JP4420381B2 - Activated carbon, manufacturing method thereof and polarizable electrode - Google Patents

Activated carbon, manufacturing method thereof and polarizable electrode Download PDF

Info

Publication number
JP4420381B2
JP4420381B2 JP2003382421A JP2003382421A JP4420381B2 JP 4420381 B2 JP4420381 B2 JP 4420381B2 JP 2003382421 A JP2003382421 A JP 2003382421A JP 2003382421 A JP2003382421 A JP 2003382421A JP 4420381 B2 JP4420381 B2 JP 4420381B2
Authority
JP
Japan
Prior art keywords
activated carbon
metal compound
alkaline earth
polarizable electrode
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003382421A
Other languages
Japanese (ja)
Other versions
JP2004175660A (en
Inventor
昌子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003382421A priority Critical patent/JP4420381B2/en
Publication of JP2004175660A publication Critical patent/JP2004175660A/en
Application granted granted Critical
Publication of JP4420381B2 publication Critical patent/JP4420381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は活性炭に関し、特に電気二重層キャパシタ(電気二重層コンデンサともいう。)として有用な活性炭に関する。更に詳しく言えば、高電気容量で高耐久性のキャパシタ用電極材料として好適に使用できる活性炭及びその製造方法並びにその活性炭を用いた電気二重層キャパシタ用電極(分極性電極)、その電極を有する電気二重層キャパシタに関する。   The present invention relates to activated carbon, and particularly to activated carbon useful as an electric double layer capacitor (also referred to as an electric double layer capacitor). More specifically, activated carbon that can be suitably used as a capacitor electrode material having high electric capacity and high durability, a method for producing the same, an electrode for an electric double layer capacitor (polarizable electrode) using the activated carbon, and an electric having the electrode The present invention relates to a double layer capacitor.

電気二重層キャパシタは急速充放電が可能、過充放電に強い、化学反応を伴わないために長寿命、広い温度範囲で使用可能、重金属を含まないため環境に優しいなどのバッテリーにはない特性を有しており、従来よりメモリーバックアップ電源等に使用されている。さらに近年では、大容量化開発が急激に進み、高性能エネルギーデバイスへの用途開発が進められ、太陽電池や燃料電池と組み合わせた電力貯蔵システム、ハイブリットカーのエンジンアシスト等への活用も検討されている。
電気二重層キャパシタは、活性炭等から作られた1対の正極と負極の分極性電極を、電解質イオンを含む、溶液中でセパレータを介して対向させた構造からなっている。電極に直流電圧を印加すると正(+)側に分極した電極には溶液中の陰イオンが、負(−)側に分極した電極には溶液中の陽イオンが引き寄せられ、これにより電極と溶液との界面に形成された電気二重層を電気エネルギーとして利用するものである。
Electric double layer capacitors are capable of rapid charge / discharge, are resistant to overcharge / discharge, have a long life because they do not involve chemical reactions, can be used in a wide temperature range, and do not contain heavy metals. It has been used for memory backup power supplies. Furthermore, in recent years, the development of large capacity has progressed rapidly, the development of applications for high-performance energy devices has been promoted, and the use for power storage systems combined with solar cells and fuel cells, engine assistance for hybrid cars, etc. has been considered. Yes.
The electric double layer capacitor has a structure in which a pair of positive and negative polarizable electrodes made of activated carbon or the like are opposed to each other via a separator in a solution containing electrolyte ions. When a DC voltage is applied to the electrode, the anion in the solution is attracted to the electrode polarized to the positive (+) side, and the cation in the solution is attracted to the electrode polarized to the negative (−) side. The electric double layer formed at the interface is used as electric energy.

従来の電気二重層キャパシタはパワー密度に優れている反面、エネルギー密度が劣っているという欠点があり、エネルギーデバイス用途への活用に際しては、更なる大容量化開発が必要である。電気二重層キャパシタの容量を大きくするには溶液の間で多くの電気二重層を形成する電極材料の開発が不可欠である。
したがって、より多くの電気二重層を形成すべく、比表面積の大きい活性炭の使用が検討されてきたが、このような活性炭は質量当たりの電気容量(F/g)に優れる反面、電極密度の低下を招く為に体積当たりの電気容量(F/ml)がそれほど大きくならないという問題点を有していた。
The conventional electric double layer capacitor is excellent in power density, but has a disadvantage that the energy density is inferior, and further development of larger capacity is required for use in energy device applications. In order to increase the capacity of an electric double layer capacitor, it is indispensable to develop an electrode material that forms many electric double layers between solutions.
Accordingly, in order to form more electric double layers, the use of activated carbon having a large specific surface area has been studied, but such activated carbon is excellent in electric capacity per mass (F / g), but the electrode density is lowered. Therefore, the electric capacity per volume (F / ml) does not increase so much.

近年、黒鉛類似の微結晶を有する活性炭を製造し、分極性電極の原料とすることが提案されている(例えば、特開平11-317333号公報:特許文献1)。この活性炭を分極性電極の原料とした電気二重層キャパシタは、電気容量(F/ml)が大きいという点で優れた原料であると云える。   In recent years, it has been proposed to produce activated carbon having graphite-like microcrystals as a raw material for a polarizable electrode (for example, JP-A-11-317333: Patent Document 1). An electric double layer capacitor using activated carbon as a raw material for a polarizable electrode can be said to be an excellent raw material in that it has a large electric capacity (F / ml).

ピッチ由来の炭素材料をアルカリ金属水酸化物共存下で加熱して賦活(アルカリ賦活)した活性炭が提案されている(例えば、特開平5-258996号公報:特許文献2)。また、炭素材料の結晶性が比較的発達した材料、いわゆるメソフェーズピッチをアルカリ賦活して得られた電極密度が大きく、単位体積あたりの電気容量が高い電気二重層キャパシタが提案されている(例えば、特開平10-121336号公報:特許文献3)。   An activated carbon obtained by heating a pitch-derived carbon material in the presence of an alkali metal hydroxide and activating (alkali activation) has been proposed (for example, Japanese Patent Laid-Open No. 5-258996: Patent Document 2). In addition, an electric double layer capacitor having a high electrode density obtained by alkali activation of a so-called mesophase pitch, which has a relatively developed crystallinity of a carbon material, and a high electric capacity per unit volume has been proposed (for example, Japanese Patent Laid-Open No. 10-121336: Patent Document 3).

しかし、これらの活性炭にも問題があり、満足すべきものではなかった。即ち、特開平11-317333号公報の活性炭は電圧印加時に膨張するため、膨張によりセルの破損を生ずるおそれがあり、膨張を抑えるために、寸法制限構造体が必要となり、キャパシタの組立操作に大きな問題点がある。また、あらかじめ4V程度の電圧を印加しなければ電気容量が発現しないため、電解液の分解を招くおそれもあった。
特開平5-258996号及び特開平10-121336号の活性炭は電気容量(F/g)は大きいが、細孔が発達しすぎているために、電極密度が小さくなり結果的には電気容量(F/ml)が小さくなるという問題があった。
However, these activated carbons have problems and are not satisfactory. That is, the activated carbon disclosed in Japanese Patent Application Laid-Open No. 11-317333 expands when a voltage is applied, which may cause damage to the cell due to the expansion. In order to suppress the expansion, a size limiting structure is required, which is a major problem in the capacitor assembly operation. There is a problem. In addition, since the electric capacity is not expressed unless a voltage of about 4 V is applied in advance, there is a possibility that the electrolytic solution is decomposed.
The activated carbons of Japanese Patent Application Laid-Open Nos. 5-258996 and 10-121336 have a large electric capacity (F / g), but since the pores are developed too much, the electrode density is reduced, resulting in an electric capacity ( (F / ml) is small.

特開平11−317333号公報JP 11-317333 A 特開平5−258996号公報JP-A-5-258996 特開平10−121336号公報JP-A-10-121336

本発明は電気二重層キャパシタにおいて、過大な電圧を印加せずとも、電極当たりの電気容量を大きくできるような活性炭及びその製造方法を提供し、また、この活性炭を電極材料として用いた高容量キャパシタであって電極の膨張が抑制された信頼性の高い電気二重層キャパシタを提供することを目的とする。   The present invention provides an activated carbon capable of increasing the electric capacity per electrode without applying an excessive voltage in an electric double layer capacitor and a method for producing the same, and a high-capacitance capacitor using the activated carbon as an electrode material An object of the present invention is to provide a highly reliable electric double layer capacitor in which electrode expansion is suppressed.

本発明は上記の課題を解決するため鋭意研究した結果なされたものであり、以下の各項の発明からなる。
(1)粒子内部にアルカリ土類金属化合物を含み、窒素吸着法によって求めたBET比表面積が10〜2000m2/gである活性炭。
(2)アルカリ土類金属化合物が、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムからなる群から選ばれる少なくとも1種のアルカリ土類金属化合物である前記(1)に記載の活性炭。
(3)アルカリ土類金属化合物が、アルカリ土類金属、アルカリ土類金属の酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫化物、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも1種である前記(1)または(2)に記載の活性炭。
(4)アルカリ土類金属化合物がカルシウム化合物である前記(3)に記載の活性炭。
(5)アルカリ土類金属化合物が、粒径10μm以下の粒子である前記(1)に記載の活性炭。
(6)アルカリ土類金属化合物の含有量が、30〜100000質量ppmである前記(1)に記載の活性炭。
(7)ラマンスペクトルのGピーク(1580cm-1)のピーク高さに対するDピーク(1360cm-1)のピーク高さの比が0.8〜1.2である前記(1)に記載の活性炭。
(8)窒素吸着法によって求めたBJH法による20〜50オングストロームの細孔容積が0.02ml/g以上の範囲にある前記(1)に記載の活性炭。
(9)前記(1)に記載の活性炭に、難黒鉛化炭素からなる多孔性炭素層を被覆してなる活性炭。
(10)窒素吸着法によって求めた細孔容積が0.01ml/g〜1.55ml/gである前記(9)に記載の活性炭。
(11)平均粒径が3〜70μmである前記(9)に記載の活性炭。
(12)平均粒径が1μm以下及び/または100μm以上の粒子を実質的に含まない前記(1)に記載の活性炭。
(13)電気二重層キャパシタの分極性電極用である前記(1)または(9)に記載の活性炭。
(14)前記(1)乃至(13)のいずれか一つに記載の活性炭を含む分極性電極。
(15)前記(1)乃至(13)のいずれか一つに記載の活性炭と気相法炭素繊維を含む分極性電極。
(16)気相法炭素繊維が、中空構造を有し、外径2〜500nm、アスペクト比10〜15000である前記(15)に記載の分極性電極。
(17)気相法炭素繊維が、0.01〜0.4ml/gの細孔容積を有し、窒素吸着法によって求めたBET比表面積が30〜1000m2/gである前記(15)に記載の分極性電極。
(18)気相法炭素繊維の(002)面の面間隔d002が0.3395nm以下である前記(15)に記載の分極性電極。
(19)気相成長炭素繊維が、分岐状繊維であり、かつ分岐部分の中空構造が連通している前記(15)に記載の分極性電極。
(20)気相法炭素繊維を炭素質粉体に対して0.1〜20質量%混合する前記(15)に記載の分極性電極。
(21)気相法炭素繊維が、活性炭表面に融着している前記(15)に記載の分極性電極。
(22)前記(14)乃至(21)のいずれか一つに記載の分極性電極を用いた電気二重層キャパシタ。
(23)有機溶媒に電解質を溶解した有機系電解液を用いた前記(22)に記載の電気二重層キャパシタ。
(24)前記(1)乃至(13)に記載の活性炭を含有するスラリー。
(25)前記(1)乃至(13)に記載の活性炭を含有するペースト。
(26)前記(1)乃至(13)に記載の活性炭が表面に塗布された電極シート。
(27)前記(22)に記載の電気二重層キャパシターを含むエネルギーデバイス。
(28)活性炭の原料にアルカリ土類金属化合物を添加し熱処理する工程、次いで熱処理により生成した炭素化物をアルカリ金属化合物と混合加熱して賦活する工程を含むことを特徴とする活性炭の製造方法。
(29)活性炭の原料にアルカリ土類金属化合物を添加しアルカリ金属化合物の蒸気中で熱処理する工程、次いで熱処理により生成した炭素化物をアルカリ金属化合物と混合加熱して賦活する工程を含むことを特徴とする活性炭の製造方法。
(30)熱処理する工程が400〜600℃及び600〜900℃の温度範囲で保持する前記(28)または(29)に記載の活性炭の製造方法。
(31)アルカリ金属化合物が、アルカリ金属水酸化物である前記(28)に記載の活性炭の製造方法。
(32)アルカリ金属化合物が、カリウム、ナトリウム及びセシウムからなる群から選ばれる少なくとも1種を含む化合物である前記(28)または(29)に記載の活性炭の製造方法。
(33)炭素化物が、易黒鉛化炭素である前記(28)または(29)に記載の活性炭の製造方法。
The present invention has been made as a result of intensive studies in order to solve the above problems, and comprises the inventions of the following items.
(1) Activated carbon containing an alkaline earth metal compound inside the particle and having a BET specific surface area of 10 to 2000 m 2 / g determined by a nitrogen adsorption method.
(2) The activated carbon according to (1), wherein the alkaline earth metal compound is at least one alkaline earth metal compound selected from the group consisting of beryllium, magnesium, calcium, strontium, barium and radium.
(3) Alkaline earth metal compounds are alkaline earth metals, alkaline earth metal oxides, hydroxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates And activated carbon according to (1) or (2), which is at least one selected from the group consisting of nitrates.
(4) The activated carbon according to (3), wherein the alkaline earth metal compound is a calcium compound.
(5) Activated carbon as described in said (1) whose alkaline-earth metal compound is a particle | grain with a particle size of 10 micrometers or less.
(6) Activated carbon as described in said (1) whose content of an alkaline-earth metal compound is 30-100,000 mass ppm.
(7) activated carbon according to the ratio of the peak height of D peak to peak height of the Raman spectrum of the G peak (1580 cm -1) (1360 cm -1) is 0.8 to 1.2 (1).
(8) The activated carbon according to (1), wherein the pore volume of 20 to 50 angstroms determined by the nitrogen adsorption method is in the range of 0.02 ml / g or more.
(9) Activated carbon obtained by coating the activated carbon according to (1) with a porous carbon layer made of non-graphitizable carbon.
(10) Activated carbon as described in said (9) whose pore volume calculated | required by the nitrogen adsorption method is 0.01 ml / g-1.55 ml / g.
(11) Activated carbon as described in said (9) whose average particle diameter is 3-70 micrometers.
(12) The activated carbon according to (1), which does not substantially contain particles having an average particle diameter of 1 μm or less and / or 100 μm or more.
(13) The activated carbon according to (1) or (9), which is for a polarizable electrode of an electric double layer capacitor.
(14) A polarizable electrode comprising the activated carbon according to any one of (1) to (13).
(15) A polarizable electrode comprising the activated carbon according to any one of (1) to (13) and a vapor grown carbon fiber.
(16) The polarizable electrode according to (15), wherein the vapor grown carbon fiber has a hollow structure, has an outer diameter of 2 to 500 nm, and an aspect ratio of 10 to 15000.
(17) The component according to (15), wherein the vapor grown carbon fiber has a pore volume of 0.01 to 0.4 ml / g, and a BET specific surface area determined by a nitrogen adsorption method is 30 to 1000 m 2 / g. Polar electrode.
(18) vapor-phase process polarizable electrode surface spacing d 002 of (002) plane of the carbon fiber according to the at most 0.3395nm (15).
(19) The polarizable electrode according to (15), wherein the vapor-grown carbon fiber is a branched fiber and the hollow structure of the branched portion is in communication.
(20) The polarizable electrode according to (15), wherein 0.1 to 20% by mass of vapor grown carbon fiber is mixed with respect to the carbonaceous powder.
(21) The polarizable electrode according to (15), wherein vapor grown carbon fiber is fused to the activated carbon surface.
(22) An electric double layer capacitor using the polarizable electrode according to any one of (14) to (21).
(23) The electric double layer capacitor according to (22), wherein an organic electrolytic solution in which an electrolyte is dissolved in an organic solvent is used.
(24) A slurry containing the activated carbon according to (1) to (13).
(25) A paste containing the activated carbon according to any one of (1) to (13).
(26) An electrode sheet on which the activated carbon according to any one of (1) to (13) is applied.
(27) An energy device including the electric double layer capacitor according to (22).
(28) A method for producing activated carbon, comprising a step of adding an alkaline earth metal compound to a raw material of activated carbon and performing a heat treatment, and then a step of activating by mixing and heating the carbonized product generated by the heat treatment with the alkali metal compound.
(29) A step of adding an alkaline earth metal compound to a raw material of activated carbon and heat-treating it in the vapor of the alkali metal compound, followed by a step of activating by mixing and heating the carbonized product generated by the heat treatment with the alkali metal compound A method for producing activated carbon.
(30) The method for producing activated carbon according to (28) or (29), wherein the heat treatment step is performed in a temperature range of 400 to 600 ° C and 600 to 900 ° C.
(31) The method for producing activated carbon according to (28), wherein the alkali metal compound is an alkali metal hydroxide.
(32) The method for producing activated carbon according to (28) or (29), wherein the alkali metal compound is a compound containing at least one selected from the group consisting of potassium, sodium and cesium.
(33) The method for producing activated carbon according to (28) or (29), wherein the carbonized product is graphitizable carbon.

本発明の活性炭は合成樹脂、石炭系ピッチ、石油系ピッチ等(原料)を熱処理(焼成)したコークス等の炭素化物を賦活することにより製造される。
活性炭の電気特性は、活性炭の比表面積・細孔分布・結晶構造といった構造物性に大きく左右される。電極材料として有用な活性炭を得るためには、炭素化物の構造、炭素化条件、賦活条件を最適化する必要がある。本発明において、活性炭の原料として用いられるものは一般的な熱可塑性樹脂、例えば塩化ビニル系樹脂、ポリアクリロニトリル、ポリブチラール、ポリアセタール、ポリエチレン、ポリカーボネート、ポリビニルアセテート等及び石油系ピッチ、石炭系ピッチ等のピッチ系材料である。また、ナフタレン、フェナントレン、アントラセン、トリフェニレン、ピレン等の縮合多環式炭化水素化合物、インドール、キノリン、カルバゾール、アクリジン等の縮合複素環式化合物等も使用可能である。上記の中でも、石油系、石炭系等のピッチ系材料は、低価格、炭化収率が高いなどの点で好適に使用できる。
The activated carbon of the present invention is produced by activating a carbonized material such as coke obtained by heat-treating (calcining) a synthetic resin, coal-based pitch, petroleum-based pitch or the like (raw material).
The electrical characteristics of activated carbon depend greatly on the structural properties such as specific surface area, pore distribution, and crystal structure of activated carbon. In order to obtain activated carbon useful as an electrode material, it is necessary to optimize the structure of carbonized material, carbonization conditions, and activation conditions. In the present invention, what is used as a raw material for activated carbon is a general thermoplastic resin such as vinyl chloride resin, polyacrylonitrile, polybutyral, polyacetal, polyethylene, polycarbonate, polyvinyl acetate, etc., petroleum pitch, coal pitch, etc. It is a pitch-based material. In addition, condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, and pyrene, and condensed heterocyclic compounds such as indole, quinoline, carbazole, and acridine can be used. Among the above, pitch-based materials such as petroleum-based and coal-based materials can be suitably used in terms of low cost and high carbonization yield.

3300K(約3000℃)前後の高温処理によって黒鉛に変換し得る易黒鉛化炭素、例えば、石油コークス、石炭系ピッチコークス、ポリ塩化ビニル炭、3,5−ジメチルフェノールホルムアルデヒド樹脂炭が使用できる。   Graphitizable carbon that can be converted into graphite by high-temperature treatment at around 3300 K (about 3000 ° C.), such as petroleum coke, coal-based pitch coke, polyvinyl chloride charcoal, and 3,5-dimethylphenol formaldehyde resin charcoal can be used.

また、石炭系ピッチを選択する場合は、石炭系ピッチは石油系炭素原料と比較して、側鎖が少なく、芳香族化合物の比率が高く、様々な分子構造の多環芳香族化合物が混在しているため、これを原料とした活性炭はこの化合物に由来して、種々の複雑な微結晶構造等を形成し、優れた電気特性を発現するものと考えられる。なお、選択する石炭系ピッチは特に限定されないが、軟化点100℃以下、さらに好ましくは60℃から90℃のものを使用できる。   In addition, when selecting a coal-based pitch, the coal-based pitch has fewer side chains and a higher ratio of aromatic compounds compared to petroleum-based carbon raw materials, and polycyclic aromatic compounds of various molecular structures are mixed. Therefore, it is considered that the activated carbon using this as a raw material is derived from this compound, forms various complex microcrystalline structures, and exhibits excellent electrical characteristics. The coal-based pitch to be selected is not particularly limited, but those having a softening point of 100 ° C. or lower, more preferably 60 ° C. to 90 ° C. can be used.

本発明の活性炭の内部にはアルカリ土類金属化合物が含まれている。
アルカリ土類金属化合物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムからなる群から選ばれる少なくとも1種のアルカリ土類金属元素を含む化合物であればよく、アルカリ土類金属、アルカリ土類金属の酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫化物、硫酸塩または硝酸塩などである。
The activated carbon of the present invention contains an alkaline earth metal compound.
The alkaline earth metal compound may be a compound containing at least one alkaline earth metal element selected from the group consisting of beryllium, magnesium, calcium, strontium, barium and radium. Metal oxides, hydroxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates or nitrates.

好ましくは、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムから選ばれる少なくとも1種のアルカリ土類金属元素の酸化物、炭酸塩または硫化物である。具体的には、酸化マグネシウム、酸化カルシウム、フッ化マグネシウム、フッ化カルシウム、リン酸マグネシウム、リン酸カルシウム、炭酸マグネシウム、炭酸カルシウム、硫化マグネシウム、硫化カルシウム、硫酸バリウムが挙げられる。なお、アルカリ土類金属化合物は活性炭中に2種以上含まれていてもよい。これらの中でも好ましいのは、カルシウムの化合物、特に酸化カルシウム、あるいは加熱により酸化カルシウムとなる、カルシウムの水酸化物、炭酸塩、硫化物等である。   Preferred is an oxide, carbonate or sulfide of at least one alkaline earth metal element selected from beryllium, magnesium, calcium, strontium, barium and radium. Specific examples include magnesium oxide, calcium oxide, magnesium fluoride, calcium fluoride, magnesium phosphate, calcium phosphate, magnesium carbonate, calcium carbonate, magnesium sulfide, calcium sulfide, and barium sulfate. Two or more alkaline earth metal compounds may be contained in the activated carbon. Among these, preferred are calcium compounds, particularly calcium oxide, or calcium hydroxide, carbonate, sulfide and the like which are converted to calcium oxide by heating.

活性炭の粒子内部に含まれるアルカリ土類金属化合物としては、活性炭の粒径によるが、化合物の粒径が10μm以下がよく、好ましくは5μm以下、より好ましくは1μm以下である。さらに必要に応じて、化合物粒径が1μm以下がよく、好ましくは0.1μm以下、より好ましくは0.01μm以下である。   The alkaline earth metal compound contained in the activated carbon particles has a particle diameter of 10 μm or less, preferably 5 μm or less, more preferably 1 μm or less, depending on the particle diameter of the activated carbon. Further, if necessary, the compound particle size is preferably 1 μm or less, preferably 0.1 μm or less, more preferably 0.01 μm or less.

また、活性炭におけるアルカリ土類金属化合物の含有量は、活性炭全量に対して、好ましくは30〜100000質量ppm、より好ましくは40〜5000質量ppm、さらに好ましくは50〜1000質量ppmである。   Further, the content of the alkaline earth metal compound in the activated carbon is preferably 30 to 100000 ppm by mass, more preferably 40 to 5000 ppm by mass, and still more preferably 50 to 1000 ppm by mass with respect to the total amount of activated carbon.

上記のアルカリ土類金属化合物は活性炭を製造する際に原料に添加される。添加方法としては例えば原料粉末にアルカリ土類金属化合物の粉末を添加する。また原料溶融物にアルカリ土類金属化合物を添加することもできる。
原料から活性炭を得るには炭素化工程、賦活工程があるが、これらの工程での加熱においてアルカリ土類金属化合物が分解するもの、例えば水酸化物や炭酸塩が分解して酸化物となるものであってもよい。分解に伴う粒径や質量の変化、あるいは原料の炭素化率を考慮してアルカリ土類金属化合物の種類、粒径や添加量を定める。
Said alkaline-earth metal compound is added to a raw material when manufacturing activated carbon. For example, an alkaline earth metal compound powder is added to the raw material powder. An alkaline earth metal compound can also be added to the raw material melt.
There are a carbonization step and an activation step to obtain activated carbon from raw materials, but those in which alkaline earth metal compounds decompose during heating in these steps, for example, those in which hydroxides and carbonates decompose into oxides It may be. The type, particle size and amount of the alkaline earth metal compound are determined in consideration of changes in particle size and mass accompanying decomposition, or the carbonization rate of the raw material.

原料にアルカリ土類金属化合物を添加した後、熱処理して炭素化する。この炭素化工程は1000℃程度までの温度に加熱する一般的な方法でもよいが、好ましくは昇温速度3〜10℃/hr、より好ましくは4〜6℃/hrで400℃以上600℃未満の温度、好ましくは450℃以上550℃以下の温度とし、その範囲の一定温度で5〜20時間、より好ましくは8〜12時間保持し、その後同昇温速度で600℃以上900℃以下、好ましくは650℃以上850℃以下の範囲の一定温度で1〜20時間、より好ましくは1〜12時間保持することが好ましい。   After adding an alkaline earth metal compound to the raw material, it is carbonized by heat treatment. This carbonization step may be a general method of heating to a temperature of up to about 1000 ° C., but preferably a temperature increase rate of 3 to 10 ° C./hr, more preferably 4 to 6 ° C./hr at 400 ° C. or more and less than 600 ° C. Temperature, preferably 450 ° C. or more and 550 ° C. or less, held at a constant temperature within that range for 5 to 20 hours, more preferably 8 to 12 hours, and then 600 ° C. or more and 900 ° C. or less, preferably at the same temperature increase rate. Is preferably held at a constant temperature in the range of 650 ° C. to 850 ° C. for 1 to 20 hours, more preferably 1 to 12 hours.

熱処理の方法は限定されないが、工業的にはロータリーキルンやトンネルキルンなどで行うのが経済的で生産性が高い。
活性炭の原料を400〜900℃の間で加熱すると、熱分解反応が起こり、ガス・軽質留分が脱離し、残渣は重縮合が起こって最終的には固化する。この炭素化工程における第1段階で、炭素原子間のミクロな結合状態がほぼ決定され、この工程で決定された炭素の構造は最終生成物である活性炭の構造の基礎を決定づけると考えられる。
The heat treatment method is not limited, but industrially, it is economical and highly productive to carry out using a rotary kiln or tunnel kiln.
When the activated carbon raw material is heated between 400 and 900 ° C., a pyrolysis reaction occurs, gas and light fractions are desorbed, and the residue undergoes polycondensation and finally solidifies. In the first stage of this carbonization process, the microscopic bonding state between carbon atoms is almost determined, and the structure of carbon determined in this process is considered to determine the basis of the structure of the activated carbon that is the final product.

本発明の活性炭中でアルカリ土類金属化合物の果たす役割(作用機構)については定かでないが、炭素化物の構造に関与することで、最終的には、活性炭の構造決定に関与し、それが活性炭の特性向上に寄与しているか、あるいは電気二重層キャパシタの充放電の際に作用して特性向上をもたらしているとも考えられる。   Although the role (action mechanism) played by the alkaline earth metal compound in the activated carbon of the present invention is not clear, by being involved in the structure of the carbonized product, it is ultimately involved in determining the structure of the activated carbon. It is considered that the characteristics are improved, or that the characteristics are improved by acting during charging and discharging of the electric double layer capacitor.

上記の熱処理(炭素化)工程はアルカリ金属化合物の蒸気中で実施することも有効である。アルカリ金属は、炭素化工程において触媒的な働きをする。即ち、ピッチ中の芳香族間の架橋結合が促進され、炭素化反応が進行する。アルカリ金属化合物としては、ナトリウム、カリウム、セシウム等の化合物が挙げられる。   It is also effective to perform the heat treatment (carbonization) step in the vapor of an alkali metal compound. The alkali metal acts as a catalyst in the carbonization process. That is, the cross-linking between aromatics in the pitch is promoted, and the carbonization reaction proceeds. Examples of the alkali metal compound include sodium, potassium, cesium and the like.

アルカリ金属の蒸気中で熱処理を実施する方法としては、例えば、炭素化工程の系内に後述するアルカリ賦活反応系より揮発したアルカリ金属化合物の蒸気を導入しながら加熱することにより行なうことができる。また、アルカリ賦活反応の反応容器周囲に原料を設置して、アルカリ賦活反応系より揮発したアルカリ金属化合物の蒸気に曝して同時に加熱することで熱処理(炭素化)工程及びアルカリ賦活工程をそれぞれ平行して行なうことができる。これにより全体としての処理時間が短縮されると共に、加熱のためのエネルギーの省コスト化を図ることができる。   The heat treatment can be performed in an alkali metal vapor by, for example, heating while introducing an alkali metal compound vapor volatilized from an alkali activation reaction system described later into the system of the carbonization step. In addition, a heat treatment (carbonization) step and an alkali activation step are performed in parallel by placing raw materials around the reaction vessel for the alkali activation reaction, exposing the vapor to the vapor of the alkali metal compound volatilized from the alkali activation reaction system, and simultaneously heating it. Can be done. Thereby, the processing time as a whole can be shortened, and the cost of energy for heating can be reduced.

次に、炭素化物を1〜30mm程度に粗粉砕したもの及び/または1〜100μm程度の粒度に粉砕したものを用いて、賦活剤であるアルカリ金属化合物と混合して加熱し、炭素化物に細孔を形成して多孔質の活性炭とする。   Next, the carbonized product is coarsely pulverized to about 1 to 30 mm and / or pulverized to a particle size of about 1 to 100 μm, mixed with an alkali metal compound as an activator, heated, and finely divided into the carbonized product. Pores are formed into porous activated carbon.

アルカリ賦活剤としてはアルカリ金属を含む化合物であれば特に限定されないが、賦活中に溶融する化合物の方が効果が高い。カリウム、ナトリウム、セシウムの水酸化物、炭酸塩、硫化物、硫酸塩が好ましい。例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム、炭酸カリウム、炭酸ナトリウム、硫化カリウム、硫化ナトリウム、チオシアン酸カリウム、硫酸カリウム、硫酸ナトリウムが使用できる。好ましくは水酸化カリウム、水酸化ナトリウムであり、さらに好ましくは水酸化カリウムである。これらの1種類あるいは2種類以上混合して、例えば、水酸化ナトリウム/水酸化カリウム、水酸化ナトリウム/水酸化カリウム/水酸化セシウム等を使用してもよい。   The alkali activator is not particularly limited as long as it is a compound containing an alkali metal, but a compound that melts during activation is more effective. Potassium, sodium and cesium hydroxides, carbonates, sulfides and sulfates are preferred. For example, potassium hydroxide, sodium hydroxide, cesium hydroxide, potassium carbonate, sodium carbonate, potassium sulfide, sodium sulfide, potassium thiocyanate, potassium sulfate, and sodium sulfate can be used. Preferred are potassium hydroxide and sodium hydroxide, and more preferred is potassium hydroxide. For example, sodium hydroxide / potassium hydroxide, sodium hydroxide / potassium hydroxide / cesium hydroxide, or the like may be used by mixing one or more of these.

活性炭の原料に対するアルカリ金属化合物の混合量は質量比で原料1に対し0.5〜7程度、より好ましくは1〜5程度、さらに好ましくは2〜4程度である。アルカリ金属化合物の混合の質量比が0.5未満では細孔の発達が悪く、7以上では過賦活となり細孔壁の破壊が進行するなどして細孔(ミクロポアー)が減少するため比表面積が減る傾向にある。   The mixing amount of the alkali metal compound with respect to the raw material of the activated carbon is about 0.5 to 7, more preferably about 1 to 5, more preferably about 2 to 4 with respect to the raw material 1 in mass ratio. Pore development is poor when the mass ratio of the alkali metal compound is less than 0.5, and when it is 7 or more, the surface area tends to decrease because the pores are reduced due to excessive activation and destruction of the pore walls. It is in.

賦活処理温度は、原料の種類及び形状、活性化反応速度(賦活化反応速度)によって異なるが、250〜1000℃で行われ、より好ましくは500℃〜900℃、さらに好ましくは600℃〜800℃で行われる。賦活温度が250℃以下では賦活の進行が不充分で、活性炭中の細孔が少なく、電気二重層キャパシタの分極性電極材料として使用したとき電気容量が低下する。1000℃以上では活性炭の細孔が収縮したり、高電流密度での充電特性が著しく低下したり、賦活装置の腐食が激しくなったりする等の問題が起こってくる。   The activation treatment temperature varies depending on the type and shape of the raw material and the activation reaction rate (activation reaction rate), but is performed at 250 to 1000 ° C., more preferably 500 to 900 ° C., further preferably 600 to 800 ° C. Done in When the activation temperature is 250 ° C. or less, the activation is not sufficiently progressed, and there are few pores in the activated carbon, and the electric capacity is lowered when used as a polarizable electrode material of an electric double layer capacitor. Above 1000 ° C, problems such as shrinkage of the pores of the activated carbon, remarkably deteriorated charging characteristics at high current density, and severe corrosion of the activation device occur.

アルカリ賦活終了後の活性炭は、水洗してアルカリ成分を洗浄し、塩酸、硫酸、硝酸等で中和して、再度水洗して酸を洗浄する洗浄工程を設けることが好ましい。洗浄工程を行った活性炭は、充分に乾燥して使用できる。   The activated carbon after the completion of alkali activation is preferably washed with water to wash the alkali component, neutralized with hydrochloric acid, sulfuric acid, nitric acid, etc., and washed again with water to wash the acid. The activated carbon that has undergone the washing step can be used after sufficiently dried.

賦活を行う装置は、特に限定するものではなく、熱処理工程で使用したものと同様の装置を使用することができ、例えば固定床加熱炉、流動床加熱炉、移動床加熱炉、内熱式または外熱式のロータリーキルン、電気炉等の何れもが好適に採用される。   The apparatus for performing the activation is not particularly limited, and an apparatus similar to that used in the heat treatment step can be used. For example, a fixed bed heating furnace, a fluidized bed heating furnace, a moving bed heating furnace, an internal heating type or Any of an external heating type rotary kiln, an electric furnace, etc. is suitably employed.

賦活工程及び洗浄工程が終了した活性炭は、好ましくは粉砕して、平均粒径0.1〜100μm、好ましくは1〜100μm程度、さらに好ましくは5〜30μm程度の微粉体とされることが望ましい。この粉砕工程において使用される粉砕機は、特に限定されるものではないが、ボールミル、振動ミル、アトリションミル、ジェットミルなどが好適に使用できる。   The activated carbon after the activation step and the washing step is preferably pulverized to be a fine powder having an average particle size of 0.1 to 100 μm, preferably about 1 to 100 μm, and more preferably about 5 to 30 μm. The pulverizer used in this pulverization step is not particularly limited, but a ball mill, a vibration mill, an attrition mill, a jet mill and the like can be preferably used.

このようにして得られた活性炭は、過剰な電圧を与えなくても、1サイクル目から高い電気容量を発揮し、また、その電気容量の保持率が高く、電極の膨張が少ないという特徴を有する。   The activated carbon thus obtained has characteristics that it exhibits a high electric capacity from the first cycle without applying an excessive voltage, has a high retention of the electric capacity, and has little electrode expansion. .

賦活された一つの実施形態の活性炭を透過型顕微鏡にて観察したところ、黒鉛や黒鉛類似の結晶をほとんど有しない、乱層構造からなるものであることが確認された。また、XPS(X線光電子分光法)分析において、アルカリ土類金属化合物は活性炭表面(表面から約10nm深さ)にほとんど存在しておらず、粒子内部にサブミクロン程度の粒子として拡散していることが示された。さらに、ラマンスペクトルのGピーク(1580cm-1)高さ(実測曲線におけるベースラインからピーク点までの高さ)に対するDピーク(1360cm-1)高さの比は0.8〜1.2であった。 When activated activated carbon of one embodiment was observed with a transmission microscope, it was confirmed that the activated carbon had a turbostratic structure having almost no graphite or graphite-like crystals. Further, in XPS (X-ray photoelectron spectroscopy) analysis, alkaline earth metal compounds hardly exist on the activated carbon surface (about 10 nm depth from the surface) and diffuse as submicron particles inside the particles. It was shown that. Furthermore, the ratio of the D peak (1360 cm −1 ) height to the G peak (1580 cm −1 ) height of the Raman spectrum (the height from the baseline to the peak point in the actual measurement curve) was 0.8 to 1.2.

ここで、ラマンスペクトルのGピークに対するDピークの強度比は、炭素材料の黒鉛化度を示す指標として用いられているが、この強度比をピーク高さ比として示した場合、黒鉛化度が高いほど小さい値となる。黒鉛性の結晶を有する活性炭の場合には、概ね0.6前後の値になるが、黒鉛性の結晶をほとんど有しない本発明の活性炭の場合には0.8〜1.2の値となった。   Here, the intensity ratio of the D peak to the G peak of the Raman spectrum is used as an index indicating the graphitization degree of the carbon material. When this intensity ratio is shown as the peak height ratio, the graphitization degree is high. The smaller the value. In the case of activated carbon having graphitic crystals, the value is approximately around 0.6, but in the case of the activated carbon of the present invention having almost no graphite crystals, the value is 0.8 to 1.2.

本発明の活性炭は、窒素吸着法によって求めたBET比表面積は10〜2000m2/g、好ましくは100〜1200m2/gであり、従来の方法により得られた活性炭のBET比表面積より小さくなる(通常2000〜3000m2/g)。さらに、キャパシタ用の電極として使用する活性炭においては容量発現及び電解質の拡散に寄与すると考えられる20〜50オングストロームの細孔を一定量以上有することが必要であるが、本発明の一実施形態の活性炭のBJH(Barrett, Joyner and Halenda)法による20〜50オングストローム(2〜5nm)の細孔容積は0.02ml/g以上であった。 Activated carbon of the present invention, the BET specific surface area determined by a nitrogen adsorption method 10~2000m 2 / g, preferably 100~1200m 2 / g, less than the BET specific surface area of the activated carbon obtained by conventional methods ( Usually 2000 to 3000 m 2 / g). Further, the activated carbon used as the electrode for the capacitor needs to have a certain amount or more of 20 to 50 angstrom pores that are considered to contribute to capacity development and electrolyte diffusion, and the activated carbon according to one embodiment of the present invention. The pore volume of 20-50 angstrom (2-5 nm) by BJH (Barrett, Joyner and Halenda) method was 0.02 ml / g or more.

以上のような構造及び細孔に起因して、賦活された活性炭は過剰な電圧をかけて黒鉛層間にイオンを挿入させるという工程を経なくても、1サイクル目から高い電気容量を発揮できる。さらに、十分な炭素化工程を経ているので、炭素表面の官能基量が低減されて、充放電の繰り返しに伴う電気容量の劣化が抑えられると考えられる。
また、賦活された活性炭は、タップ密度計(蔵持科学器械製作所製)にてタップ密度を測定したところ、タップ回数50回で0.35〜0.70g/mlであり、粉体抵抗は、1.0MPaで0.4Ωcm以下であった。
Due to the structure and pores as described above, the activated activated carbon can exhibit a high electric capacity from the first cycle without passing an excessive voltage to insert ions between the graphite layers. Furthermore, since sufficient carbonization process is passed, it is thought that the amount of functional groups on the carbon surface is reduced, and deterioration of electric capacity due to repeated charge / discharge is suppressed.
Moreover, when the activated carbon measured the tap density with the tap density meter (made by Kuramochi Scientific Instruments), it was 0.35-0.70g / ml by 50 times of taps, and powder resistance is 0.4 at 1.0 MPa. It was below Ωcm.

本発明の活性炭は、その表面に難黒鉛化炭素からなる多孔性炭素層を被覆することも可能である。活性炭の表面に難黒鉛化炭素からなる多孔性炭素層を被覆することにより、充放電時における活性炭の膨張および収縮をさらに抑制することが可能となる。被覆状態は、全面被覆でも、島状の被覆でも構わないが、概ね表面の30〜70%が被覆されている状態が好ましい。   The activated carbon of the present invention can also be coated with a porous carbon layer made of non-graphitizable carbon on the surface. By covering the surface of the activated carbon with a porous carbon layer made of non-graphitizable carbon, it becomes possible to further suppress the expansion and contraction of the activated carbon during charging and discharging. The covering state may be a full surface covering or an island-like covering, but a state in which approximately 30 to 70% of the surface is covered is preferable.

多孔性炭素層被覆活性炭を製造する方法は、特に限定されないが、一段目の熱処理工程(400〜600℃)を経た後の炭素化物に接着性を有する重合体を被覆し、次いで二段目(600〜900℃)の加熱処理、賦活処理を行うことが好ましい。
例えば、母材となるコークス系炭素粉体等(以下、母材もしくは母材炭素材料という)の表面に、被覆材をコーティングし、熱処理(加熱硬化、焼成など)、賦活処理(ガス賦活、薬品賦活など)を実施することが好ましい。
The method for producing the porous carbon layer-coated activated carbon is not particularly limited, but the carbonized product after the first heat treatment step (400 to 600 ° C.) is coated with the adhesive polymer, and then the second step ( It is preferable to perform heat treatment and activation treatment at 600 to 900 ° C.).
For example, the surface of coke-based carbon powder or the like (hereinafter referred to as “base material” or “base material carbon material”) as a base material is coated with a coating material, heat treatment (heat curing, firing, etc.), activation treatment (gas activation, chemicals) It is preferable to carry out activation.

被覆材としては、熱処理によっていわゆるハードカーボンを生成し母材炭素の充放電時の収縮を抑え込むことが出来る難黒鉛化性原料を使用することが好ましい。難黒鉛化性原料としては、例えばフェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂、エポキシ樹脂からなる群から選択される少なくとも1種が挙げられるが、特にこれらに限定されない。   As the coating material, it is preferable to use a non-graphitizable raw material that can generate so-called hard carbon by heat treatment and suppress shrinkage during charging and discharging of the base material carbon. Examples of the non-graphitizable raw material include at least one selected from the group consisting of phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin, and epoxy resin, but are not particularly limited thereto. .

特に、乾性油またはその脂肪酸を混合したフェノール樹脂を用いると緻密な炭素材が得られる。これは、フェノール樹脂と乾性油中の不飽和脂結合の部分が化学反応を起こして、いわゆる乾性油変性フェノール樹脂となり、これが熱処理(または焼成)過程において分解を和らげ、発泡を防ぐことによると推測される。また、乾性油は単に二重結合があると言うだけではなく、かなり長いアルキル基とエステル結合を有しており、これらも焼成過程におけるガスの抜け易さ等の面で関与していると考えられる。   In particular, a dense carbon material can be obtained by using a dry resin or a phenol resin mixed with a fatty acid thereof. This is presumed to be due to a chemical reaction between the phenolic resin and the unsaturated fat bond part in the drying oil, resulting in a so-called drying oil-modified phenolic resin, which eases decomposition and prevents foaming during the heat treatment (or firing) process. Is done. In addition, drying oil does not just have double bonds, but has rather long alkyl groups and ester bonds, which are considered to be involved in terms of ease of gas release during the firing process. It is done.

フェノール樹脂はフェノール類とアルデヒド類との反応によりつくられるノボラック、レゾール等の未変性フェノール樹脂や一部変性されたフェノール樹脂が使用できる。また、必要に応じてニトリルゴム等のゴムをフェノール樹脂に混合して使用できる。フェノール類としては、フェノール、クレゾール、キシレノール、C20以下のアルキル基を有するアルキルフェノール等が挙げられる。
乾性油またはその脂肪酸を混合したフェノール樹脂には、先にフェノール類と乾性油とを強酸触媒存在下に付加反応させ、その後に塩基性触媒を加えて系を塩基性となしホルマリン付加反応させたもの、またはフェノール類とホルマリンを反応させ、その後に乾性油を加えたものでよい。
As the phenol resin, unmodified phenol resins such as novolak and resol produced by the reaction of phenols and aldehydes, and partially modified phenol resins can be used. Moreover, rubbers, such as a nitrile rubber, can be mixed and used for a phenol resin as needed. Examples of phenols include phenol, cresol, xylenol, and alkylphenol having a C20 or lower alkyl group.
For phenolic resin mixed with drying oil or its fatty acid, phenols and drying oil were first added in the presence of a strong acid catalyst, then basic catalyst was added to make the system basic, and formalin addition reaction was performed. Or a product obtained by reacting phenols with formalin and then adding a drying oil.

乾性油は、通常桐油、アマニ油、脱水ヒマシ油、大豆油、カシューナッツ油等として知られている植物油であり、それらの脂肪酸であってもよく、薄膜にして空気中に放置すると比較的短時間に固化乾燥する性質を有する。
フェノール樹脂に対する乾性油またはその脂肪酸の割合は、例えば(フェノールとホルマリンの縮合物)100質量部に対し、(乾性油またはその脂肪酸)5〜50質量部が適する。50質量部より多くなると、接着性が下がる傾向があり好ましくない。
この重合体で母材を被覆する場合、重合体をアセトン、エタノール、トルエン等で希釈して粘度を調整すると被覆しやすい。
Dry oils are vegetable oils commonly known as paulownia oil, linseed oil, dehydrated castor oil, soybean oil, cashew nut oil, etc., and these fatty acids may be used, and if they are made into a thin film and left in the air for a relatively short time. It has the property of solidifying and drying.
The ratio of the drying oil or its fatty acid to the phenol resin is suitably 5 to 50 parts by mass (drying oil or its fatty acid), for example, with respect to 100 parts by mass of (condensation product of phenol and formalin). When it exceeds 50 mass parts, there exists a tendency for adhesiveness to fall, and it is unpreferable.
When the base material is coated with this polymer, it is easy to coat the polymer by diluting the polymer with acetone, ethanol, toluene or the like to adjust the viscosity.

被覆時の雰囲気としては、大気圧下、加圧下、減圧下のいずれであっても良いが、炭素質粉体と重合体の親和性が向上する減圧下での被覆が好ましい。
母材の被覆は、母材炭素材料と上記重合体とを撹拌し混合することによって行うことが好ましい。撹拌方法は特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置を使用することができる。
撹拌処理時の温度及び時間は、母材の炭素質粉体、重合体の成分及び粘度等に応じて適宜選択されるが、通常0℃〜50℃程度、好ましくは10℃〜30℃程度の範囲とする。
The atmosphere at the time of coating may be any of atmospheric pressure, increased pressure, and reduced pressure, but is preferably a reduced pressure coating that improves the affinity between the carbonaceous powder and the polymer.
The covering of the base material is preferably performed by stirring and mixing the base material carbon material and the polymer. Although the stirring method is not particularly limited, for example, apparatuses such as a ribbon mixer, a screw type kneader, a spartan luzer, a redige mixer, a planetary mixer, and a universal mixer can be used.
The temperature and time during the stirring treatment are appropriately selected according to the carbonaceous powder of the base material, the components of the polymer, the viscosity, and the like, but are usually about 0 ° C to 50 ° C, preferably about 10 ° C to 30 ° C. Range.

母材炭素材料と重合体との混合物は、その粘度が混合温度下で500Pa・s以下になるように希釈溶媒を用い、かつ混合時間を調整することが好ましい。この場合の希釈溶媒としては、重合体との親和性が良好なものが使用できる。例えば、アルコール類、ケトン類、芳香族炭化水素、エステル類等が挙げられ、メタノール、エタノール、ブタノール、アセトン、メチルエチルケトン、トルエン、酢酸エチル、酢酸ブチル等が好ましい。   The mixture of the base carbon material and the polymer preferably uses a diluting solvent and adjusts the mixing time so that the viscosity is 500 Pa · s or less at the mixing temperature. As the dilution solvent in this case, a solvent having good affinity with the polymer can be used. For example, alcohols, ketones, aromatic hydrocarbons, esters and the like can be mentioned, and methanol, ethanol, butanol, acetone, methyl ethyl ketone, toluene, ethyl acetate, butyl acetate and the like are preferable.

撹拌後は、溶剤の一部もしくは全部を除去することが好ましい。溶媒の除去は、熱風乾燥、真空乾燥等公知の方法により行われる。
乾燥温度は使用する溶媒の沸点、蒸気圧等によるが、具体的には50℃以上、好ましくは100℃以上1000℃以下、さらに好ましくは150℃以上500℃以下である。
After stirring, it is preferable to remove part or all of the solvent. The removal of the solvent is performed by a known method such as hot air drying or vacuum drying.
The drying temperature depends on the boiling point, vapor pressure, etc. of the solvent used, but is specifically 50 ° C. or higher, preferably 100 ° C. or higher and 1000 ° C. or lower, more preferably 150 ° C. or higher and 500 ° C. or lower.

加熱硬化には公知の加熱装置のほとんどが使用できる。しかし、製造プロセスとしては連続処理が可能なロータリーキルンやベルト式連続炉などが生産性の点で好ましい。
例えば、フェノール樹脂添加量は、好ましくは2質量%〜30質量%、さらに好ましくは4質量%〜25質量%、さらに好ましくは6質量%〜18質量%である。
Most of the known heating devices can be used for heat curing. However, as a manufacturing process, a rotary kiln capable of continuous processing or a belt-type continuous furnace is preferable in terms of productivity.
For example, the phenol resin addition amount is preferably 2% by mass to 30% by mass, more preferably 4% by mass to 25% by mass, and further preferably 6% by mass to 18% by mass.

熱処理は1200℃以下、好ましくは400〜1000℃、さらに好ましくは500〜800℃で行う。
熱処理温度が高すぎると、その後に実施される賦活反応が進行せず、熱処理温度が低すぎると炭化反応が進行しない。
The heat treatment is performed at 1200 ° C. or less, preferably 400 to 1000 ° C., more preferably 500 to 800 ° C.
If the heat treatment temperature is too high, the subsequent activation reaction will not proceed, and if the heat treatment temperature is too low, the carbonization reaction will not proceed.

原料の粒度は、平均粒径で1〜70μmがよいが、好ましくは3〜30μm、さらに好ましくは3〜15μmである。平均粒径はレーザー回折散乱法で求めることができる。平均粒径が1μmより小さいと電極シートからの落粒やショートを起こしやすくなる。
70μmを超える平均粒径を有する粒子が混入していると電極表面に凹凸が多くなり、電池に使用されるセパレータを傷つける原因ともなる。
The average particle size of the raw material is preferably 1 to 70 μm, preferably 3 to 30 μm, more preferably 3 to 15 μm. The average particle diameter can be determined by a laser diffraction scattering method. When the average particle size is smaller than 1 μm, falling from the electrode sheet and short circuit are likely to occur.
When particles having an average particle diameter exceeding 70 μm are mixed, the surface of the electrode becomes uneven, which may cause damage to the separator used in the battery.

次に気相法炭素繊維を添加した活性炭について説明する。
本発明の活性炭に対して、炭素繊維を添加することにより一層の特性向上が図られる。
炭素繊維としては、ピッチ系炭素繊維、気相成長炭素繊維などを用いることができるが、繊維軸方向に結晶が成長し、繊維が枝分かれをしている気相成長炭素繊維が好ましい。
気相成長炭素繊維は、有機化合物(例えばベンゼン)と触媒の金属触媒粒子とを水素気流中で高温下(例えば、約1000℃)で加熱することによって製造することができる。
気相成長炭素繊維は、製造したままのもの、製造したものを1000〜1500℃で焼成したもの、あるいは、さらに黒鉛化処理したものを使用することができるが、製造したままのものあるいは1500℃程度で熱処理されたものがより好適である。
Next, the activated carbon added with vapor grown carbon fiber will be described.
By adding carbon fiber to the activated carbon of the present invention, further improvement in characteristics can be achieved.
As the carbon fibers, pitch-based carbon fibers, vapor-grown carbon fibers, and the like can be used, but vapor-grown carbon fibers in which crystals grow in the fiber axis direction and the fibers are branched are preferable.
Vapor-grown carbon fiber can be produced by heating an organic compound (for example, benzene) and catalytic metal catalyst particles at a high temperature (for example, about 1000 ° C.) in a hydrogen stream.
Vapor-grown carbon fibers can be used as manufactured, those manufactured by firing at 1000-1500 ° C, or further graphitized, but can be used as manufactured or at 1500 ° C. What was heat-processed by the grade is more suitable.

また、気相成長炭素繊維の好ましい形態として、分岐状繊維がある。分岐状繊維は分岐部分を含めて繊維全体が互いに連通した中空構造を有している。そのため繊維の円筒部分を構成している炭素層が連続している。中空構造とは炭素層が円筒状に巻いている構造であって、完全な円筒でないもの、部分的な切断箇所を有するもの、積層した2層の炭素層が1層に結合したもの、などを含む。また、円筒の断面は完全な円に限らず楕円や多角化のものを含む。
なお、炭素層の結晶性について炭素層の面間隔d002は特に限定されない。因みに、好ましいものはX線回折法によるd002が0.3395nm以下、より好ましくは0.3380nm以下であって、結晶のC軸方向の厚さLcが40nm以下のものである。
Moreover, there exists a branched fiber as a preferable form of a vapor growth carbon fiber. The branched fiber has a hollow structure in which the entire fiber including the branched portion communicates with each other. Therefore, the carbon layer which comprises the cylindrical part of a fiber is continuing. A hollow structure is a structure in which a carbon layer is wound in a cylindrical shape, and is not a complete cylinder, a part having a partial cut portion, a structure in which two laminated carbon layers are combined into one layer, etc. Including. Further, the cross section of the cylinder is not limited to a perfect circle, but includes an ellipse or a polygon.
In addition, regarding the crystallinity of the carbon layer, the interplanar spacing d002 of the carbon layer is not particularly limited. Incidentally, preferred d 002 by X-ray diffraction method is 0.3395nm or less, and more preferably equal to or less than 0.3380Nm, thickness Lc in the C-axis direction of the crystal is of 40nm or less.

気相成長炭素繊維は、繊維外径500nm以下及びアスペクト比10以上の炭素繊維であって、好ましくは繊維外径50〜500nm、繊維長1〜100μm(アスペクト比2〜2000)、あるいは繊維外径2〜50nmであって繊維長0.5〜50μm(アスペクト比10〜25000)のものである。
この気相成長炭素繊維を活性炭と混合することで、粒子同士の接触抵抗が低減されるとともに、電極強度が向上し、分極性電極としての耐久性が向上する。
The vapor growth carbon fiber is a carbon fiber having a fiber outer diameter of 500 nm or less and an aspect ratio of 10 or more, preferably a fiber outer diameter of 50 to 500 nm, a fiber length of 1 to 100 μm (aspect ratio of 2 to 2000), or a fiber outer diameter. The length is 2 to 50 nm and the fiber length is 0.5 to 50 μm (aspect ratio 10 to 25000).
By mixing this vapor growth carbon fiber with activated carbon, the contact resistance between particles is reduced, the electrode strength is improved, and the durability as a polarizable electrode is improved.

気相成長炭素繊維をガス賦活あるいは薬品賦活したものを使用することも可能であるが、この場合にはミクロ孔(20オングストローム以下の細孔)容積0.01〜0.4ml/g、BET比表面積30〜1000m2/gになるように表面構造を制御したものを使用する方がよい。ミクロ孔の多い炭素繊維を混合すると、電極内部でのイオン拡散抵抗が増大してしまうため好ましくない。
なお、前述の母材を難黒鉛化炭素で被覆するために母材と重合体とを撹拌する際に、炭素繊維を混合しておくことにより、炭素繊維が融着した活性炭を製造することが可能である。このようにして製造される炭素繊維融着活性炭は、充放電時の膨張収縮がさらに抑制される。また、分極性電極自体の機械的強度を向上させる場合もあるため有効である。
It is also possible to use gas-activated or chemical-activated vapor-grown carbon fibers. In this case, micropores (pores of 20 angstroms or less) volume of 0.01 to 0.4 ml / g, BET specific surface area of 30 to It is better to use the one whose surface structure is controlled to be 1000 m 2 / g. Mixing carbon fibers with many micropores is not preferable because ion diffusion resistance inside the electrode increases.
In addition, when the base material and the polymer are agitated in order to coat the base material with non-graphitizable carbon, it is possible to produce activated carbon in which carbon fibers are fused by mixing carbon fibers. Is possible. In the carbon fiber fused activated carbon produced in this way, expansion and contraction during charging and discharging are further suppressed. It is also effective because the mechanical strength of the polarizable electrode itself may be improved.

本発明の活性炭に対する気相成長炭素繊維の混合量は、0.02質量%〜50質量%が好ましいが、より好ましくは、0.05〜30質量%さらに好ましくは0.5〜20質量%である。0.02質量%未満だと、活性炭粒子との接点を増加させる効果が少ないために十分な効果が得られない。50質量%を越えると、分極性電極中の活性炭含有量が低下して電気容量が低下してしまう。   The mixing amount of the vapor-grown carbon fiber with respect to the activated carbon of the present invention is preferably 0.02 to 50% by mass, more preferably 0.05 to 30% by mass, and further preferably 0.5 to 20% by mass. If it is less than 0.02% by mass, a sufficient effect cannot be obtained because the effect of increasing the contact point with the activated carbon particles is small. If it exceeds 50% by mass, the activated carbon content in the polarizable electrode is lowered and the electric capacity is lowered.

本発明の活性炭から、分極性電極及び電気二重層キャパシタを公知の方法にしたがって製造することができる。すなわち、分極性電極は活性炭に導電剤および結合剤を加えて混練圧延する方法、活性炭に導電剤、結合剤、必要に応じて溶媒を加えてスラリー状にして導電性基材に、所定厚みに塗布し、溶媒を室温または加熱して蒸発させる方法、活性炭に樹脂類を混合して焼結する方法等で作製される。この際、導電性基材としては、厚みが10μm〜0.5mm程度のアルミニウム、炭素被覆アルミニウム、ステンレス、チタン等の箔、板状物が用いられる。   From the activated carbon of the present invention, polarizable electrodes and electric double layer capacitors can be produced according to known methods. That is, the polarizable electrode is a method of kneading and rolling by adding a conductive agent and a binder to activated carbon, adding a conductive agent, a binder, and, if necessary, a solvent to activated carbon to form a slurry and forming a predetermined thickness on the conductive substrate. It is produced by a method of applying and evaporating the solvent at room temperature or heating, a method of mixing activated carbon with a resin and sintering. In this case, as the conductive base material, foil having a thickness of about 10 μm to 0.5 mm, carbon-coated aluminum, stainless steel, titanium, or other foil, or a plate-like material is used.

例えば平均粒径5〜100μm程度の活性炭の粉末に、必要により導電剤としてカーボンブラック(ケッチェンブラック、アセチレンブラック等)、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム等の粉末を加え、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー、カルボキシメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、またはポリアクリル酸等の結合剤を加え、厚さ0.1〜0.5mm程度のシートに成形し、100〜200℃程度の温度で真空乾燥する。このシートを所定の形状に打ち抜き電極とする。この電極に集電材である金属板を積層し、セパレータを介し、金属板を外側にして2枚重ね、電解液に浸して電気二重層キャパシタとする。   For example, if necessary, a powder of carbon black (Ketjen black, acetylene black, etc.), natural graphite, artificial graphite, titanium oxide, ruthenium oxide or the like as a conductive agent is added to activated carbon powder having an average particle size of about 5 to 100 μm. Add a binder such as fluoroethylene (PTFE), polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer cross-linked polymer, carboxymethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, or polyacrylic acid to a sheet with a thickness of about 0.1 to 0.5 mm. It shape | molds and vacuum-drys at the temperature of about 100-200 degreeC. This sheet is punched into a predetermined shape and used as an electrode. A metal plate as a current collector is laminated on this electrode, and two metal plates are stacked with a separator interposed therebetween, and immersed in an electrolyte solution to form an electric double layer capacitor.

電気二重層キャパシタの電解液としては公知の非水溶媒電解質溶液、水溶性電解質溶液のいずれも使用可能であり、さらに電解液の他に、非水系電解質である高分子固体電解質及び高分子ゲル電解質、イオン性液体も使用することができる。
水系(水溶性電解質溶液)のものとしては、硫酸水溶液、硫酸ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化アンモニウム水溶液、塩化カリウム水溶液、炭酸カリウム水溶液等が挙げられる。
As an electrolytic solution of the electric double layer capacitor, any of known nonaqueous solvent electrolyte solution and water-soluble electrolyte solution can be used. In addition to the electrolyte solution, a polymer solid electrolyte and a polymer gel electrolyte which are nonaqueous electrolytes Ionic liquids can also be used.
Examples of the aqueous (water-soluble electrolyte solution) include sulfuric acid aqueous solution, sodium sulfate aqueous solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonium hydroxide aqueous solution, potassium chloride aqueous solution, potassium carbonate aqueous solution and the like.

また、非水系(非水溶媒電解質溶液)のものとしては、R1234+またはR1234+で表されるカチオン(R1、R2、R3、R4は、それぞれ独立に炭素数1〜10のアルキル基またはアリル基である。)と、BF4 -、PF6 -、ClO4 -等のアニオンとからなる4級アンモニウム塩または4級ホスホニウム塩を、例えば、(C254NBF4、(C253(CH3)NBF4、(C254PBF4、(C253(CH3)PBF4等を、電解質として、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。さらに、好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。電解質または溶媒は、それぞれ二種以上用いることもできる。 As non-aqueous (non-aqueous solvent electrolyte solution), cations represented by R 1 R 2 R 3 R 4 N + or R 1 R 2 R 3 R 4 P + (R 1 , R 2 , R 3 and R 4 are each independently an alkyl group or an allyl group having 1 to 10 carbon atoms) and an anion such as BF 4 , PF 6 , ClO 4 or the like. Phosphonium salts are, for example, (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 2 H 5 ) 3 (CH 3 ) PBF 4 or the like as an electrolyte, diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether Ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, ethylene glycol phenyl ether, etc. ether; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, Amides such as N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, N, N-dimethylpropionamide and hexamethylphosphorylamide; sulfur-containing compounds such as dimethylsulfoxide and sulfolane; methyl ethyl ketone, methyl isobutyl ketone and the like Dialkyl ketones; ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran, 1,2-dimethoxyethane Cyclic ethers such as 1,3-dioxolane, ethylene carbonate, carbonates such as propylene carbonate; .gamma.-butyrolactone; N- methylpyrrolidone; acetonitrile, a solution of an organic solvent such as nitromethane are preferred. Further, carbonate-based nonaqueous solvents such as ethylene carbonate and propylene carbonate can be preferably used. Two or more electrolytes or solvents can be used.

非水系電解質である高分子固体電解質や高分子ゲル電解質に用いられる高分子としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。イオン性液体はこれらの溶質の中で溶媒に溶解していなくとも、液状であるもの、例えば、1−エチル−3−メチルイミダゾリウムテトラフルオロボレート、1−エチル−3−メチルイミダゾリウムトリフルオロスルホネートが挙げられる。   Examples of the polymer used in the solid polymer electrolyte or polymer gel electrolyte that are non-aqueous electrolytes include polyethylene oxide derivatives and polymers containing the derivatives, polypropylene oxide derivatives and polymers containing the derivatives, phosphate ester polymers, Examples include polycarbonate derivatives and polymers containing the derivatives. Even though these solutes are not dissolved in a solvent, the ionic liquid is liquid, for example, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium trifluorosulfonate Is mentioned.

電極間に必要に応じて介在させるセパレータとしては、イオンを透過する多孔質セパレータであればよく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、ポリエチレン不織布、ポリプロピレン不織布、ガラス繊維混抄不織布、ガラスマットフィルタ等が好ましく使用できる。   As the separator interposed between the electrodes as necessary, any porous separator that transmits ions may be used. Microporous polyethylene film, microporous polypropylene film, polyethylene nonwoven fabric, polypropylene nonwoven fabric, glass fiber mixed nonwoven fabric, glass mat A filter or the like can be preferably used.

本発明の電気二重層キャパシタは、一対のシート状電極の間にセパレータを介して電解液とともに金属ケースに収容したコイン型、一対の正極と負極をセパレータを介して巻回してなる巻回型、セパレータを介して多数のシート状電極を積み重ねた積層型等いずれの構成をもとることができる。   The electric double layer capacitor of the present invention is a coin type housed in a metal case together with an electrolytic solution through a separator between a pair of sheet-like electrodes, a winding type formed by winding a pair of positive and negative electrodes through a separator, Any structure such as a stacked type in which a large number of sheet-like electrodes are stacked via a separator can be used.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。下記の例における各特性の測定方法は以下の通りである。   The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto. The measuring method of each characteristic in the following example is as follows.

(1)BET比表面積および細孔容積
Quantachrome社製、NOVA1200を使用し、液体窒素温度における窒素の吸着等温線より、BET法およびBJH法を用いて算出した。なお、窒素の吸着量は相対圧力(P/P0)0.01〜1.0で測定した。
(2)ラマンスペクトル
励起光としてArレーザー514.5nm、検出器としてCCD(Charge Coupled Device)を使用し、スリット500μm、露光60秒で活性炭のラマンスペクトルを測定した。
(1) BET specific surface area and pore volume
Using NOVA1200, manufactured by Quantachrome, from the adsorption isotherm of nitrogen at liquid nitrogen temperature, the BET method and the BJH method were used. The nitrogen adsorption amount was measured at a relative pressure (P / P 0 ) of 0.01 to 1.0.
(2) Raman spectrum An Ar laser 514.5 nm was used as excitation light, a CCD (Charge Coupled Device) was used as a detector, and a Raman spectrum of activated carbon was measured with a slit of 500 μm and an exposure time of 60 seconds.

(3)電気容量
平均粒径30μmの活性炭80質量部にPTFE(ポリテトラフルオロエチレン)10質量部、カーボンブラック10質量部を添加し、メノウ乳鉢で混練して圧延ローラーで厚さ0.2mmのシート状に圧延したシートを直径20mmの円板に打抜き、200℃で一昼夜で真空乾燥して分極性電極として使用した。
前記の電極を、高純度アルゴンを循環させているグローブボックス内において、図1に断面図を示す評価用セルに組立てて使用した。図1において、1はアルミニウム製の上蓋、2はフッ素ゴム製Oリング、3はアルミニウムからなる集電体、4はテフロン(登録商標)からなる絶縁材、5はアルミニウム製容器、6はアルミニウム製板バネ、7は分極性電極、8はガラス繊維からなる厚さ1mmのセパレータである。電解液にはPC(プロピレンカーボネート)を溶媒とし、(C254NBF4を電解質とする富山薬品工業(株)製の商品名LIPASTE-P/EAFIN(1モル/リットル)を使用した。
充放電時の電極膨張率は、図2のような評価用セルを使用し、電極厚み方向の変位をインジケーターを使用して測定した。図2中の電極押え用コイルばね(9)は、1cm圧縮するのに0.1〜1.0kgf程度の加重を必要とするものが使用可能であるが、本測定にあたっては、0.3kgfの加重を必要とするものを使用した。測定温度は室温(20〜30℃)とした。ここで、例えば2.5V電圧印加時の電極膨張率(%)は

Figure 0004420381
で求められる。
充放電測定は北斗電工(株)製充放電試験装置HJ-101SM6を使用し、充放電電流5mA(1.6mA/cm2)、50mA(16mA/cm2)、150mA(48mA/cm2)にて0〜2.5Vあるいは0〜3.0Vで充放電を行い、2回目の定電流放電によって得られた放電曲線から、電気二重層キャパシタの両極活性炭の質量当たりの電気容量(F/g)と体積当たりの電気容量(F/ml)を算出した。
耐久性は、2回目の充放電後の電気容量に対する20回の充放電サイクル試験後の電気容量の割合として評価した。 (3) Electric capacity 10 parts by mass of PTFE (polytetrafluoroethylene) and 10 parts by mass of carbon black are added to 80 parts by mass of activated carbon having an average particle size of 30 μm, kneaded in an agate mortar and 0.2 mm thick with a rolling roller. The sheet rolled into a shape was punched into a disk with a diameter of 20 mm and vacuum-dried at 200 ° C. all day and night to be used as a polarizable electrode.
The electrode was assembled and used in an evaluation cell whose sectional view is shown in FIG. 1 in a glove box in which high-purity argon was circulated. In FIG. 1, 1 is an aluminum top cover, 2 is a fluororubber O-ring, 3 is a current collector made of aluminum, 4 is an insulating material made of Teflon (registered trademark), 5 is an aluminum container, and 6 is aluminum. A leaf spring, 7 is a polarizable electrode, and 8 is a 1 mm thick separator made of glass fiber. The electrolytic solution used was a product name LIPASTE-P / EAFIN (1 mol / liter) manufactured by Toyama Pharmaceutical Co., Ltd. using PC (propylene carbonate) as a solvent and (C 2 H 5 ) 4 NBF 4 as an electrolyte. .
The electrode expansion coefficient during charging and discharging was measured using an evaluation cell as shown in FIG. 2 and the displacement in the electrode thickness direction was measured using an indicator. The electrode pressing coil spring (9) in FIG. 2 can be used which requires a load of about 0.1 to 1.0 kgf to compress 1 cm, but this measurement requires a load of 0.3 kgf. I used what to do. The measurement temperature was room temperature (20-30 ° C.). Here, for example, the electrode expansion rate (%) when a 2.5 V voltage is applied is
Figure 0004420381
Is required.
The charge / discharge measurement uses a charge / discharge test apparatus HJ-101SM6 manufactured by Hokuto Denko Co., Ltd., at a charge / discharge current of 5 mA (1.6 mA / cm 2 ), 50 mA (16 mA / cm 2 ), 150 mA (48 mA / cm 2 ). Charge / discharge at 0 to 2.5 V or 0 to 3.0 V, and from the discharge curve obtained by the second constant current discharge, the electric capacity (F / g) per mass of the bipolar activated carbon of the electric double layer capacitor and per volume The electric capacity (F / ml) was calculated.
Durability was evaluated as a ratio of electric capacity after 20 charge / discharge cycle tests to electric capacity after the second charge / discharge.

実施例1:
軟化点86℃の石炭ピッチ100gに炭酸カルシウム10gを加え、ルツボに充填し、昇温速度5℃/hrで500℃とし、その温度で10時間保持し(1段目)、次いで同昇温速度で700℃とし、その温度で5時間保持して(2段目)熱処理した。得られた炭素化物に、質量比で2.5倍量のKOHを混合し、ルツボに充填した。これを750℃まで3℃/hrで昇温した後、750℃で60分保持して賦活した。賦活した炭素化物は1N塩酸で洗浄した後、蒸留水で洗浄し、残留KOH及び金属不純物を除去した。これを200℃で真空乾燥して活性炭とした。
この活性炭の比表面積は930m2/gであった。BJH法による20〜50オングストロームの細孔容積は、0.0416ml/g、ラマンスペクトルから算出した、Gピーク高さに対するDピーク高さの比は0.92であった。
電気容量は、充放電電流5mA(1.6mA/cm2)、2.5V充放電時には36.5F/g、31.0F/ml、であり、20サイクル充放電後の容量保持率は98.4%であった。充放電電流5mA(1.6mA/cm2)、3.0V充放電時には37.7F/g,32.0F/mlであり、20サイクル充放電後の容量保持率は96.9%であった。正負極の平均膨張率は15%であった。
Example 1:
Add 10g of calcium carbonate to 100g of coal pitch with softening point of 86 ° C, fill into crucible, keep temperature at 500 ° C at 5 ° C / hr, and hold at that temperature for 10 hours (first stage), then the same rate of temperature increase And kept at that temperature for 5 hours (second stage). The obtained carbonized product was mixed with 2.5 times the amount of KOH in a mass ratio and filled in a crucible. This was heated up to 750 ° C. at 3 ° C./hr, and then kept at 750 ° C. for 60 minutes for activation. The activated carbonized product was washed with 1N hydrochloric acid and then with distilled water to remove residual KOH and metal impurities. This was vacuum dried at 200 ° C. to obtain activated carbon.
The specific surface area of this activated carbon was 930 m 2 / g. The pore volume of 20 to 50 angstroms by the BJH method was 0.0416 ml / g, and the ratio of the D peak height to the G peak height calculated from the Raman spectrum was 0.92.
The electric capacity was 5 mA (1.6 mA / cm 2 ) charging / discharging current, 36.5 F / g and 31.0 F / ml at 2.5 V charging / discharging, and the capacity retention after 20 cycles charging / discharging was 98.4%. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the charge was 37.7 F / g and 32.0 F / ml at 3.0 V charge / discharge, and the capacity retention after 20 cycles of charge / discharge was 96.9%. The average expansion coefficient of the positive and negative electrodes was 15%.

実施例2:
実施例1における炭酸カルシウム10gに代えて水酸化カルシウム10gとした他は実施例1と同様にして活性炭を製造した。
この活性炭の比表面積は892m2/g、BJH法による20〜50オングストロームの細孔容積は0.0398ml/g、ラマンスペクトルから算出したGピーク高さに対するDピーク高さの比は0.93であった。
電気容量は、充放電電流5mA、2.5V充放電時には36.8F/g、31.3F/mlであり、20サイクル充放電後の容量保持率は98.3%であった。充放電電流5mA、3.0V充放電時には37.5F/g、31.9F/mlであり、20サイクル充放電後の容量保持率は96.8%であった。
また、充電後の平均電極膨張率は14%であった。
Example 2:
Activated carbon was produced in the same manner as in Example 1 except that 10 g of calcium hydroxide was used instead of 10 g of calcium carbonate in Example 1.
The specific surface area of this activated carbon was 892 m 2 / g, the pore volume of 20 to 50 Å by the BJH method was 0.0398 ml / g, and the ratio of the D peak height to the G peak height calculated from the Raman spectrum was 0.93.
The electric capacity was 36.8 F / g and 31.3 F / ml at a charge / discharge current of 5 mA and 2.5 V charge / discharge, and the capacity retention after 20 cycles of charge / discharge was 98.3%. The charge / discharge current was 5 mA, 3.0V, and the charge retention was 37.5 F / g and 31.9 F / ml. The capacity retention after 20 cycles of charge / discharge was 96.8%.
Moreover, the average electrode expansion coefficient after charge was 14%.

実施例3:
実施例1の方法で得られた活性炭に対して、気相法炭素繊維(平均径180nm、平均長さ10μm)を5質量%混合して分極性電極材料とした。充放電電流5mA(1.6mA/cm2)、2.5V充放電時の電気容量は36.4F/g、32.4F/mlであり、20サイクル充放電後の容量保持率は98.9%であった。充放電電流5mA(1.6mA/cm2)、3.0V充放電時の電気容量は39.5F/g、35.2F/mlであり、20サイクル容量保持率は97.7%であった。正負極の平均膨張率は10%であった。
Example 3:
The activated carbon obtained by the method of Example 1 was mixed with 5% by mass of vapor grown carbon fiber (average diameter 180 nm, average length 10 μm) to obtain a polarizable electrode material. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 2.5 V charge / discharge was 36.4 F / g, 32.4 F / ml, and the capacity retention after 20 cycles of charge / discharge was 98.9%. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 3.0 V charge / discharge was 39.5 F / g, 35.2 F / ml, and the 20-cycle capacity retention was 97.7%. The average expansion coefficient of the positive and negative electrodes was 10%.

実施例4:
実施例1の炭酸カルシウム10gに硫化カルシウム10gを加え、2段目の保持温度を800℃で熱処理処理した以外は実施例1と同様にして活性炭を製造し、分極性電極材料とした。
この活性炭の比表面積は173m2/gであり、BJH法による20〜50オングストロームの細孔容積は0.0271ml/gであった。ラマンスペクトルにおけるGピーク高さに対するDピーク高さの比は0.93であった。
充放電電流5mA(1.6mA/cm2)、2.5V充放電時の電気容量は32.6F/g、31.9F/mlであり、20サイクル充放電後の容量保持率は98.7%であった。充放電電流5mA(1.6mA/cm2)、3.0V充放電時の電気容量は35.5F/g、34.8F/mlであり、20サイクル容量保持率は97.2%であった。正負極の平均膨張率は30%であった。
Example 4:
Activated carbon was produced in the same manner as in Example 1 except that 10 g of calcium sulfide was added to 10 g of calcium carbonate of Example 1 and heat treatment was performed at a second stage holding temperature of 800 ° C. to obtain a polarizable electrode material.
The specific surface area of this activated carbon was 173 m 2 / g, and the pore volume of 20 to 50 Å by the BJH method was 0.0271 ml / g. The ratio of the D peak height to the G peak height in the Raman spectrum was 0.93.
The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 2.5 V charge / discharge was 32.6 F / g, 31.9 F / ml, and the capacity retention after 20 cycles of charge / discharge was 98.7%. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 3.0 V charge / discharge was 35.5 F / g, 34.8 F / ml, and the 20-cycle capacity retention was 97.2%. The average expansion coefficient of the positive and negative electrodes was 30%.

実施例5:
実施例3で使用したものと同じ気相法炭素繊維10gに水酸化カリウム50gを加えて750℃で熱処理したもの(ミクロ孔容積:0.3ml、BET比表面積530m2/g)実施例4の方法で製造した活性炭に対して5質量%混合して分極性電極材料とした。充放電電流5mA(1.6mA/cm2)、2.5V充放電時の電気容量は33.5F/g、33.5F/mlであり、20サイクル充放電後の容量保持率は99.0%であった。充放電電流5mA(1.6mA/cm2)、3.0V充放電時の電気容量は34.5F/g、34.5F/mlであり、20サイクル容量保持率は98.0%であった。正負極の平均膨張率は5%であった。
Example 5:
The same vapor-phase-processed carbon fiber as used in Example 3, 50 g of potassium hydroxide, and heat-treated at 750 ° C. (micropore volume: 0.3 ml, BET specific surface area of 530 m 2 / g) Method of Example 4 A polarizable electrode material was prepared by mixing 5% by mass with respect to the activated carbon produced in (1). The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 2.5 V charge / discharge was 33.5 F / g, 33.5 F / ml, and the capacity retention after 20 cycles of charge / discharge was 99.0%. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 3.0 V charge / discharge was 34.5 F / g, 34.5 F / ml, and the 20-cycle capacity retention was 98.0%. The average expansion coefficient of the positive and negative electrodes was 5%.

比較例1:
実施例1における炭酸カルシウムを添加しなかった他は実施例1と同様にして活性炭を製造した。この活性炭に含まれるカルシウム化合物はカルシウム元素換算で25質量ppmであった。
この活性炭の比表面積は800m2/gであった。BJH法による20〜50オングストロームの細孔容積は0.038ml/g、ラマンスペクトルから算出したGピーク高さに対するDピーク高さの比は0.89であった。
電気容量は、充放電電流5mA、2.5V充放電時には36.0F/g、30.6F/mlであり、20サイクル充放電後の容量保持率は98.0%であった。充放電電流5mA、3.0V充放電時には37.0F/g、31.5F/mlであり、20サイクル充放電後の容量保持率は96.5%であった。
また、充電後の平均電極膨張率は50%であった。
Comparative Example 1:
Activated carbon was produced in the same manner as in Example 1 except that calcium carbonate in Example 1 was not added. The calcium compound contained in the activated carbon was 25 mass ppm in terms of calcium element.
The specific surface area of this activated carbon was 800 m 2 / g. The pore volume of 20 to 50 angstroms by BJH method was 0.038 ml / g, and the ratio of the D peak height to the G peak height calculated from the Raman spectrum was 0.89.
The electric capacity was 36.0 F / g and 30.6 F / ml at a charge / discharge current of 5 mA and 2.5 V charge / discharge, and the capacity retention after 20 cycles of charge / discharge was 98.0%. The charge / discharge current was 5 mA, the charge was 33.0 F / g and 31.5 F / ml at 3.0 V charge / discharge, and the capacity retention after 20 cycles of charge / discharge was 96.5%.
Moreover, the average electrode expansion coefficient after charge was 50%.

比較例2:
炭素材料として石油コークスを用い、質量比で2.5倍量のKOHを混合し、ルツボに充填した。これを750℃で60分保持して賦活した。賦活した炭素材料は1N塩酸で洗浄した後、蒸留水で洗浄し、残存KOH及び金属不純物を除去した。これを200℃で真空乾燥し、活性炭とした。この活性炭の比表面積は1905m2/gであり、ラマンスペクトルのGピーク高さに対するDピーク高さの比は0.98であった。また活性炭に含まれるカルシウム化合物はカルシウム元素換算で23質量ppmであった。
充放電電流5mA(1.6mA/cm2)、2.5V充放電時の電気容量は、44.5F/g、24.0F/mlであり、20サイクル充放電後の容量保持率は96.3%であった。充放電電流5mA(1.6mA/cm2)、3.0V充放電時の電気容量は45.0F/g、24.3F/mlであり、20サイクル容量保持率は94.0%であった。正負極の平均膨張率は20%であった。
Comparative Example 2:
Petroleum coke was used as a carbon material, and 2.5 times the amount of KOH was mixed in a mass ratio and filled in a crucible. This was held at 750 ° C. for 60 minutes for activation. The activated carbon material was washed with 1N hydrochloric acid and then with distilled water to remove residual KOH and metal impurities. This was vacuum-dried at 200 ° C. to obtain activated carbon. The specific surface area of this activated carbon was 1905 m 2 / g, and the ratio of the D peak height to the G peak height in the Raman spectrum was 0.98. The calcium compound contained in the activated carbon was 23 mass ppm in terms of calcium element.
The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 2.5 V charge / discharge was 44.5 F / g, 24.0 F / ml, and the capacity retention after 20 cycles of charge / discharge was 96.3%. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 3.0 V charge / discharge was 45.0 F / g, 24.3 F / ml, and the 20-cycle capacity retention was 94.0%. The average expansion coefficient of the positive and negative electrodes was 20%.

比較例3:
炭素材料としてMCMB(大阪ガス製メソカーボンマイクロビーズ)を用い、質量比で5倍量のKOHを混合し、ルツボに充填した。これを750℃で60分保持して賦活した。賦活した炭素材料は1N塩酸で洗浄した後、蒸留水で洗浄し、残存KOH及び金属不純物を除去した。これを200℃で真空乾燥し、活性炭とした。この活性炭の比表面積は127m2/gであり、20〜50オングストロームの細孔容積は0.013ml/g、ラマンスペクトルのGピーク高さに対するDピーク高さの比は0.92であった。また、活性炭に含まれるカルシウム化合物はカルシウム元素換算で14質量ppmであった。
充放電電流5mA(1.6mA/cm2)、2.5V充放電時の電気容量は、10.2F/g、9.4F/mlであり、20サイクル充放電後の容量保持率は99.1%であった。充放電電流5mA(1.6mA/cm2)、3.0V充放電時の電気容量は11.5F/g、10.6F/mlであり、20サイクル容量保持率は98.5%であった。正負極の平均膨張率は70%であった。
Comparative Example 3:
MCMB (Mesocarbon microbeads manufactured by Osaka Gas Co., Ltd.) was used as a carbon material, and 5 times the amount of KOH was mixed in a mass ratio and filled in a crucible. This was held at 750 ° C. for 60 minutes for activation. The activated carbon material was washed with 1N hydrochloric acid and then with distilled water to remove residual KOH and metal impurities. This was vacuum-dried at 200 ° C. to obtain activated carbon. The activated carbon had a specific surface area of 127 m 2 / g, a pore volume of 20-50 angstroms of 0.013 ml / g, and a ratio of D peak height to G peak height of the Raman spectrum of 0.92. Moreover, the calcium compound contained in activated carbon was 14 mass ppm in terms of calcium element.
The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 2.5 V charge / discharge was 10.2 F / g, 9.4 F / ml, and the capacity retention after 20 cycles of charge / discharge was 99.1%. The charge / discharge current was 5 mA (1.6 mA / cm 2 ), the electric capacity at 3.0 V charge / discharge was 11.5 F / g, 10.6 F / ml, and the 20-cycle capacity retention was 98.5%. The average expansion coefficient of the positive and negative electrodes was 70%.

実施例6:
付着材としては、以下の方法で調整した、桐油で一部変性したフェノール樹脂を用いた。すなわち、桐油100質量部とフェノール150質量部、ノニルフェノール150質量部を混合して50℃に保持する。これに0.5質量部の硫酸を加えて撹拌し、徐々に昇温して120℃で1時間保持し、桐油とフェノール類との付加反応を行った。その後温度を60℃以下に下げ、ヘキサメチレンテトラミンを6質量部と37質量%ホルマリン100質量部を加え、90℃で約2時間反応し、その後真空脱水した後、メタノール100質量部、アセトン100質量部を加えて希釈し、粘度20mPa・s(20℃)のワニス(以下、ワニスAという。)を得た。
軟化点86℃の石炭ピッチ100gに炭酸カルシウム10gを加え、ルツボに充填し、昇温速度5℃/hrで500℃とし、その温度で10時間保持した。その後粉砕して、平均粒径(D50=8μm)に調整した炭素質粉体(19.8g)に、ワニスAの樹脂固形分換算で5.4質量部にエタノール12.6質量部を加えて撹拌し、十分に溶解させた溶液を変成フェノール樹脂固形分が1.3質量%となるように加え、プラネタリーミキサーにて30分間混練した。混練物を真空乾燥機にて80℃で2時間乾燥し、エタノールを除去した。次にこの混練物を加熱炉にて、700℃で1時間保持してその後冷却した。室温まで冷却後、得られた熱処理品に質量比で2.5倍量の水酸化カリウムを混合して実施例1と同様にして賦活反応を行った。得られた分極性電極の、正負極の平均膨張率は5%であった。
Example 6:
As the adhering material, a phenol resin partially modified with tung oil prepared by the following method was used. That is, 100 parts by mass of tung oil, 150 parts by mass of phenol, and 150 parts by mass of nonylphenol are mixed and maintained at 50 ° C. 0.5 parts by mass of sulfuric acid was added and stirred, and the temperature was gradually raised and maintained at 120 ° C. for 1 hour to carry out an addition reaction between tung oil and phenols. Thereafter, the temperature was lowered to 60 ° C. or less, 6 parts by weight of hexamethylenetetramine and 100 parts by weight of 37% by weight formalin were added, and the reaction was carried out at 90 ° C. for about 2 hours, followed by vacuum dehydration, 100 parts by weight of methanol, 100 parts by weight of acetone. A varnish having a viscosity of 20 mPa · s (20 ° C.) (hereinafter referred to as “varnish A”) was obtained.
10 g of calcium carbonate was added to 100 g of a coal pitch having a softening point of 86 ° C., and the mixture was charged in a crucible. After that, pulverize and add 12.6 parts by mass of ethanol to 5.4 parts by mass in terms of resin solids of varnish A to carbonaceous powder (19.8 g) adjusted to an average particle size (D50 = 8 μm). The dissolved solution was added so that the solid content of the modified phenol resin was 1.3% by mass and kneaded for 30 minutes with a planetary mixer. The kneaded product was dried in a vacuum dryer at 80 ° C. for 2 hours to remove ethanol. Next, this kneaded material was kept at 700 ° C. for 1 hour in a heating furnace and then cooled. After cooling to room temperature, the obtained heat-treated product was mixed with 2.5 times the amount of potassium hydroxide in a mass ratio, and an activation reaction was carried out in the same manner as in Example 1. The average polarizability of the positive and negative electrodes of the obtained polarizable electrode was 5%.

実施例7:
混練時に気相成長炭素繊維を10質量%加えて混練した以外は実施例6と同様にして活性炭を製造した。得られた分極性電極の平均膨張率は4%であった。
Example 7:
Activated carbon was produced in the same manner as in Example 6 except that 10% by mass of vapor growth carbon fiber was added and kneaded at the time of kneading. The average polarizability of the obtained polarizable electrode was 4%.

本発明は、粒子内部にアルカリ土類金属化合物を含み、比表面積が10〜2000m2/gである活性炭、その製造方法及び分極性電極を提供したものである。本発明の活性炭は、過剰な電圧を与えなくても、電気容量(F/ml)が高く、充放電時の電極膨張率が少なく、耐久性の良好な、キャパシタ用電極として好適に使用できる。
さらに、当該活性炭に気相法炭素繊維を混合することで、より優れた特性を有する分極性電極および電気二重層キャパシタを製造することが可能である。
The present invention provides an activated carbon containing an alkaline earth metal compound inside a particle and having a specific surface area of 10 to 2000 m 2 / g, a production method thereof, and a polarizable electrode. The activated carbon of the present invention can be suitably used as an electrode for a capacitor having high electric capacity (F / ml), low electrode expansion coefficient during charge / discharge, and good durability without applying an excessive voltage.
Furthermore, it is possible to produce a polarizable electrode and an electric double layer capacitor having more excellent characteristics by mixing vapor grown carbon fiber with the activated carbon.

実施例で使用した電気二重層キャパシタ評価用セルの断面図である。It is sectional drawing of the cell for electric double layer capacitor evaluation used in the Example. 充放電時の電極膨張率の変化の測定に使用した評価用セルの断面図である。It is sectional drawing of the cell for evaluation used for the measurement of the change of the electrode expansion coefficient at the time of charging / discharging.

符号の説明Explanation of symbols

1 上蓋
2 Oリング
3 集電体
4 絶縁体
5 容器
6 板ばね
7 電極
8 セパレーター
9 電極押え用コイルばね
DESCRIPTION OF SYMBOLS 1 Upper lid 2 O-ring 3 Current collector 4 Insulator 5 Container 6 Leaf spring 7 Electrode 8 Separator 9 Electrode holding coil spring

Claims (24)

粒子内部にアルカリ土類金属化合物を含み、窒素吸着法によって求めたBET比表面積が10〜2000m2/gであり、ラマンスペクトルのGピーク(1580cm-1)のピーク高さに対するDピーク(1360cm-1)のピーク高さの比が0.8〜1.2であり、窒素吸着法によって求めたBJH法による20〜50オングストロームの細孔容積が0.02ml/g以上の範囲にあり、アルカリ土類金属化合物が粒径1μm以下の粒子であり、アルカリ土類金属化合物の含有量が、30〜100000質量ppmである活性炭。 Comprises an alkali earth metal compound inside the particles, BET specific surface area as determined by nitrogen adsorption method is 10~2000m 2 / g, D peak to peak height of G peak of the Raman spectrum (1580cm -1) (1360cm - 1) Ri ratio 0.8-1.2 der peak height of 20 to 50 angstrom pore volume by the BJH method determined by the nitrogen adsorption method is in the range of more than 0.02 ml / g, the alkaline earth metal compound is Activated carbon having a particle size of 1 μm or less and an alkaline earth metal compound content of 30 to 100,000 mass ppm. アルカリ土類金属化合物が、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムからなる群から選ばれる少なくとも1種のアルカリ土類金属化合物である請求項1に記載の活性炭。   The activated carbon according to claim 1, wherein the alkaline earth metal compound is at least one alkaline earth metal compound selected from the group consisting of beryllium, magnesium, calcium, strontium, barium and radium. アルカリ土類金属化合物が、アルカリ土類金属、アルカリ土類金属の酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫化物、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも1種である請求項1または2に記載の活性炭。   Alkaline earth metal compounds from alkaline earth metals, alkaline earth metal oxides, hydroxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates and nitrates The activated carbon according to claim 1 or 2, which is at least one selected from the group consisting of: アルカリ土類金属化合物がカルシウム化合物である請求項3に記載の活性炭。   The activated carbon according to claim 3, wherein the alkaline earth metal compound is a calcium compound. 請求項1に記載の活性炭に、難黒鉛化炭素からなる多孔性炭素層を被覆してなる活性炭。   Activated carbon obtained by coating the activated carbon according to claim 1 with a porous carbon layer made of non-graphitizable carbon. 電気二重層キャパシタの分極性電極用である請求項1またはに記載の活性炭。 The activated carbon according to claim 1 or 5 , which is used for a polarizable electrode of an electric double layer capacitor. 請求項1乃至のいずれか一つに記載の活性炭を含む分極性電極。 A polarizable electrode comprising the activated carbon according to any one of claims 1 to 6 . 請求項1乃至のいずれか一つに記載の活性炭と気相法炭素繊維を含む分極性電極。 Polarizable electrode containing activated carbon and vapor grown carbon fiber according to any one of claims 1 to 6. 気相法炭素繊維が、中空構造を有し、外径2〜500nm、アスペクト比10〜15000である請求項に記載の分極性電極。 The polarizable electrode according to claim 8 , wherein the vapor grown carbon fiber has a hollow structure, has an outer diameter of 2 to 500 nm, and an aspect ratio of 10 to 15000. 気相法炭素繊維が、0.01〜0.4ml/gのミクロ孔容積を有し、窒素吸着法によって求めたBET比表面積が30〜1000m2/gである請求項に記載の分極性電極。 The polarizable electrode according to claim 8 , wherein the vapor grown carbon fiber has a micropore volume of 0.01 to 0.4 ml / g, and a BET specific surface area determined by a nitrogen adsorption method is 30 to 1000 m 2 / g. 気相法炭素繊維の(002)面の面間隔d002が0.3395nm以下である請求項に記載の分極性電極。 The polarizable electrode according to claim 8 plane spacing d 002 of (002) plane of the vapor-grown carbon fiber is less than 0.3395Nm. 気相成長炭素繊維が、分岐状繊維であり、かつ分岐部分の中空構造が連通している請求項に記載の分極性電極。 The polarizable electrode according to claim 8 , wherein the vapor-grown carbon fiber is a branched fiber, and the hollow structure of the branched portion is in communication. 気相法炭素繊維を炭素質粉体に対して0.1〜20質量%混合する請求項に記載の分極性電極。 The polarizable electrode according to claim 8 , wherein vapor grown carbon fiber is mixed in an amount of 0.1 to 20% by mass with respect to the carbonaceous powder. 気相法炭素繊維が、活性炭表面に融着している請求項に記載の分極性電極。 The polarizable electrode according to claim 8 , wherein the vapor grown carbon fiber is fused to the activated carbon surface. 請求項乃至14のいずれか一つに記載の分極性電極を用いた電気二重層キャパシタ。 The electric double layer capacitor using the polarizable electrode as described in any one of Claims 7 thru | or 14 . 有機溶媒に電解質を溶解した有機系電解液を用いた請求項15に記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 15 , wherein an organic electrolytic solution in which an electrolyte is dissolved in an organic solvent is used. 請求項1乃至に記載の活性炭を含有するスラリー。 Slurry containing activated carbon according to claims 1 to 6. 請求項1乃至に記載の活性炭を含有するペースト。 Claims 1 to paste containing activated carbon according to 6. 請求項1乃至に記載の活性炭が表面に塗布された電極シート。 Electrode sheet Activated carbon according coated on the surface thereof to claims 1 to 6. 請求項15に記載の電気二重層キャパシタを含むエネルギーデバイス。 An energy device comprising the electric double layer capacitor according to claim 15 . 軟化点100℃以下のピッチにアルカリ土類金属化合物を添加し、400〜600℃及び600〜900℃の温度範囲で保持して熱処理する工程、次いで熱処理により生成した易黒鉛化炭素をアルカリ金属化合物と混合加熱して賦活する工程を含むことを特徴とする活性炭の製造方法。 A step of adding an alkaline earth metal compound to a pitch having a softening point of 100 ° C. or less, and heat-treating it at a temperature range of 400 to 600 ° C. and 600 to 900 ° C., and then subjecting the graphitizable carbon produced by the heat treatment to an alkali metal compound A process for producing activated carbon, comprising a step of activating by mixing and heating. 易黒鉛化原料にアルカリ土類金属化合物を添加しアルカリ金属化合物の蒸気中で熱処理する工程、次いで熱処理により生成した易黒鉛化炭素をアルカリ金属化合物と混合加熱して賦活する工程を含むことを特徴とする活性炭の製造方法。 It includes a step of adding an alkaline earth metal compound to the graphitizable raw material and heat-treating it in the vapor of the alkali metal compound, and then a step of activating the graphitizable carbon generated by the heat treatment by mixing and heating with the alkali metal compound. A method for producing activated carbon. アルカリ金属化合物が、アルカリ金属水酸化物である請求項21に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 21 , wherein the alkali metal compound is an alkali metal hydroxide. アルカリ金属化合物が、カリウム、ナトリウム及びセシウムからなる群から選ばれる少なくとも1種を含む化合物である請求項21または22に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 21 or 22 , wherein the alkali metal compound is a compound containing at least one selected from the group consisting of potassium, sodium and cesium.
JP2003382421A 2002-11-13 2003-11-12 Activated carbon, manufacturing method thereof and polarizable electrode Expired - Fee Related JP4420381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382421A JP4420381B2 (en) 2002-11-13 2003-11-12 Activated carbon, manufacturing method thereof and polarizable electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002329490 2002-11-13
JP2003382421A JP4420381B2 (en) 2002-11-13 2003-11-12 Activated carbon, manufacturing method thereof and polarizable electrode

Publications (2)

Publication Number Publication Date
JP2004175660A JP2004175660A (en) 2004-06-24
JP4420381B2 true JP4420381B2 (en) 2010-02-24

Family

ID=32716184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382421A Expired - Fee Related JP4420381B2 (en) 2002-11-13 2003-11-12 Activated carbon, manufacturing method thereof and polarizable electrode

Country Status (1)

Country Link
JP (1) JP4420381B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551144B2 (en) * 2004-07-30 2014-07-16 東洋炭素株式会社 Activated carbon and its manufacturing method
JP2006332627A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
JP4533876B2 (en) * 2005-09-29 2010-09-01 昭和電工株式会社 Activated carbon and its production method and use
US7964530B2 (en) * 2005-09-29 2011-06-21 Showa Denko K.K. Activated carbon and process of making the same
JP4576371B2 (en) * 2005-10-27 2010-11-04 昭和電工株式会社 Activated carbon, its production method and use
JP4576374B2 (en) * 2005-12-16 2010-11-04 昭和電工株式会社 Activated carbon, its production method and its use
JP4718320B2 (en) * 2005-12-26 2011-07-06 Jfeケミカル株式会社 Porous material and electric double layer capacitor
JP4830574B2 (en) * 2006-03-28 2011-12-07 住友ベークライト株式会社 Carbon material for electric double layer capacitor, method for producing the same, and electric double layer capacitor containing the same
JP5201800B2 (en) * 2006-04-04 2013-06-05 関西熱化学株式会社 Electrode material for electric double layer capacitor and method for producing electrode material for electric double layer capacitor
WO2008018326A1 (en) * 2006-08-11 2008-02-14 Asahi Glass Company, Limited Nonaqueous electrolyte solution for electric double layer capacitor and electric double layer capacitor using the same
JP2009289766A (en) * 2006-09-29 2009-12-10 Japan Pionics Co Ltd Electric double-layer capacitor module
JP5211526B2 (en) 2007-03-29 2013-06-12 Tdk株式会社 All-solid lithium ion secondary battery and method for producing the same
JP5157216B2 (en) * 2007-03-29 2013-03-06 Tdk株式会社 Method for producing active material and active material
KR101407506B1 (en) 2007-12-21 2014-06-17 재단법인 포항산업과학연구원 Method for heat treatment of carbon raw materials for activated carbons
JP5087466B2 (en) * 2008-05-08 2012-12-05 昭和電工株式会社 Electric double layer capacitor
JP2009272455A (en) * 2008-05-08 2009-11-19 Showa Denko Kk Electrochemical capacitor
JP5434389B2 (en) * 2009-09-01 2014-03-05 株式会社豊田中央研究所 Carbon porous body manufacturing method and power storage device
JP2014212242A (en) * 2013-04-19 2014-11-13 太陽誘電株式会社 Electrochemical device
JP6749117B2 (en) * 2016-03-28 2020-09-02 株式会社アドール Method for producing activated carbon containing at least one of a simple metal and a metal compound
WO2018155647A1 (en) * 2017-02-27 2018-08-30 株式会社クラレ Carbonaceous material, carbonaceous material-containing electrode material for electric double layer capacitor, electrode for electric double layer capacitor, and electric double layer capacitor
CN114538437B (en) * 2022-02-17 2023-05-26 青海民族大学 Carbon material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004175660A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
US7232790B2 (en) Activated carbon, method for production thereof and use thereof
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP5931326B2 (en) Activated carbon for electric double layer capacitors
CN108475588B (en) Nonaqueous lithium storage element
JP2012074467A (en) Anode material, method of manufacturing the same, and electricity-storage device
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
KR20150119849A (en) Electrode, electric double-layer capacitor using same, and electrode manufacturing method
JP6675146B2 (en) Non-aqueous lithium storage element
JP6957250B2 (en) Non-aqueous lithium storage element
JP2002083748A (en) Activated carbon, manufacturing method therefor and electric double-layer capacitor
JPWO2016031977A1 (en) Negative electrode material for power storage device, method for producing the same, and lithium ion power storage device
JP4117056B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JP2015225876A (en) Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
JP2001274044A (en) Capacitor using nonaqueous electrolyte
JP4941952B2 (en) Activated carbon, its production method and its use
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP6972087B2 (en) Non-aqueous lithium storage element
JPWO2018030280A1 (en) Non-aqueous alkali metal ion capacitor
JP5001791B2 (en) Carbon material for electric double layer capacitor electrode
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees