JP2020111505A - Activated carbon - Google Patents

Activated carbon Download PDF

Info

Publication number
JP2020111505A
JP2020111505A JP2020042335A JP2020042335A JP2020111505A JP 2020111505 A JP2020111505 A JP 2020111505A JP 2020042335 A JP2020042335 A JP 2020042335A JP 2020042335 A JP2020042335 A JP 2020042335A JP 2020111505 A JP2020111505 A JP 2020111505A
Authority
JP
Japan
Prior art keywords
pore volume
pore
activated carbon
less
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020042335A
Other languages
Japanese (ja)
Other versions
JP2020111505A5 (en
JP7428347B2 (en
Inventor
中野 智康
Tomoyasu Nakano
智康 中野
弘和 清水
Hirokazu Shimizu
弘和 清水
啓二 堺
Keiji Sakai
啓二 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AD'ALL CO Ltd
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Original Assignee
AD'ALL CO Ltd
Osaka Gas Chemicals Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AD'ALL CO Ltd, Osaka Gas Chemicals Co Ltd, Unitika Ltd filed Critical AD'ALL CO Ltd
Publication of JP2020111505A publication Critical patent/JP2020111505A/en
Publication of JP2020111505A5 publication Critical patent/JP2020111505A5/ja
Application granted granted Critical
Publication of JP7428347B2 publication Critical patent/JP7428347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Abstract

To provide an activated carbon with excellent equilibrium adsorption of dichloromethane.SOLUTION: An activated carbon which is characterized in that, of the pore volume calculated by QSDFT, the pore volume B (cc/g) of pores with a diameter of less than or equal to 1.5 nm is greater than or equal to 0.4 cc/g; of the pore volume calculated by QSDFT, the pore volume E (cc/g) of pores with a diameter of 0.65-1.0 nm is greater than or equal to 0.2 cc/g; further, of the pore volume calculated by QSDFT, the ratio (B/C) of the pore volume B to the pore volume C of pores with a diameter of less than or equal to 2.0 nm is 0.880-0.985.SELECTED DRAWING: None

Description

本発明は、活性炭及びその製造方法に関し、特に気相中のジクロロメタンを吸着させるのに好適な、活性炭及びその製造方法に関する。 The present invention relates to activated carbon and a method for producing the same, and particularly to activated carbon suitable for adsorbing dichloromethane in a gas phase and a method for producing the same.

従来、気相中又は液相中に存在する成分を活性炭によって吸着させ、これらの成分を除去する吸着除去技術が知られている。また、従来、活性炭による吸着除去技術は、有機溶剤を含むガスからの溶剤回収にも用いられている。 Conventionally, there is known an adsorption removal technique for adsorbing components existing in a gas phase or a liquid phase by activated carbon to remove these components. Further, conventionally, the adsorption removal technique using activated carbon has also been used for solvent recovery from a gas containing an organic solvent.

ジクロロメタン等の有機化合物に対し特に優れた吸着性能を有する活性炭繊維として、例えば、BET比表面積が700〜1500m2/g、全細孔容積が0.3〜0.7cc/g、細孔直径1nm以下のマイクロポア細孔(ミクロ孔)容積が全マイクロポア細孔容積の95%以上であり、かつ、温度25℃、相対湿度52%における水分吸着率が15%以下である、活性炭繊維が知られている(例えば、特許文献1参照)。該文献には、BET比表面積が700m2/g未満である場合には、吸着面積が小さすぎて、沸点が−30〜70℃の範囲内のたとえばジクロロメタンなどの有機化合物が十分に吸着されないという不具合があり、1500m2/gを超える場合、細孔が大きくなるため、沸点が−30〜70℃の範囲内のたとえばジクロロメタンなどの有機化合物が十分に吸着されないという不具合があることが記載されている。また、該文献には、細孔直径1nm以下のミクロ孔容積が全ミクロ孔容積の95%未満である場合には、細孔が大きくなりすぎて、沸点が−30〜70℃の範囲内のたとえばジクロロメタンなどの有機化合物が十分に吸着されないという不具合があることが記載されている。さらに、該文献には、温度25℃、相対湿度52%における水分吸着率が15%を超える場合には、細孔周辺に先に水分子が吸着されるため、その細孔には有機化合物の吸着量が吸着されず、その分低下してしまうという不具合があることが記載されている。 As the activated carbon fiber having particularly excellent adsorption performance for organic compounds such as dichloromethane, for example, BET specific surface area is 700 to 1500 m 2 /g, total pore volume is 0.3 to 0.7 cc/g, and pore diameter is 1 nm. Known activated carbon fibers have the following micropore pore volume (micropore) volume of 95% or more of the total micropore pore volume and a moisture adsorption rate of 15% or less at a temperature of 25° C. and a relative humidity of 52%. (For example, see Patent Document 1). According to the document, when the BET specific surface area is less than 700 m 2 /g, the adsorption area is too small to sufficiently adsorb an organic compound having a boiling point in the range of −30 to 70° C. such as dichloromethane. There is a problem, and when it exceeds 1500 m 2 /g, it is described that there is a problem that an organic compound such as dichloromethane having a boiling point in the range of −30 to 70° C. is not sufficiently adsorbed because the pores become large. There is. Further, in this document, when the micropore volume with a pore diameter of 1 nm or less is less than 95% of the total micropore volume, the pores become too large and the boiling point is within the range of -30 to 70°C. For example, it is described that an organic compound such as dichloromethane is not sufficiently adsorbed. Further, in this document, when the water adsorption rate at a temperature of 25° C. and a relative humidity of 52% exceeds 15%, water molecules are adsorbed first around the pores, so that the organic compound is not adsorbed in the pores. It is described that the amount of adsorption is not adsorbed and the amount is reduced accordingly.

特開2011−106051号公報JP, 2011-106051, A

特許文献1に開示された活性炭において、ジクロロメタンの平衡吸着量が不十分であるという問題があった。本発明は、上記問題を解決し、ジクロロメタンの平衡吸着量に優れた、活性炭の提供を主な目的とする。 The activated carbon disclosed in Patent Document 1 has a problem that the equilibrium adsorption amount of dichloromethane is insufficient. The main object of the present invention is to provide activated carbon which solves the above problems and is excellent in the equilibrium adsorption amount of dichloromethane.

上記課題を解決するため、本発明者等はジクロロメタン等の低沸点有機化合物の吸着に適する細孔構造の実現を検討した。具体的には、ジクロロメタン等の低沸点有機化合物の吸着に適すると考えられる細孔直径1nm以下のミクロ孔容量を維持或いは増大し、なお且つ共存する水分の影響を受けにくいよう、これより大きな細孔を適量備えさせることが有効であると考えた。 In order to solve the above problems, the present inventors have examined the realization of a pore structure suitable for adsorbing low-boiling organic compounds such as dichloromethane. Specifically, it is possible to maintain or increase the micropore volume with a pore diameter of 1 nm or less, which is considered to be suitable for the adsorption of low boiling point organic compounds such as dichloromethane, and to make it less susceptible to the coexisting water content. It was considered effective to provide a proper amount of holes.

また、このような比較的大きな細孔を適度に発達させることは、ジクロロメタン分子の細孔内拡散を補助する役割を果たすとも考えられ、平衡吸着だけではなく、通気処理においても有効であると考えた。 Further, it is considered that the appropriate development of such relatively large pores plays a role of assisting the diffusion of dichloromethane molecules in the pores, and is considered effective not only in equilibrium adsorption but also in aeration treatment. It was

そこで、本発明者等がさらに鋭意検討した結果、活性炭前駆体としてイットリウム化合物及び/又はバナジウム化合物を特定量含有させたものとし、賦活ガスを二酸化炭素として賦活をおこなうことにより、初めて、1nm以下の細孔の容積を維持しつつ、1nmを超える比較的大きな細孔径の別の細孔を適量備えさせることに成功した。さらに、検討を重ね、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)及び0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)を特定範囲とし、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、上記1.5nm以下の範囲の細孔径の細孔容積Bの割合(B/C)を特定範囲となるように制御し得られる活性炭が、ジクロロメタンの平衡吸着量に優れることを見出した。 Therefore, as a result of further intensive studies by the present inventors, it was assumed that a specific amount of a yttrium compound and/or a vanadium compound was contained as an activated carbon precursor, and the activation gas was activated as carbon dioxide, so that it was 1 nm or less for the first time. While maintaining the volume of the pores, it has succeeded in providing an appropriate amount of another pore having a relatively large pore diameter of more than 1 nm. Further, through repeated studies, among the pore volumes calculated by the QSDFT method, the pore volume B (cc/g) with a pore diameter in the range of 1.5 nm or less and the fine volume in the range of 0.65 nm or more and 1.0 nm or less. Within the pore volume calculated by the QSDFT method, the pore volume E (cc/g) of the pore diameter is set to a specific range, and the above-mentioned 1.5 nm with respect to the pore volume C of the pore diameter in the range of 2.0 nm or less. It has been found that the activated carbon obtained by controlling the ratio (B/C) of the pore volume B of the pore diameter in the following range to be in a specific range is excellent in the equilibrium adsorption amount of dichloromethane.

本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。 The present invention has been completed by further studies based on these findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上、
QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g以上、且つ、
QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985である、活性炭。
項2. 前記細孔容積C(cc/g)に対する、QSDFT法によって算出される細孔容積のうち、1.0nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(細孔容積A/細孔容積C)が0.5〜0.94である、項1に記載の活性炭。
項3. 前記細孔容積Cに対する前記細孔容積Bの割合(細孔容積B/細孔容積C)が0.90〜0.99である、項1又は2に記載の活性炭。
項4. 前記活性炭が繊維状活性炭である、項1〜3のいずれか1項に記載の活性炭。
項5. ジクロロメタン平衡吸着量が40質量%以上である、項1〜4のいずれか1項に記載の活性炭。
項6. 気相中のジクロロメタンを吸着させるために用いられる、項1〜5のいずれか1項に記載の活性炭。
項7. 項1〜6のいずれかに記載の活性炭を含む、ジクロロメタンの吸着剤。
項8. 項1〜6のいずれかに記載の活性炭を用いる、ジクロロメタンの吸着除去方法。
That is, the present invention provides the inventions of the following modes.
Item 1. Of the pore volume calculated by the QSDFT method, the pore volume B (cc/g) having a pore diameter in the range of 1.5 nm or less is 0.4 cc/g or more,
Of the pore volume calculated by the QSDFT method, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is 0.2 cc/g or more, and
In the pore volume calculated by the QSDFT method, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less is 0.880 to 0.985. , Activated carbon.
Item 2. The ratio of the pore volume A (cc/g) having a pore diameter in the range of 1.0 nm or less to the pore volume C (cc/g) in the pore volume calculated by the QSDFT method (pore volume A /The activated carbon according to item 1, wherein the pore volume C) is 0.5 to 0.94.
Item 3. Item 3. The activated carbon according to Item 1 or 2, wherein the ratio of the pore volume B to the pore volume C (pore volume B/pore volume C) is 0.90 to 0.99.
Item 4. Item 4. The activated carbon according to any one of Items 1 to 3, wherein the activated carbon is fibrous activated carbon.
Item 5. Item 5. The activated carbon according to any one of items 1 to 4, which has a dichloromethane equilibrium adsorption amount of 40% by mass or more.
Item 6. Item 6. The activated carbon according to any one of items 1 to 5, which is used for adsorbing dichloromethane in a gas phase.
Item 7. Item 7. An adsorbent for dichloromethane containing the activated carbon according to any one of items 1 to 6.
Item 8. Item 7. A method for adsorptive removal of dichloromethane using the activated carbon according to any one of Items 1 to 6.

本発明の活性炭によれば、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g以上、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985であることから、ジクロロメタンの平衡吸着量に優れたものとすることができる。 According to the activated carbon of the present invention, in the pore volume calculated by the QSDFT method, the pore volume B (cc/g) of pore diameters in the range of 1.5 nm or less is 0.4 cc/g or more, and the pore volume by the QSDFT method is Among the calculated pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm is 0.2 cc/g or more, and the pores calculated by the QSDFT method. Since the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter of 2.0 nm or less in the volume is 0.880 to 0.985, the equilibrium adsorption amount of dichloromethane Can be excellent.

実施例1の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。3 is a graph showing the pore size distribution of the activated carbon of Example 1 calculated by the QSDFT method. 実施例2の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。5 is a graph showing the pore size distribution of the activated carbon of Example 2 calculated by the QSDFT method. 実施例3の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。5 is a graph showing the pore size distribution of activated carbon of Example 3 calculated by the QSDFT method. 実施例4の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。5 is a graph showing the pore size distribution of the activated carbon of Example 4 calculated by the QSDFT method. 実施例5の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。5 is a graph showing the pore size distribution of activated carbon of Example 5 calculated by the QSDFT method. 実施例6の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 6 calculated by the QSDFT method. 実施例7の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 7 calculated by the QSDFT method. 実施例8の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of the activated carbon of Example 8 calculated by the QSDFT method. 実施例9の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 9 calculated by the QSDFT method. 実施例10の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 10 calculated by the QSDFT method. 実施例11の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of the activated carbon of Example 11 calculated by the QSDFT method. 実施例12の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 12 calculated by the QSDFT method. 実施例13の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 13 calculated by the QSDFT method. 実施例14の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 14 calculated by the QSDFT method. 実施例15の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 15 calculated by the QSDFT method. 実施例16の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 16 calculated by the QSDFT method. 実施例17の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。20 is a graph showing the pore size distribution of activated carbon of Example 17 calculated by the QSDFT method. 実施例18の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Example 18 calculated by the QSDFT method. 比較例1の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。5 is a graph showing the pore size distribution of the activated carbon of Comparative Example 1 calculated by the QSDFT method. 比較例2の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。5 is a graph showing the pore size distribution of activated carbon of Comparative Example 2 calculated by the QSDFT method. 比較例3の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。7 is a graph showing a pore size distribution of activated carbon of Comparative Example 3 calculated by the QSDFT method. 比較例4の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing a pore size distribution of activated carbon of Comparative Example 4 calculated by the QSDFT method. 比較例5の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing a pore size distribution of activated carbon of Comparative Example 5 calculated by the QSDFT method. 比較例6の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing the pore size distribution of activated carbon of Comparative Example 6 calculated by the QSDFT method. 比較例7の活性炭のQSDFT法によって算出される細孔径分布を示すグラフである。9 is a graph showing a pore size distribution of activated carbon of Comparative Example 7 calculated by the QSDFT method.

以下、本発明の活性炭について詳細に説明する。 Hereinafter, the activated carbon of the present invention will be described in detail.

本発明の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g以上、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985である。 In the activated carbon of the present invention, in the pore volume calculated by the QSDFT method, the pore volume B (cc/g) of the pore diameter in the range of 1.5 nm or less is 0.4 cc/g or more, and the activated carbon is calculated by the QSDFT method. The pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is 0.2 cc/g or more, and the pore volume calculated by the QSDFT method. Among them, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less is 0.880 to 0.985.

本明細書おいて、細孔容積とは、QSDFT法(急冷固体密度汎関数法)によって算出される細孔容積をいう。QSDFT法とは、幾何学的・化学的に不規則なミクロポーラス・メソポーラスな炭素の細孔径解析を対象とした、約0.5nm〜約40nmまでの細孔径分布の計算ができる解析手法である。QSDFT法では、細孔表面の粗さと不均一性による影響が明瞭に考慮されているため、細孔径分布解析の正確さが大幅に向上した手法である。本発明においては、Quantachrome社製「AUTOSORB−1−MP」を用いて窒素吸着等温線の測定、及びQSDFT法による細孔径分布解析をおこなう。77Kの温度において測定した窒素の脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、特定の細孔径範囲の細孔容積を算出することができる。 In the present specification, the pore volume refers to the pore volume calculated by the QSDFT method (quench solid density functional theory method). The QSDFT method is an analysis method capable of calculating the pore size distribution from about 0.5 nm to about 40 nm, which is targeted for the pore size analysis of microporous/mesoporous carbon that is geometrically/chemically irregular. .. In the QSDFT method, the influence of roughness and non-uniformity of the pore surface is clearly taken into consideration, so that the accuracy of the pore size distribution analysis is greatly improved. In the present invention, the nitrogen adsorption isotherm is measured using "AUTOSORB-1-MP" manufactured by Quantachrome, and the pore size distribution analysis is performed by the QSDFT method. By applying N 2 at 77K on carbon [slit pore, QSDFT equilibrium model] as a calculation model to the desorption isotherm of nitrogen measured at a temperature of 77K, the pore size distribution in a specific pore size range can be calculated. The pore volume can be calculated.

本発明の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上であり、ジクロロメタンの平衡吸着量をより向上させる観点から、当該細孔容積Bは0.525cc/g以上が好ましく、0.535cc/g以上がより好ましい。当該細孔容積Bの上限値については特に制限されないが、例えば、1.0cc/g以下が挙げられ、0.7cc/g以下が好ましく挙げられる。 The activated carbon of the present invention has a pore volume B (cc/g) with a pore diameter in the range of 1.5 nm or less of 0.4 cc/g or more out of the pore volume calculated by the QSDFT method, and the equilibrium of dichloromethane is From the viewpoint of further improving the adsorption amount, the pore volume B is preferably 0.525 cc/g or more, more preferably 0.535 cc/g or more. The upper limit value of the pore volume B is not particularly limited, but is, for example, 1.0 cc/g or less, and preferably 0.7 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、0.65nm以下の範囲の細孔径の細孔容積は、0.10cc/g以上0.40cc/g以下が挙げられ、好ましくは0.10cc/g以上0.28cc/g以下、より好ましくは0.15cc/g以上0.25cc/g以下、さらに好ましくは0.17cc/g以上0.20cc/g以下、特に好ましくは0.17cc/g以上0.195cc/g以下、が挙げられる。また、上記0.65nm以下の範囲の細孔径の細孔容積は、0.10cc/g以上0.40cc/g以下(ただし、0.15cc/g以上0.166以下の範囲を除く。)、0.10cc/g以上0.28cc/g以下(ただし、0.15cc/g以上0.166以下の範囲を除く。)、0.170cc/g以上0.25cc/g以下、又は0.170cc/g以上0.195cc/g以下、とすることもできる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume in the range of 0.65 nm or less in the pore volume calculated by the QSDFT method of 0.10 cc/g. Or more and 0.40 cc/g or less, preferably 0.10 cc/g or more and 0.28 cc/g or less, more preferably 0.15 cc/g or more and 0.25 cc/g or less, and further preferably 0.17 cc/g. Or more and 0.20 cc/g or less, particularly preferably 0.17 cc/g or more and 0.195 cc/g or less. Further, the pore volume of the pore diameter in the range of 0.65 nm or less is 0.10 cc/g or more and 0.40 cc/g or less (however, the range of 0.15 cc/g or more and 0.166 or less is excluded), 0.10 cc/g or more and 0.28 cc/g or less (excluding the range of 0.15 cc/g or more and 0.166 or less), 0.170 cc/g or more and 0.25 cc/g or less, or 0.170 cc/g It can also be g or more and 0.195 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、0.8nm以下の範囲の細孔径の細孔容積は、0.20cc/g以上0.50cc/g以下が挙げられ、好ましくは0.20cc/g以上0.40cc/g以下、より好ましくは0.21cc/g以上0.40cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume of 0.20 cc/g in a pore size in the range of 0.8 nm or less among the pore volumes calculated by the QSDFT method. Or more and 0.50 cc/g or less, preferably 0.20 cc/g or more and 0.40 cc/g or less, and more preferably 0.21 cc/g or more and 0.40 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、1.0nm以下の範囲の細孔径の細孔容積Aは、0.35cc/g以上0.55cc/g以下が挙げられ、好ましくは0.35cc/g以上0.48cc/g以下、より好ましくは0.40cc/g以上0.48cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume A in the range of 1.0 nm or less of the pore volume calculated by the QSDFT method of 0.35 cc/ g or more and 0.55 cc/g or less are included, preferably 0.35 cc/g or more and 0.48 cc/g or less, more preferably 0.40 cc/g or more and 0.48 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cは、0.25cc/g以上0.85cc/g以下が挙げられ、好ましくは0.45cc/g以上0.80cc/g以下、より好ましくは0.45cc/g以上0.80cc/g以下、特に好ましくは0.555cc/g以上0.77cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume C in the range of 2.0 nm or less in the pore volume calculated by the QSDFT method of 0.25 cc/ g or more and 0.85 cc/g or less, preferably 0.45 cc/g or more and 0.80 cc/g or less, more preferably 0.45 cc/g or more and 0.80 cc/g or less, particularly preferably 0.555 cc/g. g or more and 0.77 cc/g or less are mentioned.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、2.0nm以上の範囲の細孔径の細孔容積は、0.10cc/g以下が挙げられ、好ましくは0.05cc/g以下、より好ましくは0.001cc/g以上0.05cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume in the range of 2.0 nm or more in the pore volume calculated by the QSDFT method of 0.10 cc/g. The following are mentioned, preferably 0.05 cc/g or less, and more preferably 0.001 cc/g or more and 0.05 cc/g or less.

本発明の活性炭は、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)は、0.2cc/g以上であり、ジクロロメタンの平衡吸着量をより向上させる観点から、当該細孔容積Eは、0.21cc/g以上が好ましく、0.23cc/g以上がより好ましい。当該細孔容積Eの上限値については特に制限されないが、例えば、0.4cc/g以下が挙げられ、0.33cc/g以下が好ましく挙げられる。 The activated carbon of the present invention has a pore volume E (cc/g) with a pore diameter in the range of 0.65 nm to 1.0 nm that is 0.2 cc/g or more in the pore volume calculated by the QSDFT method. Therefore, from the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the pore volume E is preferably 0.21 cc/g or more, and more preferably 0.23 cc/g or more. The upper limit value of the pore volume E is not particularly limited, but is, for example, 0.4 cc/g or less, and preferably 0.33 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、1.0nm以上1.5nm以下の範囲の細孔径の細孔容積は、0.01cc/g以上0.3cc/g以下が挙げられ、好ましくは0.04cc/g以上0.3cc/g以下、より好ましくは0.04cc/g以上0.3cc/g以下、さらに好ましくは0.08cc/g以上0.25cc/g以下、特に好ましくは0.125cc/g以上0.25cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume of 1.0 nm or more and 1.5 nm or less in the pore volume calculated by the QSDFT method, 0.01 cc/g or more and 0.3 cc/g or less, preferably 0.04 cc/g or more and 0.3 cc/g or less, more preferably 0.04 cc/g or more and 0.3 cc/g or less, and further preferably 0. 0.08 cc/g or more and 0.25 cc/g or less, particularly preferably 0.125 cc/g or more and 0.25 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、1.0nm以上2.0nm以下の範囲の細孔径の細孔容積は、0.01cc/g以上0.35cc/g以下が挙げられ、好ましくは0.05cc/g以上0.35cc/g以下、より好ましくは0.10cc/g以上0.35cc/g以下、特に好ましくは0.21cc/g以上0.35cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume of 1.0 nm or more and 2.0 nm or less in the pore volume calculated by the QSDFT method, 0.01 cc/g or more and 0.35 cc/g or less, preferably 0.05 cc/g or more and 0.35 cc/g or less, more preferably 0.10 cc/g or more and 0.35 cc/g or less, particularly preferably 0. It is 0.21 cc/g or more and 0.35 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、0.65nm以上0.8nm以下の範囲の細孔径の細孔容積は、0.05cc/g以上0.18cc/g以下が好ましく、0.1cc/g以上0.15cc/g以下がより好ましい。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume in the range of 0.65 nm or more and 0.8 nm or less in the pore volume calculated by the QSDFT method, which is 0. 0.05 cc/g or more and 0.18 cc/g or less are preferable, and 0.1 cc/g or more and 0.15 cc/g or less are more preferable.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、0.8nm以上1.5nm以下の範囲の細孔径の細孔容積は、0.08cc/g以上0.60cc/g以下が挙げられ、好ましくは0.12cc/g以上0.50cc/g以下、より好ましくは0.18cc/g以上0.50cc/g以下、特に好ましくは0.20cc/g以上0.50cc/g以下が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume of 0.8 nm or more and 1.5 nm or less in the pore volume calculated by the QSDFT method. 0.08 cc/g or more and 0.60 cc/g or less, preferably 0.12 cc/g or more and 0.50 cc/g or less, more preferably 0.18 cc/g or more and 0.50 cc/g or less, and particularly preferably 0. 20 cc/g or more and 0.50 cc/g or less.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、QSDFT法によって算出される細孔容積のうち、1.5nm以上2.0nm以下の範囲の細孔径の細孔容積Dは、0.01cc/g以上0.1cc/g以下が好ましく、0.013cc/g以上0.065cc/g以下がより好ましい。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume D in the range of 1.5 nm or more and 2.0 nm or less among the pore volumes calculated by the QSDFT method, It is preferably 0.01 cc/g or more and 0.1 cc/g or less, and more preferably 0.013 cc/g or more and 0.065 cc/g or less.

本発明の活性炭は、活性炭の比表面積(窒素を被吸着物質として用いたBET法(1点法)により測定される値)としては、1000〜2000m2/g程度が挙げられ、好ましくは1300〜1900m2/g程度、より好ましくは1400〜1900m2/g程度が挙げられる。また、QSDFT法によって算出される活性炭の全細孔容積としては、0.35〜1.00cc/g程度が挙げられ、好ましくは0.40〜1.00cc/g程度、より好ましくは0.50〜0.80cc/g程度、さらに好ましくは0.55〜0.80cc/g程度が挙げられる。 The activated carbon of the present invention has a specific surface area of the activated carbon (value measured by the BET method (one-point method) using nitrogen as the substance to be adsorbed) of about 1000 to 2000 m 2 /g, preferably 1300 to 2000 m 2 /g. 1900 m 2 / g, more preferably about include about 1400~1900m 2 / g. The total pore volume of activated carbon calculated by the QSDFT method is about 0.35 to 1.00 cc/g, preferably about 0.40 to 1.00 cc/g, and more preferably about 0.50. To about 0.80 cc/g, more preferably about 0.55 to 0.80 cc/g.

本発明の活性炭は、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985であり、ジクロロメタンの平衡吸着量をより向上させる観点から、当該割合は、0.880〜0.965が好ましい。上記B/Cの上限値を設定していることは、本発明の活性炭が、QSDFT法によって算出される細孔容積のうち、1.5nm以上2.0nm以下の範囲の細孔径の細孔が適度に分布することが必要であることを示している。当該1.5nm以上2.0nm以下の範囲の細孔径の細孔が被吸着物質の細孔内拡散を補助し、これらをB/Cが特定範囲となるようにすることにより、ジクロロメタンの平衡吸着量をより向上させると考えられる。 In the activated carbon of the present invention, in the pore volume calculated by the QSDFT method, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less is 0.880. Is 0.985, and from the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the ratio is preferably 0.880 to 0.965. Setting the upper limit of B/C means that the activated carbon of the present invention has pores with pore diameters in the range of 1.5 nm to 2.0 nm in the pore volume calculated by the QSDFT method. It indicates that proper distribution is necessary. Equilibrium adsorption of dichloromethane by supporting the diffusion of the substance to be adsorbed in the pores with pores having a pore diameter in the range of 1.5 nm or more and 2.0 nm or less so that B/C falls within a specific range. It is thought to improve the amount.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記細孔容積Aと前記細孔容積Bの比(細孔容積A/細孔容積B)は、0.600〜0.900が挙げられ、0.600〜0.830が好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume A to the pore volume B (pore volume A/pore volume B) of 0.600 to 0. 900 is mentioned, and 0.600 to 0.830 is mentioned preferably.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記細孔容積Aと前記細孔容積Cの比(細孔容積A/細孔容積C)は、0.560〜0.890が挙げられ、0.560〜0.820が好ましく挙げられ、0.560〜0.795がより好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume A to the pore volume C (pore volume A/pore volume C) of 0.560 to 0. 890 is included, 0.560 to 0.820 is preferably included, and 0.560 to 0.795 is more preferably included.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記細孔容積Aと前記細孔容積Dの比(細孔容積D/細孔容積A)は、0.010〜0.220が挙げられ、0.030〜0.220が好ましく挙げられ、0.05〜0.220がより好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume A to the pore volume D (pore volume D/pore volume A) of 0.010 to 0. 220 is mentioned, 0.030 to 0.220 is preferably mentioned, and 0.05 to 0.220 is more preferable.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記全細孔容積に対する前記細孔容積Aの割合(細孔容積A/全細孔容積)は、0.530〜0.900が挙げられ、0.530〜0.800が好ましく挙げられ、0.530〜0.789がより好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume A to the total pore volume (pore volume A/total pore volume) of 0.530 to 0. 900 is mentioned, 0.530-0.800 is mentioned preferably, 0.530-0.789 is mentioned more preferably.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記全細孔容積に対する前記細孔容積Bの割合(細孔容積B/全細孔容積)は、0.800〜0.990が挙げられ、0.800〜0.970が好ましく挙げられ、0.800〜0.955がより好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume B to the total pore volume (pore volume B/total pore volume) of 0.800 to 0. 990 is preferred, 0.800 to 0.970 is preferred, and 0.800 to 0.955 is more preferred.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記全細孔容積に対する前記細孔容積Cの割合(細孔容積C/全細孔容積)は、0.930〜1.000が挙げられ、0.930〜0.998が好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume C to the total pore volume (pore volume C/total pore volume) of 0.930 to 1. 000, and preferably 0.930 to 0.998.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記全細孔容積に対する前記細孔容積Dの割合(細孔容積D/全細孔容積)は、0.010〜0.130が挙げられ、0.030〜0.130が好ましく挙げられ、0.035〜0.130がより好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a ratio of the pore volume D to the total pore volume (pore volume D/total pore volume) of 0.010 to 0. 130 is mentioned, 0.030-0.130 is mentioned preferably, 0.035-0.130 is mentioned more preferably.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記全細孔容積に対するQSDFT法によって算出される細孔容積のうち、0.65nm以下の範囲の細孔径の細孔容積の割合(0.65nm以下の範囲の細孔径の細孔容積/全細孔容積)は、0.120〜0.520が挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume of 0.65 nm or less in the pore volume calculated by the QSDFT method with respect to the total pore volume. The ratio (pore volume of pore diameters in the range of 0.65 nm or less/total pore volume) is 0.120 to 0.520.

本発明の活性炭は、ジクロロメタンの平衡吸着量をより向上させる観点から、前記全細孔容積に対するQSDFT法によって算出される細孔容積のうち、0.8nm以下の範囲の細孔径の細孔容積の割合(0.8nm以下の範囲の細孔径の細孔容積/全細孔容積)は、0.200〜0.800が挙げられ、0.350〜0.650が好ましく挙げられ、0.200〜0.590がより好ましく挙げられる。 From the viewpoint of further improving the equilibrium adsorption amount of dichloromethane, the activated carbon of the present invention has a pore volume of 0.8 nm or less in the pore volume calculated by the QSDFT method with respect to the total pore volume. The ratio (pore volume of pore diameters in the range of 0.8 nm or less/total pore volume) is 0.200 to 0.800, preferably 0.350 to 0.650, and 0.200 to 0.590 is more preferable.

後述の通り、本発明の製造方法において、活性炭前駆体の主原料(すなわち、本発明の活性炭の由来となる原料)としては、特に制限されず、例えば、不融化或いは炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。これらの中でも、本発明の活性炭は、ピッチに由来することが好ましく、石炭ピッチに由来することがより好ましい。 As described below, in the production method of the present invention, the main raw material of the activated carbon precursor (that is, the raw material from which the activated carbon of the present invention is derived) is not particularly limited, for example, infusible or carbonized organic material, phenol Examples of the infusible resin such as resin include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. Among these, the activated carbon of the present invention is preferably derived from pitch, and more preferably derived from coal pitch.

本発明の活性炭は、上記特定の細孔径分布とするために、活性炭前駆体としてイットリウム化合物及び/又はバナジウム化合物を含むものを用いる。そして、本発明の活性炭は、活性炭前駆体に含まれるイットリウム化合物及び/又はバナジウム化合物に由来する、イットリウム単体、イットリウム化合物、バナジウム単体及びバナジウム化合物からなる群より選ばれる1種以上を含むものであってもよい。本発明の活性炭の総質量における、該活性炭に含有される、イットリウム単体、イットリウム化合物、バナジウム単体及びバナジウム化合物の質量の割合(合計)としては、例えば、0.001〜5.0質量%が挙げられ、0.001〜3.0質量%が好ましく挙げられ、0.001〜0.35質量%が特に好ましく挙げられる。上記割合は、ICP発光分光分析装置(Varian社製型式715−ES)により測定されるイットリウム元素換算及びバナジウム元素換算の割合(すなわち、イットリウム及びバナジウムの含有量)である。中でも、本発明の活性炭は、イットリウム化合物及びバナジウム化合物を含むものとすると、バナジウムの効果により1nm以下のミクロ孔容量を大きく維持し、尚且つイットリウムの効果により、やや大きな細孔も適度に分布させることができ、これらのやや大きな細孔が被吸着物質の細孔内拡散を補助するため、ジクロロメタンの平衡吸着量をより向上させる点で好ましい。この場合、本発明の活性炭の総質量における、該活性炭に含有される、イットリウム単体及びイットリウム化合物の含有量の合計と、バナジウム単体及びバナジウム化合物の含有量の合計との比(バナジウム単体及びバナジウム化合物の含有量の合計/イットリウム単体及びイットリウム化合物の含有量の合計)としては、4〜16が挙げられる。 As the activated carbon of the present invention, one containing an yttrium compound and/or a vanadium compound as an activated carbon precursor is used in order to achieve the above specific pore size distribution. The activated carbon of the present invention is derived from the yttrium compound and/or the vanadium compound contained in the activated carbon precursor, and contains at least one selected from the group consisting of yttrium simple substance, yttrium compound, vanadium simple substance and vanadium compound. May be. As a mass ratio (total) of the yttrium simple substance, the yttrium compound, the vanadium simple substance and the vanadium compound contained in the activated carbon of the present invention, for example, 0.001 to 5.0 mass% is included. 0.001 to 3.0 mass% is preferable, and 0.001 to 0.35 mass% is particularly preferable. The above ratio is a ratio in terms of yttrium element conversion and vanadium element conversion (that is, the content of yttrium and vanadium) measured by an ICP emission spectroscopic analyzer (Model 715-ES manufactured by Varian). Above all, when the activated carbon of the present invention contains an yttrium compound and a vanadium compound, the micropore volume of 1 nm or less is largely maintained by the effect of vanadium, and the slightly large pores are appropriately distributed by the effect of yttrium. Since these slightly larger pores assist diffusion of the substance to be adsorbed in the pores, they are preferable in that the equilibrium adsorption amount of dichloromethane is further improved. In this case, in the total mass of the activated carbon of the present invention, the ratio of the total content of yttrium simple substance and yttrium compound contained in the activated carbon, and the total content of vanadium simple substance and vanadium compound (vanadium simple substance and vanadium compound (Total content of / total content of yttrium simple substance and yttrium compound) is 4 to 16.

本発明の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g以上、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985であることから、ジクロロメタンの平衡吸着量に優れる。具体的に、本発明の活性炭が備えるジクロロメタン平衡吸着量(質量%)としては、例えば、40質量%以上が挙げられ、好ましくは45質量%以上が挙げられ、より好ましくは50質量%以上が挙げられる。上限値としては特に限定されないが、例えば、70質量%以下、又は60質量%以下が挙げられる。なお、本発明において、ジクロロメタン吸着性能は、以下のように測定されるものである。すなわち、活性炭サンプルを110℃の乾燥機で1晩乾燥し、デシケーターで冷却後、速やかに3.14gを量りとり試験カラム(Φ20×H100)に充填する。次に、濃度10000ppm、25℃に調整したジクロロメタンガスを流量2.0L/minで試験カラムに通気し、吸着操作を行う。活性炭の質量増加が止まった時点を平衡状態とし、平衡吸着量を算出する。
平衡吸着量(%)=質量増加分/活性炭質量×100
In the activated carbon of the present invention, in the pore volume calculated by the QSDFT method, the pore volume B (cc/g) of the pore diameter in the range of 1.5 nm or less is 0.4 cc/g or more, and the activated carbon is calculated by the QSDFT method. The pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is 0.2 cc/g or more, and the pore volume calculated by the QSDFT method. Among them, since the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less is 0.880 to 0.985, the equilibrium adsorption amount of dichloromethane is excellent. .. Specifically, the dichloromethane equilibrium adsorption amount (mass %) of the activated carbon of the present invention is, for example, 40 mass% or more, preferably 45 mass% or more, and more preferably 50 mass% or more. To be The upper limit is not particularly limited, but examples thereof include 70% by mass or less, or 60% by mass or less. In the present invention, the dichloromethane adsorption performance is measured as follows. That is, the activated carbon sample is dried overnight in a drier at 110° C., cooled in a desiccator, and immediately 3.14 g is weighed and loaded into a test column (Φ20×H100). Next, dichloromethane gas adjusted to a concentration of 10000 ppm and 25° C. is passed through the test column at a flow rate of 2.0 L/min to perform an adsorption operation. Equilibrium adsorption amount is calculated by setting the equilibrium state when the mass increase of activated carbon stops.
Equilibrium adsorption amount (%)=mass increment/activated carbon mass×100

本発明の活性炭の形態は特に限定されないが、例えば、粒状活性炭、粉末状活性炭、繊維状活性炭等が挙げられる。ジクロロメタンの吸着速度をより向上させるという観点から繊維状である繊維状活性炭とすることがより好ましい。繊維状活性炭の平均繊維径としては、好ましくは30μm以下、より好ましくは5〜20μm程度が挙げられる。なお、本発明における平均繊維径は、画像処理繊維径測定装置(JIS K 1477に準拠)により測定した値である。また、粒状活性炭及び粉末状活性炭の粒径としては、レーザー回折/散乱式法で測定した積算体積百分率D50が0.01〜5mmが挙げられる。 The form of the activated carbon of the present invention is not particularly limited, and examples thereof include granular activated carbon, powdered activated carbon, fibrous activated carbon and the like. From the viewpoint of further improving the adsorption rate of dichloromethane, it is more preferable to use fibrous activated carbon that is fibrous. The average fiber diameter of the fibrous activated carbon is preferably 30 μm or less, more preferably about 5 to 20 μm. The average fiber diameter in the present invention is a value measured by an image processing fiber diameter measuring device (based on JIS K 1477). Further, as the particle diameter of the granular activated carbon and the powdered activated carbon, the cumulative volume percentage D 50 measured by the laser diffraction/scattering method is 0.01 to 5 mm.

本発明の活性炭は、気相中または液相中のいずれでも使用することができる。特に、本発明の活性炭は、気相中のジクロロメタンを吸着させるために好適に用いられる。 The activated carbon of the present invention can be used either in the gas phase or in the liquid phase. In particular, the activated carbon of the present invention is preferably used for adsorbing dichloromethane in the gas phase.

次に、本発明の活性炭の製造方法について詳細に説明する。 Next, the method for producing activated carbon of the present invention will be described in detail.

本発明の活性炭の製造方法は、イットリウム化合物及び/又はバナジウム化合物を含む活性炭前駆体を、CO2濃度が90容積%以上の雰囲気下、温度600〜1200℃で賦活する工程を含む。これにより、初めて、1nm以下の細孔の容積、特に0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E及び1.5nm以下の範囲の細孔径の細孔容積B(cc/g)を維持しつつ、さらに比較的大きい細孔径1.5nm以上2.0nm以下の細孔を適量備えさせることができ、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)を特定範囲とすることができ、発明の活性炭を得ることができる。一方、賦活ガスを従来広く用いられている水蒸気とした場合は、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E及び1.5nm以下の範囲の細孔径の細孔容積B(cc/g)を維持しつつ、さらに比較的大きい細孔径1.5nm以上2.0nm以下の細孔を適量備えさせることが困難となる。また、活性炭前駆体がイットリウム化合物及び/又はバナジウム化合物を含まないものとした場合も、上記本発明の活性炭が備える細孔分布とすることが困難となる。 The method for producing activated carbon of the present invention includes a step of activating an activated carbon precursor containing a yttrium compound and/or a vanadium compound at a temperature of 600 to 1200°C in an atmosphere having a CO 2 concentration of 90% by volume or more. Thereby, for the first time, the volume of the pores of 1 nm or less, particularly the pore volume E of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less and the pore volume B (cc/cc of the pore diameter in the range of 1.5 nm or less) While maintaining g), it is possible to provide an appropriate amount of relatively large pores having a pore diameter of 1.5 nm or more and 2.0 nm or less, and the fine pores with respect to the pore volume C having a pore diameter in the range of 2.0 nm or less. The ratio (B/C) of the pore volume B can be set in a specific range, and the activated carbon of the invention can be obtained. On the other hand, when the activating gas is water vapor which has been widely used conventionally, the pore volume E having a pore diameter in the range of 0.65 nm to 1.0 nm and the pore volume B having a pore diameter in the range of 1.5 nm or less. While maintaining (cc/g), it becomes difficult to provide an appropriate amount of pores having a relatively large pore diameter of 1.5 nm or more and 2.0 nm or less. Further, even when the activated carbon precursor does not contain the yttrium compound and/or the vanadium compound, it becomes difficult to obtain the pore distribution included in the activated carbon of the present invention.

本発明の活性炭の製造方法において、活性炭前駆体の主原料としては、特に制限されない。例えば、不融化又は炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられ、該有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。炭素化時の理論炭素化収率の点で、ピッチが好ましく、ピッチの中でも特に石炭ピッチが好ましい。 In the method for producing activated carbon of the present invention, the main raw material of the activated carbon precursor is not particularly limited. Examples include infusible or carbonized organic materials, infusible resins such as phenolic resins, and the like, and examples of the organic materials include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. From the viewpoint of theoretical carbonization yield during carbonization, pitch is preferable, and coal pitch is particularly preferable among the pitches.

本発明の活性炭の製造方法において、活性炭前駆体のイットリウム及びバナジウムの含有量の合計としては、好ましくは0.01〜5.0質量%、より好ましくは0.03〜1.0質量%、さらに好ましくは0.03〜0.3質量%が挙げられる。イットリウムは、イットリウム単体或いはイットリウム化合物を原料と混合することにより含有させることができる。イットリウム化合物としては、イットリウムを構成金属元素とする、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。有機金属化合物としては、金属アセチルアセトナート、芳香族金属化合物等が挙げられる。また、バナジウムは、バナジウム単体或いはバナジウム化合物を原料と混合することにより含有させることができる。バナジウム化合物としては、バナジウムを構成金属元素とする、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。イットリウム化合物及び/又はバナジウム化合物において、中でも、活性炭前駆体中に金属を高分散させる観点から、有機金属化合物とすることが好ましく、有機金属化合物としては、β−ジケトン型化合物を配位子とする金属錯体がより好ましく挙げられる。β−ジケトン型化合物としては、下記式(1)〜(3)に示す構造を有するものが挙げられ、具体的にはアセチルアセトン等が挙げられる。なお、本発明の活性炭において、さらにイットリウム単体及び/又はイットリウム化合物をさらに含むものとする場合は、バナジウム単体或いはバナジウム化合物と、イットリウム単体及び/又はイットリウム化合物を、活性炭前駆体の主原料と混合することにより含有させればよい。また、活性炭前駆体の主原料に混合するイットリウム化合物としては、バナジウム化合物と同様、イットリウムを構成金属元素とする、金属酸化物、金属水酸化物、金属ハロゲン化物、金属硫酸塩等の無機金属化合物、酢酸等の有機酸と金属との塩、有機金属化合物などが挙げられる。有機金属化合物としては、金属アセチルアセトナート、芳香族金属化合物等が挙げられる。中でも、活性炭前駆体中に金属を高分散させる観点から、有機金属化合物とすることが好ましく、有機金属化合物としては、β−ジケトン型化合物を配位子とする金属錯体がより好ましく挙げられる。β−ジケトン型化合物としては、下記式(1)〜(3)に示す構造を有するものが挙げられ、具体的にはアセチルアセトン等が挙げられる。 In the method for producing activated carbon of the present invention, the total content of yttrium and vanadium in the activated carbon precursor is preferably 0.01 to 5.0% by mass, more preferably 0.03 to 1.0% by mass, and further It is preferably 0.03 to 0.3% by mass. Yttrium can be contained by mixing yttrium alone or a yttrium compound with the raw material. As the yttrium compound, a metal oxide, a metal hydroxide, a metal halide, an inorganic metal compound such as a metal sulfate, a salt of an organic acid and a metal such as acetic acid, an organic metal compound, and the like containing yttrium as a constituent metal element. Are listed. Examples of the organic metal compound include metal acetylacetonate and aromatic metal compounds. Moreover, vanadium can be contained by mixing vanadium simple substance or a vanadium compound with a raw material. The vanadium compound includes vanadium as a constituent metal element, an inorganic metal compound such as a metal oxide, a metal hydroxide, a metal halide, and a metal sulfate, a salt of an organic acid and a metal such as acetic acid, an organometallic compound, and the like. Are listed. Among the yttrium compounds and/or vanadium compounds, from the viewpoint of highly dispersing the metal in the activated carbon precursor, it is preferable to use an organometallic compound. As the organometallic compound, a β-diketone type compound is used as a ligand. A metal complex is more preferred. Examples of the β-diketone type compound include those having a structure represented by the following formulas (1) to (3), and specific examples thereof include acetylacetone. In the activated carbon of the present invention, when further containing yttrium simple substance and/or yttrium compound, vanadium simple substance or vanadium compound and yttrium simple substance and/or yttrium compound are mixed with the main raw material of the activated carbon precursor. It may be contained. Further, as the yttrium compound to be mixed with the main raw material of the activated carbon precursor, similar to the vanadium compound, yttrium is a constituent metal element, metal oxides, metal hydroxides, metal halides, inorganic metal compounds such as metal sulfates. , A salt of an organic acid such as acetic acid and a metal, an organic metal compound, and the like. Examples of the organic metal compound include metal acetylacetonate and aromatic metal compounds. Among them, from the viewpoint of highly dispersing the metal in the activated carbon precursor, an organic metal compound is preferable, and as the organic metal compound, a metal complex having a β-diketone type compound as a ligand is more preferable. Examples of the β-diketone type compound include those having a structure represented by the following formulas (1) to (3), and specific examples thereof include acetylacetone.

中でも、活性炭前駆体に、イットリウム化合物及びバナジウム化合物を含有させる場合は、バナジウムの効果により1nm以下のミクロ孔容量を大きく維持し、尚且つイットリウムの効果により、やや大きな細孔も適度に分布させることができ、これらのやや大きな細孔が被吸着物質の細孔内拡散を補助するため、ジクロロメタンの平衡吸着量をより向上させる点で好ましい。活性炭前駆体に、イットリウム化合物及びバナジウム化合物を含有させる場合、活性炭前駆体中における、イットリウム化合物の含有量とバナジウム化合物の含有量の比(バナジウム化合物の含有量/イットリウム化合物の含有量)としては、4〜15が好ましく挙げられる。 Especially, when the yttrium compound and the vanadium compound are contained in the activated carbon precursor, the micropore volume of 1 nm or less is largely maintained by the effect of vanadium, and the slightly large pores are appropriately distributed by the effect of yttrium. Since these slightly larger pores assist diffusion of the substance to be adsorbed in the pores, they are preferable in that the equilibrium adsorption amount of dichloromethane is further improved. Activated carbon precursor, when containing an yttrium compound and a vanadium compound, in the activated carbon precursor, the ratio of the content of the yttrium compound and the content of the vanadium compound (content of the vanadium compound / content of the yttrium compound), 4 to 15 are preferred.

本発明の活性炭の製造方法において、賦活の雰囲気は、CO2濃度が90容積%以上であり、好ましくは95容積%以上、より好ましくは99容積%以上である。 In the activated carbon production method of the present invention, the activation atmosphere has a CO 2 concentration of 90% by volume or more, preferably 95% by volume or more, and more preferably 99% by volume or more.

賦活の雰囲気において、CO2以外の他の成分としては、N2、O2、H2、H2O、COが挙げられる。 In the activation atmosphere, examples of components other than CO 2 include N 2 , O 2 , H 2 , H 2 O, and CO.

本発明の製造方法において、賦活の雰囲気温度は通常600〜1200℃程度であり、好ましくは800〜1000℃程度、より好ましくは900〜1000℃程度である。また、賦活時間としては、活性炭前駆体の主原料に応じ、所定の細孔径分布となるよう調整すればよい。例えば、活性炭前駆体の主原料として軟化点が275℃〜288℃のピッチを用いた場合は、賦活の雰囲気温度は900〜1000℃、賦活時間は10〜80分、より好ましくは、30〜80分として賦活をすることが挙げられる。 In the production method of the present invention, the activation atmosphere temperature is usually about 600 to 1200°C, preferably about 800 to 1000°C, more preferably about 900 to 1000°C. Further, the activation time may be adjusted so as to have a predetermined pore size distribution according to the main raw material of the activated carbon precursor. For example, when a pitch having a softening point of 275° C. to 288° C. is used as the main raw material of the activated carbon precursor, the activation atmosphere temperature is 900 to 1000° C., the activation time is 10 to 80 minutes, and more preferably 30 to 80 minutes. For example, activation can be mentioned.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

各実施例及び比較例につき、以下の方法により評価した。
(1)活性炭前駆体(不融化したピッチ繊維)のバナジウム含有量及びイットリウム含有量(質量%)
ピッチ繊維を灰化処理し、灰分を酸に溶解しICP発光分光分析装置(Varian社製型式715−ES)により測定される、バナジウム元素換算の割合及びイットリウム元素換算の割合をそれぞれバナジウム含有量及びイットリウム含有量とした。
Each example and comparative example were evaluated by the following methods.
(1) Vanadium content and yttrium content (mass %) of the activated carbon precursor (infusible pitch fiber)
Pitch fiber is ashed, the ash is dissolved in an acid, and the vanadium element conversion ratio and the yttrium element conversion ratio, which are measured by an ICP emission spectrophotometer (Model 715-ES manufactured by Varian Inc.), are calculated as vanadium content and The yttrium content was used.

(2)活性炭の金属含有量(質量%)
繊維状活性炭を灰化処理し、灰分を酸に溶解しICP発光分光分析装置(Varian社製型式715−ES)により測定されるバナジウム元素換算の割合及びイットリウム元素換算の割合をそれぞれバナジウム含有量及びイットリウム含有量とした。
(2) Metal content of activated carbon (% by mass)
Fibrous activated carbon is subjected to ashing treatment, the ash content is dissolved in an acid, and the vanadium element conversion rate and the yttrium element conversion rate measured by an ICP emission spectrophotometer (Model 715-ES manufactured by Varian Inc.) are calculated as vanadium content and vanadium content, respectively. The yttrium content was used.

(3)細孔容積(cc/g)、比表面積(m2/g)、繊維状活性炭の繊維径(μm)
細孔物性値は、Quantachrome社製「AUTOSORB−1−MP」を用いて77Kにおける窒素吸着等温線より測定した。比表面積はBET法によって相対圧0.1の測定点から計算した。全細孔容積及び表1に記載した各細孔径範囲における細孔容積は、測定した窒素脱着等温線に対し、Calculation modelとしてN2 at 77K on carbon[slit pore,QSDFT equilibrium model]を適用して細孔径分布を計算することで、解析した。具体的に、表1に記載した各細孔径範囲における細孔容積は、図1〜20に示した細孔径分布を示すグラフの読み取り値又は該読み取り値から計算される値である。より具体的に、細孔径0.65nm以下の細孔容積は、細孔径分布図の横軸Pore Widthが0.65nmにおけるCumulative Pore Volume(cc/g)の読み取り値である。同様にして、細孔径0.8nm以下の細孔容積、細孔径1.0nm以下の細孔容積A、細孔径1.5nm以下の細孔容積B、細孔径2.0nm以下の細孔容積Cを得た。細孔径2.0nm以上の細孔容積は、QSDFT法により得られる全細孔容積から上記細孔径2.0nm以下の細孔容積Cを減ずることで計算した。細孔径1.0nm以上1.5nm以下の範囲の細孔容積は、上記細孔径1.5nm以下の細孔容積Bから上記細孔径1.0nm以下の細孔容積Aを減ずることで計算した。細孔径1.0nm以上2.0nm以下の範囲の細孔容積は、上記細孔径2.0nm以下の細孔容積Cから上記細孔径1.0nm以下の細孔容積Aを減ずることで計算した。0.65nm以上0.8nm以下の範囲の細孔径の細孔容積は、上記細孔径0.8nm以下の細孔容積から上記細孔径0.65nm以下の細孔容積を減ずることで計算した。0.65nm以上1.0nm以下の範囲の細孔径の細孔容積Eは、上記細孔径1.0nm以下の細孔容積Aから上記細孔径0.65nm以下の細孔容積を減ずることで計算した。0.8nm以上1.5nm以下の範囲の細孔径の細孔容積は、上記細孔径1.5nm以下の細孔容積Bから上記細孔径0.8nm以下の細孔容積を減ずることで計算した。1.5nm以上2.0nm以下の範囲の細孔径の細孔容積は、上記細孔径2.0nm以下の細孔容積Cから上記細孔径1.5nm以下の細孔容積Bを減ずることで計算した。
(3) Pore volume (cc/g), specific surface area (m 2 /g), fiber diameter of fibrous activated carbon (μm)
The pore physical property value was measured from the nitrogen adsorption isotherm at 77K using "AUTOSORB-1-MP" manufactured by Quantachrome. The specific surface area was calculated from the measurement point at a relative pressure of 0.1 by the BET method. The total pore volume and the pore volume in each pore diameter range described in Table 1 are applied to the measured nitrogen desorption isotherm by applying N 2 at 77K on carbon [slit pore, QSDTFT equilibrium model] as a calibration model. It was analyzed by calculating the pore size distribution. Specifically, the pore volume in each pore diameter range described in Table 1 is the read value of the graph showing the pore diameter distribution shown in FIGS. 1 to 20 or the value calculated from the read value. More specifically, the pore volume with a pore diameter of 0.65 nm or less is a read value of the Cumulative Pore Volume (cc/g) when the horizontal axis Pore Width of the pore diameter distribution diagram is 0.65 nm. Similarly, the pore volume of 0.8 nm or less, the pore volume A of 1.0 nm or less, the pore volume B of 1.5 nm or less, and the pore volume C of 2.0 nm or less. Got The pore volume having a pore diameter of 2.0 nm or more was calculated by subtracting the pore volume C having a pore diameter of 2.0 nm or less from the total pore volume obtained by the QSDFT method. The pore volume in the range of 1.0 nm to 1.5 nm is calculated by subtracting the volume A of 1.0 nm or less from the volume B of 1.5 nm or less. The pore volume in the range of 1.0 nm to 2.0 nm is calculated by subtracting the volume A of 1.0 nm or less from the volume C of 2.0 nm or less. The pore volume having a pore diameter in the range of 0.65 nm or more and 0.8 nm or less was calculated by subtracting the pore volume of 0.65 nm or less from the pore volume of 0.8 nm or less. The pore volume E of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less was calculated by subtracting the pore volume of the pore diameter of 0.65 nm or less from the pore volume A of the pore diameter of 1.0 nm or less. .. The pore volume having a pore diameter in the range of 0.8 nm or more and 1.5 nm or less was calculated by subtracting the pore volume of 0.8 nm or less from the pore volume B of 1.5 nm or less. The pore volume of the pore diameter in the range of 1.5 nm or more and 2.0 nm or less was calculated by subtracting the pore volume B of 1.5 nm or less from the pore volume C of 2.0 nm or less. ..

(4)繊維状活性炭の繊維径(μm)
画像処理繊維径測定装置(JIS K 1477に準拠)により測定した。
(4) Fiber diameter (μm) of fibrous activated carbon
It was measured by an image processing fiber diameter measuring device (according to JIS K 1477).

(5)ジクロロメタン平衡吸着量
活性炭サンプルを110℃の乾燥機で1晩乾燥し、デシケーターで冷却後、速やかに3.14gを量りとり試験カラム(Φ20×H100)に充填した。次に、濃度10000ppm、25℃に調整したジクロロメタンガスを流量2.0L/minで試験カラムに通気し、吸着操作を行った。活性炭の質量増加が止まった時点を平衡状態とし、平衡吸着量を算出した。
平衡吸着量(%)=質量増加分/活性炭質量×100
40質量%以上を合格とした。
(5) Equilibrium Adsorption of Dichloromethane The activated carbon sample was dried overnight in a drier at 110° C., and after cooling with a desiccator, 3.14 g was quickly weighed and loaded into a test column (Φ20×H100). Next, dichloromethane gas adjusted to a concentration of 10000 ppm and 25° C. was passed through the test column at a flow rate of 2.0 L/min to perform adsorption operation. Equilibrium adsorption amount was calculated by setting the equilibrium state when the increase in the mass of activated carbon stopped.
Equilibrium adsorption amount (%)=mass increment/activated carbon mass×100
40% by mass or more was accepted.

(実施例1)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部、及びトリスアセチルアセトナトイットリウム(CAS番号:15554−47−9)0.1質量部と、を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.11質量%、イットリウムの含有量は0.022質量%であった。
(Example 1)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. And 0.1 part by mass of trisacetylacetonato yttrium (CAS number: 15554-47-9) are supplied to a melt extruder and melt-mixed at a melting temperature of 320° C., and a discharge amount of 16 g/ Pitch fibers were obtained by spinning at min. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. In the activated carbon precursor, the vanadium content was 0.11% by mass and the yttrium content was 0.022% by mass.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で32分間熱処理することにより賦活をおこない、実施例1の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.456cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.216cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.970、バナジウムの含有量は0.220質量%、イットリウムの含有量は0.040質量%、平均繊維径は13.5μmであった。 The obtained activated carbon precursor was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 32 minutes to obtain activated carbon of Example 1. .. Among the pore volumes calculated by the QSDFT method, the obtained activated carbon has a pore volume B (cc/g) of 0.456 cc/g in the pore diameter range of 1.5 nm or less, which is calculated by the QSDFT method. 1. Of the pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm is 0.216 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.970, the vanadium content is 0.220% by mass, and the yttrium content is 0.040. The mass% and the average fiber diameter were 13.5 μm.

(実施例2)
賦活時間を40分とした以外は、実施例1と同様にし、実施例2の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.558cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.256cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.947、バナジウムの含有量は0.270質量%、イットリウムの含有量は0.050質量%、平均繊維径は13.3μmであった。
(Example 2)
The activated carbon of Example 2 was obtained in the same manner as in Example 1 except that the activation time was 40 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.558 cc/g in a pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.256 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.947, the vanadium content is 0.270% by mass, and the yttrium content is 0.050. The mass% and the average fiber diameter were 13.3 μm.

(実施例3)
賦活時間を45分とした以外は、実施例1と同様にし、実施例3の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.621cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.274cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.917、バナジウムの含有量は0.310質量%、イットリウムの含有量は0.060質量%、平均繊維径は13.5μmであった。
(Example 3)
The activated carbon of Example 3 was obtained in the same manner as in Example 1 except that the activation time was 45 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.621 cc/g in a pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.274 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.917, the vanadium content is 0.310% by mass, and the yttrium content is 0.060. The mass% and the average fiber diameter were 13.5 μm.

(実施例4)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部、及びトリスアセチルアセトナトイットリウム(CAS番号:15554−47−9)0.06質量部と、を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.09質量%、イットリウムの含有量は0.01質量%であった。
(Example 4)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. And trisacetylacetonato yttrium (CAS number: 15554-47-9) 0.06 parts by mass are supplied to a melt extruder and melt-mixed at a melting temperature of 320° C., and a discharge amount of 16 g/ Pitch fibers were obtained by spinning at min. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. In the activated carbon precursor, the vanadium content was 0.09% by mass, and the yttrium content was 0.01% by mass.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で38分間熱処理することにより賦活をおこない、実施例4の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.482cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.204cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.980、バナジウムの含有量は0.190質量%、イットリウムの含有量は0.020質量%、平均繊維径は13.1μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 38 minutes to obtain an activated carbon of Example 4. .. The obtained activated carbon has a pore volume B (cc/g) of 0.482 cc/g with a pore diameter in the range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.204 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.980, the vanadium content is 0.190 mass %, and the yttrium content is 0.020. The mass% and the average fiber diameter were 13.1 μm.

(実施例5)
賦活時間を44分とした以外は、実施例4と同様にし、実施例5の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.535cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.239cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.961、バナジウムの含有量は0.220質量%、イットリウムの含有量は0.030質量%、平均繊維径は13.0μmであった。
(Example 5)
The activated carbon of Example 5 was obtained in the same manner as in Example 4 except that the activation time was set to 44 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.535 cc/g in a pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.239 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.961, the vanadium content is 0.220% by mass, and the yttrium content is 0.030. The mass% and the average fiber diameter were 13.0 μm.

(実施例6)
賦活時間を50分とした以外は、実施例4と同様にし、実施例6の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.600cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.262cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.932、バナジウムの含有量は0.250質量%、イットリウムの含有量は0.030質量%、平均繊維径は13.2μmであった。
(Example 6)
An activated carbon of Example 6 was obtained in the same manner as in Example 4 except that the activation time was set to 50 minutes. Among the pore volumes calculated by the QSDFT method, the obtained activated carbon has a pore volume B (cc/g) of 0.600 cc/g in the pore diameter range of 1.5 nm or less, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.262 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.932, the vanadium content is 0.250% by mass, and the yttrium content is 0.030. The mass% and the average fiber diameter were 13.2 μm.

(実施例7)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部、及びトリスアセチルアセトナトイットリウム(CAS番号:15554−47−9)0.03質量部と、を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.095質量%、イットリウムの含有量は0.007質量%であった。
(Example 7)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. And trisacetylacetonato yttrium (CAS number: 15554-47-9) 0.03 parts by mass are supplied to a melt extruder and melt-mixed at a melting temperature of 320° C., and a discharge amount of 16 g/ Pitch fibers were obtained by spinning at min. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. In the activated carbon precursor, the vanadium content was 0.095 mass %, and the yttrium content was 0.007 mass %.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で37分間熱処理することにより賦活をおこない、実施例7の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.517cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.211cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.981、バナジウムの含有量は0.210質量%、イットリウムの含有量は0.020質量%、平均繊維径は13.5μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 37 minutes to obtain an activated carbon of Example 7. .. The obtained activated carbon has a pore volume B (cc/g) of 0.517 cc/g with a pore diameter in the range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Of the pore volume, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is 0.211 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.981, the vanadium content is 0.210% by mass, and the yttrium content is 0.020. The mass% and the average fiber diameter were 13.5 μm.

(実施例8)
賦活時間を40分とした以外は、実施例7と同様にし、実施例8の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.548cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.233cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.945、バナジウムの含有量は0.230質量%、イットリウムの含有量は0.020質量%、平均繊維径は13.0μmであった。
(Example 8)
The activated carbon of Example 8 was obtained in the same manner as in Example 7, except that the activation time was 40 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.548 cc/g with a pore diameter in the range of 1.5 nm or less out of the pore volume calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.233 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.945, the vanadium content is 0.230% by mass, and the yttrium content is 0.020. The mass% and the average fiber diameter were 13.0 μm.

(実施例9)
賦活時間を50分とした以外は、実施例7と同様にし、実施例9の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.641cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.277cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.926、バナジウムの含有量は0.290質量%、イットリウムの含有量は0.020質量%、平均繊維径は13.2μmであった。
(Example 9)
The activated carbon of Example 9 was obtained in the same manner as in Example 7, except that the activation time was 50 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.641 cc/g with a pore diameter in the range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Of the pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm is 0.277 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.926, the vanadium content is 0.290% by mass, and the yttrium content is 0.020. The mass% and the average fiber diameter were 13.2 μm.

(実施例10)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム(CAS番号:15554−47−9)0.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量は0.06質量%であった。
(Example 10)
As an organic material, a mixture of 0.3 parts by mass of trisacetylacetonato yttrium (CAS number: 15554-47-9) with 100 parts by mass of granular coal pitch having a softening point of 280° C. is supplied to a melt extruder. Then, the fibers were melt-mixed at a melting temperature of 320° C. and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. In the activated carbon precursor, the yttrium content was 0.06% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で67分間熱処理することにより賦活をおこない、実施例10の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.613cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.262cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.890、イットリウムの含有量は0.170質量%、平均繊維径は16.8μmであった。 The activated carbon precursor obtained was continuously activated by introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 67 minutes to obtain an activated carbon of Example 10. It was The obtained activated carbon has a pore volume B (cc/g) of 0.613 cc/g in the pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.262 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.890, the yttrium content is 0.170 mass %, and the average fiber diameter is 16.8 μm. there were.

(実施例11)
賦活時間を70分とした以外は、実施例10と同様にし、実施例11の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.636cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.269cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880、イットリウムの含有量は0.180質量%、平均繊維径は16.8μmであった。
(Example 11)
The activated carbon of Example 11 was obtained in the same manner as in Example 10 except that the activation time was 70 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.636 cc/g in the pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.269 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.880, the yttrium content is 0.180 mass %, and the average fiber diameter is 16.8 μm. there were.

(実施例12)
賦活時間を65分とした以外は、実施例10と同様にし、実施例12の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.594cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.256cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.907、イットリウムの含有量は0.150質量%、平均繊維径は18.2μmであった。
(Example 12)
An activated carbon of Example 12 was obtained in the same manner as in Example 10 except that the activation time was set to 65 minutes. The obtained activated carbon had a pore volume B (cc/g) of 0.594 cc/g in the pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and was calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.256 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.907, the yttrium content is 0.150 mass %, and the average fiber diameter is 18.2 μm. there were.

(実施例13)
賦活時間を55分とした以外は、実施例10と同様にし、実施例13の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.532cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.241cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.942、イットリウムの含有量は0.140質量%、平均繊維径は18.4μmであった。
(Example 13)
The activated carbon of Example 13 was obtained in the same manner as in Example 10 except that the activation time was 55 minutes. The obtained activated carbon has a pore volume B (cc/g) of 0.532 cc/g with a pore diameter in the range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Of the pore volume, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is 0.241 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.942, the yttrium content is 0.140 mass %, and the average fiber diameter is 18.4 μm. there were.

(実施例14)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部を混合したものを、溶融押出機に供給し、溶融温度325℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中355℃まで段階的に昇温し、合計87分間保持することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.076質量%であった。
(Example 14)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. The resulting mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 325° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The obtained pitch fiber was stepwise heated to 355° C. in air and held for 87 minutes in total to perform infusibilization treatment to obtain an activated carbon precursor which was infusibilized pitch fiber. In the activated carbon precursor, the vanadium content was 0.076% by mass.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で50分間熱処理することにより賦活をおこない、実施例14の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.581cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.245cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.965、バナジウムの含有量は0.230質量%、平均繊維径は13.2μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 50 minutes to obtain an activated carbon of Example 14. .. The obtained activated carbon has a pore volume B (cc/g) of 0.581 cc/g with a pore diameter in the range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.245 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.965, the vanadium content is 0.230% by mass, and the average fiber diameter is 13.2 μm. there were.

(実施例15)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部を混合したものを、溶融押出機に供給し、溶融温度325℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中335℃まで段階的に昇温し、合計87分間保持することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.076質量%であった。
(Example 15)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. The resulting mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 325° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The pitch fiber thus obtained was heated stepwise in air to 335° C. and held for a total of 87 minutes to carry out infusibilization treatment to obtain an activated carbon precursor which was infusibilized pitch fiber. In the activated carbon precursor, the vanadium content was 0.076% by mass.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で50分間熱処理することにより賦活をおこない、実施例15の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.565cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.287cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.958、バナジウムの含有量は0.281質量%、平均繊維径は13.7μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 50 minutes to obtain an activated carbon of Example 15. .. The obtained activated carbon has a pore volume B (cc/g) of 0.565 cc/g in a pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is 0.287 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.958, the vanadium content is 0.281% by mass, and the average fiber diameter is 13.7 μm. there were.

(実施例16)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部を混合したものを、溶融押出機に供給し、溶融温度325℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中364℃まで段階的に昇温し、合計87分間保持することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.100質量%であった。
(Example 16)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. The resulting mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 325° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The pitch fiber thus obtained was heated stepwise to 364° C. in air and held for a total of 87 minutes to carry out infusibilization treatment to obtain an activated carbon precursor which was infusibilized pitch fiber. The vanadium content in the activated carbon precursor was 0.100% by mass.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で50分間熱処理することにより賦活をおこない、実施例17の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.553cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.280cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.955、バナジウムの含有量は0.286質量%、平均繊維径は13.8μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 50 minutes to obtain an activated carbon of Example 17. .. The obtained activated carbon has a pore volume B (cc/g) of 0.553 cc/g in a pore diameter range of 1.5 nm or less out of the pore volume calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.280 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.955, the vanadium content is 0.286% by mass, and the average fiber diameter is 13.8 μm. there were.

(実施例17)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部を混合したものを、溶融押出機に供給し、溶融温度325℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中333℃まで段階的に昇温し、合計87分保持することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.095質量%であった。
(Example 17)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. The resulting mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 325° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The obtained pitch fiber was stepwise heated to 333° C. in air and held for a total of 87 minutes for infusibilization treatment to obtain an activated carbon precursor which was infusibilized pitch fiber. In the activated carbon precursor, the vanadium content was 0.095% by mass.

得られた活性炭前駆体をCO2濃度が63容量%、N2濃度が37容量%の混合ガスを賦活炉内に連続的に導入し、雰囲気温度950℃で50分間熱処理することにより賦活をおこない、実施例18の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.462cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.227cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.996、バナジウムの含有量は0.257質量%、平均繊維径は13.9μmであった。 The activated carbon precursor thus obtained is activated by continuously introducing a mixed gas having a CO 2 concentration of 63% by volume and an N 2 concentration of 37% by volume into an activation furnace and heat-treating it at an atmospheric temperature of 950° C. for 50 minutes. The activated carbon of Example 18 was obtained. The obtained activated carbon has a pore volume B (cc/g) of 0.462 cc/g in the pore diameter range of 1.5 nm or less out of the pore volume calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm is 0.227 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.996, the vanadium content is 0.257% by mass, and the average fiber diameter is 13.9 μm. there were.

(実施例18)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対して、ビス(2,4−ペンタンジオナト)バナジウム(IV)オキシド(CAS番号:3153−26−2)0.6質量部を混合したものを、溶融押出機に供給し、溶融温度325℃で溶融混合し、吐出量16g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中339℃まで段階的に昇温し、合計87分間保持することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウムの含有量は0.093質量%であった。
(Example 18)
As an organic material, bis(2,4-pentanedionato)vanadium(IV) oxide (CAS number: 3153-26-2) 0.6 parts by mass relative to 100 parts by mass of granular coal pitch having a softening point of 280° C. The resulting mixture was supplied to a melt extruder, melt-mixed at a melting temperature of 325° C., and spun at a discharge rate of 16 g/min to obtain pitch fibers. The pitch fiber thus obtained was heated stepwise to 339° C. in air and held for 87 minutes in total to carry out infusibilization treatment to obtain an activated carbon precursor which was infusibilized pitch fiber. In the activated carbon precursor, the vanadium content was 0.093 mass %.

得られた活性炭前駆体をCO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で50分間熱処理することにより賦活をおこない、実施例19の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.556cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.287cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.954、バナジウムの含有量は0.344質量%、平均繊維径は13.6μmであった。 The obtained activated carbon precursor was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment at an atmospheric temperature of 950° C. for 50 minutes to obtain an activated carbon of Example 19. .. The obtained activated carbon has a pore volume B (cc/g) of 0.556 cc/g in a pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is 0.287 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.954, the vanadium content is 0.344% by mass, and the average fiber diameter is 13.6 μm. there were.

(比較例1)
有機質材料として、軟化点が280℃の粒状石炭ピッチを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウム及びイットリウムの含有量は0質量%であった。
(Comparative Example 1)
As an organic material, granular coal pitch having a softening point of 280° C. was supplied to a melt extruder, melt-mixed at a melting temperature of 320° C., and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. The content of vanadium and yttrium in the activated carbon precursor was 0% by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度875℃で25分間熱処理することにより賦活をおこない、比較例1の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.314cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.112cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.997、イットリウム及びバナジウムの含有量は0.00質量%、平均繊維径は16.8μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having an H 2 O concentration of 100% by volume into an activation furnace and performing heat treatment at an ambient temperature of 875° C. for 25 minutes to obtain the activated carbon of Comparative Example 1. Obtained. Of the pore volume calculated by the QSDFT method, the obtained activated carbon has a pore volume B (cc/g) of 0.314 cc/g in the pore diameter range of 1.5 nm or less, which is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameters in the range of 0.65 nm to 1.0 nm is 0.112 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.997, the content of yttrium and vanadium is 0.00% by mass, and the average fiber diameter is 16. It was 8 μm.

(比較例2)
有機質材料として、軟化点が280℃の粒状石炭ピッチを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウム及びイットリウムの含有量は0質量%であった。
(Comparative example 2)
As an organic material, granular coal pitch having a softening point of 280° C. was supplied to a melt extruder, melt-mixed at a melting temperature of 320° C., and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. The content of vanadium and yttrium in the activated carbon precursor was 0% by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度875℃で40分間熱処理することにより賦活をおこない、比較例2の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.465cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.180cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.977、イットリウム及びバナジウムの含有量は0.00質量%、平均繊維径は16.7μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having an H 2 O concentration of 100% by volume into an activation furnace and performing heat treatment at an ambient temperature of 875° C. for 40 minutes to obtain the activated carbon of Comparative Example 2. Obtained. The obtained activated carbon has a pore volume B (cc/g) of 0.465 cc/g with a pore diameter in the range of 1.5 nm or less out of the pore volume calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm or more and 1.0 nm or less is 0.180 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 0 nm or less is 0.977, the content of yttrium and vanadium is 0.00% by mass, and the average fiber diameter is 16. It was 7 μm.

(比較例3)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム(CAS番号:15554−47−9)1.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量(イットリウム元素換算)は0.25質量部であった。
(Comparative example 3)
As an organic material, a mixture of 1.3 parts by mass of trisacetylacetonato yttrium (CAS number: 15554-47-9) with 100 parts by mass of granular coal pitch having a softening point of 280° C. was supplied to a melt extruder. Then, the fibers were melt-mixed at a melting temperature of 320° C. and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. In the activated carbon precursor, the yttrium content (converted to yttrium element) was 0.25 part by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度900℃で20分間熱処理することにより賦活をおこない、比較例3の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.339cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.166cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.827、イットリウムの含有量は0.66質量%、平均繊維径は16.5μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having an H 2 O concentration of 100% by volume into an activation furnace and performing heat treatment at an ambient temperature of 900° C. for 20 minutes to obtain the activated carbon of Comparative Example 3. Obtained. The obtained activated carbon has a pore volume B (cc/g) of 0.339 cc/g in a pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm is 0.166 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.827, the yttrium content is 0.66 mass %, and the average fiber diameter is 16.5 μm. there were.

(比較例4)
有機質材料として、軟化点が280℃の粒状石炭ピッチ100質量部に対してトリスアセチルアセトナトイットリウム(CAS番号:15554−47−9)1.3質量部を混合したものを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、イットリウムの含有量(イットリウム元素換算)は0.25質量部であった。
(Comparative Example 4)
As an organic material, a mixture of 1.3 parts by mass of trisacetylacetonato yttrium (CAS number: 15554-47-9) with 100 parts by mass of granular coal pitch having a softening point of 280° C. was supplied to a melt extruder. Then, the fibers were melt-mixed at a melting temperature of 320° C. and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. In the activated carbon precursor, the yttrium content (converted to yttrium element) was 0.25 part by mass.

得られた活性炭前駆体を、H2O濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度900℃で25分間熱処理することにより賦活をおこない、比較例4の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.312cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.137cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.790、イットリウムの含有量は0.83質量%、平均繊維径は15.8μmであった。 The activated carbon precursor thus obtained was activated by continuously introducing a gas having an H 2 O concentration of 100% by volume into an activation furnace and performing heat treatment at an ambient temperature of 900° C. for 25 minutes to obtain the activated carbon of Comparative Example 4. Obtained. The obtained activated carbon has a pore volume B (cc/g) of 0.312 cc/g in the pore diameter range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, which is calculated by the QSDFT method. 1. Of the pore volumes, the pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm is 0.137 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.790, the yttrium content is 0.83 mass %, and the average fiber diameter is 15.8 μm. there were.

(比較例5)
有機質材料として、軟化点が280℃の粒状石炭ピッチを、溶融押出機に供給し、溶融温度320℃で溶融混合し、吐出量20g/minで紡糸することによりピッチ繊維を得た。得られたピッチ繊維を空気中常温から354℃まで1〜30℃/分の割合で54分間昇温することにより不融化処理をおこない、不融化されたピッチ繊維である活性炭前駆体を得た。該活性炭前駆体において、バナジウム及びイットリウムの含有量は0.00質量%であった。
(Comparative example 5)
As an organic material, granular coal pitch having a softening point of 280° C. was supplied to a melt extruder, melt-mixed at a melting temperature of 320° C., and spun at a discharge rate of 20 g/min to obtain pitch fibers. The obtained pitch fiber was infusibilized by heating in air from room temperature to 354°C at a rate of 1 to 30°C/minute for 54 minutes to obtain an infusible pitch fiber-activated carbon precursor. The content of vanadium and yttrium in the activated carbon precursor was 0.00% by mass.

得られた活性炭前駆体を、CO2濃度が100容量%のガスを賦活炉内に連続的に導入し、雰囲気温度950℃で90分間熱処理することにより賦活をおこない、比較例5の活性炭を得た。得られた活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.496cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.223cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.998、バナジウム及びイットリウムの含有量は0.00質量%、平均繊維径は18.1μmであった。 The obtained activated carbon precursor was activated by continuously introducing a gas having a CO 2 concentration of 100% by volume into an activation furnace and performing heat treatment for 90 minutes at an atmospheric temperature of 950° C. to obtain an activated carbon of Comparative Example 5. It was The obtained activated carbon has a pore volume B (cc/g) of 0.496 cc/g with a pore diameter in the range of 1.5 nm or less among the pore volumes calculated by the QSDFT method, and is calculated by the QSDFT method. 1. Among the pore volumes, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is 0.223 cc/g, and the pore volume calculated by the QSDFT method is 2. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0 nm or less is 0.998, the vanadium and yttrium content is 0.00% by mass, and the average fiber diameter is 18. It was 1 μm.

(比較例6)
活性炭として、市販のフェノール系活性炭を用いた。当該活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.364cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.110cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が1.000、バナジウム及びイットリウムの含有量は0.00質量%、平均繊維径は12.6μmであった。
(Comparative example 6)
Commercially available phenol-based activated carbon was used as the activated carbon. Among the pore volumes calculated by the QSDFT method, the activated carbon has a pore volume B (cc/g) of 0.364 cc/g in the pore diameter range of 1.5 nm or less, and the pores calculated by the QSDFT method. Of the volume, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is 0.110 cc/g, and the pore volume calculated by the QSDFT method is 2.0 nm or less. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 1.000, the content of vanadium and yttrium is 0.00% by mass, and the average fiber diameter is 12.6 μm. there were.

(比較例7)
活性炭として、市販のフェノール系活性炭を用いた。当該活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.542cc/g、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.167cc/g、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.989、バナジウム及びイットリウムの含有量は0.00質量%、平均繊維径は12.8μmであった。
(Comparative Example 7)
Commercially available phenol-based activated carbon was used as the activated carbon. Among the pore volumes calculated by the QSDFT method, the activated carbon has a pore volume B (cc/g) of 0.542 cc/g in the pore diameter range of 1.5 nm or less, and the pores calculated by the QSDFT method. Of the volume, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is 0.167 cc/g, and the pore volume calculated by the QSDFT method is 2.0 nm or less. The ratio (B/C) of the pore volume B to the pore volume C of the pore diameter in the range of 0.989, the content of vanadium and yttrium is 0.00% by mass, and the average fiber diameter is 12.8 μm. there were.

得られた活性炭の物性を表1及び表2に示す。また、図1〜25に、実施例1〜18、比較例1〜7の活性炭のQSDFT法によって算出される細孔径分布図を示す。 The physical properties of the obtained activated carbon are shown in Tables 1 and 2. In addition, FIGS. 1 to 25 show distribution diagrams of pore diameters of activated carbons of Examples 1 to 18 and Comparative Examples 1 to 7 calculated by the QSDFT method.

実施例1〜18の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g以上、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985であることから、ジクロロメタンの平衡吸着量に優れたものであった。 In the activated carbons of Examples 1 to 18, among the pore volumes calculated by the QSDFT method, the pore volume B (cc/g) of pore diameters in the range of 1.5 nm or less is 0.4 cc/g or more, and the QSDFT method is used. The pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is 0.2 cc/g or more, and the pore volume calculated by the QSDFT method. Since the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less in the pore volume is 0.880 to 0.985, equilibrium adsorption of dichloromethane is obtained. It was excellent in quantity.

比較例1の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g未満であり、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g未満であり、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.985を超えるものであることから、ジクロロメタンの平衡吸着量に劣るものであった。 The activated carbon of Comparative Example 1 has a pore volume B (cc/g) of pore diameters in the range of 1.5 nm or less in the pore volume calculated by the QSDFT method of less than 0.4 cc/g, and the activated carbon of the QSDFT method The pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is less than 0.2 cc/g, and the pore volume is calculated by the QSDFT method. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less out of the pore volume is 0.985. The adsorption amount was inferior.

比較例2の活性炭は、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g未満であることから、ジクロロメタンの平衡吸着量に劣るものであった。 The activated carbon of Comparative Example 2 has a pore volume E (cc/g) of pore diameters in the range of 0.65 nm to 1.0 nm that is less than 0.2 cc/g in the pore volume calculated by the QSDFT method. Therefore, the equilibrium adsorption amount of dichloromethane was inferior.

比較例3及び4の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g未満であり、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g未満であり、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880未満であることから、ジクロロメタンの平衡吸着量に劣るものであった。 In the activated carbons of Comparative Examples 3 and 4, among the pore volumes calculated by the QSDFT method, the pore volume B (cc/g) in the pore diameter range of 1.5 nm or less is less than 0.4 cc/g, Of the pore volume calculated by the QSDFT method, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is less than 0.2 cc/g, and the QSDFT method is used. In the calculated pore volume, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less is less than 0.880, and therefore the equilibrium of dichloromethane is The adsorption amount was inferior.

比較例5の活性炭は、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.985を超えるものであることから、ジクロロメタンの平衡吸着量に劣るものであった。 In the activated carbon of Comparative Example 5, in the pore volume calculated by the QSDFT method, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less was 0. Since it exceeds 985, the equilibrium adsorption amount of dichloromethane was inferior.

比較例6の活性炭は、QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g未満であり、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g未満であり、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.985を超えるものであることから、ジクロロメタンの平衡吸着量に劣るものであった。 In the activated carbon of Comparative Example 6, among the pore volumes calculated by the QSDFT method, the pore volume B (cc/g) of pore diameters in the range of 1.5 nm or less is less than 0.4 cc/g, and the QSDFT method is used. The pore volume E (cc/g) of the pore diameter in the range of 0.65 nm to 1.0 nm is less than 0.2 cc/g, and the pore volume is calculated by the QSDFT method. The ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less out of the pore volume is 0.985. The adsorption amount was inferior.

比較例7の活性炭は、QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g未満であり、且つ、QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.985を超えるものであることから、ジクロロメタンの平衡吸着量に劣るものであった。 The activated carbon of Comparative Example 7 had a pore volume E (cc/g) of pore diameters in the range of 0.65 nm or more and 1.0 nm or less in the pore volume calculated by the QSDFT method of less than 0.2 cc/g. Yes, and in the pore volume calculated by the QSDFT method, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less exceeds 0.985. Therefore, the equilibrium adsorption amount of dichloromethane was inferior.

Claims (8)

QSDFT法によって算出される細孔容積のうち、1.5nm以下の範囲の細孔径の細孔容積B(cc/g)が0.4cc/g以上、
QSDFT法によって算出される細孔容積のうち、0.65nm以上1.0nm以下の範囲の細孔径の細孔容積E(cc/g)が0.2cc/g以上、且つ、
QSDFT法によって算出される細孔容積のうち、2.0nm以下の範囲の細孔径の細孔容積Cに対する、前記細孔容積Bの割合(B/C)が0.880〜0.985である、活性炭。
Of the pore volume calculated by the QSDFT method, the pore volume B (cc/g) having a pore diameter in the range of 1.5 nm or less is 0.4 cc/g or more,
Of the pore volume calculated by the QSDFT method, the pore volume E (cc/g) of the pore diameter in the range of 0.65 nm or more and 1.0 nm or less is 0.2 cc/g or more, and
In the pore volume calculated by the QSDFT method, the ratio (B/C) of the pore volume B to the pore volume C having a pore diameter in the range of 2.0 nm or less is 0.880 to 0.985. , Activated carbon.
前記細孔容積C(cc/g)に対する、QSDFT法によって算出される細孔容積のうち、1.0nm以下の範囲の細孔径の細孔容積A(cc/g)の割合(細孔容積A/細孔容積C)が0.5〜0.94である、請求項1に記載の活性炭。 The ratio of the pore volume A (cc/g) having a pore diameter in the range of 1.0 nm or less to the pore volume C (cc/g) in the pore volume calculated by the QSDFT method (pore volume A /The activated carbon according to claim 1, wherein the pore volume C) is 0.5 to 0.94. 前記細孔容積Cに対する前記細孔容積Bの割合(細孔容積B/細孔容積C)が0.90〜0.99である、請求項1又は2に記載の活性炭。 The activated carbon according to claim 1, wherein the ratio of the pore volume B to the pore volume C (pore volume B/pore volume C) is 0.90 to 0.99. 前記活性炭が繊維状活性炭である、請求項1〜3のいずれか1項に記載の活性炭。 The activated carbon according to claim 1, wherein the activated carbon is fibrous activated carbon. ジクロロメタン平衡吸着量が40質量%以上である、請求項1〜4のいずれか1項に記載の活性炭。 The activated carbon according to any one of claims 1 to 4, having a dichloromethane equilibrium adsorption amount of 40% by mass or more. 気相中のジクロロメタンを吸着させるために用いられる、請求項1〜5のいずれか1項に記載の活性炭。 The activated carbon according to any one of claims 1 to 5, which is used for adsorbing dichloromethane in a gas phase. 請求項1〜6のいずれかに記載の活性炭を含む、ジクロロメタンの吸着剤。 An adsorbent for dichloromethane containing the activated carbon according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の活性炭を用いる、ジクロロメタンの吸着除去方法。 A method for adsorptive removal of dichloromethane using the activated carbon according to any one of claims 1 to 6.
JP2020042335A 2018-06-19 2020-03-11 activated carbon Active JP7428347B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018116189 2018-06-19
JP2018116189 2018-06-19
JP2019563309A JP6683969B1 (en) 2018-06-19 2019-06-18 Activated carbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019563309A Division JP6683969B1 (en) 2018-06-19 2019-06-18 Activated carbon

Publications (3)

Publication Number Publication Date
JP2020111505A true JP2020111505A (en) 2020-07-27
JP2020111505A5 JP2020111505A5 (en) 2023-03-24
JP7428347B2 JP7428347B2 (en) 2024-02-06

Family

ID=68984068

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019563309A Active JP6683969B1 (en) 2018-06-19 2019-06-18 Activated carbon
JP2020042335A Active JP7428347B2 (en) 2018-06-19 2020-03-11 activated carbon

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019563309A Active JP6683969B1 (en) 2018-06-19 2019-06-18 Activated carbon

Country Status (4)

Country Link
JP (2) JP6683969B1 (en)
KR (1) KR102545878B1 (en)
CN (1) CN112135794B (en)
WO (1) WO2019244904A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220117747A (en) 2021-02-17 2022-08-24 삼성전자주식회사 Storage controller having data prefetching control function, operating method of storage controller, and operating method of storage device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281099A (en) * 1995-04-13 1996-10-29 Toyobo Co Ltd Adsorbent for organic chlorine compound
JPH10328563A (en) * 1997-05-30 1998-12-15 Adall:Kk Base material for removing noxious gas and its production
JP2000157863A (en) * 1998-11-26 2000-06-13 Adooru:Kk Activated carbon for air cleaning and production thereof
JP2000203823A (en) * 1999-01-05 2000-07-25 Matsushita Electric Ind Co Ltd Production of activated carbon
JP2004182511A (en) * 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same
JP2005001968A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for porous carbon
JP2017179616A (en) * 2016-03-28 2017-10-05 株式会社アドール Manufacturing method of active charcoal containing at least one of metal element and metal compound
JP2017178635A (en) * 2016-03-28 2017-10-05 株式会社アドール Method for producing carbon material
WO2017213057A1 (en) * 2016-06-06 2017-12-14 住友電気工業株式会社 Porous carbon material for electric bilayer capacitor electrode, porous carbon material manufacturing method, and electric bilayer capacitor electrode
JP2018039685A (en) * 2016-09-05 2018-03-15 旭化成株式会社 Porous carbon material and method for producing the same, complex and method for producing the same, and positive electrode material for lithium sulfur batteries

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446771B2 (en) * 1993-12-09 2003-09-16 三菱瓦斯化学株式会社 Method for producing high specific surface area carbon material
JP3825139B2 (en) * 1997-05-30 2006-09-20 株式会社アドール Ozone decomposition material and method for producing the same
JPH11240707A (en) * 1998-02-27 1999-09-07 Adooru:Kk Activated carbon
WO2005115611A1 (en) * 2004-05-31 2005-12-08 Teikoku Medix Co., Ltd. Adsorbent and process for producing the same
JP2006321693A (en) * 2005-05-20 2006-11-30 Teijin Ltd Active carbon and its manufacturing method
JP5473255B2 (en) * 2008-06-16 2014-04-16 株式会社キャタラー Activated carbon for gas component adjustment
JP5482133B2 (en) 2009-11-17 2014-04-23 東洋紡株式会社 Activated carbon fiber
KR20150122177A (en) * 2013-02-20 2015-10-30 오사카 가스 케미칼 가부시키가이샤 Granular activated carbon, and manufacturing method for same
US20150232340A1 (en) * 2013-11-01 2015-08-20 The Board Of Trustees Of The Leland Stanford Junior University Microporous/Mesoporous Carbon
WO2015119269A1 (en) * 2014-02-10 2015-08-13 コスモ石油株式会社 Production method for activated carbon, and activated carbon
CN105555714B (en) * 2014-04-03 2020-01-14 关西热化学株式会社 Activated carbon for water purifier
JP5886383B2 (en) * 2014-07-25 2016-03-16 関西熱化学株式会社 Activated carbon with excellent adsorption performance and method for producing the same
JPWO2016031977A1 (en) * 2014-08-29 2017-06-15 住友電気工業株式会社 Negative electrode material for power storage device, method for producing the same, and lithium ion power storage device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281099A (en) * 1995-04-13 1996-10-29 Toyobo Co Ltd Adsorbent for organic chlorine compound
JPH10328563A (en) * 1997-05-30 1998-12-15 Adall:Kk Base material for removing noxious gas and its production
JP2000157863A (en) * 1998-11-26 2000-06-13 Adooru:Kk Activated carbon for air cleaning and production thereof
JP2000203823A (en) * 1999-01-05 2000-07-25 Matsushita Electric Ind Co Ltd Production of activated carbon
JP2004182511A (en) * 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same
JP2005001968A (en) * 2003-06-13 2005-01-06 Nippon Steel Chem Co Ltd Production method for porous carbon
JP2017179616A (en) * 2016-03-28 2017-10-05 株式会社アドール Manufacturing method of active charcoal containing at least one of metal element and metal compound
JP2017178635A (en) * 2016-03-28 2017-10-05 株式会社アドール Method for producing carbon material
WO2017213057A1 (en) * 2016-06-06 2017-12-14 住友電気工業株式会社 Porous carbon material for electric bilayer capacitor electrode, porous carbon material manufacturing method, and electric bilayer capacitor electrode
JP2018039685A (en) * 2016-09-05 2018-03-15 旭化成株式会社 Porous carbon material and method for producing the same, complex and method for producing the same, and positive electrode material for lithium sulfur batteries

Also Published As

Publication number Publication date
CN112135794B (en) 2023-09-05
KR20210021451A (en) 2021-02-26
JPWO2019244904A1 (en) 2020-06-25
JP7428347B2 (en) 2024-02-06
KR102545878B1 (en) 2023-06-22
CN112135794A (en) 2020-12-25
WO2019244904A1 (en) 2019-12-26
JP6683969B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6379324B1 (en) Activated carbon and manufacturing method thereof
Lillo-Ródenas et al. Benzene and toluene adsorption at low concentration on activated carbon fibres
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP6683968B1 (en) Activated carbon
JP2022132348A (en) Activated carbon and production method thereof
CN104583120A (en) Activated carbon having large active surface area
JP7441296B2 (en) Activated carbon manufacturing method
JP6683969B1 (en) Activated carbon
JP2004182511A (en) Activated carbon and method of manufacturing the same
JPWO2003033135A1 (en) Activated carbon fiber for removing organochlorine compounds
JP6719709B2 (en) Activated carbon
JP7103642B2 (en) Deodorant and deodorant sheet
JP7141089B2 (en) Deodorizing material and deodorizing sheet
WO2016067440A1 (en) Fibrous activated carbon for solvent recovery
JPWO2003026792A1 (en) Activated carbon fiber and method for producing the same
JP2020121288A (en) Activated carbon for removing trihalomethane and manufacturing method thereof
JP2020049451A (en) Activated carbon, and method for producing the activated carbon
KR20190040813A (en) Method manufacturing activated carbon for removal of aldehydes gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R150 Certificate of patent or registration of utility model

Ref document number: 7428347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150