JP2004332055A - Nickel powder and its producing method - Google Patents

Nickel powder and its producing method Download PDF

Info

Publication number
JP2004332055A
JP2004332055A JP2003130624A JP2003130624A JP2004332055A JP 2004332055 A JP2004332055 A JP 2004332055A JP 2003130624 A JP2003130624 A JP 2003130624A JP 2003130624 A JP2003130624 A JP 2003130624A JP 2004332055 A JP2004332055 A JP 2004332055A
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
nickel powder
hydrazine
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130624A
Other languages
Japanese (ja)
Other versions
JP4100244B2 (en
Inventor
Shingo Murakami
慎悟 村上
Hirotaka Takahashi
洋孝 高橋
Yuichi Owa
裕一 大輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003130624A priority Critical patent/JP4100244B2/en
Publication of JP2004332055A publication Critical patent/JP2004332055A/en
Application granted granted Critical
Publication of JP4100244B2 publication Critical patent/JP4100244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical nickel powder which is suitable for an internal electrode of a laminated ceramic condenser and has desirable average grain diameter, uniform grain distribution and good dispersibility. <P>SOLUTION: In the method for producing the nickel powder by using nickel salt aqueous solution and reducing the solution with hydrazine, the aqueous solution containing palladium of 5-5,000 ppm per the nickel and the nickel salt aqueous solution are added into the alkaline hydrazine aqueous solution while stirring them, and they are kept at a reaction temperature of 50-90°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル粉末とその製造方法に関し、さらに詳しくは、積層セラミックコンデンサー内部電極用として好適な、所望の平均粒径で均一な粒度分布を有し、かつ分散性の良い球状ニッケル粉末及びその製造方法に関する。
【0002】
【従来の技術】
ニッケル粉末は、厚膜導電体材料として積層セラミックコンデンサー(以下、MLCCと呼称する場合がある。)や多層セラミック基板等の積層セラミック部品の電極など電気回路の形成のため、導電ペースト材料として使用されている。
電子機器具の高性能化、小型化、高容量化、高周波化に伴い、電子回路の設計において多層化、薄層化及び異種材料による高積層化が急激に進んでおり、MLCCにおいても上記への対応が進行している。
【0003】
MLCCは、誘電体層と金属からなる内部電極層とが交互に積み重なり、両端に外部電極が設けられた構造となっている。内部電極材料としては、従来のパラジウム系からパラジウム−銀系へ、さらに低価格化のためにニッケル系への転換が急激に進んでいる。通常、ニッケル内部電極は、微細なニッケル粉末をエチルセルロース等の樹脂とターピネオール等の有機溶剤などとともに混練して製造された導電ペーストとして誘電体グリーンシート上にスクリーン印刷され、積層後、還元性雰囲気で焼成されて形成される。
近年、誘電体層の薄層化が著しく進み、これにともない前記内部電極の厚みは従来の数μm程度の厚みから1〜3μm程度の厚さで使用される場合が多くなっている。このため、MLCC内部電極用として、平均粒径が0.2〜0.8μmで、単分散性の高い球状粉末が用いられている。
【0004】
この対応策として、微粒のニッケル粉末の製造方法が提案されており、代表的なものとしては、以下のようなものが挙げられる。
例えば、所定濃度の塩化ニッケル水溶液に所定量のヒドラジンを加えて反応させて、粒径及び分散性においてMLCC内部電極用に適したニッケル粉末を得る方法(例えば、特許文献1参照)がある。この提案では、分散性の良いニッケル粉を得るために、液中のニッケル濃度を低くしたり、あるいはヒドラジン濃度を著しく高めるなどの還元条件が必要である。そこで、平均粒径が0.3μmより小さいものを製造する場合には、これらの条件を最適化しても、安価に、安定して製造することが困難である。
【0005】
また、ニッケル塩の溶液を水素化ホウ素ナトリウム等の水素化ホウ化物の還元液にて還元して、平均粒径が0.2〜1.5μmのニッケル粉末を得る方法(例えば、特許文献2参照)がある。この提案では、ホウ素がニッケル粉末中に合金もしくは不純物として析出し、内部電極用材料としての電気的性能が劣ってしまう問題がある。
【0006】
以上の状況下、MLCCはさらなる高積層化が進み、内部電極の薄層化のためにさらに微粒で、粒度分布巾が狭い即ち均一な粒度分布を有し、かつ分散性の良い球状粒子が望まれている。特に、上記薄層化に十分に対応できる平均粒径が0.3μm以下の微粒ニッケル粉末が期待されている。
なお、本明細書において用いる平均粒径は、走査型電子顕微鏡観察で得られたものである。
【0007】
【特許文献1】
特開平06−336601号公報(第1頁、第2頁)
【特許文献2】
特公平6−99143号公報(第1頁)
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、積層セラミックコンデンサー内部電極用として好適な、所望の平均粒径で均一な粒度分布を有し、かつ分散性の良い球状ニッケル粉末及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために、ニッケル塩水溶液を用いてヒドラジンで還元することによりニッケル粉末を製造する方法について、鋭意研究を重ねた結果、特定量のパラジウムを含むニッケル塩水溶液を用いて、特定条件で処理したところ、所望の平均粒径で均一な粒度分布を有し、かつ分散性の良い球状ニッケル粉末が得られることを見出し、本発明を完成した。
【0010】
すなわち、本発明の第1の発明によれば、ニッケル塩水溶液を用いてヒドラジンで還元することによりニッケル粉末を製造する方法において、
アルカリ性のヒドラジン水溶液に、攪拌しながら、ニッケルに対して5〜5000ppmのパラジウムを含む水溶液とニッケル塩水溶液を添加し、50〜90℃の反応温度に保持することを特徴とするニッケル粉末の製造方法が提供される。
【0011】
また、本発明の第2の発明によれば、第1の発明において、前記パラジウムを含む水溶液と前記ニッケル塩水溶液を予め混合してから添加することを特徴とするニッケル粉末の製造方法が提供される。
【0012】
また、本発明の第3の発明によれば、第1の発明において、前記反応温度が、70〜90℃であることを特徴とするニッケル粉末の製造方法が提供される。
【0013】
また、本発明の第4の発明によれば、第1の発明において、前記アルカリ性のヒドラジン水溶液が、pHが10以上に調整された水酸化ナトリウムとヒドラジン水和物の混合水溶液であることを特徴とするニッケル粉末の製造方法が提供される。
【0014】
また、本発明の第5の発明によれば、第1の発明において、前記ニッケル塩水溶液が、塩化ニッケル水溶液であることを特徴とするニッケル粉末の製造方法が提供される。
【0015】
また、本発明の第6の発明によれば、第1〜5いずれかの発明の製造方法で得られる、平均粒径が0.1〜0.3μmの範囲の所定値に制御されるニッケル粉末が提供される。
【0016】
【発明の実施の形態】
以下、本発明のニッケル粉末とその製造方法を詳細に説明する。
本発明のニッケル粉末の製造方法は、ニッケル塩水溶液を用いてヒドラジンで還元することによりニッケル粉末を製造する方法において、アルカリ性のヒドラジン水溶液に、攪拌しながら、ニッケルに対して5〜5000ppmのパラジウムを含む水溶液とニッケル塩水溶液を添加し、50〜90℃の反応温度に保持することを含み、この製造方法によって平均粒径が0.1〜0.3μmの範囲の所定値に制御されるニッケル粉末が得られる。
【0017】
1.製造方法
本発明のニッケル粉末の製造方法では、アルカリ性のヒドラジン水溶液に、攪拌しながら、ニッケルに対して5〜5000ppmのパラジウムを含む水溶液とニッケル塩水溶液を添加し、50〜90℃の反応温度に保持する。
【0018】
本発明では、ニッケル塩水溶液をヒドラジンで還元するに際して、所定量のパラジウムを含む水溶液を用いることが重要である。これによって、微粒ニッケル粉末の平均粒径の厳密な制御が行えるので、所望の平均粒径で均一な粒度分布を有し、かつ分散性の良い球状ニッケル粉末が得られる。
【0019】
本発明の方法において、パラジウムの添加によって、還元生成するニッケル粒子が微細化する機構の詳細は不明であるが、アルカリ性のヒドラジン水溶液とパラジウムを含む水溶液及びニッケル塩水溶液の混合によって、まず微細パラジウム粒子が生成し、このパラジウム粒子がヒドラジンの分解を促進するか、あるいはニッケル粒子の析出の核として作用するかのいずれかが関与していることが推察される。すなわち、パラジウム水溶液をヒドラジン水溶液に投入すると、生成された微細析出物表面から水素と思われる気泡が発生する現象が観察される。いずれにしろ、結果としてヒドラジンによるニッケルイオンの還元反応の速度が上昇するため、還元析出するニッケル粒子が微細化することになる。この微細化の度合、すなわちニッケル粉末の平均粒径が、ニッケルに対するパラジウムの添加量で制御できることが重要な意義がある。
【0020】
また、還元反応の速度が上昇するため、水溶液中のニッケルイオン濃度も短時間で低下するので、1次粒子が凝集して形成された2次粒子上に新たにニッケルが析出して粗大粒子を形成することが起こりにくく、その結果として所望の平均粒径で均一な粒度分布を有し、かつ分散性の良い球状ニッケル粉末が得られる。
【0021】
本発明の製造方法において、パラジウム水溶液とニッケル塩水溶液の添加方法は、特に限定されるものではなく、例えばパラジウム水溶液を予めニッケル塩水溶液と混合して用いるか、または個別にアルカリ性のヒドラジン水溶液に添加することができる。例えば、ヒドラジン水溶液にパラジウム水溶液を添加しその後にニッケル塩水溶液を添加する方法を行う場合には、生成したパラジウム粒子が短時間のうちに凝集してしまい、その効果が弱まるので、より多量のパラジウムの添加が必要になる。このため、パラジウムのコスト上の理由から、パラジウム塩とニッケル塩を同時にヒドラジン水溶液と接触させるようにするため、パラジウム水溶液を予めニッケル塩水溶液と混合して用いることが好ましい。こうすることで、パラジウム粒子が最も小さく活性が強い段階で作用して効率的にニッケルを還元できる。このように、本発明は、ニッケル塩水溶液をヒドラジンで還元するに際して、いわば還元を促進する触媒としてパラジウムを用いることが特徴であり、さまざまな実施条件において適用できる。
【0022】
本発明に用いるニッケル塩水溶液としては、特に限定されるものではなく、例えば、塩化ニッケル、硫酸ニッケル又は硝酸ニッケルから選ばれる少なくとも1種を含む水溶液が用いられるが、この中で、特に廃液処理が簡易である塩化ニッケル水溶液が好ましい。
【0023】
上記パラジウムの原料としては、特に限定されるものではなく、例えば、水溶性で、上記ニッケル塩水溶液に溶解後も安定な化合物であればアルカリ性のパラジウム塩も用いられるが、この中で、特に液調整が容易な塩化パラジウムが好ましい。
【0024】
上記パラジウムの添加量は、ニッケルに対して5〜5000ppmであり、好ましくは200〜5000ppm、さらに好ましくは1000〜3000ppmである。すなわち、添加量が5ppm未満であると添加による粒径の制御効果が殆ど見られない。一方、ニッケルに対するパラジウムの添加量が上昇するほど、得られるニッケル粉末の平均粒径が微細化するが、5000ppmを超えると、ニッケル粉末の平均粒径の微細化の効果がそれ以上見られないため、経済的に不利である。
また、添加量が200〜5000ppmにおいて、高積層の積層セラミックコンデンサー内部電極用として好適な、平均粒径が0.1〜0.3μmの均一な粒度分布の球状ニッケル粉末が得られる。
【0025】
上記アルカリ性のヒドラジン水溶液としては、特に限定されるものではなく、例えば、水酸化ナトリウム、水酸化カリウム、アンモニアその他の水溶性アルカリとヒドラジン、ヒドラジン水和物等の水溶性ヒドラジン化合物が混合して用いられるが、これらの中でも、特にpHが10以上に調整された水酸化ナトリウムとヒドラジン水和物の混合水溶液が好ましい。すなわち、pHが10未満ではニッケルの還元析出が起らない。
【0026】
上記反応温度としては、50〜90℃であり、70〜90℃が好ましい。すなわち、50℃未満ではニッケルの還元析出が進み難く、得られたニッケル粉末の形状が不定形になり粒度分布巾が広い。特に、70℃以上で均一な粒度分布で分散性の良い球状粒子が得られる。一方、90℃を超えると、ヒドラジンの分解が進むので添加量を多くする必要があり経済的でない。
【0027】
2.ニッケル粉末
本発明のニッケル粉末は、上記製造方法において得られる、平均粒径が0.1〜0.3μmの範囲の所定値に制御されるニッケル粉末である。しかも、均一な粒度分布を有し、かつ分散性の良い粉末であるので、高積層の積層セラミックコンデンサー内部電極の薄層化に十分に対応できる。
【0028】
【実施例】
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた平均粒径と粒度分布の評価方法及びPdの分析方法は、以下の通りである。
(1)平均粒径と粒度分布の評価:走査型電子顕微鏡観察で行った。
(2)Pdの分析:ICP発光分析法で行った。
【0029】
また、実施例及び比較例で用いたアルカリ性ヒドラジン水溶液の調製方法は、以下の通りである。
[アルカリ性ヒドラジン水溶液の調製方法]
水酸化ナトリウム130gを純水2.5Lに溶解混合し、これにヒドラジン水和物(ヒドラジン純分60重量%)500mlを添加し、攪拌して調製した。
【0030】
実施例1
アルカリ性ヒドラジン水溶液とパラジウムを含む塩化ニッケル水溶液とを用いて、ニッケル粉末を得て、評価した。
まず、上記の調製方法で得たアルカリ性ヒドラジン水溶液3Lを75℃に加温して保持した。これを撹拌しながら、予め塩化パラジウム水溶液を用いて調製した、Pd濃度500mg/L及びNi濃度100g/Lの塩化ニッケル水溶液1Lを滴下して還元を行ないニッケル粉末を得た。その後、得られたニッケル粉末の平均粒径と粒度分布の評価を行った。図1に、走査型電子顕微鏡写真を示す。その結果を、表1に示す。
【0031】
実施例2
Pd濃度が200mg/Lの塩化ニッケル水溶液を用いた以外は、実施例1と同様に行って、ニッケル粉末を得た。その後、得られたニッケル粉末の平均粒径と粒度分布の評価を行った。図1に、走査型電子顕微鏡写真を示す。その結果を、表1に示す。
【0032】
実施例3
Pd濃度が50mg/Lの塩化ニッケル水溶液を用いた以外は、実施例1と同様に行って、ニッケル粉末を得た。その後、得られたニッケル粉末の平均粒径と粒度分布の評価を行った。図1に、走査型電子顕微鏡写真を示す。その結果を、表1に示す。
【0033】
実施例4
Pd濃度が20mg/Lの塩化ニッケル水溶液を用いた以外は、実施例1と同様に行って、ニッケル粉末を得た。その後、得られたニッケル粉末の平均粒径と粒度分布の評価を行った。図1に、走査型電子顕微鏡写真を示す。その結果を、表1に示す。
【0034】
比較例1
Pd濃度が0.3mg/Lの塩化ニッケル水溶液を用いた以外は、実施例1と同様に行って、ニッケル粉末を得た。その後、得られたニッケル粉末の平均粒径と粒度分布の評価を行った。図1に、走査型電子顕微鏡写真を示す。その結果を、表1に示す。
【0035】
【表1】

Figure 2004332055
【0036】
表1より、実施例1〜4では、パラジウム添加量がニッケルに対して5〜5000ppmで、かつ反応温度等が本発明の方法に従って行われたので、0.3μm以下の所望の平均粒径に制御され、かつ均一な粒度分布の球状ニッケル粒子が得られることが分かる。これに対して、比較例1では、パラジウム添加量がこれらの条件に合わないので、粒度分布が不均一で満足すべき結果が得られないことが分かる。
【0037】
【発明の効果】
以上説明したように、本発明のニッケル粉末とその製造方法は、積層セラミックコンデンサー内部電極用として好適な、所望の平均粒径で均一な粒度分布を有し、かつ分散性の良い球状ニッケル粉末及びその製造方法であり、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】ニッケル粉末の走査型電子顕微鏡写真を示す。(a)〜(d)は、各々実施例1〜4で得られたニッケル粉末の走査型電子顕微鏡写真である。(e)は、比較例1で得られたニッケル粉末の走査型電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to nickel powder and a method for producing the same, and more particularly, a spherical nickel powder having a desired average particle size and a uniform particle size distribution and suitable for use as an inner electrode of a multilayer ceramic capacitor, and its dispersibility It relates to a manufacturing method.
[0002]
[Prior art]
Nickel powder is used as a conductive paste material for the formation of electrical circuits such as multilayer ceramic capacitors (hereinafter sometimes referred to as MLCC) and multilayer ceramic component electrodes such as multilayer ceramic substrates as a thick film conductor material. ing.
With the increase in performance, size, capacity, and frequency of electronic equipment, multilayering, thinning, and high stacking with different materials are rapidly progressing in the design of electronic circuits. Correspondence is progressing.
[0003]
The MLCC has a structure in which dielectric layers and metal internal electrode layers are alternately stacked, and external electrodes are provided at both ends. As an internal electrode material, the conversion from a conventional palladium system to a palladium-silver system has been rapidly progressing to a nickel system for further cost reduction. Usually, the nickel internal electrode is screen-printed on a dielectric green sheet as a conductive paste produced by kneading fine nickel powder together with a resin such as ethyl cellulose and an organic solvent such as terpineol, and after lamination, in a reducing atmosphere. It is formed by firing.
In recent years, the thickness of the dielectric layer has been remarkably reduced, and accordingly, the thickness of the internal electrode is often increased from the conventional thickness of about several μm to about 1 to 3 μm. For this reason, spherical powder having an average particle diameter of 0.2 to 0.8 μm and high monodispersibility is used for the MLCC internal electrode.
[0004]
As a countermeasure, a method for producing fine nickel powder has been proposed, and typical examples include the following.
For example, there is a method in which a predetermined amount of hydrazine is added to a nickel chloride aqueous solution having a predetermined concentration and reacted to obtain nickel powder suitable for MLCC internal electrodes in particle size and dispersibility (see, for example, Patent Document 1). In this proposal, in order to obtain nickel powder with good dispersibility, reducing conditions such as lowering the nickel concentration in the liquid or significantly increasing the hydrazine concentration are necessary. Therefore, when manufacturing a product having an average particle size smaller than 0.3 μm, it is difficult to stably manufacture at low cost even if these conditions are optimized.
[0005]
Also, a method of obtaining a nickel powder having an average particle size of 0.2 to 1.5 μm by reducing a nickel salt solution with a reducing solution of a borohydride such as sodium borohydride (see, for example, Patent Document 2) ) In this proposal, there is a problem that boron is precipitated as an alloy or an impurity in the nickel powder, resulting in poor electrical performance as the internal electrode material.
[0006]
Under the circumstances described above, MLCC has been further increased in the number of layers, and for the purpose of reducing the thickness of the internal electrode, spherical particles having a finer particle size, a narrow particle size distribution width, that is, a uniform particle size distribution and good dispersibility are desired. It is rare. In particular, a fine nickel powder having an average particle size of 0.3 μm or less that can sufficiently cope with the thinning is expected.
In addition, the average particle diameter used in this specification is obtained by scanning electron microscope observation.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-336601 (first page, second page)
[Patent Document 2]
Japanese Examined Patent Publication No. 6-99143 (first page)
[0008]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a spherical nickel powder having a desired average particle size, uniform particle size distribution, and good dispersibility, which is suitable for an internal electrode of a multilayer ceramic capacitor. It is to provide a manufacturing method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted extensive research on a method for producing nickel powder by reducing with hydrazine using an aqueous nickel salt solution, and as a result, an aqueous nickel salt solution containing a specific amount of palladium. As a result, it was found that spherical nickel powder having a desired average particle size and uniform particle size distribution and good dispersibility can be obtained.
[0010]
That is, according to the first invention of the present invention, in a method for producing nickel powder by reducing with hydrazine using an aqueous nickel salt solution,
A method for producing nickel powder, comprising adding an aqueous solution containing 5-5000 ppm of palladium to nickel and an aqueous nickel salt solution to an alkaline hydrazine aqueous solution while stirring, and maintaining the reaction temperature at 50 to 90 ° C. Is provided.
[0011]
According to a second aspect of the present invention, there is provided the method for producing nickel powder according to the first aspect, wherein the aqueous solution containing palladium and the aqueous nickel salt solution are added after being mixed in advance. The
[0012]
According to a third aspect of the present invention, there is provided the method for producing nickel powder according to the first aspect, wherein the reaction temperature is 70 to 90 ° C.
[0013]
According to a fourth aspect of the present invention, in the first aspect, the alkaline hydrazine aqueous solution is a mixed aqueous solution of sodium hydroxide and hydrazine hydrate having a pH adjusted to 10 or more. A method for producing a nickel powder is provided.
[0014]
According to a fifth aspect of the present invention, there is provided the nickel powder manufacturing method according to the first aspect, wherein the nickel salt aqueous solution is a nickel chloride aqueous solution.
[0015]
Moreover, according to the sixth invention of the present invention, the nickel powder obtained by the production method of any one of the first to fifth inventions and having an average particle diameter controlled to a predetermined value in the range of 0.1 to 0.3 μm. Is provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nickel powder of the present invention and the production method thereof will be described in detail.
The method for producing nickel powder according to the present invention is a method for producing nickel powder by reducing with hydrazine using an aqueous nickel salt solution. While stirring the alkaline hydrazine aqueous solution, 5-5000 ppm of palladium is added to nickel. A nickel powder whose average particle size is controlled to a predetermined value in the range of 0.1 to 0.3 μm by adding the aqueous solution and the aqueous nickel salt solution and maintaining the reaction temperature at 50 to 90 ° C. Is obtained.
[0017]
1. Production Method In the production method of nickel powder of the present invention, an aqueous solution containing 5-5000 ppm of palladium and nickel salt aqueous solution are added to an alkaline hydrazine aqueous solution while stirring to bring the reaction temperature to 50-90 ° C. Hold.
[0018]
In the present invention, when reducing an aqueous nickel salt solution with hydrazine, it is important to use an aqueous solution containing a predetermined amount of palladium. Thus, since the average particle size of the fine nickel powder can be strictly controlled, a spherical nickel powder having a desired average particle size, a uniform particle size distribution, and good dispersibility can be obtained.
[0019]
In the method of the present invention, the details of the mechanism by which nickel particles produced by reduction are refined by the addition of palladium are unknown, but by mixing an alkaline hydrazine aqueous solution, an aqueous solution containing palladium and an aqueous nickel salt solution, the fine palladium particles are firstly mixed. It is speculated that either the palladium particles promote the decomposition of hydrazine or the nickel particles act as nuclei for the precipitation of nickel particles. That is, when a palladium aqueous solution is put into a hydrazine aqueous solution, a phenomenon is observed in which bubbles that appear to be hydrogen are generated from the surface of the generated fine precipitate. In any case, as a result, the speed of the reduction reaction of nickel ions by hydrazine increases, so that the nickel particles that are reduced and precipitated become finer. It is important that the degree of refinement, that is, the average particle diameter of the nickel powder can be controlled by the amount of palladium added to nickel.
[0020]
In addition, since the rate of the reduction reaction increases, the nickel ion concentration in the aqueous solution also decreases in a short time. Therefore, nickel newly precipitates on the secondary particles formed by agglomeration of the primary particles, resulting in coarse particles. As a result, a spherical nickel powder having a desired average particle size, a uniform particle size distribution, and good dispersibility can be obtained.
[0021]
In the production method of the present invention, the method of adding the palladium aqueous solution and the nickel salt aqueous solution is not particularly limited. For example, the palladium aqueous solution is previously mixed with the nickel salt aqueous solution or added individually to the alkaline hydrazine aqueous solution. can do. For example, when a method of adding a palladium aqueous solution to a hydrazine aqueous solution and then adding a nickel salt aqueous solution is performed, the produced palladium particles aggregate in a short time, and the effect is weakened. Is necessary. For this reason, for the reason of the cost of palladium, in order to make a palladium salt and nickel salt contact simultaneously with hydrazine aqueous solution, it is preferable to use palladium aqueous solution previously mixed with nickel salt aqueous solution. By doing so, it is possible to efficiently reduce nickel by acting at the stage where the palladium particles are the smallest and the activity is strong. As described above, the present invention is characterized by using palladium as a catalyst for promoting reduction when reducing an aqueous nickel salt solution with hydrazine, and can be applied in various implementation conditions.
[0022]
The nickel salt aqueous solution used in the present invention is not particularly limited. For example, an aqueous solution containing at least one selected from nickel chloride, nickel sulfate or nickel nitrate is used. A simple nickel chloride aqueous solution is preferred.
[0023]
The palladium raw material is not particularly limited. For example, an alkaline palladium salt may be used as long as it is a water-soluble compound that is stable even after being dissolved in the nickel salt aqueous solution. Palladium chloride that is easy to adjust is preferred.
[0024]
The addition amount of the palladium is 5 to 5000 ppm, preferably 200 to 5000 ppm, more preferably 1000 to 3000 ppm with respect to nickel. That is, when the addition amount is less than 5 ppm, the effect of controlling the particle size by addition is hardly observed. On the other hand, as the amount of palladium added to nickel increases, the average particle size of the obtained nickel powder becomes finer. However, if it exceeds 5000 ppm, the effect of making the average particle size of the nickel powder finer is not seen any more. , Economically disadvantageous.
In addition, when the addition amount is 200 to 5000 ppm, a spherical nickel powder having a uniform particle size distribution with an average particle size of 0.1 to 0.3 μm, which is suitable for an internal electrode of a highly laminated multilayer ceramic capacitor, is obtained.
[0025]
The alkaline hydrazine aqueous solution is not particularly limited. For example, sodium hydroxide, potassium hydroxide, ammonia or other water-soluble alkali and a water-soluble hydrazine compound such as hydrazine or hydrazine hydrate are mixed and used. Among these, a mixed aqueous solution of sodium hydroxide and hydrazine hydrate whose pH is adjusted to 10 or more is particularly preferable. That is, if the pH is less than 10, nickel reduction precipitation does not occur.
[0026]
As said reaction temperature, it is 50-90 degreeC, and 70-90 degreeC is preferable. That is, when the temperature is lower than 50 ° C., reduction precipitation of nickel hardly proceeds, the shape of the obtained nickel powder becomes indefinite, and the particle size distribution width is wide. In particular, spherical particles having a uniform particle size distribution and good dispersibility can be obtained at 70 ° C. or higher. On the other hand, when it exceeds 90 ° C., hydrazine is decomposed, so that it is necessary to increase the addition amount, which is not economical.
[0027]
2. Nickel powder The nickel powder of the present invention is a nickel powder obtained by the above production method and having an average particle diameter controlled to a predetermined value in the range of 0.1 to 0.3 μm. In addition, since the powder has a uniform particle size distribution and good dispersibility, it can sufficiently cope with the thinning of the internal electrode of a highly laminated multilayer ceramic capacitor.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The average particle size and particle size distribution evaluation method and Pd analysis method used in Examples and Comparative Examples are as follows.
(1) Evaluation of average particle size and particle size distribution: It was carried out by scanning electron microscope observation.
(2) Analysis of Pd: An ICP emission analysis method was used.
[0029]
Moreover, the preparation method of alkaline hydrazine aqueous solution used by the Example and the comparative example is as follows.
[Preparation Method of Alkaline Hydrazine Aqueous Solution]
130 g of sodium hydroxide was dissolved and mixed in 2.5 L of pure water, and 500 ml of hydrazine hydrate (hydrazine pure content 60% by weight) was added thereto and stirred to prepare.
[0030]
Example 1
Nickel powder was obtained and evaluated using an aqueous alkaline hydrazine solution and a nickel chloride aqueous solution containing palladium.
First, 3 L of the alkaline hydrazine aqueous solution obtained by the above preparation method was heated to 75 ° C. and held. While stirring this, 1 L of an aqueous nickel chloride solution having a Pd concentration of 500 mg / L and an Ni concentration of 100 g / L, which was prepared in advance using an aqueous palladium chloride solution, was dropped to obtain nickel powder. Thereafter, the average particle size and particle size distribution of the obtained nickel powder were evaluated. FIG. 1 shows a scanning electron micrograph. The results are shown in Table 1.
[0031]
Example 2
A nickel powder was obtained in the same manner as in Example 1 except that an aqueous nickel chloride solution having a Pd concentration of 200 mg / L was used. Thereafter, the average particle size and particle size distribution of the obtained nickel powder were evaluated. FIG. 1 shows a scanning electron micrograph. The results are shown in Table 1.
[0032]
Example 3
A nickel powder was obtained in the same manner as in Example 1 except that an aqueous nickel chloride solution having a Pd concentration of 50 mg / L was used. Thereafter, the average particle size and particle size distribution of the obtained nickel powder were evaluated. FIG. 1 shows a scanning electron micrograph. The results are shown in Table 1.
[0033]
Example 4
A nickel powder was obtained in the same manner as in Example 1 except that an aqueous nickel chloride solution having a Pd concentration of 20 mg / L was used. Thereafter, the average particle size and particle size distribution of the obtained nickel powder were evaluated. FIG. 1 shows a scanning electron micrograph. The results are shown in Table 1.
[0034]
Comparative Example 1
A nickel powder was obtained in the same manner as in Example 1 except that an aqueous nickel chloride solution having a Pd concentration of 0.3 mg / L was used. Thereafter, the average particle size and particle size distribution of the obtained nickel powder were evaluated. FIG. 1 shows a scanning electron micrograph. The results are shown in Table 1.
[0035]
[Table 1]
Figure 2004332055
[0036]
From Table 1, in Examples 1-4, since the addition amount of palladium was 5 to 5000 ppm with respect to nickel, and the reaction temperature and the like were performed according to the method of the present invention, the desired average particle diameter of 0.3 μm or less was obtained. It can be seen that spherical nickel particles having a controlled and uniform particle size distribution can be obtained. On the other hand, in Comparative Example 1, since the amount of palladium added does not meet these conditions, it can be seen that the particle size distribution is uneven and satisfactory results cannot be obtained.
[0037]
【The invention's effect】
As described above, the nickel powder of the present invention and the manufacturing method thereof are suitable for a multilayer ceramic capacitor internal electrode, have a uniform particle size distribution with a desired average particle size, and have good dispersibility. It is a manufacturing method, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 shows a scanning electron micrograph of nickel powder. (A)-(d) is the scanning electron micrograph of the nickel powder obtained in Examples 1-4, respectively. (E) is a scanning electron micrograph of the nickel powder obtained in Comparative Example 1.

Claims (6)

ニッケル塩水溶液を用いてヒドラジンで還元することによりニッケル粉末を製造する方法において、
アルカリ性のヒドラジン水溶液に、攪拌しながら、ニッケルに対して5〜5000ppmのパラジウムを含む水溶液とニッケル塩水溶液を添加し、50〜90℃の反応温度に保持することを特徴とするニッケル粉末の製造方法。
In a method for producing nickel powder by reducing with hydrazine using an aqueous nickel salt solution,
A method for producing nickel powder, comprising adding an aqueous solution containing 5-5000 ppm of palladium to nickel and an aqueous nickel salt solution to an alkaline hydrazine aqueous solution while stirring, and maintaining the reaction temperature at 50 to 90 ° C. .
前記パラジウムを含む水溶液と前記ニッケル塩水溶液を予め混合してから添加することを特徴とする請求項1に記載のニッケル粉末の製造方法。The method for producing nickel powder according to claim 1, wherein the aqueous solution containing palladium and the aqueous nickel salt solution are added after being mixed in advance. 前記反応温度が、70〜90℃であることを特徴とする請求項1に記載のニッケル粉末の製造方法。The said reaction temperature is 70-90 degreeC, The manufacturing method of the nickel powder of Claim 1 characterized by the above-mentioned. 前記アルカリ性のヒドラジン水溶液が、pHが10以上に調整された水酸化ナトリウムとヒドラジン水和物の混合水溶液であることを特徴とする請求項1に記載のニッケル粉末の製造方法。The method for producing nickel powder according to claim 1, wherein the alkaline aqueous hydrazine solution is a mixed aqueous solution of sodium hydroxide and hydrazine hydrate having a pH adjusted to 10 or more. 前記ニッケル塩水溶液が、塩化ニッケル水溶液であることを特徴とする請求項1に記載のニッケル粉末の製造方法。The method for producing nickel powder according to claim 1, wherein the nickel salt aqueous solution is a nickel chloride aqueous solution. 請求項1〜5のいずれかに記載の製造方法で得られる、平均粒径が0.1〜0.3μmの範囲の所定値に制御されるニッケル粉末。Nickel powder obtained by the production method according to any one of claims 1 to 5, wherein the average particle size is controlled to a predetermined value in a range of 0.1 to 0.3 µm.
JP2003130624A 2003-05-08 2003-05-08 Nickel powder and method for producing the same Expired - Lifetime JP4100244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130624A JP4100244B2 (en) 2003-05-08 2003-05-08 Nickel powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130624A JP4100244B2 (en) 2003-05-08 2003-05-08 Nickel powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004332055A true JP2004332055A (en) 2004-11-25
JP4100244B2 JP4100244B2 (en) 2008-06-11

Family

ID=33506085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130624A Expired - Lifetime JP4100244B2 (en) 2003-05-08 2003-05-08 Nickel powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4100244B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179842A (en) * 2007-01-23 2008-08-07 Sumitomo Osaka Cement Co Ltd Method for producing nickel-iron-zinc alloy nanoparticle and nickel-iron-zinc alloy nanoparticle, and method for producing planar nickel-iron-zinc alloy nanoparticle and planar nickel-iron-zinc alloy nanoparticle
CN102689016A (en) * 2012-01-15 2012-09-26 河南科技大学 Preparation method of superfine nickel powder
JP2013147713A (en) * 2012-01-20 2013-08-01 Nippon Atomized Metal Powers Corp Method for producing metal nanoparticle, and conductive material
JP2013221192A (en) * 2012-04-18 2013-10-28 Sumitomo Metal Mining Co Ltd Nickel powder and method for producing the same
KR101407197B1 (en) 2005-10-20 2014-06-12 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel powder and its production method
JP2015505904A (en) * 2011-12-09 2015-02-26 ハンワ ケミカル コーポレイション Phosphorus-doped nickel nanoparticles and method for producing the same
JP2017150073A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
KR20180061296A (en) * 2015-10-19 2018-06-07 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
JP2018154870A (en) * 2017-03-16 2018-10-04 住友金属鉱山株式会社 Method for producing a nickel powder
KR20190084078A (en) 2016-12-05 2019-07-15 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
JP2021063254A (en) * 2019-10-11 2021-04-22 三井金属鉱業株式会社 Nickel particle and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722178A (en) * 2013-12-13 2014-04-16 宁夏东方钽业股份有限公司 Preparation method of superfine nickel powder
CN110102753B (en) * 2019-05-14 2021-04-30 西安工程大学 Preparation method of spherical nickel powder

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407197B1 (en) 2005-10-20 2014-06-12 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel powder and its production method
JP2008179842A (en) * 2007-01-23 2008-08-07 Sumitomo Osaka Cement Co Ltd Method for producing nickel-iron-zinc alloy nanoparticle and nickel-iron-zinc alloy nanoparticle, and method for producing planar nickel-iron-zinc alloy nanoparticle and planar nickel-iron-zinc alloy nanoparticle
JP2015505904A (en) * 2011-12-09 2015-02-26 ハンワ ケミカル コーポレイション Phosphorus-doped nickel nanoparticles and method for producing the same
US9339870B2 (en) 2011-12-09 2016-05-17 Hanwha Chemical Corporation Phosphorus-doped nickel nanoparticle and method of manufacturing the same
CN102689016A (en) * 2012-01-15 2012-09-26 河南科技大学 Preparation method of superfine nickel powder
CN102689016B (en) * 2012-01-15 2014-10-22 河南科技大学 Preparation method of superfine nickel powder
JP2013147713A (en) * 2012-01-20 2013-08-01 Nippon Atomized Metal Powers Corp Method for producing metal nanoparticle, and conductive material
JP2013221192A (en) * 2012-04-18 2013-10-28 Sumitomo Metal Mining Co Ltd Nickel powder and method for producing the same
KR102091143B1 (en) 2015-10-19 2020-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 Method for manufacturing nickel powder
KR20180061296A (en) * 2015-10-19 2018-06-07 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
JP2017150073A (en) * 2016-02-25 2017-08-31 住友金属鉱山株式会社 Production method of nickel powder
KR20190084078A (en) 2016-12-05 2019-07-15 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
KR102253292B1 (en) 2016-12-05 2021-05-20 스미토모 긴조쿠 고잔 가부시키가이샤 Method for producing nickel powder
US11389875B2 (en) 2016-12-05 2022-07-19 Sumitomo Metal Mining Co., Ltd. Process for producing nickel powder
JP2018154870A (en) * 2017-03-16 2018-10-04 住友金属鉱山株式会社 Method for producing a nickel powder
JP2021063254A (en) * 2019-10-11 2021-04-22 三井金属鉱業株式会社 Nickel particle and method for producing the same

Also Published As

Publication number Publication date
JP4100244B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4957172B2 (en) Nickel powder and method for producing the same
US7604679B2 (en) Fine nickel powder and process for producing the same
JP5519938B2 (en) Method for producing copper powder for conductive paste
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
US20110141654A1 (en) Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
JP4100244B2 (en) Nickel powder and method for producing the same
JP5574154B2 (en) Nickel powder and method for producing the same
JP2006336060A (en) Nickel particle powder and production method therefor
KR20130103540A (en) Copper powder for conductive paste and method for manufacturing same
KR20010061982A (en) Copper powder and process for producing copper powder
JP6799936B2 (en) Nickel particles, conductive paste, internal electrodes and multilayer ceramic capacitors
JP2010053409A (en) Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP2013541640A (en) Silver particles and method for producing the same
JP2009079239A (en) Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
WO2006062186A1 (en) Nickel powder, process for producing the same, and conductive paste
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP4940520B2 (en) Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component
JP2014231643A (en) Method of producing metal powder, metal powder and conductive paste for laminated ceramic capacitor
KR100709822B1 (en) Method for Surface treatment of Ni particle with Acid solution
JP2017206751A (en) Manufacturing method of nickel powder
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP2013067865A (en) Metal powder, electroconductive paste and multilayer ceramic capacitor
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
TWI544977B (en) Copper powder for conductive paste and method for producing same
CN112423917B (en) Method for producing spherical silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

EXPY Cancellation because of completion of term