hand, in a graphitizable carbonized material in which a microcrystalline structure portion similar to graphite is not formed, pores formed due to consumption of carbon by water or carbon dioxide gas during an alkali activation reaction are increased, which is caused by metal potassium. There are fewer gaps between the carbon layers, and fewer can exhibit high electric capacity.

以上により得られた易黒鉛化性炭素化物は、アルカリ賦活前に平均粒径1〜30μmに粉砕することが好ましい。粉砕方法はジェットミル、振動ミル、バルベライザなど通常の粉砕方法で良い。   The graphitizable carbonized material obtained as described above is preferably pulverized to an average particle size of 1 to 30 μm before alkali activation. The pulverization method may be a normal pulverization method such as a jet mill, a vibration mill, or a balberizer.

平均粒径が1〜30μmの粒度に粉砕した易黒鉛化性炭素化物をアルカリ金属化合物と混合して加熱することにより、細孔を形成して活性炭とすることができる。易黒鉛化性炭素化物を粉砕せずにアルカリ賦活した場合、賦活後に活性炭中の金属不純物を低減させるための酸洗浄を行っても内部に含まれる金属不純物を洗浄し難くなるため、後粉砕時に活性炭中に混入しキャパシタの耐久性に悪影響を及ぼすことがある。   By mixing and heating an easily graphitizable carbonized material pulverized to a particle size of 1 to 30 μm with an alkali metal compound, pores can be formed to obtain activated carbon. When alkali-activated without easily pulverizing the graphitizable carbonized material, it becomes difficult to wash the metal impurities contained in the activated carbon to reduce the metal impurities in the activated carbon after activation. Mixing in activated carbon may adversely affect the durability of the capacitor.

前記したように、化合物Zの存在下にピッチを炭素化して得られた易黒鉛化性炭素化物又は、ピッチを炭素化し次いで化合物Zを混合した混合物を、アルカリ賦活反応することによって、窒素吸着法によって求めたBJH法による細孔径1.0〜1.5nmの細孔容積のピークD値が0.012〜0.050cm/g、好ましくは0.020〜0.035cm/gの範囲にあり、さらに細孔容積のピークa、ピークb、ピークc及びピークdが、2.1〜2.4nm、1.7〜2.1nm、1.4〜1.7nm及び1.1〜1.4nmの範囲にそれぞれ有り、且つ、ピークd、ピークc、ピークb、及びピークaそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積d、面積c、面積b、及び面積a)が、面積aを1としたきに、面積dが3.7〜4.8、面積cが1.6〜2.3、及び面積bが1.6〜2.1の範囲である活性炭、
または細孔容積のピークa、ピークb、ピークc、ピークd、ピークe及びピークfが2.1〜2.4nm、1.7〜2.1nm、1.4〜1.7nm、1.1〜1.4nm、0.8〜1.1nm及び0.4〜0.8nmの範囲にそれぞれ有り、且つ、ピークf、ピークe、ピークd、ピークc、ピークb、ピークaそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積f、面積e、面積d、面積c、面積b、及び面積a)が、面積aを1としたときに、面積fが2.2〜2.5、面積eが2.3〜2.5、面積dが4.6〜4.8、面積cが2.1〜2.3、及び面積bが1.9〜2.1の範囲にある活性炭を得ることができる。
As described above, an easily activated graphitizable carbonized product obtained by carbonizing pitch in the presence of compound Z or a mixture obtained by carbonizing pitch and then mixing compound Z is subjected to an alkali activation reaction, thereby performing a nitrogen adsorption method. The peak D value of the pore volume with a pore diameter of 1.0 to 1.5 nm determined by the BJH method is 0.012 to 0.050 cm 3 / g, preferably 0.020 to 0.035 cm 3 / g. Furthermore, the peak a, peak b, peak c and peak d of the pore volume are 2.1 to 2.4 nm, 1.7 to 2.1 nm, 1.4 to 1.7 nm and 1.1 to 1. The area (area d, area c, area of the portion that is in the range of 4 nm and surrounded by the peak curve of each of peak d, peak c, peak b, and peak a, each pore diameter range, and pore diameter axis) b and area a) are surfaces Activated carbon having an area d of 3.7 to 4.8, an area c of 1.6 to 2.3, and an area b of 1.6 to 2.1, where the product a is 1.
Or the pore volume peak a, peak b, peak c, peak d, peak e and peak f are 2.1 to 2.4 nm, 1.7 to 2.1 nm, 1.4 to 1.7 nm, 1.1. -1.4 nm, 0.8-1.1 nm and 0.4-0.8 nm, respectively, and peak curves of peak f, peak e, peak d, peak c, peak b, peak a, respectively When the area (area f, area e, area d, area c, area b, and area a) of the portion surrounded by each pore diameter range and the pore diameter axis is area a, the area f is 2.2 to 2.5, area e is 2.3 to 2.5, area d is 4.6 to 4.8, area c is 2.1 to 2.3, and area b is 1.9 to 2 Activated carbon in the range of .1 can be obtained.

アルカリ賦活反応に使用するアルカリ金属化合物は、特に限定されるものではないが、水酸化物が好ましい。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等が好ましい。賦活処理時の最高温度は、通常、600℃〜800℃の範囲であり、好ましくは700℃〜760℃の範囲である。
賦活処理時の最高温度が高くなりすぎると、アルカリ(例えば、KOH)賦活時に金属(例えば、K)の炭素層間に入り込む量が増えすぎ、賦活後の洗浄において活性炭に残存する金属(例えば、K)量が多くなり、電気二重層キャパシタの信頼性に悪影響を及ぼしやすい。一方賦活処理時の最高温度が低すぎると、アルカリ賦活反応が進行しないため、所望の比表面積、電気容量を持つ活性炭が得られにくくなる。
The alkali metal compound used for the alkali activation reaction is not particularly limited, but a hydroxide is preferable. Specifically, sodium hydroxide, potassium hydroxide, cesium hydroxide and the like are preferable. The maximum temperature during the activation treatment is usually in the range of 600 ° C to 800 ° C, and preferably in the range of 700 ° C to 760 ° C.
If the maximum temperature during the activation process becomes too high, the amount of metal (for example, K) that enters the carbon layer during activation of the alkali (for example, KOH) increases too much, and the metal that remains on the activated carbon after the activation (for example, K) ) And the amount is likely to adversely affect the reliability of the electric double layer capacitor. On the other hand, if the maximum temperature during the activation treatment is too low, the alkali activation reaction does not proceed, so that it becomes difficult to obtain activated carbon having a desired specific surface area and electric capacity.

賦活処理時の最高温度での保持時間は、30分間以内であることが好ましい。最高温度での保持時間が長くなりすぎると、細孔ピークa,b,c,d(図2)が消失しやすくなり、その結果、低温での充放電特性及び内部抵抗特性が低下する傾向になる。なお、上記保持時間の間において、温度が最高温度で厳密に一定である必要はなく、前記最高温度の範囲内で多少の変動があっても構わない。   The holding time at the maximum temperature during the activation process is preferably within 30 minutes. If the holding time at the maximum temperature is too long, the pore peaks a, b, c, and d (FIG. 2) tend to disappear, and as a result, the charge / discharge characteristics and internal resistance characteristics at low temperatures tend to deteriorate. Become. Note that the temperature does not have to be strictly constant at the maximum temperature during the holding time, and there may be some fluctuation within the range of the maximum temperature.

上記のような最高温度で保持した後、冷却する。本発明の製法においては、賦活処理時の最高温度から590℃までに冷却するときの降温速度を60℃/hr以上にすることが好ましい。降温速度が遅すぎると本発明の活性炭の細孔ピークa,b,c,d(図2)が消失しやすくなり、その結果低温での充放電特性及び内部抵抗特性が低下傾向になる。
上記のアルカリ賦活処理条件は、バッチ式の縦型反応炉、ローラーハースキルン式連続炉、トレイプシャー式の連続炉、トンネルキルン式連続生産炉、ロータリーキルン方式の移動床式の反応炉などいずれの方式の製造装置でも適用可能である。
After holding at the maximum temperature as described above, cool. In the manufacturing method of this invention, it is preferable to make the temperature-fall rate at the time of cooling from the maximum temperature at the time of an activation process to 590 degreeC more than 60 degreeC / hr. If the rate of temperature decrease is too slow, the pore peaks a, b, c, and d (FIG. 2) of the activated carbon of the present invention tend to disappear, and as a result, the charge / discharge characteristics and internal resistance characteristics at low temperatures tend to decrease.
The above alkali activation treatment conditions are any of the batch type vertical reactor, roller hearth kiln type continuous furnace, trayscher type continuous furnace, tunnel kiln type continuous production furnace, rotary kiln type moving bed type reactor, etc. It can also be applied to other manufacturing apparatuses.

アルカリ金属化合物は炭材質量の、通常、1.5から5.0倍量、より好ましくは1.7から3.0倍量混合する。   The alkali metal compound is mixed in an amount of usually 1.5 to 5.0 times, more preferably 1.7 to 3.0 times the mass of the carbonaceous material.

アルカリ賦活処理は、N、Arガスなどの不活性ガス雰囲気で行うが、必要に応じて水蒸気、炭酸ガス等を導入しても良い。 The alkali activation treatment is performed in an inert gas atmosphere such as N 2 or Ar gas, but water vapor, carbon dioxide gas or the like may be introduced as necessary.

アルカリ賦活時に発生するガスにより反応物の融液が発泡したり突沸する現象(融液膨張)が起きる場合には、易黒鉛化性炭素化物に気相法炭素繊維を配合し、その現象を抑制することもできる。   In the event that the melt of the reactant foams or bumps due to the gas generated during alkali activation (melt expansion), vapor-grown carbon fiber is added to the graphitizable carbonized material to suppress the phenomenon. You can also

アルカリ賦活処理後、水、酸などで洗浄を行う。
酸洗浄には、硫酸、燐酸、塩酸、硝酸などの鉱酸類、蟻酸、酢酸、クエン酸などの有機酸を使用することができる。洗浄効率と残存物の点から塩酸、クエン酸が好ましい。酸濃度は通常0.01〜20規定であり、好ましくは0.1〜1規定である。洗浄方法としては、酸添加後に撹拌すれば良いが、煮沸または50〜90℃で加温すると洗浄効率が向上する。また、超音波洗浄機を使用するとより効果的である。
After the alkali activation treatment, washing is performed with water, acid or the like.
For the acid cleaning, mineral acids such as sulfuric acid, phosphoric acid, hydrochloric acid and nitric acid, and organic acids such as formic acid, acetic acid and citric acid can be used. Hydrochloric acid and citric acid are preferred from the standpoint of washing efficiency and residue. The acid concentration is usually from 0.01 to 20 N, preferably from 0.1 to 1 N. As a washing method, stirring may be performed after addition of the acid, but washing efficiency is improved by boiling or heating at 50 to 90 ° C. It is more effective to use an ultrasonic cleaner.

洗浄時間は、0.5時間〜24時間で実施されるが、好ましくは1〜5時間である。
洗浄回数は、煮沸酸洗浄は1〜5回、残留塩素を除去する熱水煮沸洗浄は1〜5回程度が好適である。洗浄に使用する容器は、酸洗浄の場合グラスライニング、タンタル、テフロン(登録商標)などが好ましい。
The washing time is 0.5 to 24 hours, preferably 1 to 5 hours.
The number of washings is preferably about 1 to 5 times for boiling acid washing and about 1 to 5 times for hot water boiling washing for removing residual chlorine. The container used for cleaning is preferably glass lining, tantalum, Teflon (registered trademark) or the like in the case of acid cleaning.

また、これらの洗浄工程に全自動撹拌加温濾過乾燥機、例えば多機能濾過機WDフィルター(ニッセン製)、FVドライヤー(大川原製作所製)などを使用することができる。洗浄に使用する水はイオン電気伝導度1.0μS/cm以下の純水を使用するが、これらの洗浄水には工程中の洗浄廃液をリサイクルして使用することも可能である。   Further, a fully automatic stirring and warming filter dryer such as a multi-function filter WD filter (manufactured by Nissen), an FV dryer (manufactured by Okawara Seisakusho) or the like can be used for these washing steps. The water used for the cleaning uses pure water having an ionic electrical conductivity of 1.0 μS / cm or less, and the cleaning waste liquid in the process can be recycled and used for these cleaning waters.

このようにして得られたアルカリ賦活活性炭は、過剰な電圧を与えなくても、1サイクル目から高い電気容量を発揮し、また、その電気容量の保持率が高いという特徴を有していた。
さらに、易黒鉛化性炭素化物が十分な炭化工程を経ることで、炭素表面の官能基量が低減されて、電気容量の劣化が抑えられる。
The alkali-activated activated carbon thus obtained had characteristics that it exhibited a high electric capacity from the first cycle without giving an excessive voltage and had a high retention rate of the electric capacity.
Furthermore, when the graphitizable carbonized product undergoes a sufficient carbonization step, the amount of functional groups on the carbon surface is reduced, and deterioration of electric capacity is suppressed.

(2)気相法炭素繊維を配合した活性炭(炭素複合粉)
本発明の活性炭に気相法炭素繊維を配合することにより一層の特性向上が図られる。気相法炭素繊維を活性炭に配合する方法は特に制限されないが、気相法炭素繊維を易黒鉛化性炭素化物と混合し賦活する方法によって気相法炭素繊維と活性炭とからなる炭素複合粉とすることが好ましい。この方法によって粒子同士の接触抵抗が低減されるとともに導電性及び電極強度が向上し、電圧印加時の電極膨張率が低減される効果も発現される。また、気相法炭素繊維を活性炭と混合する方法によって炭素複合粉とすることもできる。炭素複合粉にすることによって活性炭単独の場合に比べて熱伝導率が向上する。
(2) Activated carbon (carbon composite powder) containing vapor grown carbon fiber
A further improvement in characteristics can be achieved by blending vapor grown carbon fiber with the activated carbon of the present invention. The method of blending the vapor grown carbon fiber with the activated carbon is not particularly limited, but the carbon composite powder composed of the vapor grown carbon fiber and the activated carbon is obtained by mixing and activating the vapor grown carbon fiber with the graphitizable carbonized product. It is preferable to do. By this method, the contact resistance between particles is reduced, the conductivity and the electrode strength are improved, and the effect of reducing the electrode expansion coefficient when a voltage is applied is also exhibited. Moreover, it can also be set as carbon composite powder by the method of mixing vapor grown carbon fiber with activated carbon. By using carbon composite powder, the thermal conductivity is improved as compared with the case of activated carbon alone.

活性炭に配合する気相法炭素繊維は、例えばベンゼンと金属触媒粒子とを水素気流中で約1000℃で吹き付けることによって製造することができるものである。気相法炭素繊維としては、上記のような製法によって得た後、1000〜1500℃で焼成したものを、または、さらに2500℃以上の温度で黒鉛化処理したものを使用することができる。   The vapor grown carbon fiber blended with the activated carbon can be produced, for example, by spraying benzene and metal catalyst particles at about 1000 ° C. in a hydrogen stream. As the vapor grown carbon fiber, it is possible to use a carbon fiber obtained by the above-described production method and then calcined at 1000 to 1500 ° C. or graphitized at a temperature of 2500 ° C. or higher.

気相法炭素繊維は、好ましくは内部に中空構造を有し、その比表面積が10〜50m/g、平均繊維径が50〜500nm、アスペクト比が5〜1000のものである。気相法炭素繊維は、分岐状繊維、直鎖状またはそれらの混合物のいずれもが使用可能である。 The vapor grown carbon fiber preferably has a hollow structure inside, a specific surface area of 10 to 50 m 2 / g, an average fiber diameter of 50 to 500 nm, and an aspect ratio of 5 to 1000. As the vapor grown carbon fiber, any of a branched fiber, a straight chain, or a mixture thereof can be used.

気相法炭素繊維は、繊維長さが活性炭の平均粒子径の0.5倍〜2倍の範囲が好ましい。気相法炭素繊維の長さが0.5倍よりも短いと粒子同士の橋渡しができず導電性が不十分となるおそれがあり、長さが2倍を超えると活性炭粒子の隙間に気相法炭素繊維が入れず分極性電極の強度が低下するおそれがある。   The vapor grown carbon fiber preferably has a fiber length in the range of 0.5 to 2 times the average particle diameter of the activated carbon. If the length of the vapor grown carbon fiber is shorter than 0.5 times, the particles may not be bridged with each other and the conductivity may be insufficient. If the length exceeds 2 times, the gas phase is formed in the gap between the activated carbon particles. There is a possibility that the strength of the polarizable electrode may be reduced due to the absence of the carbon fiber.

気相法炭素繊維は同芯円状の配向構造を持っているため、ガス賦活(水蒸気、COなど)、薬品賦活(塩化亜鉛、燐酸、炭酸カルシウムなど)、アルカリ賦活(水酸化カリウム、水酸化ナトリウムなど)などにより、あらかじめ賦活されたものを使用することも可能である。この場合にはミクロ孔(2.0nm以下の細孔)容積が0.01〜0.4cm/g、BET比表面積が10〜500m/gになるように表面構造を制御したものが好ましい。ミクロ孔容積が多すぎると、電極内部でのイオン拡散抵抗が増大して好ましくないことがある。 Vapor-grown carbon fiber has a concentric circular orientation structure, so gas activation (steam, CO 2 etc.), chemical activation (zinc chloride, phosphoric acid, calcium carbonate etc.), alkali activation (potassium hydroxide, water) It is also possible to use a material activated in advance with sodium oxide or the like. In this case, it is preferable to control the surface structure so that the micropore volume (pores of 2.0 nm or less) is 0.01 to 0.4 cm 3 / g and the BET specific surface area is 10 to 500 m 2 / g. . If the micropore volume is too large, the ion diffusion resistance inside the electrode may increase, which may be undesirable.

気相法炭素繊維の量は、活性炭に対して、好ましくは0.02〜20質量%、より好ましくは0.1〜20質量%、とくに好ましくは0.5〜10質量%である。0.02質量%未満だと、易黒鉛化性炭素化物と混合した複合粉の熱伝導率を増加させる効果が少なく、賦活時の均熱性が不十分になるために、均一な賦活が困難となり、体積あたりの静電容量(F/cm)が大きく品質安定性に優れた活性炭を工業的に製造し難くなるおそれがある。20質量%を超えると電極密度が低くなり、体積あたりの電気容量(F/cm)が低下してしまうおそれがある。 The amount of vapor grown carbon fiber is preferably 0.02 to 20% by mass, more preferably 0.1 to 20% by mass, and particularly preferably 0.5 to 10% by mass with respect to the activated carbon. If it is less than 0.02% by mass, the effect of increasing the thermal conductivity of the composite powder mixed with the graphitizable carbonized material is small, and the heat uniformity during activation becomes insufficient, making uniform activation difficult. The activated carbon having a large capacitance per volume (F / cm 3 ) and excellent quality stability may be difficult to industrially produce. If it exceeds 20% by mass, the electrode density is lowered, and the electric capacity per volume (F / cm 3 ) may be lowered.

気相法炭素繊維の良導電性、熱伝導を生かした放熱性の改善に加え、塊状の活性炭粒子に繊維状のものが混在することによる電極膨張クッション材としての役割が増強されるため、電圧印加時の電極膨張率が増加するのを抑えるのにも効果的である。
本発明の活性炭は、分極性電極及び電気二重層キャパシタに好適に利用することができる。
In addition to improving the heat conductivity by utilizing the good conductivity and heat conduction of vapor grown carbon fiber, the role as an electrode expansion cushion material due to the mixture of fibrous materials in the bulk activated carbon particles is enhanced, so the voltage It is also effective in suppressing an increase in the electrode expansion coefficient during application.
The activated carbon of the present invention can be suitably used for polarizable electrodes and electric double layer capacitors.

(3)分極性電極及び電気二重層キャパシタ
本発明の分極性電極は、本発明の活性炭とカーボンブラックと結合剤とを含有するものであり、好ましくはさらに気相法炭素繊維を含有するものである。
本発明の分極性電極に用いるカーボンブラックとしては電気化学素子の電極に用いられる導電材として知られる炭素材料を用いることができる。例えば、アセチレンブラック、チャネルブラック、ファーネスブラックなどが挙げられる。カーボンブラックの量は、分極性電極100質量部に対して通常0.1〜20質量部、好ましくは0.5〜10質量部である。
(3) Polarizable electrode and electric double layer capacitor The polarizable electrode of the present invention contains the activated carbon of the present invention, carbon black, and a binder, and preferably further contains vapor grown carbon fiber. is there.
As the carbon black used for the polarizable electrode of the present invention, a carbon material known as a conductive material used for an electrode of an electrochemical element can be used. Examples thereof include acetylene black, channel black, and furnace black. The amount of carbon black is usually 0.1 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polarizable electrode.

気相法炭素繊維は前述したとおりのものである。分極性電極に気相法炭素繊維を含有させる方法としては、気相法炭素繊維と活性炭とカーボンブラックと結合剤とを混合する方法の他に、前述の炭素複合粉をカーボンブラック及び結合剤と混合する方法がある。   The vapor grown carbon fiber is as described above. In addition to the method of mixing vapor grown carbon fiber, activated carbon, carbon black, and binder, as a method of incorporating the vapor grown carbon fiber into the polarizable electrode, the carbon composite powder described above is mixed with carbon black and the binder. There is a way to mix.

分極性電極は、通常、活性炭に導電剤および結合剤を加えて混練圧延する方法;活性炭に導電剤、結合剤、必要に応じて溶媒を加えてスラリー状又はペースト状にして導電材に塗布する方法;活性炭に未炭化樹脂類を混合して焼結する方法等によって製造することができる。   A polarizable electrode is usually a method in which a conductive agent and a binder are added to activated carbon and kneaded and rolled; a conductive agent, a binder and, if necessary, a solvent are added to activated carbon, and then applied to a conductive material in a slurry or paste form. Method: It can be produced by a method in which uncarbonized resins are mixed with activated carbon and sintered.

例えば、平均粒径1〜50μmの本発明の活性炭の粉末に、導電剤としてカーボンブラック等を加え、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、アクリレート系ゴム、ブタジエン系ゴム等の結合剤を加え、ブレンダーで乾式混合し、次いで該混合粉に沸点200℃以下の有機溶剤を添加して膨潤させてから混練し、厚さ0.1〜0.5mm程度のシートに成形し、100〜200℃程度の温度で真空乾燥することによって分極性電極を得ることができる。   For example, carbon black or the like is added as a conductive agent to the activated carbon powder of the present invention having an average particle size of 1 to 50 μm, and a binder such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride, acrylate rubber, or butadiene rubber is added. In addition, the mixture is dry-mixed with a blender, and then an organic solvent having a boiling point of 200 ° C. or lower is added to the mixed powder to swell, kneaded, and formed into a sheet having a thickness of about 0.1 to 0.5 mm. A polarizable electrode can be obtained by vacuum drying at a temperature of about 0C.

有機溶剤としては、沸点200℃以下の有機溶剤であれば特に限定されるものではない。例えば、トルエン、キシレン、ベンゼンなどの炭化水素類、アセトン、メチルエチルケトン、ブチルメチルケトンなどのケトン類、メタノール、エタノール、ブタノールなどのアルコール類、酢酸エチル、酢酸ブチルなどのエステル類などが挙げられる。これらのうち、トルエン、アセトン、エタノールが好適である。沸点が200℃以上の有機溶媒を用いると、シート形成後100〜200℃で乾燥したときに有機溶媒がシート中に残存するため好ましくない。   The organic solvent is not particularly limited as long as it is an organic solvent having a boiling point of 200 ° C. or lower. Examples thereof include hydrocarbons such as toluene, xylene and benzene, ketones such as acetone, methyl ethyl ketone and butyl methyl ketone, alcohols such as methanol, ethanol and butanol, esters such as ethyl acetate and butyl acetate, and the like. Of these, toluene, acetone, and ethanol are preferred. Use of an organic solvent having a boiling point of 200 ° C. or higher is not preferable because the organic solvent remains in the sheet when dried at 100 to 200 ° C. after the sheet is formed.

このシートを所定の形状に打ち抜き電極とする。この電極に集電材である金属板を積層し、セパレータを介し、金属板を外側にして2枚重ねにし、電解液に浸して電気二重層キャパシタとすることができる。   This sheet is punched into a predetermined shape and used as an electrode. A metal plate as a current collector is laminated on this electrode, two metal plates are stacked with a separator interposed therebetween, and immersed in an electrolytic solution to form an electric double layer capacitor.

電気二重層キャパシタの電解液としては公知の非水溶媒電解質溶液、水溶性電解質溶液のいずれも使用可能であり、さらに他の電解液の他に、非水系電解質である高分子固体電解質及び高分子ゲル電解質、イオン性液体も使用することができる。
水系(水溶性電解質溶液)のものとしては、硫酸水溶液、硫酸ナトリウム水溶液、水酸化ナトリウム水溶液等が挙げられる。
As the electrolytic solution of the electric double layer capacitor, any known non-aqueous solvent electrolyte solution or water-soluble electrolyte solution can be used, and in addition to other electrolyte solutions, polymer solid electrolytes and polymers that are non-aqueous electrolytes Gel electrolytes and ionic liquids can also be used.
Examples of the aqueous (water-soluble electrolyte solution) include sulfuric acid aqueous solution, sodium sulfate aqueous solution, sodium hydroxide aqueous solution and the like.

また非水系(非水溶媒電解質溶液)のものとしては、RまたはRで表されるカチオン(R,R,R,Rはそれぞれ独立に炭素数1〜10のアルキル基またはアリル基である)と、BF 、PF 、ClO 等のアニオンとからなる4級アンモニウム塩または4級ホスホニウム塩を電解質として用い、エチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を溶媒として用いたものが挙げられる。また、電解質または溶媒は、それぞれ二種類以上を組み合わせて用いることもできる。 In addition, as a non-aqueous (non-aqueous solvent electrolyte solution), a cation (R 1 , R 2 , R 3) represented by R 1 R 2 R 3 R 4 N + or R 1 R 2 R 3 R 4 P + , R 4 are each independently an alkyl group or an allyl group having 1 to 10 carbon atoms) and an anion such as BF 4 , PF 6 , ClO 4 −, or the like. Examples of the electrolyte include those using a carbonate non-aqueous solvent such as ethylene carbonate and propylene carbonate as a solvent. In addition, two or more electrolytes or solvents can be used in combination.

電極間に必要に応じて介在させるセパレータは、イオンを透過する多孔質セパレータであれば良く、例えば、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、エチレン不織布、ポリプロピレン不織布、ガラス繊維混抄不織布などが好ましく使用できる。   The separator interposed between the electrodes as needed may be a porous separator that transmits ions, such as a microporous polyethylene film, a microporous polypropylene film, an ethylene nonwoven fabric, a polypropylene nonwoven fabric, and a glass fiber mixed nonwoven fabric. It can be preferably used.

本発明の電気二重層キャパシタは、一対のシート状電極の間にセパレータを介して電解液と共に金属ケースに収納したコイン型、一対の正極と負極をセパレータを介して巻回してなる巻回型、セパレータを介して多数のシート状電極を積み重ねた積層型等いずれの構成もとることができる。   The electric double layer capacitor of the present invention is a coin type housed in a metal case together with an electrolyte through a separator between a pair of sheet electrodes, a winding type formed by winding a pair of positive and negative electrodes through a separator, Any configuration such as a stacked type in which a large number of sheet-like electrodes are stacked via a separator can be used.

本発明の電気二重層キャパシタは電源システムに適用することができる。そして、この電源システムは、自動車、鉄道などの車両用電源システム;船舶用電源システム;航空機用電源システム;携帯電話、携帯情報端末、携帯電子計算機などの携帯電子機器用電源システム;事務機器用電源システム;太陽電池発電システム、風力発電システムなどの発電システム用電源システム;通信機器、電子タグなどに適用することができる。   The electric double layer capacitor of the present invention can be applied to a power supply system. And this power supply system includes: a power supply system for vehicles such as automobiles and railways; a power supply system for ships; a power supply system for aircraft; a power supply system for portable electronic devices such as mobile phones, personal digital assistants and portable electronic computers; System: Power supply system for power generation system such as solar cell power generation system, wind power generation system; communication device, electronic tag, etc.

以下、実施例・比較例によって、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
本実施例における各特性の測定方法、及び電極並びに電気二重層キャパシタの作製方法は以下の通りである。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.
The measuring method of each characteristic in this example and the manufacturing method of the electrode and the electric double layer capacitor are as follows.

[BET比表面積および細孔容積の測定]
Quantachrome社製、NOVA1200を使用して、液体窒素温度(77.4K)における窒素の吸着等温線より、BET法およびBJH法を用いて算出した。
[Measurement of BET specific surface area and pore volume]
Using a NOVA1200 manufactured by Quantachrome, the BET method and the BJH method were calculated from an adsorption isotherm of nitrogen at a liquid nitrogen temperature (77.4 K).

[電極の作製]
平均粒径10μmの活性炭80質量部にPTFE(ポリテトラフルオロエチレン)10質量部及びカーボンブラック10質量部を添加し、混練して厚さ0.5mmのシート状に圧延した。このシートを直径20mmの円板に打抜き、200℃で一昼夜真空乾燥して分極性電極を得た。
[Production of electrodes]
10 parts by mass of PTFE (polytetrafluoroethylene) and 10 parts by mass of carbon black were added to 80 parts by mass of activated carbon having an average particle size of 10 μm, kneaded and rolled into a sheet having a thickness of 0.5 mm. This sheet was punched into a disk having a diameter of 20 mm, and vacuum-dried at 200 ° C. overnight to obtain a polarizable electrode.

[電気二重層キャパシタの組立]
前記の電極を、高純度アルゴンを循環させているグローブボックス内において、図1のような評価用セルを組立てた。図1において、1はアルミニウム製の上蓋、2はフッ素ゴム製Oリング、3はアルミニウムからなる集電体、4はテフロン(登録商標)からなる絶縁材、5はアルミニウム製容器、6はアルミニウム製板バネ、7は分極性電極、8はガラス繊維からなる厚さ1mmのセパレータである。
電解液にはPC(プロピレンカーボネート)を溶媒とし(CH)(CNBF、(CNBFを1モル/リットル、又はEC/DEC(エチレンカーボネート/ジエチレンカーボネート)を溶媒としLiBF、LiPFを1モル/リットル電解質とする富山薬品工業(株)製の電解液を使用した。
[Assembly of electric double layer capacitor]
An evaluation cell as shown in FIG. 1 was assembled in a glove box in which high purity argon was circulated through the electrode. In FIG. 1, 1 is an aluminum top cover, 2 is a fluororubber O-ring, 3 is a current collector made of aluminum, 4 is an insulating material made of Teflon (registered trademark), 5 is an aluminum container, and 6 is aluminum. A leaf spring, 7 is a polarizable electrode, and 8 is a 1 mm thick separator made of glass fiber.
In the electrolytic solution, PC (propylene carbonate) is used as a solvent, (CH 3 ) (C 2 H 5 ) 3 NBF 4 , (C 2 H 5 ) 4 NBF 4 is 1 mol / liter, or EC / DEC (ethylene carbonate / diethylene). An electrolytic solution manufactured by Toyama Pharmaceutical Co., Ltd. was used with carbonate as a solvent and LiBF 4 and LiPF 6 as 1 mol / liter electrolyte.

[充放電測定]
充放電測定は、北斗電工(株)製充放電試験装置HJ−101SM6を使用して、5mAで0〜2.7Vで充放電を行い、2回目の定電流放電によって得られた放電曲線から、電気二重層キャパシタの両極活性炭の質量あたりの静電容量(F/g)と体積あたりの静電容量(F/cm)を算出した。
[Charge / discharge measurement]
The charge / discharge measurement was performed using a charge / discharge test apparatus HJ-101SM6 manufactured by Hokuto Denko Co., Ltd., and charged and discharged at 0 mA to 2.7 V at 5 mA. From the discharge curve obtained by the second constant current discharge, The capacitance per mass (F / g) and the capacitance per volume (F / cm 3 ) of the bipolar activated carbon of the electric double layer capacitor were calculated.

実施例1:
石炭系ピッチを窒素雰囲気下500℃で加熱することで第一炭化処理を行った。次に第二炭化処理として630℃で1時間炭化処理を行い真密度1.47[g/cm]の原料炭化物を得た。得られた原料炭化物を粒径0.5mm以下になるまで粉砕した。
Example 1:
The first carbonization treatment was performed by heating the coal-based pitch at 500 ° C. in a nitrogen atmosphere. Next, as a second carbonization treatment, carbonization treatment was performed at 630 ° C. for 1 hour to obtain a raw material carbide having a true density of 1.47 [g / cm 3 ]. The obtained raw material carbide was pulverized until the particle size became 0.5 mm or less.

第四周期第8族元素を含む化合物である三酸化二鉄71.5[mg]に水10[g]を添加して、酸化鉄スラリーを得た。この酸化鉄スラリーに前記原料炭化物5.0[g]を添加して十分に混合して原料炭化物・酸化鉄の混合スラリーを調製した。得られた混合スラリーを110℃で終夜乾燥して原料炭化物・酸化鉄の混合物を得た。
原料炭化物・酸化鉄の混合物5[g]と水酸化カリウム(95%)15.7[g]をニッケル製容器(φ=40mm)に仕込み、バッチ型の賦活反応炉内に設置した。賦活反応炉内部を窒素で置換し、次いで昇温を開始した。反応炉を加熱している間中、窒素ガスを0.5[L/min]の流量で50℃の水にバブリングさせて、飽和水蒸気と同伴させて窒素を反応炉内部に供給した。
10 [g] of water was added to 71.5 [mg] of ferric trioxide, which is a compound containing a fourth periodic group 8 element, to obtain an iron oxide slurry. The raw material carbide 5.0 [g] was added to this iron oxide slurry and mixed well to prepare a raw material carbide / iron oxide mixed slurry. The obtained mixed slurry was dried at 110 ° C. overnight to obtain a mixture of raw material carbide and iron oxide.
A raw material carbide / iron oxide mixture 5 [g] and potassium hydroxide (95%) 15.7 [g] were charged into a nickel container (φ = 40 mm) and placed in a batch type activation reactor. The inside of the activation reaction furnace was replaced with nitrogen, and then the temperature increase was started. While the reaction furnace was heated, nitrogen gas was bubbled into water at 50 ° C. at a flow rate of 0.5 [L / min], and nitrogen was supplied into the reaction furnace along with saturated steam.

賦活反応は、反応炉温度を室温から400℃まで6.3[℃/min]の速度で昇温し400℃で30分間保持し、次いで720℃まで5.3[℃/min]の速度で昇温して720℃で15分間保持することで行った。賦活終了後、反応炉を720℃から590℃までを350℃/hr(約22分間)で降温し、さら約98分間かけて室温まで冷却した。
反応炉から取り出した活性炭をろ過、水洗することによってアルカリ成分を除去した。次いで100℃の0.1モル/Lの塩酸で煮沸洗浄することによって活性炭に付着していた鉄、ニッケルなどの金属不純物を溶解除去した。次いで該活性炭に100℃の熱水での煮沸洗浄処理とろ過・水洗処理とを繰り返し施して、活性炭の残留塩素を10ppm以下とし、得られた活性炭を110℃で終夜乾燥した。
得られた活性炭はBET比表面積が1960[m/g]であり、BJH法で求めた細孔容積分布が図2の通りであった。
In the activation reaction, the reactor temperature was raised from room temperature to 400 ° C. at a rate of 6.3 [° C./min], held at 400 ° C. for 30 minutes, and then up to 720 ° C. at a rate of 5.3 [° C./min]. The temperature was raised and held at 720 ° C. for 15 minutes. After the activation was completed, the temperature of the reactor was decreased from 720 ° C. to 590 ° C. at 350 ° C./hr (about 22 minutes), and further cooled to room temperature over about 98 minutes.
The activated carbon taken out from the reactor was filtered and washed with water to remove alkali components. Next, by boiling and washing with 0.1 mol / L hydrochloric acid at 100 ° C., metal impurities such as iron and nickel adhering to the activated carbon were dissolved and removed. Next, the activated carbon was repeatedly subjected to boiling washing treatment with hot water at 100 ° C. and filtration / water washing treatment to reduce the residual chlorine of the activated carbon to 10 ppm or less, and the obtained activated carbon was dried at 110 ° C. overnight.
The obtained activated carbon had a BET specific surface area of 1960 [m 2 / g], and the pore volume distribution determined by the BJH method was as shown in FIG.

図2に示すように細孔径2.1〜2.4nmの範囲にピークaが、細孔径1.7〜2.1nmの範囲にピークbが、細孔径1.4〜1.7nmの範囲にピークcが、細孔径1.1〜1.4nmの範囲にピークdがそれぞれあることがわかる。ピークa、ピークb、ピークc及びピークdそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c及び面積d)は、面積aを1としたときに、面積dが3.90,面積cが1.66,面積b=1.66であった。   As shown in FIG. 2, the peak a is in the range of pore diameter 2.1 to 2.4 nm, the peak b is in the range of pore diameter 1.7 to 2.1 nm, and the peak b is in the range of pore diameter 1.4 to 1.7 nm. It can be seen that the peak c has a peak d in the pore diameter range of 1.1 to 1.4 nm. The area (area a, area b, area c and area d) of the portion surrounded by the peak curve of each of peak a, peak b, peak c and peak d, each pore diameter range and the pore diameter axis is expressed as area a. When 1, the area d was 3.90, the area c was 1.66, and the area b = 1.66.

原料炭化物に金属化合物を添加しなかった比較例1と比べると、三酸化二鉄を添加したことによる細孔容積分布の制御の効果が認められる。
(CBF系/PC系電解液で2.7V充放電時の25℃における電極容量は27.7F/cmであり、−30℃における電極容量は24.5F/cmであった。容量保持率((−30℃の電極容量)/(25℃の電極容量))は0.88であった。
Compared with Comparative Example 1 in which the metal compound was not added to the raw material carbide, the effect of controlling the pore volume distribution by adding ferric trioxide is recognized.
(C 2 H 5 ) 4 BF 4 system / PC system electrolyte solution has an electrode capacity of 27.7 F / cm 3 at 25 ° C. during charge / discharge of 2.7 V, and an electrode capacity at −30 ° C. of 24.5 F / cm 3. 3 . The capacity retention ((−30 ° C. electrode capacity) / (25 ° C. electrode capacity)) was 0.88.

実施例2:
石炭系ピッチを窒素雰囲気下500℃で加熱することで第一炭化処理を行った。次に第二炭化処理として630℃で1時間炭化処理を行い真密度1.47[g/cm]の原料炭化物を得た。得られた原料炭化物を粒径0.5mm以下になるまで粉砕した。
Example 2:
The first carbonization treatment was performed by heating the coal-based pitch at 500 ° C. in a nitrogen atmosphere. Next, as a second carbonization treatment, carbonization treatment was performed at 630 ° C. for 1 hour to obtain a raw material carbide having a true density of 1.47 [g / cm 3 ]. The obtained raw material carbide was pulverized until the particle size became 0.5 mm or less.

第四周期第11族元素を含む化合物である酸化銅62.2[mg]に水10 [g]を添加して、酸化銅スラリーを得た。この酸化銅スラリーに前記原料炭化物5.0[g]を添加して十分に混合して原料炭化物・酸化銅の混合スラリーを調製した。得られた混合スラリーを110℃で終夜乾燥して原料炭化物・酸化銅の混合物を得た。
原料炭化物・酸化銅の混合物5[g]と水酸化カリウム(95%)15.7[g]をニッケル製容器(φ=40mm)に仕込み、バッチ型の賦活反応炉内に設置した。賦活反応炉内部を窒素で置換し、次いで昇温を開始した。反応炉を加熱している間中、窒素ガスを0.5[L/min]の流量で50℃の水にバブリングさせて、飽和水蒸気と同伴させて窒素を反応炉内部に供給した。
10 [g] of water was added to 62.2 [mg] of copper oxide, which is a compound containing the fourth group 11 element, to obtain a copper oxide slurry. The raw material carbide 5.0 [g] was added to this copper oxide slurry and mixed well to prepare a raw material carbide / copper oxide mixed slurry. The resulting mixed slurry was dried at 110 ° C. overnight to obtain a raw material carbide / copper oxide mixture.
A raw material carbide / copper oxide mixture 5 [g] and potassium hydroxide (95%) 15.7 [g] were charged into a nickel container (φ = 40 mm) and placed in a batch type activation reactor. The inside of the activation reaction furnace was replaced with nitrogen, and then the temperature increase was started. While the reaction furnace was heated, nitrogen gas was bubbled into water at 50 ° C. at a flow rate of 0.5 [L / min], and nitrogen was supplied into the reaction furnace along with saturated steam.

賦活反応は、反応炉温度を室温から400℃まで6.3[℃/min]の速度で昇温し400℃で30分間保持し、次いで720℃まで5.3[℃/min]の速度で昇温して720℃で15分間保持することで行った。賦活終了後、反応炉を720℃から590℃までを350℃/hr(約22分間)で降温し、さら約98分間かけて室温まで冷却した。
反応炉から取り出した活性炭をろ過、水洗することによってアルカリ成分を除去した。次いで100℃の0.1モル/Lの塩酸で煮沸洗浄することによって活性炭に付着している銅、ニッケルなどの金属不純物を溶解除去した。次いで該活性炭に100℃の熱水での煮沸洗浄処理とろ過・水洗処理とを繰り返し施して、活性炭の残留塩素を10ppm以下とし、得られた活性炭を110℃で終夜乾燥した。
得られた活性炭はBET比表面積が1707[m/g]であり、BJH法で求めた細孔容積分布が図2の通りであった。
In the activation reaction, the reactor temperature was raised from room temperature to 400 ° C. at a rate of 6.3 [° C./min], held at 400 ° C. for 30 minutes, and then up to 720 ° C. at a rate of 5.3 [° C./min]. The temperature was raised and held at 720 ° C. for 15 minutes. After the activation was completed, the temperature of the reactor was decreased from 720 ° C. to 590 ° C. at 350 ° C./hr (about 22 minutes), and further cooled to room temperature over about 98 minutes.
The activated carbon taken out from the reactor was filtered and washed with water to remove alkali components. Next, by boiling and washing with 0.1 mol / L hydrochloric acid at 100 ° C., metal impurities such as copper and nickel adhering to the activated carbon were dissolved and removed. Next, the activated carbon was repeatedly subjected to boiling washing treatment with hot water at 100 ° C. and filtration / water washing treatment to reduce the residual chlorine of the activated carbon to 10 ppm or less, and the obtained activated carbon was dried at 110 ° C. overnight.
The obtained activated carbon had a BET specific surface area of 1707 [m 2 / g], and the pore volume distribution determined by the BJH method was as shown in FIG.

図2に示すように細孔径2.1〜2.4nmの範囲にピークaが、細孔径1.7〜2.1nmの範囲にピークbが、細孔径1.4〜1.7nmの範囲にピークcが、細孔径1.1〜1.4nmの範囲にピークdがそれぞれあることがわかる。ピークa、ピークb、ピークc及びピークdそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c及び面積d)は、面積aを1としたときに、面積dが4.41,面積cが1.91,面積b=1.87であった。
原料炭化物に金属化合物を添加しなかった比較例と比べると、酸化銅を添加したことによる細孔容積分布の制御の効果が認められる。
(CBF系/PC系電解液で2.7V充放電時の25℃における電極容量は27.1F/cmであり、−30℃における電極容量は23.9F/cmであった。容量保持率((−30℃の電極容量)/(25℃の電極容量))は0.88であった。
As shown in FIG. 2, the peak a is in the range of pore diameter 2.1 to 2.4 nm, the peak b is in the range of pore diameter 1.7 to 2.1 nm, and the peak b is in the range of pore diameter 1.4 to 1.7 nm. It can be seen that the peak c has a peak d in the pore diameter range of 1.1 to 1.4 nm. The area (area a, area b, area c and area d) of the portion surrounded by the peak curve of each of peak a, peak b, peak c and peak d, each pore diameter range and the pore diameter axis is expressed as area a. When 1, the area d was 4.41, the area c was 1.91, and the area b = 1.87.
Compared with the comparative example in which the metal compound was not added to the raw material carbide, the effect of controlling the pore volume distribution by adding copper oxide is recognized.
(C 2 H 5 ) 4 BF 4 system / PC system electrolyte solution has an electrode capacity of 27.1 F / cm 3 at 25 ° C. during charge / discharge of 2.7 V, and an electrode capacity of −33.9 F / cm at −30 ° C. 3 . The capacity retention ((−30 ° C. electrode capacity) / (25 ° C. electrode capacity)) was 0.88.

実施例3:
石炭系ピッチを窒素雰囲気下で500℃に加熱することで第一炭化処理を行った。次に第二炭化処理として630℃で1時間炭化処理を行い真密度1.47[g/cm]の原料炭化物を得た。得られた原料炭化物を粒径0.5 mm以下になるまで粉砕した。
第四周期第4族元素を含む化合物である二酸化チタン83.2[mg]に水10[g]を添加して、二酸化チタンスラリーを得た。この二酸化チタンスラリーに前記原料炭化物5.0[g]を添加して十分に混合して原料炭化物・二酸化チタンの混合スラリーを調製した。得られた混合スラリーを110℃で終夜乾燥して原料炭化物・二酸化チタンの混合物を得た。
原料炭化物・二酸化チタンの混合物5[g]と水酸化カリウム(95%)15.7[g]をニッケル製容器(φ=40mm)に仕込み、バッチ型の賦活反応炉内に設置した。賦活反応炉内部を窒素で置換し、次いで昇温を開始した。反応炉を加熱している間中、窒素ガスを0.5[L/min]の流量で50℃の水にバブリングさせて、飽和水蒸気と同伴させて窒素を反応炉内部に供給した。
Example 3:
The first carbonization treatment was performed by heating the coal-based pitch to 500 ° C. in a nitrogen atmosphere. Next, as a second carbonization treatment, carbonization treatment was performed at 630 ° C. for 1 hour to obtain a raw material carbide having a true density of 1.47 [g / cm 3 ]. The obtained raw material carbide was pulverized until the particle size became 0.5 mm or less.
10 [g] of water was added to 83.2 [mg] of titanium dioxide, which is a compound containing the fourth periodic group 4 element, to obtain a titanium dioxide slurry. The raw material carbide 5.0 [g] was added to the titanium dioxide slurry and mixed well to prepare a raw material carbide / titanium dioxide mixed slurry. The obtained mixed slurry was dried at 110 ° C. overnight to obtain a mixture of raw material carbide / titanium dioxide.
A raw material carbide / titanium dioxide mixture 5 [g] and potassium hydroxide (95%) 15.7 [g] were charged into a nickel container (φ = 40 mm) and placed in a batch type activation reactor. The inside of the activation reaction furnace was replaced with nitrogen, and then the temperature increase was started. While the reaction furnace was heated, nitrogen gas was bubbled into water at 50 ° C. at a flow rate of 0.5 [L / min], and nitrogen was supplied into the reaction furnace along with saturated steam.

賦活反応は、反応炉温度を室温から400℃まで6.3[℃/min]の速度で昇温し400℃で30分間保持し、次いで720℃まで5.3[℃/min]の速度で昇温して720℃で15分間保持することで行った。賦活終了後、反応炉を720℃から590℃までを350℃/hr(約22分間)で降温し、さらに約98分間かけて室温まで冷却した。
反応炉から取り出した活性炭をろ過、水洗することによってアルカリ成分を除去した。次いで100℃の0.1モル/Lの塩酸で煮沸洗浄することによって活性炭に付着しているチタン、ニッケルなどの金属不純物を溶解除去した。次いで該活性炭に100℃の熱水での煮沸洗浄処理とろ過・水洗処理とを繰り返し施して、活性炭の残留塩素を10ppm以下とし、得られた活性炭を110℃で終夜乾燥した。
得られた活性炭は、BET比表面積が1707[m/g]であり、BJH法で求めた細孔容積分布が図2の通りであった。
In the activation reaction, the reactor temperature was raised from room temperature to 400 ° C. at a rate of 6.3 [° C./min], held at 400 ° C. for 30 minutes, and then up to 720 ° C. at a rate of 5.3 [° C./min]. The temperature was raised and held at 720 ° C. for 15 minutes. After completion of activation, the temperature of the reactor was decreased from 720 ° C. to 590 ° C. at 350 ° C./hr (about 22 minutes), and further cooled to room temperature over about 98 minutes.
The activated carbon taken out from the reactor was filtered and washed with water to remove alkali components. Subsequently, metal impurities such as titanium and nickel adhering to the activated carbon were dissolved and removed by boiling and washing with 0.1 mol / L hydrochloric acid at 100 ° C. Next, the activated carbon was repeatedly subjected to boiling washing treatment with hot water at 100 ° C. and filtration / water washing treatment to reduce the residual chlorine of the activated carbon to 10 ppm or less, and the obtained activated carbon was dried at 110 ° C. overnight.
The obtained activated carbon had a BET specific surface area of 1707 [m 2 / g], and the pore volume distribution determined by the BJH method was as shown in FIG.

図2に示すとおり細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、細孔径0.8〜1.1nmの範囲にピークeを有し、細孔径0.4〜0.8nmの範囲にピークfを有し、且つピークa、ピークb、ピークc、ピークd、ピークe及びピークfそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c、面積d、面積e及び面積f)が、面積aを1としたときに、面積fが2.4、面積eが2.38、面積dが4.73、面積cが2.21、面積bが2.03であった。   As shown in FIG. 2, it has a peak a in the pore diameter range of 2.1 to 2.4 nm, a peak b in the pore diameter range of 1.7 to 2.1 nm, and a pore diameter of 1.4 to 1.7 nm. Having a peak c in the range of pore diameter 1.1 to 1.4 nm, a peak e in the range of pore diameter 0.8 to 1.1 nm, and a pore diameter of 0.4 A portion having a peak f in a range of ˜0.8 nm and surrounded by a peak curve of each of peak a, peak b, peak c, peak d, peak e, and peak f, each pore diameter range, and a pore diameter axis Area (area a, area b, area c, area d, area e, and area f) where area a is 1, area f is 2.4, area e is 2.38, and area d is 4 0.73, area c was 2.21, and area b was 2.03.

原料炭化物に金属化合物を添加しなかった比較例と比べると、二酸化チタンを添加したことによる細孔容積分布の制御の効果が認められる。
(CBF系/PC系電解液で2.7V充放電時の25℃における電極容量は24.9F/cmであり、−30℃における電極容量は23.2F/cmであった。容量保持率((−30℃の電極容量)/(25℃の電極容量))は0.93であった。
Compared with the comparative example in which the metal compound was not added to the raw material carbide, the effect of controlling the pore volume distribution by adding titanium dioxide is recognized.
(C 2 H 5 ) 4 BF 4 system / PC system electrolyte solution has an electrode capacity of 24.9 F / cm 3 at 25 ° C. during charge / discharge of 2.7 V, and an electrode capacity at −30 ° C. of 23.2 F / cm 3. 3 . The capacity retention ((−30 ° C. electrode capacity) / (25 ° C. electrode capacity)) was 0.93.

比較例1:
フェノール系樹脂を原料とした市販アルカリ賦活活性炭MSP−20(関西熱化学製)を試料とした。この活性炭の比表面積は2210m/gであった。該活性炭に対して、カーボンブラック9質量%とPTFE10質量%を乾式混合した後、該混合粉に有機溶剤を添加して膨潤させてから混練し、圧延した後200℃で真空乾燥させ電極材料を作製した。(CNBF/PC系2.5V充放電時の電気容量(25℃)39.2F/g,24.3F/cmであり、容量保持率((−30℃の電極容量)/(25℃の電極容量))は0.61であった。活性炭の細孔分布を図2に示す。
Comparative Example 1:
Commercially available alkali-activated activated carbon MSP-20 (manufactured by Kansai Heat Chemical Co., Ltd.) using phenolic resin as a raw material was used as a sample. The specific surface area of this activated carbon was 2210 m 2 / g. After 9% by mass of carbon black and 10% by mass of PTFE are dry-mixed with respect to the activated carbon, an organic solvent is added to the mixed powder to swell, knead, roll, and vacuum dry at 200 ° C. to obtain an electrode material. Produced. (C 2 H 5 ) 4 NBF 4 / PC system 2.5 V charge / discharge electric capacity (25 ° C.) 39.2 F / g, 24.3 F / cm 3 , capacity retention ratio ((−30 ° C. electrode (Capacity) / (electrode capacity at 25 ° C.)) was 0.61. The pore distribution of the activated carbon is shown in FIG.

Figure 0004576374
Figure 0004576374

参考例1
軟化点86℃の石炭ピッチを560℃で第一炭化処理を行った。次に、630℃で第二炭化処理を行って易黒鉛化性炭素化物を得た。得られた易黒鉛化性炭素化物1000g(粉砕後の平均粒径3.5μm)に炭酸カルシウム粉25gを添加しヘンシェルミキサーにて60秒間混合した。該混合炭素粉に質量比で2.8倍量のKOH微粉をボールミルで混合し、Ni製容器(300mm×300mm×3t×高さ10mm)に充填した。該容器をバッチ賦活炉(分割式加熱炉、富士電波工業製)にて熱処理した。賦活条件は、N2雰囲気下、昇温速度5℃/分にて温度を上げ、400℃で30分間保持し、さらに最高賦活温度720℃に温度を上げ15分間保持し、次いで720℃から590℃までを80℃/hr(約98分間)で降温させた。さらに、N2雰囲気下で100℃以下まで炉内温度を下げ、Ni製容器を炉から空気中に取出した。反応生成物(賦活した炭素粉は以下活性炭と記する)を1N−塩酸で中和し、0.1N−塩酸で煮沸洗浄を2回実施して金属不純物を除去した。次に蒸留水で煮沸洗浄を2回実施して残留Cl及び金属不純物を除去した。これを110℃で熱風乾燥し、330メッシュ篩と磁選機(磁力12000G)を通して平均粒径4.6μmの活性炭を得た。
Reference example 1 :
The first carbonization treatment was performed at 560 ° C on a coal pitch having a softening point of 86 ° C. Next, the second carbonization treatment was performed at 630 ° C. to obtain a graphitizable carbonized product. 25 g of calcium carbonate powder was added to 1000 g of the easily graphitizable carbonized material (average particle size after pulverization 3.5 μm) and mixed for 60 seconds with a Henschel mixer. The mixed carbon powder was mixed with 2.8 times the mass KOH fine powder by a ball mill and filled in a Ni container (300 mm × 300 mm × 3 t × height 10 mm). The vessel was heat-treated in a batch activation furnace (split heating furnace, manufactured by Fuji Denpa Kogyo). The activation conditions were as follows: the temperature was raised at a rate of temperature increase of 5 ° C./min in an N 2 atmosphere, held at 400 ° C. for 30 minutes, further raised to the maximum activation temperature of 720 ° C. and held for 15 minutes, and then from 720 ° C. to 590 ° C. The temperature was lowered to 80 ° C./hr (about 98 minutes). Furthermore, the temperature in the furnace was lowered to 100 ° C. or lower under an N 2 atmosphere, and the Ni container was taken out from the furnace into the air. The reaction product (activated carbon powder is hereinafter referred to as activated carbon) was neutralized with 1N hydrochloric acid, and boiled and washed twice with 0.1N hydrochloric acid to remove metal impurities. Next, boiling boiling was performed twice with distilled water to remove residual Cl and metal impurities. This was dried with hot air at 110 ° C., and activated carbon having an average particle size of 4.6 μm was obtained through a 330 mesh sieve and a magnetic separator (magnetic force 12000 G).

この活性炭の比表面積は2020m/gであり、細孔径10〜15Åの細孔容積0.033cc/gであった。該活性炭に対してカーボンブラック9質量%とPTFE(ポリテトラフルオロエチレン)10質量%を乾式混合した。該乾式混合粉に有機溶剤を添加して膨潤させて、次いで混練し、圧延して、さらに200℃で真空乾燥して電極材料を作製した。(CNBF系/PC系電解液で2.5V充放電時の25℃における電気容量は41.0F/g,23.8F/cmであり、−30℃低温時の容量は22.1F/cmであり、容量保持率は93%であった。活性炭の細孔分布は図3に示すとおりであった。 This activated carbon had a specific surface area of 2020 m 2 / g and a pore volume of 0.033 cc / g with a pore diameter of 10 to 15 mm. Carbon black 9 mass% and PTFE (polytetrafluoroethylene) 10 mass% were dry-mixed with respect to the activated carbon. An organic solvent was added to the dry mixed powder to swell, then kneaded, rolled, and vacuum dried at 200 ° C. to produce an electrode material. (C 2 H 5 ) 4 NBF 4 system / PC system electrolyte at 2.5V charge / discharge at 25 ° C. is 41.0 F / g, 23.8 F / cm 3 , at −30 ° C. low temperature The capacity was 22.1 F / cm 3 and the capacity retention was 93%. The pore distribution of the activated carbon was as shown in FIG.

参考例2
軟化点86℃の石炭ピッチに炭酸カルシウムを3質量%添加し、560℃で第一炭化処理を行った(昇温速度:5℃/hr、560℃での保持時間:10時間)。次いで640℃で第二炭化処理(昇温速度:50℃/hr、640℃での保持時間:1時間)を行って、易黒鉛化性炭素化物を得た。この易黒鉛化性炭素化物1000g(粉砕後の平均粒径3.5μm)に質量比で3.0倍量のKOH微粉を添加しボールミルで混合し、Ni製容器(600φ×3t×高さ1050mm)に充填した。該容器を連続賦活炉(ローラーハースキルン、ノリタケカンパニー製)にて熱処理した。賦活条件は、N2雰囲気下、昇温速度5℃/分にて温度を上げ、400℃で30分間、その温度を保持し、さら最高賦活温度740℃に温度を上げ15分間保持し、次いで740℃から590℃ までを280℃/hr(約32分間)で降温させた。N2雰囲気下で100℃以下まで炉内温度を下げ、Ni製容器を炉から空気中に取出した。反応生成物(賦活した炭素粉は以下活性炭と記する)を1N−塩酸で中和し、0.1N−塩酸で煮沸洗浄を4回実施して金属不純物を除去した。次に蒸留水で煮沸洗浄を5回実施して残留Cl及び金属不純物を除去した。これを110℃で熱風乾燥し、330メッシュ篩と磁選機(磁力12000G)を通して平均粒径4.5μmの活性炭を得た。
Reference example 2 :
3% by mass of calcium carbonate was added to a coal pitch having a softening point of 86 ° C., and a first carbonization treatment was performed at 560 ° C. (temperature increase rate: 5 ° C./hr, retention time at 560 ° C .: 10 hours). Subsequently, a second carbonization treatment (temperature increase rate: 50 ° C./hr, holding time at 640 ° C .: 1 hour) was performed at 640 ° C. to obtain an easily graphitizable carbonized product. To 1000 g of this graphitizable carbonized product (average particle diameter after grinding: 3.5 μm), KOH fine powder of 3.0 times the mass ratio is added and mixed with a ball mill, and a Ni container (600φ × 3t × height 1050 mm) ). The container was heat-treated in a continuous activation furnace (Roller Hearth Kiln, manufactured by Noritake Company). The activation conditions were as follows: the temperature was increased at a rate of temperature increase of 5 ° C./min in an N 2 atmosphere, the temperature was maintained at 400 ° C. for 30 minutes, the temperature was further increased to the maximum activation temperature of 740 ° C. and maintained for 15 minutes, The temperature was decreased from 740 ° C. to 590 ° C. at 280 ° C./hr (about 32 minutes). The temperature in the furnace was lowered to 100 ° C. or lower under an N 2 atmosphere, and the Ni container was taken out of the furnace into the air. The reaction product (activated carbon powder is hereinafter referred to as activated carbon) was neutralized with 1N-hydrochloric acid, and washed with boiling with 0.1N-hydrochloric acid four times to remove metal impurities. Next, boiling boiling was performed 5 times with distilled water to remove residual Cl and metal impurities. This was dried with hot air at 110 ° C., and activated carbon having an average particle diameter of 4.5 μm was obtained through a 330 mesh sieve and a magnetic separator (magnetic force 12000 G).

この活性炭の比表面積は2030m/gであり、細孔径1.0〜1.5nmの細孔容積のピーク値は0.034cm/gであった。該活性炭に対してカーボンブラック9質量%とPTFE(ポリテトラフルオロエチレン)10質量%を乾式混合した。該混合粉に有機溶剤を添加して膨潤させて、次いで混練し、圧延して、さらに200℃で真空乾燥して電極材料を作製した。LiPF/EC/DEC系電解液で2.5V充放電時の電気容量は40.6F/g、23.6F/cmであり、−30℃低温時の容量保持率は85%であった。活性炭の細孔分布は図3に示すとおりであった。 The specific surface area of this activated carbon was 2030 m 2 / g, and the peak value of the pore volume with a pore diameter of 1.0 to 1.5 nm was 0.034 cm 3 / g. Carbon black 9 mass% and PTFE (polytetrafluoroethylene) 10 mass% were dry-mixed with respect to the activated carbon. An organic solvent was added to the mixed powder to swell, then kneaded, rolled, and further vacuum dried at 200 ° C. to produce an electrode material. The capacitance of LiPF 6 / EC / DEC electrolyte was 40.6 F / g and 23.6 F / cm 3 when charged and discharged at 2.5 V, and the capacity retention rate at low temperature of −30 ° C. was 85%. . The pore distribution of the activated carbon was as shown in FIG.

Figure 0004576374
Figure 0004576374

表1または表2に示されるように、鉄、銅などの元素を含む化合物Zの存在下にピッチを炭素化処理したものは、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、且つ、ピークa、ピークb、ピークc及びピークdそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c及び面積d)が、面積aを1としたときに、面積dが3.7〜4.8、面積cが1.6〜2.3、面積bが1.6〜2.1の範囲にある活性炭が得られる。   As shown in Table 1 or Table 2, the pitch carbonized in the presence of the compound Z containing elements such as iron and copper is the pore determined by the BJH method from the nitrogen adsorption isotherm of 77.4K. The volume distribution has a peak a in the range of pore diameter 2.1 to 2.4 nm, a peak b in the range of pore diameter 1.7 to 2.1 nm, and a pore diameter of 1.4 to 1.7 nm. It has a peak c in the range, a peak d in the pore diameter range of 1.1 to 1.4 nm, a peak curve of each of peak a, peak b, peak c and peak d, and each pore size range When the area (area a, area b, area c, and area d) of the portion surrounded by the hole diameter axis is 1, the area d is 3.7 to 4.8 and the area c is 1. Activated carbon having 6 to 2.3 and area b in the range of 1.6 to 2.1 is obtained.

また、チタンなどの元素を含む化合物Zの存在下にピッチを炭素化処理したものは、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、細孔径0.8〜1.1nmの範囲にピークeを有し、細孔径0.4〜0.8nmの範囲にピークfを有し、且つピークa、ピークb、ピークc、ピークd、ピークe及びピークfそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c、面積d、面積e及び面積f)が、面積aを1としたときに、面積fが2.2〜2.5、面積eが2.3〜2.5、面積dが4.6〜4.8、面積cが2.1〜2.3、面積bが1.9〜2.1の範囲にある活性炭が得られることがわかる。
そして、このような活性炭を用いると低温度下での容量保持率に優れた電気二重層キャパシタが得られることがわかる。
In addition, when carbonizing the pitch in the presence of the compound Z containing an element such as titanium, the pore diameter distribution is 2.1 to 2 in the pore volume distribution determined by the BJH method from the nitrogen adsorption isotherm of 77.4K. It has a peak a in the range of 0.4 nm, a peak b in the range of pore diameter 1.7 to 2.1 nm, a peak c in the range of pore diameter 1.4 to 1.7 nm, and a pore diameter of 1 .Has a peak d in the range of 1 to 1.4 nm, has a peak e in the range of pore diameters of 0.8 to 1.1 nm, and has a peak f in the range of pore diameters of 0.4 to 0.8 nm. , And the areas (area a, area b, area c, and the area surrounded by the peak curve of each of peak a, peak b, peak c, peak d, peak e, and peak f and each pore diameter range and pore diameter axis). Area d, area e, and area f) where area a is 1, area f is 2.2-2. Activated carbon having an area e of 2.3 to 2.5, an area d of 4.6 to 4.8, an area c of 2.1 to 2.3, and an area b of 1.9 to 2.1. It turns out that it is obtained.
And when such activated carbon is used, it turns out that the electrical double layer capacitor excellent in the capacity | capacitance retention under low temperature is obtained.

電気二重層キャパシタ評価用セルの断面図。Sectional drawing of the electric double layer capacitor evaluation cell. 実施例1〜3及び比較例1で得られた活性炭の細孔径の分布図。The distribution diagram of the pore diameter of the activated carbon obtained in Examples 1 to 3 and Comparative Example 1. 参考例1及び2で得られた活性炭の細孔径の分布図。The distribution diagram of the pore diameter of the activated carbon obtained in Reference Examples 1 and 2.

符号の説明Explanation of symbols

1:上蓋; 2:Oリング; 3:集電体; 4:絶縁体; 5:容器; 6:板ばね; 7:電極; 8:セパレータ
a:ピークa; b:ピークb; c:ピークc; d:ピークd
1: O-ring; 2: O-ring; 3: Current collector; 4: Insulator; 5: Container; 6: Leaf spring; 7: Electrode; 8: Separator a: Peak a; b: Peak b; D: peak d

Claims (33)

周期律表第4周期第3族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを用いて得られた活性炭であって、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、且つ、ピークa、ピークb、ピークc及びピークdそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c及び面積d)が、面積aを1としたときに、面積dが3.7〜4.8、面積cが1.6〜2.3、及び面積bが1.6〜2.1の範囲にある活性炭。 An activated carbon obtained by using a compound Z containing any element of Group 4 to Group 11 of Periodic Table 4 or Group 4 element of Period 5 of the periodic table, from a nitrogen adsorption isotherm of 77.4K In the pore volume distribution determined by the BJH method, peak a is in the range of pore diameter 2.1 to 2.4 nm, peak b is in the range of pore diameter 1.7 to 2.1 nm, and pore diameter 1 Peak c in the range of 0.4 to 1.7 nm, peak d in the range of pore diameter 1.1 to 1.4 nm, and peak curves of peak a, peak b, peak c and peak d, respectively When the area (area a, area b, area c, and area d) of the portion surrounded by each pore diameter range and the pore diameter axis is defined as 1, the area d is 3.7-4. 8, activated carbon having an area c in the range of 1.6 to 2.3 and an area b in the range of 1.6 to 2.1. 周期律表第4周期第3族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを用いて得られた活性炭であって、77.4Kの窒素吸着等温線からBJH法により求めた細孔容積分布において、細孔径2.1〜2.4nmの範囲にピークaを有し、細孔径1.7〜2.1nmの範囲にピークbを有し、細孔径1.4〜1.7nmの範囲にピークcを有し、細孔径1.1〜1.4nmの範囲にピークdを有し、細孔径0.8〜1.1nmの範囲にピークeを有し、細孔径0.4〜0.8nmの範囲にピークfを有し、且つピークa、ピークb、ピークc、ピークd、ピークe及びピークfそれぞれのピーク曲線と各細孔径範囲と細孔径軸とで囲まれた部分の面積(面積a、面積b、面積c、面積d、面積e及び面積f)が、面積aを1としたときに、面積fが2.2〜2.5、面積eが2.3〜2.5、面積dが4.6〜4.8、面積cが2.1〜2.3、及び面積bが1.9〜2.1の範囲にある活性炭。 An activated carbon obtained by using a compound Z containing any element of Group 4 to Group 11 of Periodic Table 4 or Group 4 element of Period 5 of the periodic table, from a nitrogen adsorption isotherm of 77.4K In the pore volume distribution determined by the BJH method, peak a is in the range of pore diameter 2.1 to 2.4 nm, peak b is in the range of pore diameter 1.7 to 2.1 nm, and pore diameter 1 It has a peak c in the range of 0.4 to 1.7 nm, a peak d in the range of pore diameter 1.1 to 1.4 nm, and a peak e in the range of pore diameter 0.8 to 1.1 nm. , Having a peak f in the pore diameter range of 0.4 to 0.8 nm, and a peak curve of each of peak a, peak b, peak c, peak d, peak e and peak f, each pore diameter range and pore diameter axis. The area (area a, area b, area c, area d, area e, and area f) surrounded by When a is 1, the area f is 2.2 to 2.5, the area e is 2.3 to 2.5, the area d is 4.6 to 4.8, and the area c is 2.1 to 2. 3, and activated carbon whose area b is in the range of 1.9 to 2.1. 元素濃度で7000ppm以上の周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zの存在下に、ピッチを炭素化処理して真密度1.44〜1.52g/cm3の易黒鉛化性炭素化物を得、アルカリ金属化合物の存在下に、前記易黒鉛化性炭素化物を賦活処理し、次いで、この賦活された混合物を洗浄することを含む活性炭の製造方法。 In the presence of the compound Z comprising any element or 5th period fourth group element of the fourth period Group 3 to Group 11 Group or of the Periodic Table 7000ppm elemental concentration, true density by treating carbonized pitch 1.44 to 1.52 g / cm 3 of an easily graphitizable carbonized product is obtained, and the graphitizable carbonized product is activated in the presence of an alkali metal compound, and then the activated mixture is washed. The manufacturing method of activated carbon including this. ピッチを炭素化処理して真密度1.44〜1.52g/cm3の易黒鉛化性炭素化物を得、該炭素化物に元素濃度で7000ppm以上の周期律表第4周期第族〜第11族のいずれかの元素又は第5周期第4族元素を含む化合物Zを混合して混合物を得、アルカリ金属化合物の存在下に、前記混合物を賦活処理し、次いで、この賦活された混合物を洗浄することを含む活性炭の製造方法。 The pitch is carbonized to obtain an easily graphitizable carbonized product having a true density of 1.44 to 1.52 g / cm 3 , and the carbonized product has an element concentration of 7000 ppm or more in the periodic table 4th period group 3 to group 4 A compound Z containing any element of Group 11 or Group 5 element of 5th period is mixed to obtain a mixture, and the mixture is activated in the presence of an alkali metal compound. The manufacturing method of activated carbon including washing | cleaning. ピッチは、その軟化点が100℃以下である請求項3又は4に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 3 or 4, wherein the pitch has a softening point of 100 ° C or lower. ピッチが石炭系ピッチ若しくは石油系ピッチ又はこれらの有機溶媒可溶分である請求項3又は4に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 3 or 4, wherein the pitch is coal-based pitch or petroleum-based pitch or an organic solvent-soluble component thereof. 化合物Zが、チタン、マンガン、鉄、コバルト、ニッケル、銅、及びジルコニウムからなる群から選ばれる少なくとも1種の元素を含む化合物である請求項3〜6のいずれかに記載の活性炭の製造方法。 Compounds wherein Z, titanium, manganese, iron, cobalt, nickel, copper, and a method of producing activated carbon according to any one of claims 3 to 6 is a compound containing at least one element selected from the group consisting of zirconium . 化合物Zが、金属単体、酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫化物、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも1種の化合物である請求項3〜7のいずれかに記載の活性炭の製造方法。   Compound Z is at least one compound selected from the group consisting of simple metals, oxides, hydroxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates and nitrates. The method for producing activated carbon according to any one of claims 3 to 7. 賦活処理時の最高温度を700℃〜760℃の範囲にする請求項3〜8のいずかに記載の活性炭の製造方法。   The manufacturing method of the activated carbon in any one of Claims 3-8 which makes the maximum temperature at the time of an activation process into the range of 700 to 760 degreeC. 賦活処理時の最高温度での保持時間を30分間以内にする請求項3〜9のいずれかに記載の活性炭の製造方法。   The manufacturing method of the activated carbon in any one of Claims 3-9 which makes holding time in the maximum temperature at the time of activation processing within 30 minutes. 賦活処理時の最高温度から、590℃までに冷却するときの降温速度を60℃/hr以上にする請求項3〜10のいずれかに記載の活性炭の製造方法。   The manufacturing method of the activated carbon in any one of Claims 3-10 which makes the temperature-fall rate at the time of cooling to 590 degreeC from the maximum temperature at the time of an activation process 60 degreeC / hr or more. アルカリ金属化合物が、アルカリ金属水酸化物である請求項3〜11のいずれかに記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 3 to 11, wherein the alkali metal compound is an alkali metal hydroxide. アルカリ金属化合物が、カリウム、ナトリウム及びセシウムからなる群から選ばれる少なくとも1種の金属元素を含む化合物である請求項3〜12のいずれかに記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 3 to 12, wherein the alkali metal compound is a compound containing at least one metal element selected from the group consisting of potassium, sodium and cesium. 請求項1または2に記載の活性炭とカーボンブラックと結合剤とを含有する分極性電極。   A polarizable electrode comprising the activated carbon according to claim 1 or 2, carbon black, and a binder. 請求項1または2に記載の活性炭と気相法炭素繊維とカーボンブラックと結合剤とを含有する分極性電極。   A polarizable electrode comprising the activated carbon according to claim 1 or 2, vapor-grown carbon fiber, carbon black, and a binder. 活性炭に対する気相法炭素繊維の混合量が0.1〜20質量%である請求項15に記載の分極性電極。   The polarizable electrode according to claim 15, wherein the mixed amount of the vapor grown carbon fiber with respect to the activated carbon is 0.1 to 20% by mass. 気相法炭素繊維は、内部に中空構造を有し、その比表面積が10〜50m2/g、平均繊維径が50〜500nm、アスペクト比が5〜1000である請求項15または16に記載の分極性電極。 The vapor grown carbon fiber has a hollow structure therein, a specific surface area of 10 to 50 m 2 / g, an average fiber diameter of 50 to 500 nm, and an aspect ratio of 5 to 1000. Polarized electrode. 結合剤が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、アクリレート系ゴムまたはブタジエン系ゴムである請求項14〜17のいずれかに記載の分極性電極。   The polarizable electrode according to any one of claims 14 to 17, wherein the binder is polytetrafluoroethylene, polyvinylidene fluoride, acrylate rubber or butadiene rubber. 請求項14〜18のいずれかに記載の分極性電極を用いた電気二重層キャパシタ。   The electric double layer capacitor using the polarizable electrode in any one of Claims 14-18. 請求項1または2に記載の活性炭を含有するスラリー。   A slurry containing the activated carbon according to claim 1 or 2. 請求項1または2に記載の活性炭を含有するペースト。   A paste containing the activated carbon according to claim 1. 請求項1または2に記載の活性炭が表面に塗布された電極シート。   An electrode sheet on which the activated carbon according to claim 1 or 2 is applied. 請求項19に記載の電気二重層キャパシタを含む電源システム。 A power supply system including the electric double layer capacitor according to claim 19 . 請求項23に記載の電源システムを使用した自動車。 An automobile using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した鉄道。 A railway using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した船舶。 A ship using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した航空機。 An aircraft using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した携帯電話。 A mobile phone using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した事務機器。 An office machine using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した太陽電池発電システム。 A solar cell power generation system using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した風力発電システム。 A wind power generation system using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した通信機器。 A communication apparatus using the power supply system according to claim 23 . 請求項23に記載の電源システムを使用した電子タグ。 An electronic tag using the power supply system according to claim 23 .
JP2006339685A 2005-12-16 2006-12-18 Activated carbon, its production method and its use Expired - Fee Related JP4576374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339685A JP4576374B2 (en) 2005-12-16 2006-12-18 Activated carbon, its production method and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005362773 2005-12-16
JP2006339685A JP4576374B2 (en) 2005-12-16 2006-12-18 Activated carbon, its production method and its use

Publications (2)

Publication Number Publication Date
JP2007186411A JP2007186411A (en) 2007-07-26
JP4576374B2 true JP4576374B2 (en) 2010-11-04

Family

ID=38341841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339685A Expired - Fee Related JP4576374B2 (en) 2005-12-16 2006-12-18 Activated carbon, its production method and its use

Country Status (1)

Country Link
JP (1) JP4576374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242210B2 (en) * 2008-03-24 2013-07-24 新日鉄住金化学株式会社 Non-aqueous electrolyte secondary battery negative electrode active material and method for producing non-aqueous electrolyte secondary battery
JP2009272455A (en) * 2008-05-08 2009-11-19 Showa Denko Kk Electrochemical capacitor
JP5503196B2 (en) * 2009-06-19 2014-05-28 関西熱化学株式会社 Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
WO2012029918A1 (en) * 2010-09-02 2012-03-08 イビデン株式会社 Porous carbon material, electrode for capacitor, electrode for hybrid capacitor, electrode for lithium ion capacitor, capacitor, hybrid capacitor, and lithium ion capacitor
US8809231B2 (en) * 2011-09-28 2014-08-19 Corning Incorporated Method for making alkali activated carbon
CN107924767B (en) * 2015-09-10 2019-08-27 株式会社科特拉 Lithium-ion capacitor and carbon material as its positive active material
KR102342374B1 (en) 2016-11-15 2021-12-22 주식회사 쿠라레 Carbonaceous material for electric double layer capacitors and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175660A (en) * 2002-11-13 2004-06-24 Showa Denko Kk Activated carbon, method of manufacturing the same and polarizable electrode
JP2007186403A (en) * 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286657A (en) * 2003-09-11 2006-10-19 Honda Motor Co Ltd Method of manufacturing activated carbon for electrode of electric double layer capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175660A (en) * 2002-11-13 2004-06-24 Showa Denko Kk Activated carbon, method of manufacturing the same and polarizable electrode
JP2007186403A (en) * 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Also Published As

Publication number Publication date
JP2007186411A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
Shao et al. In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials
JP4533876B2 (en) Activated carbon and its production method and use
KR100932158B1 (en) Activated Carbon and Its Manufacturing Method
JP5322435B2 (en) Negative electrode active material for electricity storage devices
JP4576374B2 (en) Activated carbon, its production method and its use
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
US8842417B2 (en) High voltage electro-chemical double layer capacitor
JP4576371B2 (en) Activated carbon, its production method and use
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
WO2011081086A1 (en) Activated carbon for electric double-layer capacitor electrode and method for producing the same
JP2007305625A (en) Pseudo-capacitance capacitor
Zhou et al. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors
JP4117056B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JP3920310B1 (en) Positive electrode for electric double layer capacitor and electric double layer capacitor
JP2006004978A (en) Electrical double-layer capacitor
JP2002093667A (en) Carbon material for electric double-layer capacitor electrode
JP2007243153A (en) Electric double-layer capacitor and positive electrode thereof
JP4941952B2 (en) Activated carbon, its production method and its use
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP4916632B2 (en) Vapor grown carbon fiber and its use
JP5001791B2 (en) Carbon material for electric double layer capacitor electrode
JP2006216748A (en) Carbon composite powder for electrode for electric dipole layer capacitor and manufacturing method for carbon composite powder and electric dipole layer capacitor using carbon composite powder
JP4377610B2 (en) Porous carbon for electric double layer capacitor, method for producing the same, and electric double layer capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees