JP2000138140A - Manufacture of carbon porous body for electric double layer capacitor polarizable electrode - Google Patents

Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Info

Publication number
JP2000138140A
JP2000138140A JP10310138A JP31013898A JP2000138140A JP 2000138140 A JP2000138140 A JP 2000138140A JP 10310138 A JP10310138 A JP 10310138A JP 31013898 A JP31013898 A JP 31013898A JP 2000138140 A JP2000138140 A JP 2000138140A
Authority
JP
Japan
Prior art keywords
double layer
porous body
electric double
pitch
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10310138A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiode
哲夫 塩出
Hiromi Okamoto
寛巳 岡本
Hidetoshi Morotomi
秀俊 諸富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adchemco Corp
Original Assignee
Adchemco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adchemco Corp filed Critical Adchemco Corp
Priority to JP10310138A priority Critical patent/JP2000138140A/en
Publication of JP2000138140A publication Critical patent/JP2000138140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a carbon porous body for forming a polarizable electrode having a high bulk density, a high capacitance per volume, and a low electrical resistance. SOLUTION: A method of manufacturing a carbon porous body for an electric double layer capacitor polarizable electrode comprises the steps of: heat-treating a petroleum or coal pitch in such a manner that its softening point becomes equal to or higher than 280 deg.C and its mesophase becomes equal to or higher than 40 vol%, and dispersing the mesophase to thereby obtain a pitch having a high softening point; pulverizing the obtained pitch having the high softening point into fine particles whose aspect ratio is 2 or lower; oxidizing the pulverized particles; and carbonizing and activating the oxidized particles to thereby obtain the carbon porous body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、電気二重層キャパ
シタ分極性電極用炭素多孔体(以下単に「炭素多孔体」
という)の製造方法に関し、更に詳しくは電気二重層キ
ャパシタ分極性電極として高い電気容量で、低い電気抵
抗を示す炭素多孔体の製造方法に関する。
The present invention relates to a carbon porous body for an electric double layer capacitor polarizable electrode (hereinafter simply referred to as "carbon porous body").
More specifically, the present invention relates to a method for producing a porous carbon material having a high electric capacity and a low electric resistance as an electric double layer capacitor polarizable electrode.

【0002】[0002]

【従来の技術】1970年代後半から、電子機器の小型
化と、これらの機器へのマイクロコンピューターの導
入、半導体メモリーの採用等が進められ、それらのマイ
クロコンピューターやメモリのバックアップ電源とし
て、電気二重層キャパシタが広く使用されている。この
電気二重層キャパシタは、活性炭電極と電解液との界面
の電気二重層に蓄積される電荷を利用した大容量コンデ
ンサである。
2. Description of the Related Art Since the late 1970's, electronic devices have been downsized, microcomputers have been introduced into these devices, semiconductor memories have been adopted, and an electric double layer has been used as a backup power source for these microcomputers and memories. Capacitors are widely used. This electric double layer capacitor is a large-capacity capacitor utilizing electric charges accumulated in the electric double layer at the interface between the activated carbon electrode and the electrolyte.

【0003】更に近年、電気二重層キャパシタについて
大容量及び低抵抗化の技術が開発されたことで、数十k
Wの大電力が秒オーダーで充放電可能になってきた。こ
れにより、電気二重層キャパシタは、電気自動車の補助
電源やハイブリッド自動車のエネルギー回生用電源、電
力貯蔵等、様々な応用が期待されている。
In recent years, the development of large capacity and low resistance technologies for electric double layer capacitors has led to
High power of W can be charged and discharged in the order of seconds. As a result, the electric double layer capacitor is expected to have various applications such as an auxiliary power supply for electric vehicles, a power supply for energy regeneration of hybrid vehicles, and power storage.

【0004】電気二重層キャパシタは、電気二重層が平
板コンデンサのように電荷を蓄積するという性質を利用
している。動作原理は、簡易的にヘルムホルツのモデル
で説明することができ、その電気容量(C)は、以下の
ような式で表される。
[0004] The electric double layer capacitor utilizes the property that the electric double layer accumulates electric charges like a flat plate capacitor. The operating principle can be simply described by a Helmholtz model, and its electric capacity (C) is represented by the following equation.

【数1】 (ε:電解液の誘電率、δ:電気二重層の厚さ、S:電
極界面の表面積)
(Equation 1) (Ε: dielectric constant of electrolyte, δ: thickness of electric double layer, S: surface area of electrode interface)

【0005】この式から、比表面積が大きく、高導電性
で電気化学的に安定な活性炭を分極性電極として用いる
と、小型で大容量のコンデンサ「電気二重層キャパシ
タ」を得ることができることが判る。従来これらの活性
炭は、やしがら、フェノール樹脂、石油系或いは石炭系
のピッチを原料として、それを乾留した後、水蒸気或い
は二酸化炭素等のガスで賦活したり、薬液賦活をするこ
とによって製造されてきた。これらの活性炭の現状で
は、3,000m2/g程度の比表面積の大きな活性炭
を用いると、180F/g程度の容量を示す分極性電極
となる。
From this equation, it can be seen that when activated carbon having a large specific surface area, high conductivity and electrochemical stability is used as a polarizable electrode, a small-sized and large-capacity capacitor "electric double layer capacitor" can be obtained. . Conventionally, these activated carbons are produced by using palm, phenolic resin, petroleum-based or coal-based pitch as a raw material, carbonizing and then activating with a gas such as steam or carbon dioxide, or activating a chemical solution. Have been. Under the current situation of these activated carbons, the use of activated carbon having a large specific surface area of about 3,000 m 2 / g results in a polarizable electrode having a capacity of about 180 F / g.

【0006】[0006]

【発明が解決しようとする課題】しかし、比表面積が
3,000m2/g程度の活性炭では、嵩密度が0.3
g/cm3程度と小さく、体積当たりの容量が50F/
cm3程度となり、装置の小型化の点で問題となってい
る。従って、小型で大容量の電気二重層キャパシタを製
造するためには、嵩密度が大きく且つ高い電気容量の炭
素多孔体が望まれる。又、数十kWの大電力を秒オーダ
ーで充放電可能にするためには、分極性電極の内部抵抗
が小さいことが望まれる。このために、活性炭の細孔径
の制御を行い、小さな比表面積であっても、電気二重層
を形成するのに有効な最適な細孔径を有する必要があ
る。
However, activated carbon having a specific surface area of about 3,000 m 2 / g has a bulk density of 0.3
g / cm 3, and the capacity per volume is 50F /
cm 3, which is a problem in miniaturization of the apparatus. Therefore, in order to manufacture a small-sized and large-capacity electric double layer capacitor, a carbon porous body having a large bulk density and a high electric capacity is desired. Further, in order to enable charging and discharging of a large power of several tens of kW in the order of seconds, it is desired that the internal resistance of the polarizable electrode is small. For this reason, it is necessary to control the pore diameter of activated carbon and to have an optimum pore diameter effective for forming an electric double layer even if the specific surface area is small.

【0007】電気抵抗の小さい分極性電極を得るため
に、特開平2−66917号公報や、特開平7−307
250号公報等に記載のように、前記の如き活性炭にカ
ーボンブラックやカーボンウィスカーを添加することが
行われている。しかし、このような添加物は、電気貯蔵
の面での寄与はなく、電気容量を大きくするためには、
このような添加剤の添加量ができるだけ少ないことが望
まれる。又、賦活処理が施された炭素材料を黒鉛化し、
更にその黒鉛化物に対して賦活した材料が、特開平5−
139712号公報に記載されているが、電気容量を大
きくするためには、再賦活する必要があり、経済的では
ない。従って本発明では、嵩密度が高く、体積当たりの
静電容量が大きく、且つ電気抵抗の低い分極性電極を形
成する炭素多孔体を提供することを目的とする。
In order to obtain a polarizable electrode having a small electric resistance, Japanese Patent Application Laid-Open No. 2-66917 and Japanese Patent Application Laid-Open No. 7-307
As described in JP-A-250-250, etc., carbon black and carbon whiskers are added to activated carbon as described above. However, such additives do not contribute in terms of electric storage, and in order to increase the electric capacity,
It is desired that the amount of such additives be as small as possible. In addition, the activated carbon material is graphitized,
Further, the material activated for the graphitized product is disclosed in
Although described in JP-A-139712, in order to increase the electric capacity, it is necessary to re-activate, which is not economical. Therefore, an object of the present invention is to provide a porous carbon material which forms a polarizable electrode having a high bulk density, a large capacitance per volume, and a low electric resistance.

【0008】[0008]

【課題を解決するための手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、石油系又は石炭
系ピッチを、軟化点が280℃以上、且つメソフェーズ
相が40容量%以上になるまで熱処理し、メソフェーズ
相を分散して高軟化点ピッチを得る工程(第一工程);
得られた高軟化点ピッチを、アスペクト比が2以下の微
粒子に粉砕する工程(第二工程);該粉砕物を酸化処理
する工程(第三工程);該酸化処理物を炭化及び賦活化
して炭素多孔体を得る工程(第四工程)からなることを
特徴とする電気二重層キャパシタ分極性電極用炭素多孔
体の製造方法、及びこの炭素多孔体を用いた電気二重層
キャパシタを提供する。
The above object is achieved by the present invention described below. That is, the present invention provides a step of subjecting a petroleum or coal pitch to a heat treatment until the softening point becomes 280 ° C. or more and the mesophase phase becomes 40% by volume or more, and disperses the mesophase phase to obtain a high softening point pitch (No. One step);
Crushing the obtained high softening point pitch into fine particles having an aspect ratio of 2 or less (second step); oxidizing the crushed material (third step); carbonizing and activating the oxidized material; Provided is a method for producing a carbon porous body for an electric double layer capacitor polarizable electrode, which comprises a step (fourth step) of obtaining a carbon porous body, and an electric double layer capacitor using the carbon porous body.

【0009】本発明者は、鋭意検討の結果、炭素多孔体
の細孔径の制御を、石油系又は石炭系のピッチを熱処理
し、発生するメソフェーズ相と非メソフェーズ相の分散
状態で行うことによって、嵩密度が大きく、電気容量の
大きな炭素多孔体を得る方法を見出した。又、その多孔
体を1,800℃以上で熱処理して黒鉛化することによ
って、電気抵抗の低い炭素多孔体となることを見出して
本発明に至った。
As a result of intensive studies, the inventor of the present invention controlled the pore size of the carbon porous body by heat-treating a petroleum or coal pitch in a dispersed state of a generated mesophase phase and a non-mesophase phase. A method for obtaining a carbon porous body having a large bulk density and a large electric capacity was found. Further, the present inventors have found that a carbon porous body having low electric resistance can be obtained by heat-treating the porous body at 1,800 ° C. or higher to graphitize the porous body, and have reached the present invention.

【0010】[0010]

【発明の実施の形態】次に好ましい実施の形態を挙げて
本発明を更に詳細に説明する。本発明の製造方法の第一
工程は、石油系又は石炭系の液状ピッチを、軟化点が2
80℃以上、メソフェーズ相が40容量%以上になるま
で熱処理し、メソフェーズ相が非メソフェーズ相中に分
散している高軟化点ピッチとする工程である。原料とし
て使用する上記液状ピッチは、石油系の液状ピッチで
も、或いは炭素系の液状ピッチの何れでもよい。更に詳
しくは液状ピッチの好ましい1例は、常圧蒸留によって
軽質分を除いたコールタールを更に減圧蒸留して残った
留分で、軟化点が100〜115℃程度のものである。
Next, the present invention will be described in more detail with reference to preferred embodiments. In the first step of the production method of the present invention, a petroleum-based or coal-based liquid pitch having a softening point of 2
In this step, the heat treatment is performed at 80 ° C. or more until the mesophase phase becomes 40% by volume or more to obtain a high softening point pitch in which the mesophase phase is dispersed in the non-mesophase phase. The liquid pitch used as a raw material may be either a petroleum-based liquid pitch or a carbon-based liquid pitch. More specifically, a preferred example of the liquid pitch is a fraction obtained by further distilling coal tar from which light components have been removed by atmospheric distillation under reduced pressure, and has a softening point of about 100 to 115 ° C.

【0011】上記熱処理は、好ましくは420℃以下で
行なうことがよい。この間、溶融ピッチを機械的に撹拌
したり、反応器底部から複数のノズルを通して窒素ガス
の吹込みによる撹拌を行い、溶融ピッチの温度の均一性
を保ち、ピッチ成分の偏在を防止し、メソフェーズ相と
非メソフェーズ相との均一な分散を確保することが好ま
しい。
The above heat treatment is preferably performed at 420 ° C. or lower. During this time, the molten pitch is mechanically agitated, or agitated by blowing nitrogen gas through a plurality of nozzles from the bottom of the reactor to maintain the uniformity of the temperature of the molten pitch, prevent uneven distribution of pitch components, and reduce the mesophase phase. It is preferable to ensure uniform dispersion of the non-mesophase and the non-mesophase.

【0012】又、以上の熱処理は、熱処理物(高軟化点
ピッチ)の軟化点が280℃以上、好ましくは330〜
370℃の範囲になるように、加熱温度、加熱時間及び
圧力等の条件を設定して行うことが好ましい。熱処理物
の軟化点が280℃未満では、微粉砕後の次工程である
酸化処理の際に微粉砕物が軟化溶融し、微粒子の形状を
保持することができない。一方、熱処理物の軟化点が3
70℃を超えると、熱処理後の熱処理物を反応器から抜
出す等のハンドリングが困難となったり、次工程である
粉砕の際の粉砕物のアスペクト比が大きくなる等の点で
好ましくない。
In the above heat treatment, the softened point of the heat-treated product (high softening point pitch) is 280 ° C. or more, preferably 330 to
It is preferable to set the conditions such as the heating temperature, the heating time, and the pressure so as to be in the range of 370 ° C. When the softening point of the heat-treated product is lower than 280 ° C., the finely pulverized material softens and melts during the oxidation treatment as the next step after the fine pulverization, and the shape of the fine particles cannot be maintained. On the other hand, the softening point of the heat-treated product is 3
If the temperature exceeds 70 ° C., it is not preferable because handling such as removal of the heat-treated product from the reactor after the heat treatment becomes difficult, and the aspect ratio of the pulverized product in the subsequent pulverization becomes large.

【0013】又、メソフェーズ相は40容量%以上とす
ることが必要で、好ましくは50〜90容量%とする。
メソフェーズ相が40容量%より小さい場合は、以降の
工程で酸化処理物を賦活した際に、20Å以下の細孔径
を有する細孔の量が多くなり、電気二重層キャパシタに
した際の低温特性等が悪くなるという問題がある。又、
メソフェーズ相が上記範囲を超えると細孔径の大きな細
孔しか生成せず、比表面積が小さくなる等の点で好まし
くない。
The mesophase phase must be at least 40% by volume, preferably 50 to 90% by volume.
When the mesophase phase is smaller than 40% by volume, the amount of pores having a pore diameter of 20 ° or less increases when the oxidized product is activated in the subsequent steps, and the low-temperature characteristics of an electric double layer capacitor are reduced. There is a problem that becomes worse. or,
If the mesophase phase exceeds the above range, only pores having a large pore diameter are generated, which is not preferable in that the specific surface area becomes small.

【0014】次の第二工程は、上記高軟化点ピッチを冷
却及び固化後、アスペクト比が2以下になるように微粉
砕する工程である。高軟化点ピッチは、平均粒径として
は好ましくは50μm以下、より好ましくは5〜30μ
mの範囲に粉砕するとよい。粉砕機としては、特に限定
されず、例えば、ジェットミル、ボールミル、撹袢ミ
ル、高速回転ミル等の粉砕機が使用できる。
The next second step is a step of pulverizing the high softening point pitch after cooling and solidifying it, so that the aspect ratio becomes 2 or less. The high softening point pitch is preferably 50 μm or less as an average particle size, more preferably 5 to 30 μm.
It is good to pulverize to the range of m. The pulverizer is not particularly limited, and for example, a pulverizer such as a jet mill, a ball mill, a stirring mill, and a high-speed rotating mill can be used.

【0015】第三の工程は、上記粉砕物を酸化処理する
工程である。この酸化処理は空気中で140〜300℃
程度の温度で行ってもよいが、酸化炉中に窒素ガスを流
して、酸化炉中の酸素濃度を16〜18重量%程度にし
て行うことが好ましい。又、酸化処理に際しては、粉砕
粒子が融着凝集物を形成しないように、酸化炉を多分割
して温度制御が正確にできるようにしたり、粉砕物が熱
源に接触しないように、流動床で処理したり、酸化炉内
の通過を薄い層で行ったりするのが好ましい。酸化処理
によってある程度融着凝集物が発生するが、この融着物
質は、再粉砕すれば使用することができる。
The third step is a step of oxidizing the pulverized material. This oxidation treatment is 140-300 ° C in air
Although it may be carried out at about the same temperature, it is preferable to carry out the treatment by flowing nitrogen gas into the oxidation furnace and setting the oxygen concentration in the oxidation furnace to about 16 to 18% by weight. In the oxidation treatment, the oxidation furnace is divided into multiple sections so that the temperature can be accurately controlled so that the pulverized particles do not form fused aggregates. It is preferred to treat or pass through the oxidation furnace in thin layers. Oxidation treatment produces some fused agglomerates, which can be used if reground.

【0016】上記酸化処理において、酸化の程度は、酸
化処理物が、処理後において2重量%程度、好ましくは
3〜10重量%の酸素を含む状態になるように酸化条件
を設定することが望ましい。酸素量が上記範囲未満、即
ち、酸化不十分であると、後の炭化過程で粉砕微粒子の
融着を生ずる等の点で不都合がある。以上の酸化処理を
受けた粉砕物は、その理由は不明であるが、酸化処理前
の粒子が有していた鋭角な角がなくなって粒子が丸みを
帯び、球状とは言えないまでも、やや丸みを帯びた粒子
になって、そのアスペクト比が1〜2の範囲に収まって
いる。このような形状を有するものは、電気二重層キャ
パシタ分極性電極に使用した場合、充填密度が高くな
り、電気二重層キャパシタを更に小型化することができ
る。
In the above oxidation treatment, the degree of oxidation is desirably set so that the oxidized product contains about 2% by weight, preferably 3 to 10% by weight of oxygen after the treatment. . If the amount of oxygen is less than the above range, that is, if the oxidation is insufficient, there is an inconvenience in that, for example, fusion of the crushed fine particles occurs in the subsequent carbonization process. Although the reason for the pulverized material subjected to the above-mentioned oxidation treatment is unknown, the sharp corners of the particles before the oxidation treatment disappear and the particles are rounded. The particles are rounded and have an aspect ratio in the range of 1-2. When used for an electric double layer capacitor polarizable electrode, the electric double layer capacitor having such a shape has a high packing density and can further reduce the size of the electric double layer capacitor.

【0017】第四の工程は、上記不融化した酸化処理物
を炭化及び賦活化し、炭素多孔体を得る工程である。炭
化については、常法に従って窒素等の不活性雰囲気中で
500〜1,200℃程度で乾留し、炭化すればよい。
賦活化については、一般的な方法、例えば、水蒸気又は
二酸化炭素等による気相賦活法でも、溶融水酸化カリウ
ム等による薬液賦活法でもよい。このように賦活した炭
素多孔体は、500〜3,000m2/g程度の比表面
積を有している。尚、賦活化処理後の炭素多孔体の電気
抵抗は、2×10-4Ωm程度であり、更に必要に応じて
不活性雰囲気中で1,800℃以上の熱処理を施して炭
素多孔体を黒鉛化し、電気抵抗を更に小さくする(例え
ば1×10-4Ωm以下)ことができる。この黒鉛化の好
ましい条件は、1800〜2200℃の温度で0.1〜
6時間の熱処理であるが、これらの条件に限定されるも
のではない。
The fourth step is a step of carbonizing and activating the infusibilized oxidized product to obtain a porous carbon material. Regarding carbonization, carbonization may be performed by dry distillation at about 500 to 1,200 ° C. in an inert atmosphere such as nitrogen according to a conventional method.
The activation may be performed by a general method, for example, a gas phase activation method using steam or carbon dioxide, or a chemical solution activation method using molten potassium hydroxide or the like. The activated carbon porous body has a specific surface area of about 500 to 3,000 m 2 / g. The electrical resistance of the porous carbon material after the activation treatment is about 2 × 10 −4 Ωm, and if necessary, a heat treatment at 1,800 ° C. or more is performed in an inert atmosphere to convert the carbon porous material into graphite. And the electric resistance can be further reduced (for example, 1 × 10 −4 Ωm or less). The preferred conditions for this graphitization are as follows:
Although the heat treatment is performed for 6 hours, the heat treatment is not limited to these conditions.

【0018】以上の如くして得られた本発明の炭素多孔
体の嵩密度は0.4〜0.7g/cm3であり、体積当
たりの静電容量は70〜90F/cm3程度であり、且
つ電気抵抗が9.0×10-5〜1.0×10-4Ωmと低
いので、この炭素多孔体を用いて作製する電気二重層キ
ャパシタは、従来の活性炭を用いた場合に比べていっそ
うの小型化及び大容量の充放電が実現される。
The bulk density of the porous carbon material of the present invention obtained as described above is 0.4 to 0.7 g / cm 3 , and the capacitance per volume is about 70 to 90 F / cm 3 . And the electric resistance is as low as 9.0 × 10 −5 to 1.0 × 10 −4 Ωm, so that the electric double layer capacitor manufactured using this carbon porous body is smaller than the case using the conventional activated carbon. Further miniaturization and large-capacity charge / discharge are realized.

【0019】以上のようにして得られた本発明の炭素多
孔体は、通常の方法に従って電気二重層キャパシタ用分
極性電極に加工して、この電極を用いて電気二重層キャ
パシタとすることができる。従来の電気二重層キャパシ
タの形態には、様々なタイプがあり、例えば、分極性電
極一対がセパレーターを介して対向して配置され、ケー
ス、封口板及びガスケットリングにより封口がハウジン
グされたコイン型;粉末活性炭、バインダ及び溶剤を混
合したスラリーを塗工したアルミニウム箔一対を捲回
し、これを円筒状アルミニウムケースにハウジングした
構造を有する円筒型;フェノール樹脂等の樹脂に粉末活
性炭を混合し、成形及び炭化した炭素成形体を分極性電
極とするバイポーラ構造を採用した角型等のタイプがあ
る。
The carbon porous body of the present invention obtained as described above can be processed into a polarizable electrode for an electric double layer capacitor according to a usual method, and an electric double layer capacitor can be formed using this electrode. . There are various types of conventional electric double layer capacitors, for example, a coin type in which a pair of polarizable electrodes are arranged to face each other with a separator interposed therebetween, and a housing is sealed by a case, a sealing plate and a gasket ring; A cylindrical type having a structure in which a pair of aluminum foils coated with a slurry in which powdered activated carbon, a binder and a solvent are mixed, and wound around a cylindrical aluminum case; mixing powdered activated carbon with a resin such as a phenolic resin; There are square and other types employing a bipolar structure using a carbonized carbon body as a polarizable electrode.

【0020】又、電解液についても様々である。例え
ば、30〜50重量%の硫酸水溶液を使用する水溶液
系;プロピレンカーボネート等の有機溶媒に、4級アン
モニウム塩等の電解質を溶解した有機系等が挙げられ
る。前記本発明の炭素多孔体を使用して、これら様々な
形式の電気二重層キャパシタの分極性電極を形成する
と、より小型で且つ電気容量の大きな電気二重層キャパ
シタを製造することができる。
There are also various types of electrolytes. For example, an aqueous system using a 30 to 50% by weight aqueous sulfuric acid solution; an organic system in which an electrolyte such as a quaternary ammonium salt is dissolved in an organic solvent such as propylene carbonate; When the polarizable electrodes of these various types of electric double layer capacitors are formed using the carbon porous body of the present invention, it is possible to manufacture a smaller electric double layer capacitor having a larger electric capacity.

【0021】[0021]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明する。 実施例1 減圧ピッチを圧力5kg/cm2・Gで、17Nm3/ピ
ッチkgの窒素バブリング下、400℃で5時間熱処理
することによって、軟化点が364℃であり、偏光顕微
鏡での目視計数カウントの光学的異方性成分の含有率が
74容量%のメソフェーズピッチを得た。このメソフェ
ーズピッチを、平均粒径16μmの微粉末に粉砕し、空
気気流中において昇温速度4℃/min.で130℃〜
260℃まで昇温して20分間保持し、酸化処理を行
い、酸素含量を4.7重量%とした。この不融化した酸
化処理物を、常法に従って、乾留及び賦活化した後、ア
ルゴン雰囲気下において1,800℃で30分間の熱処
理を行い、比表面積が570m2/gで、電気抵抗が1
×10-4Ωmの炭素多孔体を得た。この炭素多孔体のキ
ャパシタとしての電気容量を測定した。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 A softening point of 364 ° C. was obtained by performing a heat treatment at 400 ° C. for 5 hours under nitrogen bubbling of 17 Nm 3 / pitch kg at a reduced pressure of 5 kg / cm 2 · G under pressure of 5 kg / cm 2 · G. A mesophase pitch having an optically anisotropic component content of 74% by volume was obtained. This mesophase pitch is pulverized into fine powder having an average particle size of 16 μm, and heated at a rate of 4 ° C./min in an air stream. 130 ° C ~
The temperature was raised to 260 ° C. and maintained for 20 minutes to perform an oxidation treatment to adjust the oxygen content to 4.7% by weight. The infusibilized oxidized product is subjected to dry distillation and activation according to a conventional method, and then heat-treated at 1,800 ° C. for 30 minutes in an argon atmosphere to have a specific surface area of 570 m 2 / g and an electric resistance of 1
× 10 -4 Ωm porous carbon material was obtained. The capacitance of the carbon porous body as a capacitor was measured.

【0022】実施例2 減圧ピッチを圧力5kg/cm2・Gで、17Nm3/ピ
ッチkgの窒素バブリング下400℃で4時間熱処理す
ることによって、軟化点が282℃であり、偏光顕微鏡
での目視計数カウントの光学的異方性成分の含有率47
容量%のメソフェーズピッチを得た。このメソフェーズ
ピッチを、平均粒径20μmの微粉末に粉砕し、空気気
流中において昇温速度4℃/min.で130℃〜30
0℃まで昇温して20分間保持し、酸化処理を行い、酸
素含量を5.3重量%とした。この酸化処理物を、常法
に従って、乾留及び賦活化した後、アルゴン雰囲気下に
おいて2,000℃で30分間の熱処理を行い、比表面
積が700m2/gで、電気抵抗が9.2×10-5Ωm
の炭素多孔体を得た。この炭素多孔体のキャパシタとし
ての電気容量を測定した。
Example 2 A heat treatment was carried out at 400 ° C. for 4 hours under nitrogen bubbling of 17 Nm 3 / pitch kg at a pressure of 5 kg / cm 2 · G at a reduced pressure pitch, whereby the softening point was 282 ° C. Content rate of optically anisotropic component of count count 47
A volume% mesophase pitch was obtained. This mesophase pitch is pulverized into a fine powder having an average particle diameter of 20 μm, and heated at a rate of 4 ° C./min. 130 ℃ -30
The temperature was raised to 0 ° C. and maintained for 20 minutes to carry out an oxidation treatment to adjust the oxygen content to 5.3% by weight. The oxidized product is subjected to dry distillation and activation according to a conventional method, and then heat-treated at 2,000 ° C. for 30 minutes in an argon atmosphere to have a specific surface area of 700 m 2 / g and an electric resistance of 9.2 × 10 5. -5 Ωm
Was obtained. The capacitance of the carbon porous body as a capacitor was measured.

【0023】比較例1 やしがらを原料として、常法に従って乾留及び賦活を行
い、比表面積1,100m2/gの活性炭を得た。この
活性炭を微粉砕機で平均粒径20μm程度の微粉状とし
た。この活性炭をアルゴン雰囲気下において1,800
℃で30分間の熱処理を行った。この微粉末の電気抵抗
を測定したところ、5.2×10-4Ωmであった。この
微粉体を使用して電気容量を測定した。
COMPARATIVE EXAMPLE 1 Drying and activation were carried out in a conventional manner using a potato as a raw material to obtain an activated carbon having a specific surface area of 1,100 m 2 / g. This activated carbon was pulverized with a pulverizer into a fine powder having an average particle size of about 20 μm. This activated carbon was placed in an argon atmosphere for 1,800
Heat treatment was performed at 30 ° C. for 30 minutes. When the electric resistance of this fine powder was measured, it was 5.2 × 10 −4 Ωm. The electric capacity was measured using this fine powder.

【0024】比較例2 減圧ピッチを圧力5kg/cm2・Gで、17Nm3/ピ
ッチkgの窒素バブリング下400℃で3時間熱処理す
ることによって、軟化点が256℃であり、偏光顕微鏡
での目視計数カウントの光学的異方性成分の含有率31
容量%のメソフェーズピッチを得た。このメソフェーズ
ピッチを平均粒径24μmの微粉末に粉砕し、空気気流
中において昇温速度4℃/min.で130℃〜300
℃まで昇温して20分間保持し、酸化処理を行い、酸素
含量を1.7重量%とした。この酸化処理物を常法に従
って乾留したが、微粒子が融着してしまった。この融着
したものを再度、微粉砕し、賦活化し、比表面積が53
0m2/gで、電気抵抗が2.1×10-4Ωmの炭素多
孔体を得た。この炭素多孔体のキャパシタとしての電気
容量を測定した。尚、キャパシタとしての電気容量は以
下のような方法によって測定した。
Comparative Example 2 A softening point of 256 ° C. was obtained by heat treatment at 400 ° C. for 3 hours under nitrogen bubbling of 17 Nm 3 / pitch kg at a pressure of 5 kg / cm 2 · G at a reduced pressure pitch. Content 31 of the optically anisotropic component of the count
A volume% mesophase pitch was obtained. This mesophase pitch is pulverized into fine powder having an average particle size of 24 μm, and the temperature is increased at a rate of 4 ° C./min in an air stream. 130 ℃ ~ 300
The temperature was raised to ° C. and maintained for 20 minutes to perform an oxidation treatment to adjust the oxygen content to 1.7% by weight. The oxidized product was subjected to dry distillation according to a conventional method, but the fine particles were fused. This fused product was again finely pulverized and activated, and the specific surface area was 53
At 0 m 2 / g, a carbon porous body having an electric resistance of 2.1 × 10 −4 Ωm was obtained. The capacitance of the carbon porous body as a capacitor was measured. The capacitance as a capacitor was measured by the following method.

【0025】<測定方法>実施例及び比較例の炭素多孔
体90重量部と10重量部のバインダ(ポリテトラフル
オロエチレン:33重量%、アセチレンブラック:66
重量%、界面活性剤:1重量%)とをよく混練し、厚み
0.55mmのシートとした。このシートから直径7m
mのディスク状の電極体を2枚打ち抜いた。この電極体
を150℃で5時間真空乾燥した後、アルゴン雰囲気の
グローブボックス中に搬入し、PC(プロピレンカーボ
ネート)中に完全に浸漬した状態で減圧することによ
り、電極中に電解液を含浸させた。その後、ガラス繊維
濾紙のセパレータを電極体、SUS製メッシュの集電体
及びポリプロピレンの板で挟み込んでセルを作成した。
<Measurement Method> 90 parts by weight and 10 parts by weight of a binder (polytetrafluoroethylene: 33% by weight, acetylene black: 66) in Examples and Comparative Examples
% By weight and a surfactant: 1% by weight) to form a sheet having a thickness of 0.55 mm. 7m in diameter from this sheet
Two m-shaped disk-shaped electrode bodies were punched out. After vacuum drying this electrode body at 150 ° C. for 5 hours, it is carried into a glove box in an argon atmosphere, and is immersed completely in PC (propylene carbonate). Was. Thereafter, the cell was formed by sandwiching the separator of the glass fiber filter paper between the electrode body, the SUS mesh current collector, and the polypropylene plate.

【0026】このセルを、電解液を満たしたビーカーに
装入して密閉した。電解液は(C254PbF4を溶解
したPCを脱水処理して使用した。このビーカーセルに
エージング処理として2.8Vの直流電圧を1時間印加
した後、0.2mAの定電流にて充放電試験を行った。
充電終始電圧を2.8Vとし、2.8Vから1Vまでを
直線と仮定し、その電圧−時間勾配よりセルの放電容量
を推算した。
The cell was charged into a beaker filled with an electrolyte and sealed. As the electrolyte, a PC in which (C 2 H 5 ) 4 PbF 4 was dissolved was used after dehydration treatment. After applying a DC voltage of 2.8 V for 1 hour to the beaker cell as an aging treatment, a charge / discharge test was performed at a constant current of 0.2 mA.
Assuming that the charging start and end voltage is 2.8 V, a straight line is assumed from 2.8 V to 1 V, and the discharge capacity of the cell was estimated from the voltage-time gradient.

【0027】[0027]

【表1】表1:測定結果 [Table 1] Table 1: Measurement results

【0028】[0028]

【発明の効果】本発明によれば、嵩密度が高く、体積当
たりの静電容量が大きく、且つ電気抵抗の低い分極性電
極を形成することができる炭素多孔体、及び該炭素多孔
体を構成要素とした電気二重層キャパシタを提供するこ
とができる。
According to the present invention, a porous carbon material capable of forming a polarizable electrode having a high bulk density, a large capacitance per volume, and a low electric resistance, and comprising the porous carbon material An electric double layer capacitor as an element can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諸富 秀俊 東京都千代田区九段北四丁目1−3 アド ケムコ株式会社内 Fターム(参考) 4G046 EA02 EB02 EB04 EC02 EC06 HA07 HB02 HB05 HC11  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hidetoshi Morotomi 4-Cham Kita Kita Kita 4-chome, Tokyo Ad Femco Co., Ltd. F-term (reference) 4G046 EA02 EB02 EB04 EC02 EC06 HA07 HB02 HB05 HC11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 石油系又は石炭系ピッチを、軟化点が2
80℃以上、且つメソフェーズ相が40容量%以上にな
るまで熱処理し、メソフェーズ相を分散して高軟化点ピ
ッチを得る工程;得られた高軟化点ピッチを、アスペク
ト比が2以下の微粒子に粉砕する工程;該粉砕物を酸化
処理する工程;該酸化処理物を炭化及び賦活化して炭素
多孔体を得る工程からなることを特徴とする電気二重層
キャパシタ分極性電極用炭素多孔体の製造方法。
1. A petroleum-based or coal-based pitch having a softening point of 2
Heat-treating at 80 ° C. or more and the mesophase phase becomes 40% by volume or more, and dispersing the mesophase phase to obtain a high softening point pitch; pulverizing the obtained high softening point pitch into fine particles having an aspect ratio of 2 or less. A process for oxidizing the pulverized product; and a process for carbonizing and activating the oxidized product to obtain a porous carbon material.
【請求項2】 酸化処理を、酸化処理物の処理後の酸素
含有量が2重量%以上になる範囲で行う請求項1に記載
の炭素多孔体の製造方法。
2. The method for producing a porous carbon material according to claim 1, wherein the oxidation treatment is performed within a range where the oxygen content of the oxidized product after the treatment becomes 2% by weight or more.
【請求項3】 賦活化した後の炭素多孔体の比表面積が
500m2/g以上である請求項1に記載の炭素多孔体
の製造方法。
3. The method for producing a porous carbon material according to claim 1, wherein the specific surface area of the activated porous carbon material is 500 m 2 / g or more.
【請求項4】 賦活化後、炭素多孔体を不活性雰囲気下
で1,800℃以上の温度で黒鉛化処理を行なう請求項
1に記載の炭素多孔体の製造方法。
4. The method for producing a carbon porous body according to claim 1, wherein after the activation, the carbon porous body is subjected to a graphitization treatment in an inert atmosphere at a temperature of 1,800 ° C. or higher.
【請求項5】 請求項1乃至4の何れか1項に記載の製
造方法により得られたことを特徴とする電気二重層キャ
パシタ分極性電極用炭素多孔体。
5. A porous carbon material for an electric double layer capacitor polarizable electrode, obtained by the production method according to claim 1. Description:
【請求項6】 電気抵抗の値が1×10-4Ωm以下であ
る請求項5に記載の電気二重層キャパシタ分極性電極用
炭素多孔体。
6. The porous carbon material for an electric double layer capacitor polarizable electrode according to claim 5, wherein the value of the electric resistance is 1 × 10 −4 Ωm or less.
【請求項7】 請求項5又は6に記載の炭素多孔体を電
極構成要素としていることを特徴とする電気二重層キャ
パシタ。
7. An electric double layer capacitor comprising the carbon porous body according to claim 5 as an electrode component.
JP10310138A 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode Pending JP2000138140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10310138A JP2000138140A (en) 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10310138A JP2000138140A (en) 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Publications (1)

Publication Number Publication Date
JP2000138140A true JP2000138140A (en) 2000-05-16

Family

ID=18001631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10310138A Pending JP2000138140A (en) 1998-10-30 1998-10-30 Manufacture of carbon porous body for electric double layer capacitor polarizable electrode

Country Status (1)

Country Link
JP (1) JP2000138140A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013390A1 (en) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
JP2001316105A (en) * 2000-04-28 2001-11-13 Sumitomo Metal Ind Ltd Manufacturing method of graphite powder
JP2002083748A (en) * 2000-06-27 2002-03-22 Asahi Glass Co Ltd Activated carbon, manufacturing method therefor and electric double-layer capacitor
EP1191558A2 (en) * 2000-09-13 2002-03-27 Mitsubishi Gas Chemical Company, Inc. Carbon material for electric double layer capacitor electrodes
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
KR100351131B1 (en) * 2000-11-01 2002-09-05 한국에너지기술연구원 High dense activated carbon fiber disk for capacitor's electrode of ultra high capacity and its production method
JP2002308614A (en) * 2001-04-11 2002-10-23 Adchemco Corp Powdery activated carbon, production method therefor and electric double layer capacitor using the activated carbon
WO2003024868A1 (en) * 2001-09-11 2003-03-27 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
JP2003267715A (en) * 2002-03-15 2003-09-25 Osaka Gas Co Ltd Activated carbon and its producing method
WO2010032407A1 (en) * 2008-09-16 2010-03-25 新日本石油株式会社 Carbon material for electric double layer capacitor and process for producing the carbon material
WO2011081086A1 (en) * 2009-12-28 2011-07-07 Jx日鉱日石エネルギー株式会社 Activated carbon for electric double-layer capacitor electrode and method for producing the same
JP2015048256A (en) * 2013-08-30 2015-03-16 関西熱化学株式会社 Method of producing graphite material, and graphite material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013390A1 (en) * 1999-08-10 2001-02-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
US7214646B1 (en) 1999-08-10 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for producing activated carbon for electrode of electric double-layer capacitor
JP2001316105A (en) * 2000-04-28 2001-11-13 Sumitomo Metal Ind Ltd Manufacturing method of graphite powder
JP2002083748A (en) * 2000-06-27 2002-03-22 Asahi Glass Co Ltd Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
EP1191558A3 (en) * 2000-09-13 2006-02-08 Mitsubishi Gas Chemical Company, Inc. Carbon material for electric double layer capacitor electrodes
EP1191558A2 (en) * 2000-09-13 2002-03-27 Mitsubishi Gas Chemical Company, Inc. Carbon material for electric double layer capacitor electrodes
US7256157B2 (en) 2000-09-13 2007-08-14 Mitsubishi Gas Chemical Company, Inc. Carbon material for electric double layer capacitor electrodes
KR100351131B1 (en) * 2000-11-01 2002-09-05 한국에너지기술연구원 High dense activated carbon fiber disk for capacitor's electrode of ultra high capacity and its production method
JP2002308614A (en) * 2001-04-11 2002-10-23 Adchemco Corp Powdery activated carbon, production method therefor and electric double layer capacitor using the activated carbon
WO2003024868A1 (en) * 2001-09-11 2003-03-27 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
US7232790B2 (en) 2001-09-11 2007-06-19 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
US7923411B2 (en) 2001-09-11 2011-04-12 Showa Denko K.K. Activated carbon material, and production method and use thereof
JP2003267715A (en) * 2002-03-15 2003-09-25 Osaka Gas Co Ltd Activated carbon and its producing method
WO2010032407A1 (en) * 2008-09-16 2010-03-25 新日本石油株式会社 Carbon material for electric double layer capacitor and process for producing the carbon material
JP2010070393A (en) * 2008-09-16 2010-04-02 Nippon Oil Corp Carbon material for electric double layer capacitor and method for producing the same
US8664155B2 (en) 2008-09-16 2014-03-04 Jx Nippon Oil & Energy Corporation Carbon material for electric double layer capacitor and process for producing the carbon material
WO2011081086A1 (en) * 2009-12-28 2011-07-07 Jx日鉱日石エネルギー株式会社 Activated carbon for electric double-layer capacitor electrode and method for producing the same
JP2011136856A (en) * 2009-12-28 2011-07-14 Jx Nippon Oil & Energy Corp Activated carbon for electric double-layer capacitor electrode, and method for producing the same
US8993478B2 (en) 2009-12-28 2015-03-31 Jx Nippon Oil & Energy Corporation Activated carbon for electric double layer capacitor electrode and method for producing the activated carbon
JP2015048256A (en) * 2013-08-30 2015-03-16 関西熱化学株式会社 Method of producing graphite material, and graphite material

Similar Documents

Publication Publication Date Title
JP4802595B2 (en) Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
CN110582464B (en) Modified activated carbon and method for producing same
JP4877441B2 (en) Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
WO2013118757A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery
WO1997018160A1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JP2002280262A (en) Electrochemical capacitor
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
US6258337B1 (en) Carbonaceous material for electric double layer capacitor and process for production thereof
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
WO2014156098A1 (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JPH08279358A (en) Carbonaceous material for battery electrode, its manufacture, electrode structure body and battery
JP2015151324A (en) Activated carbon and method for producing the same
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
EP1667259A1 (en) Nonaqueous electrolyte secondary cell, carbon material for use therein and precursor of said carbon material
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP4255989B2 (en) Carbon material and method for producing the same
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
KR102040379B1 (en) Method for manufacturing activated carbon for electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414